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ABSTRACT

Online continual learning, the process of training models on streaming data, has
gained increasing attention in recent years. However, a critical aspect often over-
looked is the label delay, where new data may not be labeled due to slow and
costly annotation processes. We introduce a new continual learning framework
with explicit modeling of the label delay between data and label streams over time
steps. In each step, the framework reveals both unlabeled data from the current
time step t and labels delayed with d steps, from the time step t− d. In our exten-
sive experiments amounting to 1060 GPU days, we show that merely augmenting
the computational resources is insufficient to tackle this challenge. Our findings
underline a notable performance decline when solely relying on labeled data when
the label delay becomes significant. More surprisingly, when using state-of-the-art
SSL and TTA techniques to utilize the newer, unlabeled data, they fail to surpass
the performance of a naı̈ve method that simply trains on the delayed supervised
stream. To this end, we introduce a simple, efficient baseline that rehearses from
the labeled memory samples that are most similar to the new unlabeled samples.
This method bridges the accuracy gap caused by label delay without significantly
increasing computational complexity. We show experimentally that our method is
the least affected by the label delay factor and in some cases successfully recovers
the accuracy of the non-delayed counterpart. We conduct various ablations and
sensitivity experiments, demonstrating the effectiveness of our approach.

1 INTRODUCTION

Machine learning models have become the de facto standard for a wide range of applications,
including social media, finance, and healthcare. However, these models usually struggle when data
is constantly changing over time in a never-ending stream, which is a common norm in real-world
scenarios. This challenge continues to be an active area of research known as Continual Learning (CL).
However, most CL prior art examine this problem with a presumption of the immediate availability of
labels once the data is collected. This assumption can clash with the realities of practical applications.

Consider the task of monitoring recovery trends in patients after surgeries. Doctors gather health data
from numerous post-operative patients regularly. However, this collective data does not immediately
indicate broader recovery trends or potential common complications. To make informed determi-
nations, several weeks of extensive checks and tests across multiple patients are needed. Only after
these checks can they label the gathered data as indicating broader “recovery” or “complication”
trends. However, by the time they gather data, assess it, label it, and train the model, new patient data
or health scenarios may emerge. This leads to a repeating cycle: collecting data from various patients,
assessing the trends, labeling the data, training the model, and then deploying it on new patients. The
longer this cycle takes, the more likely it is going to affect the model’s reliability, a challenge we
refer to as label delay.
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Figure 1: Illustration of label delay. This figure shows a typical Continual Learning setup with
label delay due to annotation. At every time step t, the data stream SX reveals unlabeled data xt,
on which the model fθ is evaluated (highlighted with green borders). Followed by that, the data is
sent to the annotator SY who takes an equivalent of d time steps to provide the corresponding labels.
Consequently, at time-step t the label yt−d becomes available for the input data from d time steps
before. The Continual Learning model can be trained using the delayed supervised data (shown in
color) and the newest unsupervised data (shown in grayscale). In this example, the stream reveals
three samples at each time step and the annotation delay is d = 2.

In this paper, we propose a CL setting that explicitly accounts for the delay between the arrival of new
data and obtaining the corresponding labels. In our proposed setting, the model is trained continually
over time steps with label delay of d steps. In each step, the model is revealed two sets of data one that
is unlabeled from this current time step t, in addition to labels of the samples revealed from the step
t− d. In the first part of our experiments, we analyze the naı̈ve approach of simply waiting for the
labels and training exclusively on supervised data. We show that this is a challenging setting where
the performance of the CL model consistently degrades as the delay increases. Moreover, we find
that simply increasing the number of parameter updates per time step does not resolve the problem.
In the second part, we propose to utilize the unlabeled data from the most recent distribution by
integrating two promising paradigms into our setting: Self-Supervised Learning (SSL) and Test-Time
Adaptation (TTA). Surprisingly, out of the 6 SSL methods and 4 TTA methods considered, none
could outperform the naı̈ve baseline given the same computational budget. To this end, we propose a
simple baseline that samples from previously rehearsed labeled data to match the distribution of the
newest data distribution. We show that for some of the experiments, this approach successfully closes
the accuracy gap caused by the label delay.

In summary, our contributions are:

• We propose a new formal Continual Learning setting that factors label delays between
the arrival of new data and their corresponding labels due to the annotation latency of the
annotation process.

• We conduct extensive experiments (∼ 25, 000 of GPU hours) on various Online Continual
Learning datasets, such as CLOC (Cai et al., 2021) and CGLM (Prabhu et al., 2023b).
Following recent prior art on Budgeted Continual Learning (Prabhu et al., 2023a; Ghunaim
et al., 2023), we compare the best performing Self-Supervised Learning (Balestriero et al.,
2023) and Test Time Adaptation (Liang et al., 2023) methods and find that none of them
outperforms the naı̈ve baseline that simply ignores the label delay and trains a model on the
delayed labeled stream.

• We propose Importance Weighted Memory Sampling to rehearse past labeled data most sim-
ilar to the most recent unlabeled data, bridging the gap in performance. IWMS outperforms
the naı̈ve method significantly and improves over SSL and TTA method over diverse delay
and computational budget scenarios with a negligible increase in computational complexity.
We further present an in-depth analysis of the proposed method.

2 RELATED WORK

Continual Learning. Early work on continual learning primarily revolved around task-based
continual learning, where models adapt to new tasks as they are presented sequentially. These
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approaches heavily rely on task boundaries, aiding models in recognizing and adapting to each task
separately (Caccia et al., 2021; Aljundi et al., 2019a). Conversely, recent work is done in the task-free
continual learning setting, where explicit task boundaries are absent, and data distributions evolve over
time (Aljundi et al., 2019b;c; Cai et al., 2021). This scenario poses a challenge for models to adapt
without clear task demarcations. Prabhu et al. (2020; 2023a) illustrated that minimalistic methods
can outperform both offline and online continual learning approaches. This was also later observed
recently by RealtimeOCL by Ghunaim et al. (2023), which reports experience replay as the most
effective method when realistic computational constraints are considered and methods are normalized
by their corresponding complexities. An essential distinction between the complexity-normalized
framework introduced in RealtimeOCL and our delayed label setting lies in the concept of delay.
In RealtimeOCL, delay arises from model complexity: in their fast-stream scenario, the stream
releases input-label pairs quicker than models can update, causing models to train on a belated batch
of samples. In essence, while in Ghunaim et al. (2023) the delay emerges from model evaluation
constraints, labels are still instantly available. In contrast to both RealtimeOCL and prior online
continual learning approaches, our work examines delays attributed to the non-instantaneous arrival
of labels , while under normalized computational budget. The delay in our setup creates a distribution
discrepancy between training and evaluation samples due to the time-varying stream distribution.
Hammoud et al. (2023) highlighted the exploitation of label-correlation in online continual learning
methods, with a focus on improving online accuracy metrics through future samples evaluation.
In contrast, our work models the real-world annotation time cost and leverages unlabeled data to
enhance performance on the standard evaluation metric.

Self-Supervised Learning. There is a rich literature of self-supervised learning (SSL) over the
recent years. Early works such as MOCO (He et al., 2020; Chen et al., 2021) and SimCLR (Chen
et al., 2020) focused on differentiating between positive and negative examples through maximizing
similarity among positive pairs and minimizing it among negative pairs. BYOL (Grill et al., 2020)
and SimSiam (Chen & He, 2021) further investigate the necessity of negative sampling and explore
using a copy of the model for target representations instead. Barlow Twins (Zbontar et al., 2021)
and VICReg (Bardes et al., 2022) encourage similarity between distorted versions of an example as
alternatives of contrastive loss. As such, a growing line of work adapts SSL to continual learning to
make use of unlabeled data, such as CaSSLe (Fini et al., 2022) in task-agnostic setting and SCALE (Yu
et al., 2023) in task-free setting. However, most previous work did not perform comprehensive
examination of the abovementioned three typical categories of SSL methods (Balestriero et al., 2023).
We will bridge this gap in our work.

Test Time Adaptation. While SSL methods are mainly used as computationally extensive pre-
training techniques, TTA methods are designed to adjust models efficiently from their original
training distribution to the distribution from which the evaluation samples are drawn from. Given
our problem formulation, TTA methods appear suitable; hence, it is crucial to assess the efficacy
of these methods within our framework. Entropy regularization methods like SHOT (Liang et al.,
2020) and TENT (Wang et al., 2021) update the feature extractor or learnable parameters of the batch-
normalization layers (Ioffe & Szegedy, 2015) to minimize the entropy of the predictions. Nguyen et al.
(2023) introduced TIPI, a method that finds input transformations that can simulate the domain shifts
to enforce the model to be robust to the distribution shifts. SAR (Niu et al., 2023) incorporates an
active sampling scheme to filter samples with noisy gradients. More recent works consider Test Time
Adaptation in online setting (Alfarra et al., 2023) or Continual Learning setting (Wang et al., 2022).
In this work, we extend this by applying test time adaptation in scenarios where the distribution of
future test samples is unknown and cannot be assumed to be stationary.

3 PROBLEM FORMULATION

We follow the conventional online continual learning problem definition proposed by Cai et al. (2021).
In such a setting, we seek to learn a model fθ : X → Y on a stream S where for each time step
t ∈ {1, 2, . . . } the stream S reveals data from a time-varying distribution Dt sequentially in batches
of size n. At every time step, fθ is required to predict the labels of the coming batch {xt

i}ni=1 first.
Followed by this, the corresponding labels {yti}ni=1 are immediately revealed by the stream. Finally,
the model is updated using the most recent training data {(xt

i, y
t
i)}ni=1.

This setting, however, assumes that the annotation process is instantaneous, i.e.the time it takes
to provide the ground truth for the input samples is negligible. In practice, this assumption rarely
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holds. It is often the case that the rate at which data is revealed from the stream S is faster than the
rate at which labels for the unlabeled data can be collected, as opposed to it being instantaneously
revealed. To account for this delay in accumulating the labels, we propose a setting that accommodates
this lag in label availability while still allowing for the model to be updated with the most recent
unlabeled data.

We modify the previous setting in which labels of the data revealed at time step t will only be revealed
after d time steps in the future. Or equivalently, the stream S can be decoupled into two streams, one
revealing the data SX and the other revealing the labels SY , where the amount of delay between the
two streams is effectively the relative speed between the rate at which data is revealed and at which it
can be annotated. Consequently, at every time step, the stream reveals the labels for the samples from
d time steps before {(xt−d

i , yt−d
i )}ni=1 and the input data of the current time step {xt

i}ni=1.

Following recent prior art (Prabhu et al., 2020; 2023a) that argues for normalized computation for fair
comparisons, the models are given a fixed computational budget C to update the model parameters
from θt to θt+1 for every time step t. To that end, our new proposed setting can be formalized,
alternatively to the classical OCL setting, as follows: per time step t,

1. The stream SX reveals a batch of images {xt
i}ni=1 ∼ Dt;

2. The model fθt makes predictions {ŷti}ni=1 for the new revealed batch {xt
i}ni=1;

3. The stream SY reveals true labels {yt−d
i }ni=1;

4. The model fθt is evaluated by comparing the predictions {ŷti}ni=1 and true labels {yti}ni=1,
where the true labels are only for testing;

5. The model fθt is updated to fθt+1
using labeled data ∪t−d

τ=1{(xτ
i , y

τ
i )}ni=1 and unlabeled data

∪t
τ=t−d{xτ

i }ni=1 under a computational budget C.

Note that this means at each time step t, the stream reveals a batch of non-corresponding images
{xt

i}ni=1 and labels {yt−d
i }ni=1, as illustrated in Figure 1. With the label delay of d time steps, the

images themselves revealed from time step t− d to time step t can be used for training, despite that
labels are not available. A naı̈ve way to solve this problem is to discard the unlabeled images and
only train on labeled data ∪t−d

τ=1{(xτ
i , y

τ
i )}ni=1. However, note that the evaluation is still done on the

most recent samples, from SX . This effectively means, that the model, while being evaluated on the
newest data, is trained on older data (in particular, at least d time steps older). Since in our setting,
the distribution from which the training and evaluation samples are drawn from is not stationary, this
discrepancy is highly likely to hinder the model’s performance.

4 PRACTICAL IMPLICATIONS OF LABEL DELAY

We first introduce our experimental setup in Section 4.1. Then, we demonstrate in Section 4.2
that the label delay in an online continual learning setting poses a difficult challenge to continual
learning algorithms by showing that performance degrades as the label delay increases. Moreover,
we investigate how much of the performance gap can be bridged by increasing the computational
budget C in Section 4.3.

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on two large-scale online continual learning datasets. The first,
Continual Localization (CLOC) (Cai et al., 2021) which contains 39M images from 712 geolocation
ranging from 2007 to 2014. The second is Continual Google Landmarks (CGLM) (Prabhu et al.,
2023b) which contains 430K images over 10788 classes. The task is to localize the input image to
one of the 712/10788 locations, respectively, for CLOC and CGLM. We follow the same split as in
the common use of CLOC (Cai et al., 2021) and CGLM (Prabhu et al., 2023b) and report the Online
Accuracy metric detailed in (Cai et al., 2021)

Architecture and Optimization. We use ResNet18-BN (He et al., 2016) for backbone architecture.
Similarly to (Ghunaim et al., 2023; Prabhu et al., 2023a), in our experiments, the stream reveals
a mini-batch, with the size of n = 128 for CLOC and n = 64 for CGLM. We use SGD with the
learning rate of 0.005, momentum of 0.9, and weight decay of 10−5. We apply random cropping and
resizing to the images, such that the resulting input has a resolution of 224× 224. In our experiments,
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Figure 2: Effects of Varying Label Delay. The performance of a Naı̈ve Online Continual Learner
model gradually degrades with increasing values of delay d.

we refer to the Naı̈ve method, which discards the unlabeled samples and uses uniformly sampled
images from a fixed sized memory replay buffer. The memory buffer size is consistently 219 samples
throughout our experiments unless stated otherwise. The First-In-First-Out mechanism to add and
discard samples to and from the buffer follows Cai et al. (2021) throughout all of our experiments.
On the CLOC dataset, during a single forward and backward pass, the naive model processes the
128 most recent labeled samples and 128 random samples from the replay buffer, thus the effective
batch size is 256. Due to the difference in size of the two datasets, on CGLM we follow the same
procedure with half of the number of samples, thus resulting in an effective training batch size of
128. As our primary performance metric, we report the accuracy computed at each time step as per
Step 4 from Section 3 which is referred to as Online Accuracy (Cai et al., 2021).

Computational Budget. Prabhu et al. (2023a) and Ghunaim et al. (2023) argue that normalizing
the computational budget is necessary for fair comparison across CL methods; thus, we follow this
common practice and normalize the number of FLOPs required to make one backward pass with a
ResNet18 (He et al., 2016) to C = 1. When performing experiments with a larger computational
budget, we take integer multiplies of C, and in such scenarios we apply multiple parameter update
steps per stream time-steps. The proposed label delay factor d represents the amount of time-steps
the labels are delayed with. Note that, for C = 1, d = 0, our experimental setting is identical to that
of Cai et al. (2021) and Ghunaim et al. (2023).

4.2 ACCURACY DEGRADATION CAUSED BY LABEL DELAY

In Figure 2, we analyze how varying the label delay d ∈ {0, 10, 50, 100} impacts the performance of
the Naı̈ve continual learning model on both CLOC and CGLM. We show that the delay factor does
not cause immediate performance degradation. Moreover, there is a clear correspondence between d
and the extent of accuracy drop.

More specifically, we see that in both datasets the final accuracy score gradually drops from 14.8%
to 12.0%, 10.0%, and 9.1% over d = 10, 50, 100, respectively, leading to more than 38% drop in
performance in the worst-case scenario on CLOC. Similarly, on CGLM increasing the label delay
from d = 10 to 50 and 100 leads to consistently decreasing accuracy 13.4%, 12.5% and 12.0%
respectively. However, in comparison to CLOC, on CGLM we observe a more rapid decrease in
performance from even the smallest delay d = 10 leading to a 25% relative accuracy drop, while in
the largest label delay scenario we report a 32% relative accuracy gap between the delayed and the
non-delayed model.

We note that the performance of the model is relatively low, and we argue that it is because the
models illustrated in Figure 2 are trained under the hard computational constraints (C = 1 in CLOC
and C = 4 in CGLM) , where only a limited number of parameter updates takes place between each
time step. Our hypothesis is that the performance degradation is caused by the label delay due to the
induced distribution shift between the evaluation and the training data. In the next section, we study
whether the performance drop can be resolved by simply increasing the computational budget.
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Figure 3: Increasing the Computational Budget C under varying Label Delay d settings. We
report our scores on two datasets, CLOC (top) and CGLM (bottom) across three delay scenarios
d = 10, 50, 100 on the left, middle, and right respectively. In the easiest setting, d = 10 the accuracy
gap can be bridged by simply spending more 8× more compute. In more challenging scenarios,
d = 50, 100 naively increasing the number of updates shows diminishing returns, motivating us to
find better use of the increased computational budget. For brevity, we refer to the non-delayed d = 0
Naı̈ve method as “w/o delay”.

4.3 CAN WE BRIDGE THE GAP WITH INCREASED C?

Despite not being always feasible, we examine one potential solution to recover the performance
of the Naı̈ve Baseline when d > 0, which is increasing the computational budget C and performing
multiple parameter updates per time step. In Figure 3, we show results when the computational
budget of the Naı̈ve is doubled in three steps, i.e., C = 2, 4, 8 under three delays of d ∈ {10, 50, 100}.
In Figure 3, we observe the performance improvement of the Naı̈ve method is proportional to the
budget C under all delays. For example, when d = 10, the model can recover the performance of the
Naı̈ve accuracy in the d = 0 setting by increasing the computational budget from 1 → 8 and 4 → 8,
on CLOC and CGLM, respectively. On the CLOC dataset (top row of Figure 3) where the label delay
is significant (d = 50, 100), the Naı̈ve does not reach the performance of its non-delayed counterpart,
even when the computational budget is increased from C = 1 → 8 (solid orange curve). On the other
hand, increasing from C = 4 → 32 on CGLM (solid orange curve in the bottom row of Figure 3)
results in the delayed Naı̈ve consistently outperforming its non-delayed counterpart with the original
budget C = 4 (solid blue curve). However, when compared against the non-delayed Naı̈ve method
with matched computational budget (dashed orange curve), the delay causes increased accuracy gaps:
−16.6%,−18.1% and −18.9%, with respect to the delay factor d = 10, 50, 100.

Section Conclusion. To facilitate a comprehensive understanding of the implications, we compared
the Naı̈ve method with increased C against its non-delayed counterpart, under both the original and
matched computational budgets. Under matched computational budget, the performance is still
significantly worse, motivating us to find methods that can leverage the more recent unlabeled data
to bridge the gap. We have shown that increasing the computational budget of an Online Continual
Learning model alleviates the problem of the label delay, but that such a solution not only faces
diminishing returns but becomes less effective under larger delays. This motivates our next set of
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experiments, in which we augment the Naı̈ve model training by utilizing the input images before their
corresponding labels become available.

5 UTILIZING DATA PRIOR TO LABEL ARRIVAL

In our proposed online continual learning with label delay, as observed earlier, the larger the delay the
more challenging it is for Naı̈ve, a method that relies only on older labeled data, to effectively predict
new samples. This is due to a larger gap in distribution between the samples the model is trained
on and the ones the model is evaluated on. The drop in accuracy caused by this discrepancy can be
partially resolved by training the models longer, nevertheless this approach is not satisfactory for
multiple reasons. First, in many real-world scenarios, the computational budget is fixed. Furthermore,
even if it can be increased, we showed that, due to the diminishing returns, the accuracy gap remains
substantial. This begs the question of whether the new unlabeled data can be used for training to
improve over Naı̈ve, as it is much more similar to the data that the model is evaluated on.

In our experiments, we explore the techniques of the two most promising paradigms for utilizing
the unlabeled data, namely, Self-Supervised Learning (SSL) and Test Time Adaptation (TTA). We
integrate several of each family of methods into our setting and evaluate them under various delays
and computational budgets. In particular, we augment the Naı̈ve method by optimizing the supervised
objective LS (which is the standard Cross Entropy loss over the labeled data in our case) and an
unsupervised regularization term LU provided by the underlying methods.

5.1 SELF-SUPERVISED LEARNING TO HANDLE LABEL DELAY?

Experimental Setup. When it comes to integrating SSL methods in our setting, there are multiple
possible ways to utilize the learning methods, leading to vastly different results. We find the overall
best performing variant iteratively optimizes LS and LU . More specifically, we optimize LS on the
labeled data (identically to naive) and optimize the contrastive loss LU on the unlabeled data in an
alternating fashion, until the computational budget C is not consumed. We experiment with the three
main families of SSL, i.e., Deep Metric Learning Family (MoCo (He et al., 2020), SimCLR (Chen
et al., 2020),and NNCLR (Dwibedi et al., 2021)), Self-Distillation (BYOL (Grill et al., 2020) and
SimSIAM (Chen & He, 2021), and DINO (Caron et al., 2021)), and Canonical Correlation Analysis
(VICReg (Bardes et al., 2022), BarlowTwins (Zbontar et al., 2021), SWAV (Caron et al., 2020), and
W-MSE (Ermolov et al., 2021)). Furthermore, we conduct hyperparameter tuning on the first 10K
iterations of the training data over all methods, including a scalar constant λU that rescales LU .

Computational Budget. For fair comparison, and following Prabhu et al. (2023a); Ghunaim et al.
(2023), we normalise the computational complexity of the compared methods. We find that while SSL
methods may take multiple forward passes, potentially with varying input sizes, the backward pass is
consistently done only once among the variants; therefore we choose the number of backward passes
to measure the computational complexity of the resulting methods. According to this computational
complexity metric, the Naı̈ve method augmented with SSL at each time step takes two backward
passes, one for computing the gradients of LU and one for LS , thus CSSL = 2.

Observations. In Figure 4, we report the results of the best of ten SSL methods on both CLOC
(top row) and CGLM (bottom row). We compare the SSL based approaches against Naı̈ve under
varying computational budget and label delay scenarios. As discussed earlier, the SSL based methods
have an effective computational cost of CSSL = 2. To maintain fair comparison, we report the Naı̈ve
variant with an increased computational budget CNaı̈ve = 2, i.e.performing twice as many supervised
parameter updates. Under such settings, the best performing SSL based method, ReSSL (Zheng
et al., 2021) (see the Supplementary Material A.1 for an in-depth comparison) underperforms Naı̈ve
(on CLOC) −1.2%,−0.2% and −0.1% over d = 10, 50, 100, respectively. Similarly, on CGLM,
for all delay scenarios, the best performing SSL method, underperforms the Naı̈ve counterpart:
−2.3%,−2% and −2.1% in terms of online accuracy. We hypothesize this is due to several reasons:
(1) SSL methods generally are sample inefficient and require a few magnitudes more iterations than
the supervised method to achieve the same downstream accuracy. (2) The contrastive objective aids
learning low level visual concepts, features that are less important for the downstream task of CLOC
and CGLM, i.e.geo-localization and landmark detection respectively.
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Näıve w/o delay Näıve SSL TTA Ours

Figure 4: Comparison of various unsupervised methods. The performance of the Naı̈ve model
augmented with various unsupervised adaptation methods under varying label delay d settings on two
datasets (top: CLOC (Cai et al., 2021), bottom: CGLM (Prabhu et al., 2023a)). We report the best
performing methods in each category, ReSSL (Chen et al., 2021) and CoTTA (Wang et al., 2022) for
SSL and TTA respectively. Our proposed method, described in Section 5.3, consistently outperforms
all categories under all delay settings on both datasets.

5.2 TEST-TIME ADAPTATION

Experimental Setup. Similarly to SSL, there are multiple ways to integrate TTA methods in our
setting. We find the following setup resulting in the best performance: we continuously train the
model with the supervised data as in the Naı̈ve method, and before each evaluation step we adapt
the model using a single parameter update on the unsupervised data {xt

i}ni=1. We implement and
compare the following TTA methods: TENT (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu
et al., 2023), and CoTTA (Wang et al., 2022), in Figure 4. For an extensive comparison of the methods
under various delay scenarios, see Section A.2.

Computational Budget. Similarly to SSL based approaches, we normalise the computational budget
for all TTA approaches by counting the full backward passes made on the unlabeled samples when
optimizing LU . Following this complexity metric, the implemented TTA methods fall under the
same associated cost; therefore, we can use the same normalization factor for all TTA methods across
our experiments.

Observations. In Figure 4, we find that the best performing TTA method, CoTTA (Wang et al., 2022),
consistently underperforms both the Naı̈ve and the SSL baseline under every delay scenario on both
datasets, from 3.1% up to −6.3% performance drop. We hypothesize that the TTA methods fail to
outperform the Naı̈ve counterpart because the common assumptions among the settings on which TTA
methods are evaluated are broken. The common assumptions of TTA methods are: (1) before the adap-
tation takes place, the model has already converged and achieved a good performance on the training
data, (2) the test data distribution is stationary and a sufficient amount of unsupervised data is available
for adaptation. In contrast, in our setting the source model is continuously updated between time
steps and only a limited number of samples are available from the newest distribution for adaptation.

5.3 REHEARSING ON RELEVANT SAMPLES

When utilizing unsupervised samples to enhance the Naı̈ve method, we have shown that directly
spending the computational budget to optimize a generic objective over the unlabeled images does
not seem to help to outperform the Naı̈ve method. This suggests a solution that leverages supervised
samples directly, rather than spending the computational budget on unlabeled data. Although we
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cannot directly adapt the model to the newest distribution of the stream, we can adapt the sampling
process from the memory buffer to match the desired distribution. We propose a very simple, yet
effective method to achieve a data efficient and therefore computationally efficient solution to the
challenges imposed by label delay that we dub Importance Weighted Memory Sampling (IWMS).

When sampling the supervised training data, using the most recent labeled samples leads to fitting
the model to an outdated distribution (we further discuss this in 5.4). Thus, we replace the newest
supervised data by a batch which we sample from the memory buffer, such that the distribution of the
selected samples matches the newest unlabeled data distribution. More specifically, our sampling
process consists of three stages. First, at each time step t, for every unsupervised sample xt

j in the
batch of size n, we compute the prediction ỹtj , and select every labeled sample from the memory
buffer (xM

i , yMi ) such that the true label of the selected samples matches the predicted label yMi = ỹtj .
Then, we compute the pairwise cosine feature similarities Ki,j between the unlabeled sample xt

j

and the selected labeled samples xM
i by Ki,j = cos

(
h(xM

i ), h(xt
j)
)
, where h represents the feature

extractor directly before the final classification layer. Lastly, we select the most relevant supervised
samples (xM

i′ , y
M
i′ ) by sampling i′ ∈ {1 . . . |M |} from a multinomial distribution with parameters

K:,j . Thus, we rehearse samples from the memory which (1) share the same true labels as the
predicted labels of the unlabeled samples, (2) have high feature similarity with the unlabeled samples.

Implementation Details. To avoid re-computing the feature representation h for each sample in the
memory buffer at every iteration, during the evaluation phase, we store each input sample and their
corresponding features in the memory buffer. We only compute the features once, when adding them
to the replay buffer.

Computational Budget. Since our method simply replaces the newest supervised samples with the
most similar samples from the replay buffer, we do not require any additional backward passes to
compute the auxiliary objective. Therefore, the computational budget of our method is identical to
the Naı̈ve baseline, i.e., COurs = 1.

Observations. First, in Figure 4 on CLOC (top row), we show that our method is the only method
that can outperform the Naı̈ve baseline, by +1.5%,+1.4%,+1.4% improvement on d = 10, 50, 100
settings respectively. Although our method outperforms every delayed method, there is still a
considerable gap between the non-delayed Naı̈ve counterpart, on which we provide further explanation
in the Supplementary Material A.4. In contrast, on CGLM (Fgiure 4 bottom row) we show that
our method can close gap between the non-delayed Naı̈ve method under all delay settings (d =
10, 50, 100, shown in increasing order from left to right), thus the performance drop due to the label
delay is minimized to −0%,−0.6% and −1.4% respectively.

5.4 ANALYSIS OF IMPORTANCE WEIGHTED MEMORY SAMPLING

In this section, we first perform an ablation study of our IWMS to show the effectiveness of the
importance sampling. Then, we show our performances under different computational budgets and
buffer sizes.

Analysis on Memory Sampling Strategies. During training, the Naı̈ve method uses the most recent
labeled data and a randomly sampled mini-batch from the memory buffer for each parameter update.
Our method provides a third option for constructing the training mini-batch, which picks the labeled
memory sample that is most similar to the unlabeled data. When comparing sampling strategies,
we refer to the newest batch of data as (N), the random batch of data as (R) and the importance
weighted memory samples as (W). In Figure 5 left, we first show that in both delay scenarios (d = 10
and d = 100) replacing the newest batch (N) with (W) results in almost doubling the performance:
+8.5% and +9.1% improvement over Naı̈ve, respectively. Interestingly enough, when we replace the
(N) with uniformly sampled random buffer data (R) we report a significant increase in performance.
We attribute this phenomenon to the detrimental effects of label delay: even though Naı̈ve uses the
most recent supervised samples for training, the increasing discrepancy caused by the delay d = 10
and d = 100 forces the model to over-fit on the outdated distribution.

Analysis on Computational Budget. We study our algorithm under various computational budgets,
ranging from C = 4 to C = 32 (shown in Figure 5 middle). Under both delays, the performances of
our algorithm improve as the computational budget improves. However, our required computational
budget for the algorithm to converge is relatively small. When we increase the budget from C = 8 to
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Figure 5: Effect of sampling strategy (left), memory sizes (middle) and computational budget
(right). We report the Online Accuracy under the least (top: d = 10) and the most challenging
(bottom: d = 100) label delay scenarios on CGLM (Prabhu et al., 2023b).
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Figure 6: ADDED DURING ICLR REBUTTAL: Backward transfer for measuring forgetting on a
withheld dataset.

C = 32, the performances only increase around +3%. Thus, our algorithm can efficiently cope with
continual learning settings where the budget is limited.

Analysis on the Memory Size. We study the influence of buffer size on our proposed IWMS. In
particular, we show the performance of our algorithm under the buffer size from 10k to 80k in Figure
5 (right). Even though IWMS relies on the images sampled from the buffer to represent the new
coming distribution, its performances remain robust under different buffer sizes. Under both delay
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of 10 and 100, the performance gap of our algorithm between the buffer size of 10k and 80k is only
around 2.5%. This means our algorithm is flexible in coping with various buffer assumption.

Analysis on forgetting over past samples ADDED DURING ICLR REBUTTAL: In Figure 6, we
observe that our method outperforms the SSL, Naı̈ve and non-delayed Naı̈ve baseline achieving 2x
better accuracy on CGLM, whereas on CLOC all methods perform similarly (due to poor data quality
as reported in the supplementary material Sec A.4).

6 DISCUSSION
In this work, we have addressed label delay in online continual learning. We show that merely
augmenting the computational resources is insufficient to tackle this challenge. Our findings underline
a notable performance decline when solely relying on labeled data when the label delay becomes
significant. Moreover, state-of-the-art SSL and TTA techniques fail to surpass the performance of
the naı̈ve method of simply training on the delayed supervised stream. To address these challenges,
we propose IWMS, which not only mitigates the accuracy discrepancies due to label delay, but also
significantly exceeds the performance of its non-delayed counterpart, particularly in extreme delay
and computational constraint conditions. Although our continual learning framework assumes a
constant label delay factor and eventually provides labels for all samples revealed by the stream,
in more complex applications the labeling process may exhibit variable durations and the samples
selected for labeling can be guided. By looking into these scenarios, we might find ways to use Active
Learning to improve sample selection in Continual Learning, pointing to a new research direction.

7 ACKNOWLEDGEMENT

This work is supported by a UKRI grant Turing AI Fellowship (EP/W002981/1) and EPSRC/MURI
grant: EP/N019474/1. Adel Bibi has received funding from the Amazon Research Awards. The
authors thank Razvan Pascanu and João Henriques for their insightful feedback. We also thank the
Royal Academy of Engineering.

11



Preprint

REFERENCES

Motasem Alfarra, Hani Itani, Alejandro Pardo, Shyma Alhuwaider, Merey Ramazanova, Juan C
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A SUPPLEMENTARY MATERIAL

A.1 BREAKDOWN OF SSL METHODS
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Figure 7: Comparison of the best performing SSL based methods after hyper-parameter tuning

In Figure 7 we show the performance of the best performing SSL based methods after hyper-parameter
tuning. We observe that the performance of the SSL methods is highly dependent on the dataset
and the delay setting. However, we apart from MoCo v3 (Chen et al., 2021), the methods perform
similarly to Naı̈ve on CLOC. On the other hand on CGLM they have insignificant differences in
performance, but consistently underperform Naı̈ve.

A.2 BREAKDOWN OF TTA METHODS

0 100k 200k 300k
Time step

0

5

10

15

O
n

lin
e

A
cc

u
ra

cy

13.5
11.0
11.0
11.0
11.0
11.0
11.0

CLOC (d=10, C=2)

0 100k 200k 300k
Time step

0

5

10
10.8
9.1
9.0
9.0
9.0

5.3

CLOC (d=50, C=2)

0 100k 200k 300k
Time step

0.0

2.5

5.0

7.5

10.0 9.6

7.7

4.6
4.3

0.4

CLOC (d=100, C=2)

0 2k 4k 6k 8k
Time step

0

5

10

13.4

7.6

7.6
7.6

7.6

CGLM (d=10, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.5

6.8
6.8
6.8
6.8

CGLM (d=50, C=8)

0 2k 4k 6k 8k
Time step

0

5

10

12.0

6.4
6.4
6.4
6.4

CGLM (d=100, C=8)

Naive sar tent cotta eat

Figure 8: Comparison of the best performing TTA based methods after hyper-parameter tuning

In Figure 8 we show the performance of the best performing TTA based methods after hyper-parameter
tuning. We observe that the performance of the TTA methods are consistently worse than Naı̈ve on
both CLOC and CGLM, under all delay settings. We observe that in the most severe delay scenario
(d = 100) the performance of EAT (Niu et al., 2022) and SAR (Niu et al., 2023) is comparable to
Naı̈ve on CLOC, while CoTTA (Wang et al., 2022) avoids the catastrophic performance drop.

A.3 COMPARISON OF SSL BASED METHODS TO NAÏVE WHEN USING SAME AMOUNT OF
SUPERVISED DATA
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Figure 9: Detailed breakdown of various SSL methods from each family. Results are shown across
varying number of parameter updates C = 2, 10, 20 under the d = 10 scenario.

In Figure 9, we show that when trained on equal amount of supervised data, SSL based methods
perform outperform Naı̈ve, however the performance gap is not as significant as in the case of using
the same computational budget, as shown in the main Figure 4.
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A.4 EXAMPLES OF THE IMPORTANCE WEIGHTED MEMORY SAMPLING ON CLOC

Figure 10: Correctly labeled memory recalls. In the subfigure’s caption “Newest” refers to the
newest unsupervised image observed by the model and “iwm” refers to the sample drawn from the
memory by our proposed sampling method. The numbers refer to the corresponding true label IDs.

Figure 11: Incorrectly labeled memory recalls. In the subfigure’s caption “Newest” refers to the
newest unsupervised image observed by the model and “iwm” refers to the sample drawn from the
memory by our proposed sampling method. The numbers refer to the corresponding true label IDs.

On CLOC, we report similar scores to Naı̈ve due to high noise in the data. To provide evidence for
our claims we visualize the supervised data sampled from the memory buffer by our Importance
Weighted Memory Sampling method. In Figure 10, we show that our method is capable of guessing
the correct location of the unsupervised sample (the left hand side of the image pairs) and recalling a
relevant sample from memory. In contrast, the incorrect memory recalls hurt the performance even
though the content of the samples might match. We illustrate such cases in Figure 11, where it is
obvious that in some cases the underlying image content has no information related to the location
where the picture was taken at. In such scenarios, the only way a classifier can correctly predict the
labels is by exploiting label correlations, e.g.classifying all close-up images of flowers to belong to
the same geo-location, even though the flowers are not unique to the location itself. Or consider
the pictures taken at social gatherings (second row, second column from the right), where a delayed
classifier without being exposed to that specific series of images has no reason to correctly predict the
location ID. Our claims are reinforced by the findings of Hammoud et al. (2023).
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