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ABSTRACT

While large language models (LLMs) are successful in completing various lan-
guage processing tasks, they easily fail to interact with the physical world properly
such as generating control sequences. We find that the main reason is that LLMs
are not grounded in the physical world. Existing LLM-based approaches circum-
vent this problem by relying on additional pre-defined skills or pre-trained sub-
policies, making it hard to adapt to new tasks. In contrast, we aim to address this
problem and explore the possibility to prompt pre-trained LLMs to accomplish a
series of robotic manipulation tasks in a training-free paradigm. Accordingly, we
propose a framework called LLM+A(ffordance), where the LLM serves as both
the sub-task planner (that generates high-level plans) and the motion controller
(that generates low-level control sequences). To ground these plans and control
sequences on the physical world, we develop the affordance prompting technique
that stimulates the LLM to 1) predict the consequences of generated plans and
2) generate affordance values for relevant objects. Empirically, we evaluate the
effectiveness of LLM+A in various robotic manipulation tasks with natural lan-
guage instructions and demonstrate that our approach substantially improves per-
formance by enhancing the feasibility of generated plans and control.

1 INTRODUCTION

Recent large language models (LLMs) (Ouyang et al., 2022; Chowdhery et al., 2022; Brown et al.,
2020; Chung et al., 2022) have exhibited remarkable capabilities in a wide range of natural lan-
guage processing (NLP) tasks such as daily dialogue (Thoppilan et al., 2022; Adiwardana et al.,
2020), programming (Chen et al., 2021; Li et al., 2023), and text writing (Touvron et al., 2023).
As these pre-trained models assimilate extensive knowledge from internet-scale text corpora and
various domain-specific datasets, they can be leveraged as foundation models and provide rich prior
knowledge. Owing to these advancements, new paradigms have emerged, employing LLMs as ar-
tificial intelligence (AI) assistants to perform embodied robotic tasks in real-world settings (Driess
et al., 2023; Brohan et al., 2023; Vemprala et al., 2023).

We study the problem of language-conditioned robotic manipulation control with LLMs. Existing
approaches can be generally classified into two main categories: employing LLMs as high-level
sub-task planners (Ahn et al., 2022; Huang et al., 2022a; Wang et al., 2023b), or directly training an
end-to-end large model as low-level motion controllers (Driess et al., 2023; Brohan et al., 2023; Mu
et al., 2023). The first category leverages the powerful planning and reasoning capabilities of LLMs,
enabling them to decompose human instructions into a series of textual sub-tasks. Nevertheless, to
execute these decomposed plans in real-world scenarios, current methods still depend on pre-trained
skills or primitive actions (Ahn et al., 2022; Huang et al., 2023b; 2022b; Singh et al., 2023), which
are usually learned by behavior cloning and reinforcement learning techniques. This reliance on
specific sub-policies can limit the applicability of these approaches, as they necessitate vast amounts
of robotic data and often struggle to generalize to unseen environments (Huang et al., 2023b) and
different embodiments (Bousmalis et al., 2023). The second category typically trains a large-scale
multi-task backbone model that integrates both linguistic and visual modalities to generate end-to-
end control sequences (Brohan et al., 2023; Driess et al., 2023; Reed et al., 2022). However, the
development of such models requires extensive multi-modal datasets, encompassing a diverse array
of robotic tasks. This is costly for many researchers. Therefore, considering the impressive com-
monsense knowledge and powerful in-context learning abilities demonstrated by LLMs, can LLMs
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[Task] pick up the hammer.
[Object Parts] [“handle”, “head”]

[Consequences] Grasping the handle will allow 
the robot to pick up the hammer…
[Affordance Values] {“handle”: 0.9, “head”: 0.5}

[Task] moving the cube to the left side of the table.
[Object Parts] [“side A”, “side B”, “side C”, “side D”]

[Consequences] Pushing side1 will allow the 
robot to move the block upwards…
[Affordance Values] {“side A”: 0.5, “side B”: 1, 
“side C”: 0.5, “side D”: 0.1}
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Figure 1: Consider the task of “Push the cube to the left side of the table”. When the control
sequences generated from LLMs are not grounded in the physical world, the robot will move to the
left side of the cube to push it to the left (a) instead of the right location (b). This is due to the gap
between the physical world and generated language plans. This gap can be bridged by prompting
LLMs to predict execution consequences and goal-conditioned affordance values (c) in the proposed
LLM+A method.

function as both sub-task planners and motion controllers, thereby addressing robotic manipulation
tasks without the need for additional training?

However, how to exploit commonsense from LLMs to real-time fine-grained robotic manipulation
tasks remains a challenging problem. This difficulty primarily comes from the fact that LLMs are not
grounded in the physical world, which can potentially result in erroneous or inexecutable plans (Ahn
et al., 2022; Wang et al., 2023a; Yao et al., 2022). For instance, consider a tabletop robotic arm
situated to the left of a block, and the instruction is “push the block to the left side of the table”. It
may move directly right and then push the block as shown in Figure 1(a) instead of maneuvering
around to the right side of the object as shown in Figure 1(b). In this scenario, the block will not
move as expected. The main reason is that LLMs lack more comprehensive information regarding
the current environment, such as spatial relationships on objects. Besides, pre-trained LLMs neglect
to comprehend the consequences of the generated plan in the actual physical world. Therefore, to
generate executable control sequences, LLMs must consider physical laws and object functionalities,
which can help outline the possibilities and effects of generated actions for robots interacting with
objects or specific environmental features.

In the field of robotics, the concept of affordance is considered a crucial mechanism to enable robots
to understand and interact with environments. Given the task instruction, affordance values indicate
the functional priorities for the robot of objects in the current environment to complete the task.
At the current stage of affordance research, the related prior knowledge is usually provided by hu-
mans (Yang et al., 2023). In contrast to previous studies, we demonstrate that LLMs are proficient at
predicting execution consequences and inferring affordance values of different object parts as shown
in Figure 1(c), which effectively provides robots with useful information to complete instructions.
For instance, within the context of hammering or pushing tasks, LLMs can interpret human direc-
tives and ascertain task-specific executable parts for grasping, functioning, effecting, or pushing
respectively.

Motivated by this concept, we introduce a framework, called LLM+A, to exploit the extraction
of embodied commonsense and reasoning capabilities of LLMs to generate control sequences for
robotic manipulation tasks following textual instructions in a training-free pradigm. Firstly, we em-
ploy vision language models (VLMs), such as open-vocabulary detectors (Gu et al., 2021; Minderer
et al., 2022), or large multimodal models (Gao et al., 2023; Awadalla et al., 2023), to provide textual
observation of target objects (such as object shapes, colors, and positional relationships) and interac-
tive environments to the LLMs. Then, we obtain goal-conditioned affordance values from LLMs that
describe the priorities of object executable parts for interaction via affordance prompting. Based on
the above visual perception and affordance values, LLMs decompose human instructions into high-
level sub-tasks, which are feasible in the physical world. Subsequently, LLMs also generate control
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sequences for the current task. Our experiments demonstrate that grounding LLMs in the physical
world to generate motion plans via unlocking their affordance knowledge can highly enhance the
performance in robotic manipulation tasks compared to non-grounded baselines.

Our contributions are summarized as follows:

• We propose LLM+A that adopt large language models (LLMs) to serve as both the high-
level sub-task planner and the low-level motion controller in robotic control tasks in a
training-free paradigm.

• To improve the physical executability of both the sub-task plans and the control sequences
generated while adhering to the language instruction, we propose affordance prompting to
stimulate the ability of LLMs to infer goal-conditioned affordance values, which indicate
the executable priorities of different parts of interacted objects.

• Experimental results on heterogeneous robotic tasks validate the effectiveness and robust-
ness of our method.

2 RELATED WORK

LLMs for Sub-Task Planning and Motion Controlling. With the development of transformers
in recent years, pre-trained large language models (Ouyang et al., 2022; Chowdhery et al., 2022;
Brown et al., 2020; Chung et al., 2022) have become an active area of research. These models, pre-
trained on vast amounts of internet-scale text corpora from various tasks, exhibit remarkable com-
monsense and reasoning capabilities in embodied tasks. Numerous recent approaches successfully
employ LLMs to decompose abstract and human instructions into natural language-based high-level
plans (Ahn et al., 2022; Huang et al., 2022a;b; Ding et al., 2023; Shah et al., 2023; Min et al., 2021)
or code-based plans (Liang et al., 2023; Huang et al., 2023a). For instance, ZSP (Huang et al., 2022a)
demonstrate that LLMs can be utilized for task planning in household domains through iteratively
augmented prompts, enabling the semantic translation of plans into admissible skills. Similarly, Say-
Can (Ahn et al., 2022) leverage LLMs to facilitate robot task planning by incorporating affordance
functions to ensure plan feasibility. While these methods show surprising zero-shot generalization
ability of task planning, the execution of decomposed plans remains dependent on pre-trained skills,
which are usually acquired via behavior cloning and reinforcement learning. This reliance may limit
their applicability, as the training process necessitates substantial amounts of robotic data, which is
costly to obtain. On the other hand, some general robotic models have been proposed to achieve end-
to-end control for real-world robotic applications (Brohan et al., 2023; 2022; Driess et al., 2023; Mu
et al., 2023; Stone et al., 2023; Jang et al., 2022; Suglia et al., 2021). These methods benefit from
high-capacity networks and open-ended task-agnostic training with diverse datasets. In contrast,
the proposed LLM+A leverages LLMs as both the sub-task planner and the motion controller in a
training-free paradigm in robotic manipulation tasks.

Affordance for Robotics. As a popular concept proposed in the field of psychology, affordance has
been extensively utilized in robotic tasks to facilitate agents’ comprehension and interaction with
dynamic environments (Jamone et al., 2016; Xu et al., 2021a; Wu et al., 2021; Mo et al., 2021).
Briefly, affordance encapsulates the potential outcomes and effects resulting from robot’s actions
on a specific object or, more broadly, a segment of the environment. Existing research can be di-
vided into three primary categories: modeling action possibilities (Mo et al., 2021; Borja-Diaz et al.,
2022; Yang et al., 2021), generating keypoint affordances (Fang et al., 2020; Manuelli et al., 2019;
Qin et al., 2020; Xu et al., 2021b), and learning partial dynamic models exclusively for afforded
actions (Khetarpal et al., 2020; Xu et al., 2021a; Khetarpal et al., 2021). Since their development
primarily relies on data-driven approaches within the visual domain, these methods exhibit limi-
tations when applied to language-conditioned scenarios. Recent methods begin to leverage LLMs
to obtain language-conditioned affordance values. For example, HULC++ (Mees et al., 2023) em-
ployed a self-supervised visual-lingual affordance model to guide robots toward actionable areas
referenced by language. VoxPoser (Huang et al., 2023b) extracted affordances and constraints for
robotic manipulation tasks from pre-trained LLMs, demonstrating generalizability to open-set in-
structions. In this work, we concentrate on grounding LLMs in more fine-grained robotic tasks by
predicting execution consequences and extracting physical affordance values.
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Figure 2: Overview of LLM+A. Given language instructions and image observations, LLM+A pro-
duces sub-task plans and control sequences for robotic control tasks. LLM+A is composed of a
VLM and a hierarchical LLM. The VLM serves as an observation descriptor to provide the envi-
ronment perception to the LLM. The high-level LLM is responsible for sub-task planning and the
low-level LLM for motion controlling. Notably, the affordance values from the high-level LLM are
necessary intermediate information for the LLM to understand the effects of potential actions and
generate feasible plans grounded in the physical world.

3 METHOD

In this section, we first introduce the formulation of robotic manipulation tasks (Sec. 3.1). Then, we
describe our LLM+A framework where the pre-trained visual-language model (VLM) serves as the
observation descriptor and the large language model (LLM) serves as the high-level sub-task planner
and the low-level motion controller (Sec. 3.2). Later, we introduce affordance prompting to predict
consequences and generate affordance values to bridge the gap between generated plans/control
sequences and the physical world (Sec. 3.3).

3.1 ROBOTIC MANIPULATION

In robotic manipulation tasks that we consider in this paper, the LLM-based agent needs to generate
control sequences for a tabletop robotic arm to complete a given task instructed in open-vocabulary
natural language based on the image observation. Specifically, on the t-th time step, the agent
π(at|ot, l) perceives the image observation ot and outputs the action at to follow the instruction l.
The instruction l is not constrained by any templates, grammatical structures, or vocabularies. For
example, the instruction can be “push the red block to the left center side of the table” or “separate
the yellow block and the green block”. In this paper, the action of the LLM-based agent is a planned
path segment of the end-effector of the robotic arm, represented by K coordinates specifying the
waypoints of the end-effector, i.e., when at = ((x1, y1), · · · , (xK , yK)), the end-effector will move
along the path (x1, y1) → · · · → (xK , yK).

3.2 LLM+A

In the LLM+A framework, we aim to leverage the commonsense knowledge and reasoning/planning
capability from both the pre-trained VLM and LLM to complete robotic manipulation tasks. Further,
we develop affordance prompting to incorporate the concept of affordance into zero-shot prompting
for the LLM, which can be regarded as an extension of chain-of-thought (CoT) to embodied robotics.
We present the LLM+A framework in Figure 2 and introduce different modules of LLM+A as
follows.

Observation Descriptor. In this module, we feed the current image observation ot combined as a
designed prompt template to the VLM-based observation descriptor to generate text description st
to provide necessary information needed in the subsequent decision making process of the LLM-
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based sub-task planner and motion controller. Specifically, the text description st contains the spatial
location of relevant objects and all functional parts of them such as the four sides of the cube.

Sub-task Planner. In this module, we feed the text description of the current observation st as
well as the instruction l to the sub-task planner to obtain a series of planned high-level sub-tasks
g = (g1, g2, · · · ) required to accomplish the task based on the current observation. Notice that this
plan can change on the subsequent time steps based on future observations and the agent typically
only executes the first sub-task on the current step. Further, to incentivize the sub-task planner to
generate feasible plans, we develop the affordance prompting technique that instructs the sub-task
planner to predict the expected consequences of the control and generate affordance values for the
functional parts of relevant objects. We present the simplified version of the prompt template as
follows:

Template for Sub-Task Planner:
You are a robotic arm on the table which can [arm skills].
You need to accomplish a series of robotic manipulation tasks: [guidelines].
The task instruction is [task instruction].
The objects on the table are [object parts].
You need to:
1. output the consequences of potential actions;
2. output the affordance values of each object parts considering the potential consequences;
3. output the decomposed sub-tasks according to the consequences and affordance values.

In the template, [arm skills] describe the functions of the type of the arm; [guidelines] describe
guidelines or contexts of the task such as the orientation of the table, the range/orientation of the
spatial coordinates; [task instruction] is the open-vocabulary natural-language-based instruction l;
[object parts] are text description of the observation st generated by the observation descriptor. At
last, we ask the LLM to decompose the task instruction l into sub-tasks g. Decomposed sub-tasks
refer to more specific plans appropriate for the robot to execute starting from the current state, e.g.,
“approach right side of the green block while avoiding the red block” and “push the green block to
the top”. To generate more feasible sub-tasks, we adopt affordance prompting which is highlighted
in red. Consequences refer to the effects of object parts after the physical interaction by possible
skills of the robot and affordance values indicate the extent to which each part of the object is
expected to be interacted. These concepts will be further explained later in Sec. 3.3.

Motion Controller. In this module, given the decomposed sub-tasks g = (g1, g2, · · · ) and the
affordance values associated with different object parts, we ask the LLM to generate the specific
action at. We also present the simplified version of the prompt template of this procedure as follows:

Template for Montion Controller:
You are a robotic arm on the tabletop which can [arm skills].
You need to accomplish a series of robotic manipulation tasks: [guidelines].
The task instruction is [task instruction].
The objects on the table are [object parts].
Given the [decomposed sub-tasks] and the [affordance values], you need to output the control
sequence.
Note that [notes].
The examples are as follows: [examples].

In this template, [decompoased sub-tasks] and [affordance values] are the outputs generated by the
sub-task planner. The control sequence is the action of the LLM-based agent which refers to a series
of the waypoint coordinates of the end-effector in our case. In addition, we also provide [notes]
and [examples] to facilitate the LLM to generate better control sequences. [Notes] can include
formatting instructions such as “You need to generate the above outputs with JSON format”, and
[examples] follows the few-shot prompting practice.
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3.3 AFFORDANCE PROMPTING

In robotic tasks, the concept of affordance plays a crucial role in enabling robots to comprehend and
interact with the corresponding physical environment. This generally depends on prior knowledge of
relevant actions and the task instruction. LLMs are highly proficient at inferring affordance values,
owing to their rich commonsense knowledge learned from diverse robotic-related datasets during
pre-training. For example, as shown in Figure 1(c), LLMs can accurately assess different parts of
the hammer and their affordance values for the grasping task, based on which robot motions can
be effectively suggested. Another example is a robotic manipulation task, where LLMs identify
the most actionable edge with the highest affordance value for pushing the cube to the left side
of the table. Motivated by this observation, the goal of our affordance prompting technique is to
unlock LLMs with the ability to generate goal-conditioned affordance value, serving as a feasible
intermediate reasoning step that assists the robot in understanding action priorities.

In LLM+A, given [arm skills], [task instruction], and [object parts], we firstly query the LLM to
generate [consequences], which reason about the future effects of possible actions. Then, we ask
the LLM to generate [affordance values] of different object functional parts which indicate their
usefulness in completing the given instruction.

Note that in this process, the affordance prompting technique is zero-shot in the sense that we do
not provide any examples in the prompt to regulate the form of the output. This zero-shot usage
makes the technique easily extend to different tasks. Empirically, the generated affordance values
can effectively improve the feasibility of decomposed sub-tasks and control sequences from LLMs
in the physical world.

To sum up, the affordance prompting technique provides the following advantages to facilitate rea-
soning in robotic tasks:

1. First, the affordance prompting technique assists LLMs in constraining control sequence
updates within the set of feasible actions to follow the task instruction.

2. Secondly, the affordance values are convenient to obtain since only a single intermediate
reasoning step is necessitated for LLMs, without requiring additional training or a fine-
tuning process.

3. Thirdly, the affordance prompting technique adopts a zero-shot setting, which is robust
across various envrionments and capable of extending to heterogeneous tasks.

4 EXPERIMENTS

We conduct experiments in various robotic tasks to answer the following questions: 1) How effective
is LLM+A for physical interaction compared to other state-of-the-art baselines? 2) How well does
LLM+A predict affordance values and plan action sequences? 3) How robust is LLM+A when
generalized to heterogeneous tasks?

4.1 EXPERIMENTAL SETTINGS

Implementation details. For visual perception, given an image observation, we use the open-
vocabulary detector OWL-ViT (Minderer et al., 2022) to detect the bounding boxes of relevant ob-
jects, and use GPT-4 (June) from OpenAI API (OpenAI, 2023) for both sub-task planner and motion
controller. For the high-level sub-task planner, including the affordance prediction and consequence
prediction, we don’t provide any example outputs (zero-shot). For the low-level motion controller,
we provide two examples in prompts to formalize the output style. The detailed prompts are listed
in the Appendix A.1. Instead of using our LLM+A to re-plan new trajectory waypoints every time
step, the plan will be updated after the robots finish the K = 5 waypoints in the previous round to
increase the time efficiency.

Tasks. We evaluate LLM+A using four simulated task families from Language-Table (Lynch et al.,
2023) and CLIPORT (Shridhar et al., 2022) as follows: 1) Block2Position: Push a block to an ab-
solute location on the board (e.g., the top-left corner). The task is completed when the distance
between the block and the target location is below a threshold. 2) Block2Block: Push a block to an-
other block. The task is completed when the distance between the pushed block and the target block
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Table 1: Success rates of LLM+A and baselines in pushing tasks from Language-Table.

Method Block2Position Block2Block Separate Average

Naive LLM 10% 8% 70% 29%
ReAct 15% 3% 40% 19%

Code as Policies 22% 2% 72% 32%
LLM+A 42% 32% 77% 50%

is below a threshold. 3) Separate: Separate two blocks. The task is completed when the distance
between these blocks is below a threshold. 4) Pick&Palce: Place all blocks of a specified color into
bowls of a specified color. The task is completed when all target blocks are within the bounds of
specific bowls. The simulated environments in Task 1-3) employ an xArm6 robot, constrained to
move in a 2D plane with a cylindrical end-effector. Task 4) utilizes a Universal Robot UR5e with a
suction gripper. For each task, we evaluate our method and baselines for 100 episodes with random
initial object positions and language instructions.

Baselines. We compare LLM+A with three baselines: 1) Naive LLM: Given the same inputs as
LLM+A, we directly prompt the LLM to generate decomposed sub-task plans and motion plans
without affordance prompting. 2) ReAct (Yao et al., 2023): An interactive decision-making ap-
proach of LLM by generating both reasoning traces and primitive actions in an interleaved manner.
In our implementation, ReAct decides the best action in {Move Down, Move Up, Move Left, Move
Right} with the robot coordinates and bounding boxes of blocks as inputs. By planning with such
low-level actions, we evaluate its capability in motion control. 3) Code as Policies (Liang et al.,
2023): An LLM-based code generation approach which directly calls pre-defined API to finish the
task. In our implementation, after it translates the robotic tasks into programmatic codes, it finally
calls one of the basic actions same as ReAct. For both ReAct and Code as Policies, we introduce
two example cases in the prompt to help them understand the evaluation tasks. For all baselines, we
use GPT-4 (June) as the base LLM. All specific prompts of baseline methods are in the Appendix
A.2, A.3, and A.4.

4.2 RESULTS

How effective is LLM+A compared to baselines? We present the results of LLM+A and other
baselines in three pushing tasks from Langage-Table in Table 1. LLM+A achieves the highest suc-
cess rates and outperforms baseline methods significantly on Block2Position and Block2Block tasks.
Our method achieves 50% average success rate across all tasks. In particular, we do not include any
examples in the high-level sub-task planner when prompting GPT-4. This illustrates such physical
knowledge is inherent in advanced LLMs and our approach can effectively stimulate this aspect of
inference ability and make it valuable for robotics control tasks by affordance prompting. We show
an example dialogue of the Block2Position task between LLM+A and GPT4 in Listing 6. When the
task is to “push the cube to the top”, the robot is commanded by LLM+A to approach the bottom
side of the cube and then move it upwards. In contrast, we find that ReAct and Code as Policies
only tend to imitate the procedure of the example outputs without truly understanding the physical
consequences. Therefore, although we provide two examples for their prompts, the robot still makes
mistakes in choosing the correct side. For example, when the task instruction is “move the cube to
the upper left corner of the table”, their methods guide the robot to approach the left side of the cube
and push it towards the left direction. Their failure case examples are shown in Appendix A.6.

How well does LLM+A predict affordance values and plan action sequences? We display three
examples of Block2Postion, Block2Block, and Separate tasks in Figure 3. First, we observe that our
method can successfully predict goal-conditioned affordance values. For example, LLM assigns a
higher affordance value to the bottom side A of the block to push it to the top side of the table as
shown in Figure 3(a). Besides, the predicted affordance values also dynamically vary according to
the current environment state. As shown in Figure 3(i), LLM firstly assigns a higher affordance score
to the left side D of the red block at the beginning time. However, in Figure 3(k), LLM improves
the affordance value to the top side G of the green block, since pushing side D could indirectly push
the green block off the table. Second, our method can decompose the task instruction and generate
the high-level current sub-task for the robot. As shown in Figure 3(f), the current sub-task is to push
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[Side Affordance]
{“A”: 1, “B”: 0,
“C”: 0, “D”: 0}
[Current Task]
Move to side A

[Side Affordance]
{“A”: 1, “B”: 0,
“C”: 0, “D”: 0}
[Current Task]
Move to side A

[Side Affordance]
{“A”: 1, “B”: 0,
“C”: 0, “D”: 0}
[Current Task]
Move to side A

[Side Affordance]
{“A”: 1, “B”: 0,
“C”: 0, “D”: 0}
[Current Task]
Push the cube to 
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[Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 1}
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Move to side D
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[Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 1}
[Current Task]
Push the green 
block to the right

[Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 1}
[Current Task]
Move to side D

[Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 1}
[Current Task]
Push the green 
block to the right

t = 1 t = 6 t = 11 t = 14

t = 2 t = 11 t = 15 t = 19

t = 2 [Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 1,
“E”: 0, “F”: 0.5,
“G”: 0, “H”: 0}
[Current Task]
Move to side D

A
B

C
D

E
F

G
H

t = 9 [Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0.5, “D”: 0.5,
“E”: 0, “F”: 0.5,
“G”: 0, “H”: 0.5}
[Current Task]
Move to side D

t = 11 [Side Affordance]
{“A”: 0, “B”: 0,
“C”: 0, “D”: 0.5,
“E”: 0, “F”: 0,
“G”: 1, “H”: 0}
[Current Task]
Move to side G

[Side Affordance]
{“A”: 0, “B”: 0, “C”: 0, 
“D”: 0.5, “E”: 0, “F”: 0,
“G”: 1, “H”: 0}
[Current Task]
Push the green 
block to the right

Arm

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

“Move the purple cube to the top.”

“Move the green block to the red block.”

“Separate the red cube from the green block.”

t = 15

Figure 3: Examples of environmental observation and robot trajectories in Block2Position (a-d),
Block2Block (e-h), and Separate (i-l). The gray cylinder indicates the position of the robot end-
effector. The blue dots and the green lines represent the waypoints and the planned paths of the
control sequences generated by LLM+A, respectively. The red boxes denote the detected bounding
boxes from OWL-VIT.

Table 2: Success rates of LLM+A in Pick&Place tasks from CLIPORT with different numbers of
target blocks.

Number of blocks 1-block 2-blocks 3-blocks 4-blocks

Success Rate 96% 95% 94% 88%

the green block to the right when the robot has approached side D. However, in Figure 3(g), LLM
guides the robot to move to side D again when the robot breaks away from the block. Third, our
method can generate executable low-level control sequences for the robot. For example, in Figure
3(c), LLM controls the robot to detour to side A of the purple block to prevent contact with the block
in an unexpected direction. Owing to the low-level control sequences being raw coordinates, this
proves that our approach is valid to arouse the spatial relationship understanding ability in LLMs,
which is essential and promising for further non-training paradigms for robotics control.

How robust is LLM+A when generalized to heterogeneous tasks? We transfer LLM+A to
Pick&Place tasks to evaluate the robustness of LLM+A on heterogeneous tasks. Notably, the
prompts leveraged in the Pick&Place task are completely the same as in the pushing task except
for the inputs of environmental information, which are shown in Appendix A.1. However, this
task differs from pushing tasks in multiple aspects. First, the Pick&Place task leverages a Universal
Robot UR5e different from the xArm6 robot in pushing tasks. Second, the interactive parts of blocks
are block centers for the suction gripper different from multiple sides of blocks in pushing tasks for
the cylindrical end-effctor. Third, the state dynamics of tabletop environments are different in these
tasks. Therefore, LLMs need to adaptively understand the different physical interaction processes
according to the robot type and task instructions. We variate the number of target blocks and report
the success rates in Table 2. LLM+A achieves around 90% success rates in all scenarios. We show
two trajectories of the Pick&Place task in Figure 4. Besides the target blocks and bowls, there are
also many distractor objects on the table. Since multiple target blocks may exist, the robot needs to
generate more sub-tasks to pick and place the blocks one by one and avoid putting multiple blocks
into the same bowl. Our framework can be successfully transferred to this task. For example, the
first example shows that the robot successfully recognizes four blue blocks and puts them into four
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“Put the blue bloks in
white bowls.”

t = 1 t = 2 t = 3 t = 4

t = 0 t = 1 t = 2 t = 3

“Put the yellow bloks in
green bowls.”

Figure 4: Examples of sequential environmental observation in the Pick&Place task. Given human
language instruction, the robot needs to put specific blocks in target bowls. One bowl can only hold
one block.

Table 3: Failure case analysis of LLM+A in fours tasks from Language-Table and CLIPORT.

Failure Block2Position Block2Block Separate Pick&Place

Object Detection Fail 2% 6% 6% 12%
Affordance Prediction Fail 12% 20% 10% 0%

Task Planning Fail 12% 2% 2% 0%
Motion Controlling Fail 16% 22% 4% 0%

Exceed Time Budget 16% 18% 1% 0%

different white bowls respectively. This suggests that affordance prompting is a general framework
that can help the LLMs understand the attributes and consequences of robotic tasks, and make it
generalizable for dealing with heterogeneous tasks. Besides, an example dialogue of LLM+A is
shown in Listing 7.

4.3 FAILURE CASE ANALYSIS

Table 3 presents the failure case analysis of LLM+A in three pushing tasks from Langage-Table.
Firstly, the object detection fail rates of the VLM are all lower than 6% in three tasks from Language-
Table. Besides, we find that LLM fails more frequently in affordance prediction and motion control-
ling in Block2Block task. The main reason is that this task not only demands fine-grained motion
plans for interacting with target blocks but also needs to consider the interactions between different
blocks. Therefore, the planned control sequences from LLM can be further improved to avoid ob-
stacles and reach the target as safely as possible. We will discuss this problem in our future work.
Besides, we find that the object detection fail rate of Pick&Place task is higher than other tasks
because VLM sometimes misjudges the color of the bowl. We can avoid this problem by using
different suitable models for specific tasks.

5 CONCLUSION

In this paper, we study the language-conditioned robotic manipulation tasks with large models and
propose the LLM+A framework, which successfully decomposes the language instruction into sev-
eral sub-tasks, generates the robot control sequences, and easily extends to heterogeneous tasks.
This shows the potential of LLMs in simultaneously achieving both planning and motion control,
which provides an alternative training-free paradigm for utilizing the LLMs in robotic tasks. This
significantly mitigates the dataset bottleneck issue for the robotics field. Besides, in order to ground
the decomposed sub-tasks in the physical world and guarantee the feasibility of generated control se-
quences, we prove the proposed affordance prompting is crucial to stimulate the physical knowledge
from the LLMs about spatial relationship and interaction consequences inference. The experimental
results demonstrate the effectiveness of LLM+A. In the future, we will first optimize the process of
using LLM+A to increase the time efficiency and secondly try to apply our method to more broad
robotics tasks, including those tasks involving more complex physical interaction and different robot
structures.
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A APPENDIX

A.1 PROMPT FOR LLM+A

Listing 1: Prompt for LLM+A sub-task planner
1 [Guidelines]
2 You are an xArm6 robot (or a universal robot UR5e) on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Remember, you do not need to return to the initial position after comple-
14 ting the task instruction.
15 [Inputs]
16 I will provide you with the ’Task Instruction’, ’Arm Position’, ’Object
17 Information’, ’Possible Skills’ in the JSON format.
18 {’Task Instruction’: ’’,
19 ’Arm Position’: [,],
20 ’Object Parts’: {},
21 ’Possible Skills’: [’Push’](or [’Pick’,’Place’])}
22 [Outputs]
23 You should generate the following outputs in the JSON format:
24 {’Consequences’: ’Imagine the consequences of the object states after
25 performing the ’possible skills’ to different ’Object Parts’. ’,
26 ’Affordance’:{’Based on the imagined ’Consequences’, assign the
27 affordance value range from 0 to 1 for every part of the object to
28 represent their usefulness for the ’Task Instruction’ with key ’Object
29 Parts’.’},
30 ’Plan’: [{’plan a sequence of sub-task with relative target coordinates
31 of your arm to finish the task with key ’sub_task’ and
32 ’target_coordinates’}]}

Listing 2: Prompt for LLM+A motion controller
1 [Guidelines]
2 You are an xArm6 robot (or a universal robot UR5e) on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Given a ’Task Instruction’, the ’Target Position’, the current ’Arm
14 Position’, and the ’Object Information’ of the blocks on the table.
15 You need to generate the coordinate list of the planned path with key
16 ’planned path’ in the JSON format.
17 The maximum translation between two adjacent coordinate of the output
18 planned path is 20.
19 Firstly, I will give you two demos.
20 [Demo 1]
21 [Inputs]
22 {’Task Instruction’: ’Move arm to the bottom side of the yellow cube.’,
23 ’Target Position’:[92,118],
24 ’Arm Position’:[242,73],
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25 ’Object Information’:{’blue cube’:
26 {’side_top’:{’coordinateA’:[76,90],’coordinateB’:[108,90]},
27 ’side_left’:{’coordinateA’:[76,90],’coordinateB’:[76,118]},
28 ’side_bottom’:{coordinateA’:[76,118],’coordinateB’:[108,118]},
29 ’side_right’:{’coordinateA’:[108,118],’coordinateB’:[108,90]},
30 ’Affordance’:{’side_top’:0,’side_left’:0,’side_bottom’:1,
31 ’side_right’:0}}}}
32 [Outputs]
33 {"planned path":[[242,73],[242,93],[242,113],[222,118],[202,118],
34 [182,118],[162,118],[142,118],[122,118],[102,118],[92,118]]}
35 [Demo 2]
36 [Inputs]
37 {’Task Instruction’: ’Push the blue cube to the top of the table.’,
38 ’Target Position’:[92,4],
39 ’Arm Position’:[92,118],
40 ’Object Information’:{’green cube’:
41 {’side_top’:{’coordinateA’:[76,90],’coordinateB’:[108,90]},
42 ’side_left’:{’coordinateA’:[76,90],’coordinateB’:[76,118]},
43 ’side_bottom’:{coordinateA’:[76,118],’coordinateB’:[108,118]},
44 ’side_right’:{’coordinateA’:[108,118],’coordinateB’:[108,90]},
45 ’Affordance’:{’side_top’:0,’side_left’:0,’side_bottom’:1,
46 ’side_right’:0}}}}
47 [Outputs]
48 {"planned path":[[92,118],[92,98],[92,78],[92,58],[92,38],
49 [92,18],[92,4]]}

A.2 PROMPT FOR NAIVE LLM

Listing 3: Prompt for Naive LLM sub-task planner
1 [Guidelines]
2 You are an xArm6 robot (or a universal robot UR5e) on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Remember, you do not need to return to the initial position after comple-
14 ting the task instruction.
15 [Inputs]
16 I will provide you with the ’Task Instruction’, ’Arm Position’, ’Object
17 Information’, ’Possible Skills’ in the JSON format.
18 {’Task Instruction’: ’’,
19 ’Arm Position’: [,],
20 ’Object Parts’: {},
21 ’Possible Skills’: [’Push’](or [’Pick’,’Place’])} }
22 [Outputs]
23 You should generate the following outputs in the JSON format:
24 {’Plan’: [{’plan a sequence of sub-task with relative target coordinates
25 of your arm to finish the task with key ’sub_task’ and
26 ’target_coordinates’}]}

A.3 PROMPT FOR REACT

Listing 4: Example Prompt for ReAct
1 You are a robot arm working on the tabletop. Looking quickly around you,
2 you see your arm at position [x,y]=[60,50], a [’green block’] with bound-
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3 ing box coordinates [[x1,y1,x2,y2]] = [[90,90,110,110]]. Your task is to:
4 slide the green block to the bottom. The bounding box of tabletop coordi-
5 nates [x1,y1,x2,y2] = [0,0,200,150]. The greater in ’x’ coordinate means
6 more right, the greater in ’y’ coordinates means more bottom.
7 Act 1: Think<To push the green block to the bottom, I should approach the
8 top edge of the block. The top edge coordinates is [90,90,110,90]. And my
9 arm’s x coordinate 60 is less than edge’s coordinate x1=90, and y coordi-

10 nate 50 is also less than edge’s coordinates y1=90, so I am at the top-
11 left of the top edge. To approach the top edge, I should move right.>
12 Act 2: Move Right
13 Obs 2: Looking quickly around you, you see your arm at position [x,y]=
14 [80,50], and a [’green block’] with bounding box coordinates = [[90,90,
15 110,110]].
16 Act 3: Think<To push the green block to the bottom, I should approach the
17 top edge of the block. The top edge coordinates is [90,90,110,90]. And my
18 arm’s x coordinate 80 is less than edge’s coordinate x1=90 and y coordi-
19 nate 50 is also less than edge’s coordinates y1=90, so I am still at the
20 top-left of the top edge. To approach the top edge, I should move right.>
21 Act 4: Move Right
22 Obs 4: Looking quickly around you, you see your arm at position [x,y]=
23 [100,50], and a [’green block’] with bounding box coordinates = [[90,90,
24 110,110]].
25 Act 5: Think<To push the green block to the bottom, I should approach the
26 top edge of the block. The top edge coordinates is [90,90,110,90]. My arm
27 ’s x coordinate 100 is greater than the edge’s coordinate x1=90 and less
28 than x3=110, y coordinate less than edge’s coordinate y1=90, so I am at
29 the top of the top edge. To approach the top edge, I should move down.>
30 Act 6: Move Down
31 Obs 6: Looking quickly around you, you see your arm at position [x,y]=
32 [100,70], and a [’green block’] with bounding box coordinates = [[90,90,
33 110,110]].
34 Act 7: Think<To push the green block to the bottom, I should approach the
35 top edge of the block. The top edge coordinates is [90,90,110,90]. My arm
36 ’s x coordinate 100 is greater than the edge’s coordinate x1=90 and less
37 than x3=110, y coordinate less than edge’s coordinate y1=90, so I am at
38 the top of the top edge. To approach the top edge, I should move down.>
39 Act 8: Move Down
40 Obs 8: Looking quickly around you, you see your arm at position [x,y]=
41 [100,90], and a [’green block’] with bounding box coordinates = [[90,90,
42 110,110]].
43 Act 9: Think<To push the green block to the bottom, I should approach the
44 top edge of the block. The top edge coordinates is [90,90,110,90]. And my
45 arm’s x coordinate 100 is greater than the edge’s coordinate x1=90 and
46 less than x3=110, y coordinate is close to the edge’s coordinate y1=90,
47 so I am very closed to the top edge and I can push it.>
48 Act 10: Push Down
49 Obs 10: Looking quickly around you, you see your arm at position [x,y]=
50 [100,110], and a [’green block’] with bounding box coordinates = [[90,
51 115,110,135]].
52 Act 11: Think<To push the green block to the bottom, I should approach
53 the top edge of the block. The top edge coordinates is [90,90,110,90].
54 And my arm’s x coordinate 100 is greater than the edge’s coordinate x1=90
55 and less than x3=110, y coordinate is close to 90, so I am very closed to
56 the top edge and I can push it.>
57 Act 12: Push Down
58 Obs 12: Looking quickly around you, you see your arm at position [x,y]=
59 [100,130], and a [’green block’] with bounding box coordinates = [[90,
60 135,110,155]].
61 Act 13: Think<Based on the coordinates, the block has reached the bottom
62 side with coordinates y=150, so I finished the task.>
63 Act 14: Succeed
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A.4 PROMPT FOR CODE AS POLICIES

Listing 5: Example Prompt for Code as Policies
1 # Python 2D robot control script
2 import numpy as np
3 from env_utils import get_obs_image,get_robot_pose, get_obj_box,
4 get_obj_edge, push, move, say, detect_relation, detect_arrive_side
5 # push the yellow block to the bottom right corner
6 say(’Ok - pushing the yellow block to the bottom right corner’)
7 image = get_obs_image(observation)
8 robot = get_robot_pose(observation)
9 yellow_block_xyxy = get_obj_box(observation,’yellow block’)

10 say("Robot pose={}, Block pose={}".format(robot,yellow_block_xyxy))
11 yellow_block_top_edge = get_obj_edge(yellow_block_xyxy,’top side’)
12 yellow_block_left_edge = get_obj_edge(yellow_block_xyxy,’left side’)
13 top_relation = detect_relation(robot,yellow_block_top_edge,’top’)
14 left_relation = detect_relation(robot,yellow_block_left_edge,’left’)
15 bottom_side_xyxy = get_side_pose(’bottom side’)
16 right_side_xyxy = get_side_pose(’right side’)
17 arrive_bottom_side = detect_arrive_side(’bottom side’, bottom_side_xyxy,
18 yellow_block_xyxy)
19 arrive_right_side = detect_arrive_side(’right side’, right_side_xyxy,
20 yellow_block_xyxy)
21 if not arrive_bottom_side:
22 if top_relation == "arrive":
23 push(robot,’down’)
24 say("push down")
25 elif top_relation == "top":
26 move(robot,’down’)
27 say("move down")
28 elif top_relation == "top left":
29 move(robot,’right’)
30 say("move right")
31 elif top_relation == "top right":
32 move(robot,’left’)
33 say("move left")
34 elif top_relation == "bottom":
35 move(robot,’left’)
36 say("move left")
37 elif top_relation == "bottom left":
38 move(robot,’up’)
39 say("move up")
40 elif top_relation == "bottom right":
41 move(robot,’up’)
42 say("move up")
43 elif not arrive_right_side:
44 if left_relation == "arrive":
45 push(robot,’right’)
46 say("push right")
47 elif left_relation == "left":
48 move(robot,’right’)
49 say("move right")
50 elif left_relation == "top left":
51 move(robot,’down’)
52 say("move down")
53 elif left_relation == "bottom left":
54 move(robot,’up’)
55 say("move up")
56 elif left_relation == "right":
57 move(robot,’down’)
58 say("move down")
59 elif left_relation == "bottom right":
60 move(robot,’left’)
61 say("move left")
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62 elif left_relation == "top right":
63 move(robot,’left’)
64 say("move left")

A.5 EXAMPLE SUCCESSES

Listing 6: Example success of LLM+A sub-task planner in Block2Position task
1 [Block2Position Task]
2 You are an xArm6 robot on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Remember, you do not need to return to the initial position after comple-
14 ting the task instruction.
15 I will provide you with the ’Task Instruction’, ’Arm Position’, ’Object
16 Information’, ’Possible Skills’ in the JSON format.
17 {’Task Instruction’: ’move the green cube to the top’,
18 ’Arm Position’: [127,83],
19 ’Object Parts’: {’green cube’:{
20 ’edge_top’:{’coordinateA’:[110, 57],’coordinateB’:[144, 57]},
21 ’edge_left’:{’coordinateA’:[110, 57],’coordinateB’:[110, 88]},
22 ’edge_bottom’:{’coordinateA’:[110, 88],’coordinateB’:[144,88]},
23 ’edge_right’:{’coordinateA’:[144, 88],’coordinateB’:[144, 57]}}},
24 ’Possible Skills’: [’Push’]}
25 You should generate the following outputs in the JSON format:
26 {’Consequences’: ’Imagine the consequences of the object states after
27 performing the ’possible skills’ to different ’Object Parts’. ’,
28 ’Affordance’:{’Based on the imagined ’Consequences’, assign the
29 affordance value range from 0 to 1 for every part of the object to
30 represent their usefulness for the ’Task Instruction’ with key ’Object
31 Parts’.’},
32 ’Plan’: [{’plan a sequence of sub-task with relative target coordinates
33 of your arm to finish the task with key ’sub_task’ and
34 ’target_coordinates’}]}
35

36 [GPT4]
37 {’Consequences’: {
38 ’push_edge_top’: ’The blue cube will move downwards.’,
39 ’push_edge_left’: ’The blue cube will move to the right.’,
40 ’push_edge_bottom’: ’The blue cube will move upwards.’,
41 ’push_edge_right’: ’The blue cube will move to the left.’},
42 ’Affordance’: {’edge_top’: 0,’edge_left’: 0,
43 ’edge_bottom’: 1,’edge_right’: 0},
44 ’Plan’: [{
45 ’sub_task’: ’Move arm to edge_bottom of the blue cube’,
46 ’target_coordinates’: [125, 130]},
47 {’sub_task’: ’Push the blue cube to the top of the table’,
48 ’target_coordinates’: [125, 4]}]}

Listing 7: Example success of LLM+A sub-task planner in Pick&Place task
1 [Pick&Place Task]
2 You are an xArm6 robot on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
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5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Remember, you do not need to return to the initial position after comple-
14 ting the task instruction.
15 I will provide you with the ’Task Instruction’, ’Object Information’,
16 ’Possible Skills’ in the JSON format.
17 {’Task Instruction’: ’put the pink blocks in a white bowl’,
18 ’Arm Position’: [127,83],
19 ’Object Parts’: [
20 {’object id’:5, ’type’: ’white bowl’, ’pose’: [220, 301, 0]},
21 {’object id’:6, ’type’: ’white bowl’, ’pose’: [123, 246, 0]},
22 {’object id’:7, ’type’: ’white bowl’, ’pose’: [488, 162, 0]},
23 {’object id’:8, ’type’: ’pink block’, ’pose’: [139, 239, 0]},
24 {’object id’:9, ’type’: ’pink block’, ’pose’: [462, 107, 0]},
25 {’object id’:10, ’type’: ’blue block’, ’pose’: [254, 221, 0]},
26 {’object id’:11, ’type’: ’red block’, ’pose’: [109, 107, 0]},
27 {’object id’:12, ’type’: ’green bowl’, ’pose’: [586, 285, 0]},
28 {’object id’:13, ’type’: ’yellow bowl’, ’pose’: [444, 300, 0]},
29 {’object id’:14, ’type’: ’blue block’, ’pose’: [385, 136, 0]}],
30 ’Possible Skills’: [’Pick’, ’Place’]}
31 You should generate the following outputs in the JSON format:
32 {’Consequences’: ’Imagine the consequences of the object states after
33 performing the ’possible skills’ to different ’Object Parts’. ’,
34 ’Affordance’:{’Based on the imagined ’Consequences’, assign the
35 affordance value range from 0 to 1 for every part of the object to
36 represent their usefulness for the ’Task Instruction’ with key ’Object
37 Parts’.’},
38 ’Plan’: [{’plan a sequence of sub-task with relative target coordinates
39 of your arm to finish the task with key ’sub_task’, ’possible skills’ and
40 ’target_coordinates’}]}
41

42 [GPT4]
43 {’Consequences’: [
44 {’object id’: 5, ’state’: ’white bowl with pink block’},
45 {’object id’: 6, ’state’: ’white bowl with pink block’},
46 {’object id’: 7, ’state’: ’empty white bowl’},
47 {’object id’: 8, ’state’: ’pink block in white bowl’},
48 {’object id’: 9, ’state’: ’pink block in white bowl’},
49 {’object id’: 10, ’state’: ’blue block’},
50 {’object id’: 11, ’state’: ’red block’},
51 {’object id’: 12, ’state’: ’green bowl’},
52 {’object id’: 13, ’state’: ’yellow bowl’},
53 {’object id’: 14, ’state’: ’blue block’}],
54 ’Affordance’: {’5’: 1, ’6’: 1, ’7’: 0, ’8’: 1, ’9’: 1,’10’: 0,
55 ’11’: 0,’12’: 0,’13’: 0,’14’: 0},
56 ’Plan’: [
57 {’sub_task’: ’Pick up the first pink block’,
58 ’possible skills’: ’pick’,
59 ’target_coordinates’: [139, 239]},
60 {’sub_task’: ’Place the first pink block in the first white bowl’,
61 ’possible skills’: ’place’,
62 ’target_coordinates’: [220, 301]},
63 {’sub_task’: ’Pick up the second pink block’,
64 ’possible skills’: ’pick’,
65 ’target_coordinates’: [462, 107]},
66 {’sub_task’: ’Place the second pink block in the second white bowl’,
67 ’possible skills’: ’place’,
68 ’target_coordinates’: [123, 246]}]}
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A.6 EXAMPLE FAILURES

Listing 8: Failure case for Naive LLM, the red fonts represents the mistakes in thinking. We found
that Naive LLM makes many mistakes in spatial relationship reasoning. Specifically, naive LLM
first fails in choosing the skills and proposes the wrong target coordinates in the subsequent step.

1 [Block2Position Task]
2 You are an xArm6 robot on the tabletop,
3 constrained to move in a 2D plane with a cylindrical end-effector (or a
4 suction gripper). Your task is to finish language conditioned
5 manipulation task. The following coordinates are all from the top view.
6 Top left corner of the table is position [48, 4].
7 Top right corner of the table is position [271, 4].
8 Bottom left corner of the table is position [48, 172].
9 Bottom right corner of the table is position [271, 172].

10 The positive direction is right for x-axis and down for y-axis.
11 The smaller of ’x’ means closer to the table left side,
12 the smaller of ’y’ means closer to the table top side.
13 Remember, you do not need to return to the initial position after comple-
14 ting the task instruction.
15 I will provide you with the ’Task Instruction’, ’Arm Position’, ’Object
16 Information’, ’Possible Skills’ in the JSON format.
17 {’Task Instruction’: ’move the green cube to the top’,
18 ’Arm Position’: [127,83],
19 ’Object Parts’: {’green cube’:{
20 ’edge_top’:{’coordinateA’:[110, 57],’coordinateB’:[144, 57]},
21 ’edge_left’:{’coordinateA’:[110, 57],’coordinateB’:[110, 88]},
22 ’edge_bottom’:{’coordinateA’:[110, 88],’coordinateB’:[144,88]},
23 ’edge_right’:{’coordinateA’:[144, 88],’coordinateB’:[144, 57]}}},
24 ’Possible Skills’: [’Push’]}
25 You should generate the following outputs in the JSON format:
26 {’Plan’: [{’plan a sequence of sub-task with relative target coordinates
27 of your arm to finish the task with key ’sub_task’ and
28 ’target_coordinates’}]}
29

30 [GPT4]
31 { "Plan": [{
32 "sub_task": "Move to the green cube", "target_coordinates": [127,57]},
33 {"sub_task": "Grab the green cube", "target_coordinates": [127,57]},
34 {"sub_task": "Move to the top", "target_coordinates": [127,4]},
35 {"sub_task": "Release the green cube", "target_coordinates": [127,4]}]}

To align the ReAct approach to our tasks, we follow the rules in the original paper and design new
prompt examples for interleaved reasoning and action as shown in 4. For the thinking process, we
hint to the LLM about how to infer the spatial relationships and the optimal actions. We found
that the ReAct can make reasonable thinking, (e.g. after performing the pushing skills, if the block
doesn’t move, it knows to move to another side), but it will also make mistakes on the physical
interaction inference. An examples is shown in 9. In order to move the green cube to the upper left
corner, it should approach the right side instead of the left edge. And once a mistake occurs, such
a thinking process will influence all the subsequent decisions, which makes it fail in most of the
tasks.

Listing 9: Failure case for ReAct, the red fonts represents the mistakes in thinking, the orange fonts
represents the correct answer. We found that ReAct makes many mistakes in spatial relationship
inference and interaction consequence prediction.

1 Act 49: Think<To move the green cube to the upper left corner, I should
2 approach the left edge (right edge) of the cube. Based on the coordinates
3 my ’x’ is less thans the cube ’x1’ and my ’y’ is less than the cube ’y1’,
4 so I am still at the bottom-left (top-left) of the green cube, to appro-
5 ach the left edge, I should move right.>

We provide GPT-4 with two example codes as in 5 for each task to understand the protocol of push-
ing the blocks. To evaluate the capability of the LLM in low-level motion planning, we regulate the
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LLM can only select the API of moving/pushing up, down, left, or right. From our experiments, the
code-like prompts allow the LLM to own outstanding task decomposition ability, and generalization
across various instruction inputs, but it still makes mistakes in choosing the correct side for finishing
the pushing block tasks. An example is shown in 10. In other words, such methods don’t inspire the
physical grounding abilities of LLM. And for many tasks, especially those requiring low-level mo-
tion planning tasks, it is difficult to explicitly summarize the whole task into a step-to-step procedure
as code. But our approach provides a new paradigm.

Listing 10: Failure case of code as policies. The mistake is marked with red fonts. Although the
entire procedure is correct, it sometimes fails in finding the correspodning edge for completing the
task. And for local motion-planning, it is complicated or even infeasible to write the step-to-step
procedure as code.

1 say("Ok - moving the yellow block to the left side of the board")
2 image = get_obs_image(observation)
3 robot = get_robot_pose(observation)
4 yellow_block_xyxy = get_obj_box(observation,"yellow block")
5 yellow_block_left_edge = get_obj_edge(yellow_block_xyxy,"left side")
6 left_relation = detect_relation(robot,yellow_block_left_edge,"left")
7 left_side_xyxy = get_side_pose("left side")
8 arrive_left_side = detect_arrive_side("left side",left_side_xyxy,

yellow_block_xyxy)
9 if not arrive_left_side:

10 if left_relation == "arrive":
11 push(robot,"left")
12 say("push left")
13 elif left_relation == "left":
14 move(robot,"left")
15 say("move left")
16 elif left_relation == "top left":
17 move(robot,"down")
18 say("move down")
19 elif left_relation == "bottom left":
20 move(robot,"up")
21 say("move up")
22 elif left_relation == "right":
23 move(robot,"down")
24 say("move down")
25 elif left_relation == "bottom right":
26 move(robot,"left")
27 say("move left")
28 elif left_relation == "top right":
29 move(robot,"left")
30 say("move left")

A.7 GENERALIZATION TO BLOCKS WITH DIFFERENT SHAPES

To evaluate the robustness of our proposed LLM+A method, we further conduct one robotics control
task (Block2Position) with respect to four types of blocks with different shapes (cube, star, pentagon,
moon). All the settings are the same except the block shapes. We evaluate 100 episodes for this task,
and our LLM+A achieves 38% average success rate, which is consistent to the performance achieved
on cubes. Note that using the bounding box as input may contradict to the shape of the block and
cause unpredictable physical interaction results. However, as our method control the locomotion in
close-looped manner, it will dynamically adjust its planning trajectory. That is the main reason of
why using bounding box is applicable. The examples are shown in Fig 5.

A.8 GENERALIZATION TO BLOCKS WITH ENVIRONMENT INTERFERENCE

In the real-world robotics applications, the objects placement are easily influenced by our human
activities. To verify whether our method can deal with such scenarios, we randomly change the
block’s position as human interference in Block2Position task to see whether the LLM+A can adjust
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Task Instruction: Move the pentagon to the left side of the table

A: Move to the right edge
of the cube

B: Push the cube to the left
side of table

C: Pentagon is mistakenly
pushed to the down side
because of shape

D: Re-Plan to correct the 
mistake and approach the 

right side again

E: Task complete

Task Instruction: Push the star to the right side of the table

A: Move to left edge
of the cube

B: Push the cube to the
right side of table

C: Star is mistakenly
pushed to the down
side because of shape

D: Replan a new traje-
ctory

E: Replan again F: Task complete

Figure 5: Trajectory Visualization. We demonstrate two examples to illustrate the re-planning pro-
cess. As shown in figures, the unpredictable interactions will happen and our method can success-
fully change its plan considering the location feedback of the objects.

its plan in time. We evaluate for another 100 episode and our method achieves 40% in success rate,
which is consistent to the main results. The examples are shown in Fig6.

Task Instruction: Move the green cube to the right side of the table

A: Move to the left edge
of the cube

B: Move to the left edge
of the cube

C: Interference happens! D: Adjust the plan with
respect to the interference

E: Push to the right side

Task Instruction: Move the green cube to the right bottom corner

A: Move to the left edge of the
cube

B: Interference happens! C: Adjust the plan with respect
to the interference

D: Push to the bottom-right
side

Figure 6: Trajectory Visualization. We demonstrate two examples to illustrate the re-planning pro-
cess with respect to human interference. As shown in figures, once the block is taken far away, the
planned trajectory will be immediately re-planned to catch up with the blocks.
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