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Abstract
Since machine learning technologies are being
used in various practical situations, models with
merely low prediction errors might not be satisfac-
tory; prediction errors occurring with a low proba-
bility might yield dangerous results in some appli-
cations. Therefore, there are attempts to achieve
an ML model whose input-output pairs are guaran-
teed to satisfy given constraints. Among such at-
tempts, many previous works chose the approach
of modifying the outputs of an ML model at the
inference time to satisfy the constraints. Such
a strategy is handy because we can control its
output without expensive training or fine-tuning.
However, it is unclear whether using constraints
only in the inference time degrades a model’s pre-
dictive performance. This paper analyses how
the generalization error bounds change when we
only put constraints in the inference time. Our
main finding is that a class of loss functions pre-
serves the relative generalization error, i.e., the
difference in generalization error compared with
the best model will not increase by imposing con-
straints at the inference time on multi-class classi-
fication. Some popular loss functions preserve the
relative error, including the softmax cross-entropy
loss. On the other hand, we also show that some
loss functions do not preserve relative error when
we use constraints. Our results suggest the impor-
tance of choosing a suitable loss function when
we only use constraints in the inference time.

1. Introduction
Recent progress in machine learning (ML) enables models
to achieve low prediction errors in many practically impor-

1NTT Communication Science Laboratories, NTT Corpo-
ration, Kyoto, Japan. Correspondence to: Masaaki Nishino
<masaaki.nishino@ntt.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

tant tasks. As a result, machine learning is being used in
a wide range of practical systems. However, models with
merely low prediction errors might not be adequate for some
situations since the errors that occur with a low probability
potentially yield severe results. For example, we must avoid
hazardous actions in safety-critical situations (Zhu et al.,
2019; Leino et al., 2022). It is also important to avoid harm-
ful generations of generative models (Gehman et al., 2020;
Sheng et al., 2021). Since modern ML models are com-
plex black-box systems with huge numbers of parameters,
it is unrealistic to expect that we can extensively examine a
model to guarantee the removal of such severe mistakes.

A simple but effective approach to avoid such errors is to
make ML models that satisfy the given constraints. If we
can guarantee that the outputs of ML models satisfy the
given hard constraints, we can use them without excessive
anxiety about the severe errors caused by violating them.
Research is attempting to control a model’s outputs by ad-
ditional constraints (Mustafa et al., 2021; Ahmed et al.,
2022; Leino et al., 2022; Hoernle et al., 2022; Qin et al.,
2022). Many of these attempts use constraints only in the
inference time, i.e., training models without constraints and
using them for predictions with the trained models. Us-
ing constraints only in the inference time is more practical
than using them in training and inference since users can
flexibly change the constraints to control a model’s output
without re-training or fine-tuning. However, such ad-hoc
use constraints might degrade performance.

Nishino et al. (2022) analyzed how the generalization error
changes by adding constraints on the possible outputs of
an ML model. They categorized the situations where con-
straints are used into two cases depending on whether they
are accessed in the training time and named the situation
where we can just access constraints only in the inference
time as the inference time verification (ITV) setting. Nishino
et al. (2022) showed that the model’s generalization error,
whose outputs are modified to satisfy constraints, can be
bounded in ITV if the learning problem is PAC-learnable.
However, how the generalization error is changed by adding
constraints remains unknown for general cases.

This paper describes how generalization error changes in
ITV settings, including non-PAC-learnable cases. Our key
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finding is that using constraints arbitrarily changes the gen-
eralization error depending on the constraints, although the
difference in the generalization error of a hypothesis com-
pared with the best possible model does not increase by
imposing additional constraints on some situations. We
name this property the preservation of relative error. We
first show that relative error is preserved in a binary classi-
fication problem. Then we show conditions where relative
error is preserved in multi-class classification problems. Un-
like binary classification cases, relative error preservation
depends on the loss function for multi-class classifications.
We show a necessary and sufficient condition that loss func-
tions preserve relative error and further demonstrate that typ-
ical loss functions, including softmax cross-entropy loss and
one-versus-rest loss, satisfy the conditions. We also argue
that some loss functions, including the multi-class margin
loss function, cannot preserve relative error and show some
worst-case results for these loss functions, indicating that
relative error is much worse in the ITV setting. Our analyses
show that “good models are good,” i.e., a model with small
relative error without constraints can be improved if we use
it in the ITV setting with appropriate loss functions. This
finding helps determine when the ITV is adequate and when
we should retrain or fine-tune a model.

2. Related Work
Using constraints to control the outputs of machine learning
models has been investigated for years, including hybrid
models with logic as well as probabilistic models (Richard-
son & Domingos, 2006; Poon & Domingos, 2011) and
neuro-symbolic AI (Manhaeve et al., 2018; Cohen, 2016;
van Krieken et al., 2023; Ahmed et al., 2023). Histori-
cally, much previous research has used constraints as back-
ground knowledge to improve the prediction performance
or logical rules instead of training data to deal with data
scarcity problems (Mustafa et al., 2021; Chang et al., 2012).
Adding constraints is again gathering attention for two rea-
sons. First, machine learning models tend to become too
huge, and the cost of training or fine-tuning them becomes
excessive compared to using a model to perform predictions.
Adding constraints to ML models’ output is an inexpensive
way to control their outputs (Qin et al., 2022; Zhang et al.,
2023). Second, since machine learning technologies are
being used in a wider range of situations, demand is grow-
ing for models whose input-output pairs are guaranteed to
satisfy constraints (Hoernle et al., 2022; Ahmed et al., 2022;
Giunchiglia et al., 2023). These trends are motivating analy-
ses of generalization error bounds when we use constraints,
especially in inference times.

Nishino et al. (2022) provided generalization analyses when
constraints are placed on the output of a machine learning
model. They formulated the problem setting as learning

with a verifier module and gave generalization analyses
in two different situations based on when constraints are
imposed on the input-output pairs of a model. Their anal-
yses argue that if a model is PAC-learnable, the estimated
model’s prediction error can be guaranteed not to exceed
the other models in the hypothesis class that are modified to
satisfy constraints. However, their analyses did not identify
generalization error bound for general cases. Pukdee et al.
(2023) also described generalization analyses when there
are explainability constraints.

We address a problem setting that resembles domain adap-
tation. In domain adaptation problem, we use ML models
trained in a different domain, and there are many theoretical
results about the problem (Mansour et al., 2009; Ben-David
et al., 2010; Redko et al., 2020). Adding constraints to a
problem can be seen as changing the domain from which we
train a model. However, our problem setting does not match
a typical domain adaptation problem. In domain adaptation,
we can access additional resources like unlabeled data to
evaluate the closeness of domains, a strategy that is a key
to deriving error bounds. In contrast, our problem setting is
rather restricted since we can access a model and constraints.
Therefore, we cannot directly apply the theoretical results
of the domain adaptation to our problem.

3. Preliminaries
General notations Let X be the input domain, and let
Y be the domain of the output labels. When a task is a
binary classification, then Y = {−1, 1} and Y = [K] if it
is a multi-class classification, where K > 2 is an integer
and [K] = {1, . . . ,K}. Let D be the unknown probability
distribution over X × Y , and let S be an example that con-
sists of n samples S = ((x1, y1), . . . , (xn, yn)) drawn from
D under the i.i.d assumption. Let h be a hypothesis that
maps X to Y . As shown below, we use slightly different
definitions of h for binary and multi-class classification. Let
H be a set of hypotheses or a hypothesis class.

Binary classification Let h : X → R be a hypothesis
for binary classification that predicts the label of input x,
where we define the prediction of h for x as +1 if h(x) > 0,
and otherwise −1. Given a sample (x, y), we call m =
yh(x) the margin. If m is positive, then h can classify x
correctly. Otherwise, h misclassifies it. Let ℓ : R → R be a
margin-based binary loss function, which takes margin m
as input and outputs a value that tends to be small with a
large margin. The most important binary loss function is
zero-one loss ℓ0-1, defined as ℓ0-1(m) = 1m≤0, where 1ω

is an indicator function for event ω. The following other
binary loss functions are frequently used in the literature:

• Hinge loss: ℓ(m) = max(1−m, 0),
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• Ramp loss: ℓ(m) = 1
2 min(2,max(1−m+ t, 0)),

• Sigmoid loss: ℓ(m) = 1
1+exp(m) ,

• Logistic loss: ℓ(m) = ln(1 + exp(−m)),

where t > 0 is a parameter for the ramp loss. The lo-
gistic loss equals the binary cross-entropy loss if we use
h(x) as a logit for x = 1. The generalization error of
hypothesis h with margin loss function ℓ is defined as
R(h) := E(x,y)∼D [ℓ(yh(x))].

Multi-class classification We represent a hypothesis in
multi-class classification as h(x) := (h1(x), . . . , hK(x)),
where hy : X → R (y ∈ [K]) is a score for class
y. Hypothesis h predicts class label y for input x as
y = argmax

y∈[K]

hy(x). Let L(h(x), y) be a loss function for

multi-class classification. The following loss functions are
typically used in the literature (Zhang, 2004; Sugiyama et al.,
2022; Mohri et al., 2012):

• Softmax cross-entropy (CE):
L(h(x), y) = −hy(x) + ln

(∑
y′∈Y exp(hy′(x))

)
,

• One-versus-rest (OVR):
L(h(x), y) = ℓ(hy(x)) +

1
c−1

∑
y′ ̸=y ℓ(−hy′(x)),

• Pairwise comparison (PC):
L(h(x), y) =

∑
y′ ̸=y ℓ(hy(x)− hy′(x)),

• (Multi-class) margin:
L(h(x), y) = ℓ (hy(x)−maxy′ ̸=y hy′(x)),

where ℓ(m) is a binary margin-based loss function. CE is
classification-calibrated, and OVR and PC are classification-
calibrated if combined with specific binary margin loss func-
tions (Sugiyama et al., 2022). The generalization error for
multi-class classification with loss function L is defined as
R(h) := E(x,y)∼D [L(h(x), y)].

3.1. Learning with a Verifier

We formulate the inference problem under constraints fol-
lowing the learning with a verifier formulation of Nishino
et al. (2022). We assume that the constraints are repre-
sented as requirement function c : X × Y → {0, 1}. A
requirement function indicates whether an input-output pair
satisfies the given constraints, i.e., c(x, y) = 1 if pair x, y
satisfies them; otherwise, c(x, y) = 0. In other words, re-
quirement function c defines feasible set Tx ⊆ Y for every
x ∈ X . Requirement function c can represent a wide range
of constraints over input-output pair (x, y) in the literature.
For example, suppose that h is a recommender system that
predicts suitable item y to propose to user x. If we do not
want to recommend item y ∈ T̄x ⊆ Y to customers in set

S ⊆ X , then we can represent such knowledge as require-
ment function c such that c(x, y) = 0 for x ∈ S and y ∈ T̄x.
Nishino et al. (2022) showed more examples that the re-
quirement function can represent. For simplicity, we make
an assumption that there always exists y that satisfies the
constraints, that is, there exists y ∈ Y satisfying c(x, y) = 1
for every x ∈ X . We discuss in Section 6 how easily this
assumption can be relaxed.

We guarantee that the output of the hypotheses always satis-
fies requirement c by modifying hypothesis h to hc and us-
ing it for predictions. In binary classification, hc : X → R
is defined as

hc(x) =


−M (c(x,+1) = 0),

M (c(x,−1) = 0),

h(x) (otherwise) ,
(1)

where M > 0 is a large constant. In a multi-class classi-
fication, we assume each score function hy for label y is
modified as hcy and defined as

hcy(x) =

{
hy(x) (c(x, y) = 1) ,

−M (c(x, y) = 0) ,
(2)

where we define M > 0 as a large constant satisfying
−M < infh∈H,x∈X ,y∈Y hy(x).

There are two problem settings for learning with a verifier
depending on when we use constraints. The first setting
uses them only in the inference phase, not in the learning
phase. That is, we estimate hypothesis ĥ from H with learn-
ing algorithm A : (X × Y)m → H and training example
S, as ĥ = A(S). We then modify ĥ to ĥc using c for pre-
dicting labels for unknown inputs x for the inference phase.
This setting is called inference time verification (ITV). The
second setting uses constraints both in the inference and
training phases. Learning algorithm A estimates hypothe-
sis hc from Hc from training example S and requirement
function c. This setting is called learning time verification
(LTV).

Compared to LTV, the ITV setting is cheaper and more
flexible since we can use new constraints that were unavail-
able in the training phase. Furthermore, some situations
in which those who train a model differ from those who
use pre-trained model to perform inferences, and the users
have specific requirements. ITV is the only way for users to
reflect on their requirements in such situations. For example,
if parents want to set additional filtering rules for the videos
recommended for their children, the situation corresponds
to ITV.

Nishino et al. (2022) provided generalization analyses for
both settings. They described a generalization error bound
for the LTV setting based on Rademacher complexity that
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generally holds for any combination of requirement function
c and hypothesis H. On the other hand, the generalization
error bound for the ITV setting is unknown except for the
case where H is probably approximately correct (PAC)-
learnable. The following sections analyze the generalization
error in the ITV setting.

4. Preservation of Relative Errors
We analyze how generalization error changes in ITV, i.e.,
we see how differently the generalization error with con-
straints R(hc) can be compared with the original gener-
alization error R(h) of hypothesis h.

The change of the generalization error depends on a com-
bination of distribution D and requirement function c. Ob-
viously, R(hc) can be arbitrarily worse than R(h) if we
add constraints to prohibit pairs x, y that appear with a high
probability in D. Note that if the prediction is worsened
due to c, this result includes the price that all the hypotheses
must pay to guarantee that the modified model satisfies the
constraints. As described in the introduction, our position
prioritizes satisfying the constraints rather than lowering the
prediction error. Therefore, it is natural to evaluate the qual-
ity of a hypothesis by its relative error compared with the
best possible hypothesis that satisfies requirements c. We
introduce the following optimal hypothesis g⋆ : X → RK

without constraints for a multi-class classification:

g⋆ := argmin
g∈RK

E
(x,y)∼D

[L(g(x), y)] .

We can similarly define the optimal hypothesis for binary
classification. g⋆ equals a Bayes-optimal hypothesis if loss
L is a multi-class zero-one loss, which equals a multi-class
margin loss function combined with a binary zero-one loss
function.

Next we define f⋆c as an optimal hypothesis that satisfies
requirement function c. Hypotheses satisfying c correspond
to gc : X → RK that satisfies gcy(x) = −M if c(x, y) = 0,
where M > 0 is a large constant. We define an optimal
hypothesis satisfying constraints as

f⋆c := argmin
gc

E
(x,y)∼D

[L(gc(x), y)] .

We define the relative error as follows.

Definition 4.1. We define the relative error of h without
constraints as R(h) − R(g⋆). Similarly the relative error
with constraints c is defined as R(hc)−R(f⋆c ). The relative
error is preserved for loss function L if

R(h)−R(g⋆) ≥ R(hc)−R(f⋆c ) (3)

holds for any combinations of h, D, and c.

If the relative error is preserved for loss function L, it means
that hypothesis h with small relative error R(h) − R(g⋆)
will achieve small relative error R(hc) − R(f⋆c ) in ITV
settings. Therefore, we can confidently use h with a small
relative error in ITV settings if we know the relative error is
preserved.

Note that modified hypothesis hc is defined by revising h
to satisfy c per Equation (2). On the other hand, f⋆c can be
different from the one obtained by modifying g⋆ to satisfy
c. Below we discuss how this difference affects whether a
loss function preserves the relative error.

In the following, we show situations where relative error
is preserved. We first show that relative error is always
preserved in binary classification and then the multi-class
classification result. Unlike the binary classification case,
relative error preservation for a multi-class classification
depends on the loss function.

4.1. Binary Classification

We show that the relative error is preserved for binary clas-
sification.

Theorem 4.2. Let h : X → R be a hypothesis for binary
classification, and let c : X ×Y → {0, 1} be a requirement
function. Let hc be a modified hypothesis defined following
Equation (1) with large constant M > 0, where ℓ : R → R
is a binary loss function. Let g⋆ be a minimizer of the
generalization error, and let f⋆

c be a minimizer of it while
satisfying constraints c. Then for every requirement c, distri-
bution D, and hypothesis h, relative error R(hc)−R(f⋆

c )
is preserved, i.e., it is not larger than R(h) − R(g⋆) if
R(g⋆) > −∞.

Proof. Let C ⊆ X be a subset of X defined as C := {x |
c(x,−1) = c(x,+1) = 1, x ∈ X}. If x ̸∈ C, then hc(x) =
f⋆
c (x) for any hc. If x ∈ C, hc(x) = h(x), there exists

optimal f⋆
c satisfying g⋆(x) = f⋆

c (x). Therefore, R(hc)−
R(f⋆

c ) becomes∫ ∑
y∈{−1,+1}

p(x, y) [ℓ(yhc(x))− ℓ(yf⋆
c (x))] dx

=

∫
1x∈C

 ∑
y∈{−1,+1}

p(x, y) [ℓ(yh(x))− ℓ(yg⋆(x))]

 dx .

Since
∑

y∈{−1,+1} p(x, y) [ℓ(yh(x))− ℓ(yg⋆(x))] is al-
ways non-negative for every x ∈ X , the above equation
is not larger than R(h)−R(g⋆).

Adding constraints corresponds to uniquely determining
output y for x satisfying c(x,+1) = 0 or c(x,−1) = 0.
Therefore, it is intuitive that adding constraints will not
increase the relative error.
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4.2. Losses that Preserve Relative Errors

Unlike the binary classification case, relative error is not al-
ways preserved for multi-class classifications. Preservation
depends on the loss function we employ. First, we show a
necessary and sufficient condition for preserving the relative
error. Then we show typical loss functions that preserve the
relative error by using them.
Theorem 4.3. Let g⋆ : X → RK be an optimal hypothesis
that minimizes the generalization error when using multi-
class loss function L, and let c : X × Y → {0, 1} be a
requirement function. Let f⋆c : X → RK be an optimal
hypothesis with requirements c where f⋆c satisfies the condi-
tions of Equation (2) for some M > 0. Let ĝc : X → RK

be the hypothesis obtained by substituting the value of g⋆y(x)
with −M when c(x, y) = 0. Then L preserves the relative
error for any h, D, and c if and only if:
(i) R(ĝc) = R(f⋆c ), and
(ii) R(h)−R(g⋆) ≥ R(hc)−R(ĝc)
for any h, c, and D.

Proof. By substituting ĝc of condition (ii) with f⋆c following
condition (i), we can prove the if statement.

We next prove the only if statement. We assume that the
relative error is preserved and R(ĝc) > R(f⋆c ) holds. Substi-
tuting h = g⋆ to Equation (3), we have 0 ≥ R(ĝc)−R(f⋆c ),
which conflicts with the assumption. Hence R(ĝc) = R(f⋆c )
holds. Finally, we assume that the relative error is preserved,
but hypothesis h argues that condition (ii) does not hold.
Then, since

R(h)−R(g⋆) < R(hc)−R(ĝc) = R(hc)−R(f⋆c ) ,

it contradicts the assumption that relative loss is preserved.
Hence, condition (ii) also holds.

We will prove that some surrogate loss functions preserve
relative error when adding constraints by checking whether
the loss satisfies the above two sufficient conditions. We
first show that the softmax cross-entropy (CE) loss function
can preserve relative error. CE loss is one of the most widely
used surrogate loss functions for multi-class classification.
Proposition 4.4. Let h : X → RK be a hypothesis in a
vector form, and let c : X × Y → {0, 1} be a requirement
function. Let hc be a modified hypothesis, made by the
values of h by setting hcy(x) satisfying c(x, y) = 0 to a
constant M satisfying

exp(hcy(x))∑
y exp(hcy(x))

=
exp(−M)∑
y exp(hcy(x))

= δ ,

where δ is a small probability. We suppose that optimal
hypothesis f⋆c with requirement c satisfies

exp f⋆
cy(x)∑

y exp(f
⋆
cy(x))

=
exp−M∑

y exp(f
⋆
cy(x))

= δ ,

if c(x, y) = 0. Then for every requirement c(x, y) and
hypothesis h : X → RK , relative error R(hc)− R(f⋆c ) is
not larger than R(h)−R(g⋆).

Proof. For simplicity, we consider a case where X is a
singleton and write hy(x) and gy(x) as hy, gy by omit-
ting x. Let q⋆y be the probability defined by g⋆ as q⋆y =

exp(g⋆
y)∑

y′ exp(g⋆
y′ )

.

We first show that R(ĝc) = R(f⋆c ) holds. Optimal hypothe-
sis g⋆, which minimizes the CE loss, achieves q⋆y = py for
every y ∈ [K], where py is the probability that y appears in
distribution D. Optimal hypothesis f⋆c with constraints c cor-
responds to distribution q⋆cy satisfying q⋆cy = δ if c(x, y) = 0
and minimizes ∑

y∈C0

py ln δ +
∑
y∈C1

py ln q
⋆
cy ,

where C0 ⊆ Y is a set of y ∈ Y satisfying c(x, y) = 0, and
C1 is a set of y satisfying c(x, y) = 1. By minimizing the
above error with respect to q⋆cy under the constraints where∑

y q
⋆
cy = 1, optimal q⋆cy for y ∈ C1 equals

q⋆cy =
py∑

y′∈C1
py′

,

when we set M to a large value so that δ is sufficiently
small. Therefore, ĝc gives the same distribution with f⋆c ,
and condition (i) of Theorem 4.3 holds.

We next show that condition (ii) of Theorem 4.3 holds. The
relative CE error for hypothesis h without constraints is

R(h)−R(g⋆) = −
∑
y∈Y

py ln
qy
py

,

where qy is the probability defined by qy =
exp(hy)/

∑
y′ exp(h′

y). Using R(f⋆c ) = R(ĝc), the
relative error with CE loss with constraints becomes

R(hc)−R(ĝc) = −
∑
y∈C1

py ln

[
qy
py

·
∑

y′∈C1
p′y∑

y′∈C1
q′y

]
= −

∑
y∈C1

py ln
qy
py

− pC1 ln
pC1

qC1

,

where we use pC1
=

∑
y∈C1

py and qC1
=

∑
y∈C1

qy. The
difference in relative error (R(h) − R(g⋆)) − (R(hc) −
R(f⋆c )) is ∑

y∈C0

py ln
py
qy

+ pC1
ln

pC1

qC1

.

The above equation coincides with the Kullback-Leibler
divergence between distributions p and q over the union of
the elements of C0 and C1. Therefore, the equation is always
non-negative for any combination of p and q if qy > 0
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for any y ∈ Y . qy is always nonzero since it is defined
as the softmax of h. Therefore, the relative error with CE
loss with constraints is never larger than without constraints.
Extending the above results to general X is straightforward.

Similar results hold when we employ the OVR loss com-
bined with any binary loss function if an optimal solution
exists that minimizes the generalization error.

Proposition 4.5. Let h : X → RK be a hypothesis, and
let c : X × Y → {0, 1} be a requirement function. Let
hc be the hypothesis obtained by modifying h by following
Equation (2). Let g⋆ ∈ RK be an optimal hypothesis that
minimizes the generalization error without constraints, and
let f⋆c ∈ RK be an optimal hypothesis minimizing the gen-
eralization error and satisfying f⋆

cy = −M if c(x, y) = 0.
For any c, D, and h, relative error R(hc) − R(f⋆c ) is not
larger than R(h)−R(g⋆) where the OVR loss is combined
with any binary surrogate function if g⋆ exists such that
R(g⋆) > −∞.

Proof. For simplicity, we again consider a case where X is
a singleton. We first show that optimal solution f⋆c coincides
with ĝc, the vector obtained by modifying g⋆ by setting
ĝcy = −M when c(x, y) = 0. The generalization error
with the OVR loss is

R(h) =
∑
y∈Y

py

ℓ(hy) +
1

K − 1

∑
y′ ̸=y

ℓ(−hy′)


where ℓ(m) is a binary surrogate loss function. We refor-
mulate the equation as the sum of terms corresponding to
every y ∈ Y:

R(h) =
∑
y∈Y

[
pyℓ(hy) +

1− py
K − 1

ℓ(−hy)

]
(4)

where we use
∑

y′ ̸=y py′ = 1 − py. The above equation
is linear with ℓ(hy) and ℓ(−hy). Therefore, we can ob-
tain optimal solution g⋆ by independently minimizing each
term related to y by setting the best gy. Using constraints
corresponds to restricting values gy to −M if c(x, y) = 0.
Therefore, the terms related to y with c(x, y) = 0 in Equa-
tion (4) become constant for every hypothesis hc. Opti-
mal hypothesis f⋆c also satisfies that f⋆

cy is a constant when
c(x, y) = 0. If c(x, y) = 1, f⋆

cy is set to minimize the term
in Equation (4) related to y. Therefore, both f⋆

cy and g⋆y
give the same optimal value for terms related to y satisfy-
ing c(x, y) = 1, and we can obtain optimal hypothesis f⋆c
by modifying the values of g⋆ corresponding to y ∈ C0 to
constant −M .

We next show R(h)−R(g⋆) ≥ R(hc)−R(ĝc) for any c.

(R(h)−R(g⋆))− (R(hc)−R(ĝc)) equals∑
y∈C0

[
py(ℓ(hy)− ℓ(g⋆y)) +

1− py
K − 1

(ℓ(−hy)− ℓ(−g⋆y))

]
since the terms that correspond to y ∈ C1 are zero. The
above equation is non-negative since m = g⋆y minimizes
term pyℓ(m) +

1−py

K−1 ℓ(−m) for every y.

Finally, we show that the relative error preserves with the
PC loss when we employ either zero-one, sigmoid, or a
ramp binary loss as a binary surrogate loss function.

Proposition 4.6. Under the same assumption made on h,
c g⋆, and f⋆c in Proposition 4.5, the difference of relative
error R(hc)−R(f⋆c ) is not larger than R(h)−R(ĝc) where
the PC loss is combined with the zero-one, sigmoid, and
ramp surrogate functions if there exists g⋆ that minimizes
the generalization error.

Proof. We prove the case where we employ the zero-one
loss function. We first show that R(f⋆c ) = R(ĝc). Then we
show that the difference of relative error R(hc)−R(ĝc) is
smaller than R(h)−R(g⋆).

We assume X is a singleton for simplicity. The general-
ization error of the PC loss with the zero-one binary loss
is

R(h) =
∑
y∈[K]

py
∑
y′ ̸=y

[ℓ0-1(hy − hy′)] .

We can minimize the generalization error with g ∈ RK

where gy follows the same order with py, i.e., if pπ(1) ≥
pπ(2) ≥ · · · ≥ pπ(k), then g that satisfies gπ(1) >
gπ(2) > · · · gπ(k) minimizes the generalization error, where
π : [K] → [K] is a permutation over [K]. Optimal solution
g⋆ satisfies the order constraint.

If we add constraints, terms ℓ(gy − gy′) are constant if
c(x, y) = 0 or c(x, y′) = 0. Therefore, the generalization
error becomes:

R(hc) =
∑
y∈C1

py
∑

y′∈C1,y′ ̸=y

ℓ0-1(hy − hy′) + C (5)

where C is a constant. Similar to the unconstrained case, f⋆c
minimizes Equation (5) and satisfies the ordering constraint
of py for y ∈ C1. If we modify g⋆ by setting gy = −M
for y ∈ C0, then the resulting vector satisfies the ordering
constraint over py for y ∈ C1, and therefore, the vector
obtained by modifying g⋆ is optimal solution f⋆c for the
constrained problem.

We next show that R(hc)−R(ĝc) is not larger than R(h)−
R(g⋆). R(hc)−R(ĝc) equals:∑

y∈C1

py
∑

y′∈C1,y′ ̸=y

(ℓ(hy − hy′)− ℓ(g⋆y − g⋆y′))
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where we use ℓ(hcy − hcy′)− ℓ(g⋆cy − g⋆cy′) = 0 if y ∈ C0
or y′ ∈ C0. Using this equation, we show that the difference
in relative error is

(R(h)−R(g⋆))− (R(hc)−R(ĝc))

=
∑
y∈C1

py
∑
y′∈C0

(ℓ(hy − hy′)− ℓ(g⋆y − g⋆y′))

+
∑
y∈C0

py
∑

y′∈[K]

(ℓ(hy − hy′)− ℓ(g⋆y − g⋆y′))

=
∑

(y,y′)∈[K]2\(C1)2,y ̸=y′

[
py(ℓ(hy − hy′)− ℓ(g⋆y − g⋆y′))

+py′(ℓ(hy′ − hy)− ℓ(g⋆y′ − g⋆y))
]

where we reformulate the formula as the sum of the er-
ror corresponding to pair y, y′. Since optimal solution g⋆

minimizes term pyℓ(g
⋆
y − g⋆y′) + py′ℓ(g⋆y′ − g⋆y) for every

pair (y, y′) ∈ [K]2, y ̸= y′, the above equation is always
non-negative.

When we use the sigmoid or ramp loss function, we can
almost identically prove the error preservation using the
conditions shown in Theorem 4.3. The difference is we
need an additional condition for optimal solution g⋆ so that
|g⋆y − g⋆y′ | are sufficiently large for every y ̸= y′ unless
y, y′ ∈ C1.

4.3. Extension to structured predictions

Some recent neuro-symbolic AI works use constraints in
structured prediction tasks (Ahmed et al., 2022; Giunchiglia
& Lukasiewicz, 2022; Dragone et al., 2021), which are
formulated as a multi-class classification where Y =
(y1, . . . , yL) = {0, 1}L for some fixed L. We show that
the relative error is preserved for this task if we use binary
cross-entropy as a loss function. For sample (x,y) ∈ X×Y ,
the binary cross-entropy loss is defined as

L∑
j=1

−yj ln qj(x)− (1− yj) ln(1− qj(x))

where qj(x) ∈ [0, 1] is the hypothesis output, which rep-
resents the probability that yj = 1. We assume that a hy-
pothesis outputs vector (q1(x), . . . , qL(x)) ∈ [0, 1]L, which
defines conditional probability q(y | x) =

∏
j qj(yj | x) =∏

j(yjqj(x) + (1− yj)(1− qj(x)).

Since using the above binary cross-entropy loss corresponds
to multi-class cross-entropy loss under the assumption that a
hypothesis gives factored conditional probability

∏
j qj(yj |

x), the relative error is preserved for this problem1.

1We need to slightly modify the procedure for obtaining mod-
ified hypothesis qc from q. Instead of modifying a scoring func-
tion, we obtain modified probability distribution qc by changing
q(y | x) to a very small probability when c(x,y) = 0 and normal-
izing the distribution.

5. Losses that Do Not Preserve the Relative
Error

In the previous section, we showed how relative error can
be preserved for binary classification. We also show that
three typical surrogate loss functions for multi-class classifi-
cation preserve relative error for multi-class classification.
However, such preservation does not hold for all loss func-
tions. We prove that the multi-class margin loss function
cannot preserve relative error by checking condition (i) of
the Theorem 4.3.

First, we show that using the multi-class margin loss in
combination with a specific binary loss function cannot
preserve the relative error.

Proposition 5.1. If Y = [K] and K > 2, using multi-class
margin loss function L(h(x), y) = maxy′ ̸=y ℓ(hy(x) −
hy′(x)) in combination with the zero-one, ramp, and sig-
moid loss does not preserve the relative error. Moreover, if
K > 3 and the binary loss function is differentiable at 0
and ℓ′(0) ̸= 0, then the margin loss does not preserve the
relative error.

Proof. We show situations where R(ĝc) differs from R(f⋆c )
and use condition (i) of Theorem 4.3. We again assume that
X is a singleton. Without loss of generality, we assume that
label distribution py satisfies p1 ≥ p2 ≥ · · · ≥ pK .

We first prove the case where ℓ is a zero-one loss. The
generalization error for h is

R(h) =
∑
y∈[K]

py

[
ℓ

(
hy −max

y′ ̸=y
hy′

)]
.

Since ℓ is a zero-one loss function, any h satisfying h1 >
maxy′∈{2,...,K} hy′ minimizes the generalization error. For
example, (h1, . . . , hK) = (1, 0, . . . , 0) minimizes the error.
If we put requirement c that satisfies c(x, y1) = 0 and
otherwise c(x, y) = 0, then optimal solution f⋆c under the
constraint must satisfy f⋆

c1 = −M and f⋆
c2 > f⋆

cy′ for
y′ ∈ {3, . . . ,K}. On the other hand, modifying g⋆ =
(1, 0, . . . , 0) results in ĝ = (−M, 0, . . . , 0), which is not
an optimal solution under the constraints. Therefore, the
margin loss combined with the binary zero-one loss does
not preserve relative error due to Theorem 4.3. Extending
the results to the ramp and sigmoid loss is easy by setting
g⋆ = (T, 0, . . . , 0) where T > 0 is a sufficiently large
constant.

Next we consider a condition where K > 3 and the loss is
differentiable at 0 and ℓ′(0) ̸= 0. Without loss of generality,
we assume that optimal solution g⋆ satisfies g⋆1 ≥ g⋆2 ≥
· · · ≥ g⋆K . The generalization error becomes:

R(g⋆) = p1ℓ(g
⋆
1 − g⋆2) +

∑
y∈{2,...K}

pyℓ(g
⋆
y − g⋆1) .
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Since g⋆y for f ∈ {3, . . . ,K} only appears in term pyℓ(g
⋆
y−

g⋆1) and the error is linear with ℓ(g⋆y − g⋆1), there exists an
optimal solution satisfying g⋆3 = · · · = g⋆K = c if the error is
bounded. Next we add requirement c such that c(x, y) = 0
for y = 1, 2. Then there exists ĝc = (−M,−M, c, . . . , c)
whose error is

R(ĝc) = (p1 + p2)ℓ(−M − c) +
∑

y∈{3,...,K}

pyℓ(0) .

If ℓ′(0) ̸= 0, then subtracting value, δ > 0, from every ĝcy,
y ∈ {4, . . . ,K} decreases the error depending on probabili-
ties p3, . . . , pK . Hence, we have ĝc ̸= f⋆c , and the loss does
not preserve the relative error due to Theorem 4.3.

Next we show that the PC loss cannot preserve relative
errors when combined with a hinge or logistic loss.

Proposition 5.2. Under the same assumption made on h, c
g⋆ and g⋆

c in Proposition 4.5, the PC loss function combined
with a hinge loss function does not preserve the relative
error for K > 2.

Proof. We prove by showing that R(ĝc) differs from R(f⋆c )
for a hinge loss. Adding requirement c changes term ℓ(gy′−
gy) to 1− (M + gy) if c(x, y′) = 0 and c(x, y) = 1. This
term becomes smaller as we move gy close to M . Therefore,
R(ĝc) ̸= R(f⋆c ) for some D. Similar results hold for a
logistic loss.

5.1. Worst-case Analyses

We show that some loss functions for multi-class classifica-
tion do not preserve the relative error. This means the error
might be much worse when we employ these errors. How
large can the degradation be when we use a loss function
that does not preserve relative errors? The following theo-
rem shows that combining the multi-class margin loss and
some binary loss functions achieves the worst relative error.

Theorem 5.3. For every hypothesis h : X → RK that
satisfies hy(x) ̸= hy′(x) for any x ∈ X and y ̸= y′, there
exists a combination of distribution D and requirement c
that achieves R(h)−R(g⋆) = 0 and R(hc)−R(f⋆c ) ≥ 1/2
when we use the multi-class margin loss in combination with
the zero-one, ramp, or sigmoid binary loss functions.

Proof. We design distribution D as (i) by assigning
largest conditional probability p(y|x) to y satisfying y =
argmaxhy(x) for every x and (ii) by assigning the smallest
conditional probability p(y|x) to y where hy(x) is the sec-
ond largest value for every x. Let ŷx = argmax

y
p(y|x).

Next we set c as a mapping satisfying c(x, y) = 0 for
y = argmax

y∈Y
hy(x), and otherwise c(x, y) = 1.

We consider a case where we employ the zero-one binary
loss function. Under this combination of D and c, op-
timal solution g⋆ for the unconstrained setting satisfies
argmax

y
g⋆y(x) = ŷx, and relative error R(h) − R(g⋆) is

zero. We fix x to a specific value and omit it for sim-
plicity. If we add constraints c, optimal solution f⋆c as-
signs largest score f⋆

cy to y with highest probability p(y)
among y ∈ [K] \ ŷ to minimize the generalization er-
ror, which for the solution is 1 − maxy∈[K]\ŷ p(y). On
the other hand, the generalization error for hc is 1 −
miny∈[K]\ŷ p(y) since D assigns the smallest probability
to y = argmax

y∈[K]\ŷ
hy. Therefore, the relative error under the

constraints is maxy∈[K]\ŷ p(y) −miny∈[K]\ŷ p(y), which
becomes largest when maxy∈[K]\ŷ p(y) = 1/2− ϵ, where
ϵ > 0, and miny∈[K]\ŷ p(y) = 0. Extending the above
discussion to general X is straightforward.

6. Discussion
Relation to the previous results in the ITV setting
Nishino et al. (2022) gave generalization analyses in the
ITV setting. Their main findings on the ITV setting are
two-fold. First, the generalization error with the multi-class
zero-one loss of learned hypothesis ĥc is not worse than the
other hypotheses, that is,

R(ĥc) ≤ inf
hc∈Hc

R(hc) + ϵ

with high probability if hypothesis class H is PAC-learnable.
Second, if H is not PAC-learnable, then there exists ĥ and c
such that R(ĥc) can be larger than other hypotheses in Hc

even with a sufficient number of training examples.

Two major deviations seem apparent between the results
in (Nishino et al., 2022) and those in our paper since the
previous results do not depend on the loss functions. We
show that these results are consistent. The first deviation is
that the former paper showed a bound for the generalization
error with zero-one multi-class loss if the problem is PAC-
learnable; the relative error is not preserved when we use
the margin loss combined with the zero-one binary loss
function, which coincides with the zero-one multi-class loss
function. These results are consistent since Nishino et al.
(2022) assumed PAC-learnability. If a problem is PAC-
learnable, then target distribution D must be deterministic,
i.e., D assigns p(y | x) = 1 for some y for every x with
p(x) > 0. In such a case, the relative error will be preserved
for any constraints.

The second deviation is that the previous paper argues that
the generalization error of ĥ = A(S) is not bounded if the
problem is not PAC-learnable; our results show that the
relative error will be preserved if we use an appropriate
multi-class loss function. These results are also consistent
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since the former paper focused on how the generalization
error compared with other hypotheses where H changes,
and ours focused on how the error compared with the best
model changed. We show an example consistent with both
statements; we have R(h)−R(g⋆) ≥ R(hc)−R(f⋆c ) for
all h ∈ H if we use the CE loss. However, there might
exists h′ satisfying R(h′) > R(ĥ) and R(h′

c) < R(ĥc).

Limitation of ITV setting The above discussion identi-
fies a limitation of the ITV setting even if we employ a loss
function preserving the relative error. The generalization
error of hypothesis ĥc would be preserved, but we might
overlook other hypotheses h′ where R(h′

c) is much smaller
than R(ĥc) in the ITV setting. Our next question: how can
a good R(h′

c) be compared with R(ĥc)? If we use the CE
loss, perhaps R(h′

c)−R(f⋆c ) = 0 even if R(h′)−R(g⋆) is
large. Can we estimate such a best hypothesis in H in the
ITV setting? That is an open problem, although we expect
answering it will be difficult if we cannot access the con-
straints during the learning phase. If the relative error of the
estimated hypothesis is not small, then we expect a subpar
ITV performance, which might be regarded as a trade-off
for its convenience. In contrast, while the LTV setting lacks
the convenience inherent in the ITV, it possesses potential
for preserving performance.

Intuitive explanation of loss functions that preserve er-
rors We next describe insights into why the multi-class
margin loss cannot preserve relative error by comparing it
with PC loss, which does retain the relative error. We as-
sume that the PC and margin losses employ zero-one binary
loss. As shown in the proof, the minimizer of the margin
loss assigns the largest score to label ŷ with highest prob-
ability p(y|x), although the margin loss cannot distinguish
solutions assigning different scores to hy′ for y‘prime ̸= ŷ.
Therefore, score gy′(x) for y′ ̸= ŷ might not reflect con-
ditional distribution p(yx). If we add constraints where
c(x, ŷ) = 0, the modified hypothesis is not guaranteed to
work well.

In contrast, as shown in the proof of Proposition 4.6, the min-
imizer of the PC loss achieves a minimum when g⋆y follows
the order of p(y | x). Therefore, we expect a hypothesis
with a small relative error with PC loss to work when we
prohibit some y. This example shows the importance of
the preservation of relative error when we use constraints to
restrict a model’s prediction.

Relaxing the feasibility assumption In Section 3.1, we
assumed that there exists y ∈ Y such that c(x, y) = 1 for
all x ∈ X . Here we discuss a way to relax that assumption.
Let Ic = {x | x ∈ X ,∀y ∈ Y : c(x, y) = 0}. x ∈ Ic is
infeasible since no y satisfies the requirements. Otherwise, x
is feasible. To deal with infeasible x, we have to extend each

hypothesis hc to be able to reject such input x. Similarly,
we must extend loss function L to calculate the loss value if
hypothesis hc rejects input x.

There are multiple ways to extend hc and L to deal with the
rejection of infeasible x. However, it is natural to assume
that L(hc(x), y) = L(f⋆c (x), y) for any x ∈ Ic, y ∈ Y hc,
and f⋆c since whether we reject x depends only on x and c.
Next we represent distribution D as D = λDI +(1−λ)DF ,
where λ ∈ [0, 1] and DI is a probability distribution defined
over a subset of X × Y such that x ∈ Ic and DF is a
distribution defined over a subset of X ×Y such that x ̸∈ Ic.
Then the relative error between h and g⋆, hc and f⋆c under
distribution D becomes

RD(h)−RD(g
⋆) = λ(RDI

(h)−RDI
(g⋆))

+ (1− λ)(RDF
(h)−RDF

(g⋆))

RD(hc)−RD(f
⋆
c ) = λ(RDI

(hc)−RDI
(f⋆c ))

+ (1− λ)(RDF
(hc)−RDF

(f⋆c )) ,

where we use RD to represent that the error is computed for
the distribution D. Since RDI

(hc)−RDI
(f⋆c ) = 0 from the

assumption, the relative error for infeasible x is preserved,
i.e., RDI

(h)−RDI
(g⋆) ≥ RDI

(hc)−RDI
(f⋆c ) = 0. There-

fore, the above equations show that the relative error is pre-
served if it is done under feasible distribution DF . In this
way, we can relax the feasibility assumption.

7. Conclusion
This paper analyzed the effect of adding constraints to mod-
ify the outputs of previously trained models. Relative gen-
eralization error is preserved when we use a class of multi-
class loss functions. The class contains important functions,
including cross-entropy loss and one-versus-rest functions.
We describe a necessary and sufficient condition where a
loss function can preserve relative error. We also show a
hardness result of the margin-based loss function, which
does not preserve the relative error.

Adding constraints to perform predictions with pre-trained
models is a realistic choice for exploiting machine learning
models because larger models are used in many practical
applications. Our results give a theoretical understanding
of this topic and emphasize the importance of selecting
appropriate loss functions.
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