
Bundle Neural Networks
for message diffusion on graphs

Jacob Bamberger 1 Federico Barbero 1 Xiaowen Dong 1 Michael Bronstein 1

Abstract

The dominant paradigm for learning on graph-
structured data is message passing. Despite being
a strong inductive bias, the local message pass-
ing mechanism suffers from pathological issues
such as over-smoothing, over-squashing, and lim-
ited node-level expressivity. To address these
limitations we propose Bundle Neural Networks
(BuNN), a new type of GNN that operates via mes-
sage diffusion over flat vector bundles – structures
analogous to connections on Riemannian mani-
folds that augment the graph by assigning to each
node a vector space and an orthogonal map. We
show that BuNNs can mitigate over-smoothing
and over-squashing, and that they are universal
compact uniform approximators on graphs. We
showcase the strong empirical performance of
BuNNs over real-world tasks, achieving state-of-
the-art results on several standard benchmarks.

1. Introduction
Graph Neural Networks (GNNs) (Sperduti, 1993; Scarselli
et al., 2009) are widely adopted machine learning models de-
signed to operate over graph structures. A majority of GNN
models function locally, respecting the topology by having
nodes exchange messages directly with neighboring nodes.
Such models are referred to as Message Passing Neural
Networks (MPNNs) (Gilmer et al., 2017). While message
passing has repeatedly proven to be a useful inductive bias
in many tasks, the local mechanism was shown to suffer
from certain pathological issues, namely over-smoothing
(Li et al., 2018; Oono & Suzuki, 2020; Cai & Wang, 2020),
over-squashing (Alon & Yahav, 2021; Topping et al., 2022;
Di Giovanni et al., 2023), and limited expressivity (Xu et al.,
2019; Morris et al., 2019).

1 University of Oxford. Correspondence to: Jacob Bamberger
<jacob.bamberger@cs.ox.ac.uk>.

Presented at the Geometry-grounded Representation Learning
and Generative Modeling Workshop at the 41 st International
Conference on Machine Learning, Vienna, Austria. Copyright
2024 by the author(s).

To address these issues, we propose Bundle Neural
Networks (BuNNs), a new type of GNN that operates
over flat vector bundles – a structure that augments the
graph by assigning to each node a vector space and an
orthogonal map. BuNNs do not perform ‘explicit’ message
passing through multiple steps of information exchange
between neighboring nodes, but instead operate via what
we call message diffusion. Each layer involves a node
update step, and a diffusion step evolving the features
according to a vector diffusion PDE as in Singer & Wu
(2012). The resulting architecture enjoys the desirable
properties of Sheaf Neural Networks (Bodnar et al., 2022),
in that they can avoid over-smoothing, but are more scalable
and achieve better performance on a range of benchmark
datasets. We also show how the continuous nature of
message diffusion together with the bundle structure allows
to mitigate issues such as over-squashing.

In summary, our contributions are the following:

• We derive BuNNs from heat equations over flat vector
bundles, which are more amenable to computation than
general vector bundles (Section 3).

• We design synthetic experiments to show that BuNNs
can mitigate over-smoothing and over-squashing (Sec-
tion 4.1). We give formal proofs of such claims in the
Appendix (Section C.)

• We show that BuNNs perform well on a range of tasks,
for instance achieving a new state-of-the-art result on
the Peptides-func dataset (Section 4.2).

2. Background
Let G = (V,E) be an undirected graph on n = |V| nodes
with edges E. We represent the edges via an adjacency
matrix A ∈ Rn×n where the entry Auv for u, v ∈ V is 1 if
the edge (u, v) ∈ E and 0 otherwise. Let D be the diagonal
degree matrix with entry Dvv = dv equal to the degree of
v. The graph Laplacian is defined as L := D − A and
the random walk normalized graph Laplacian is defined as
L := I−D−1A. We assume that at each node v ∈ V we are
given a c-dimensional signal xv and group such signals into
a matrix X ∈ Rn×c. A feature transformation on a graph G
is a permutation-equivariant map fG : Rn×c → Rn×c′ that
transforms the node signals.

1

BuNN for message diffusion on graphs

Figure 1. Example of the message diffusion framework on a graph with 4 nodes and 4 edges. From left to right: At first each node is
represented in global coordinates. Next, each node gets a local reference frame which is aligned to an underlying manifold structure
(represented as a torus for visual aid). Third, the feature vectors are diffused according to the heat equation (in this figure vectors are
diffused until the stable state is achieved at t = ∞ where the features are aligned according to their local coordinates). Finally, the
resulting embedding are represented in global coordinates.

Cellular sheaves. A cellular sheaf (Curry, 2014) (F ,G)
over an undirected graph G = (V,E) augments G by attach-
ing to each node v and edge e a vector space space called
stalks and denoted by F(v) and F(e), usually the stalks are
copies of Rd for some d. Additionally, every incident node-
edge pair v ⊴ e gets assigned a linear map between stalks
called restriction maps and denoted Fv⊴e : F(v)→ F(e).
Given two nodes v and u connected by an edge (v, u), we
can transport a vector xv ∈ F(v) from v to u by first map-
ping it to the stalk at e = (v, u) using Fv⊴e, and mapping
it to F(u) using the transpose FT

u⊴e. As a generalization
of the graph adjacency matrix, the sheaf adjacency ma-
trix AF ∈ Rnd×nd is defined as a block matrix in which
each d× d block (AF)uv is FT

u⊴eFv⊴e if there is an edge
between u and v and 0d×d if there is not. We similarly
define the block diagonal degree matrix DF ∈ Rnd×nd

as (DF)vv := dvId×d. Finally, we define the sheaf Lapla-
cian as LF = DF − AF . These matrices act as bundle
generalizations of their well-known standard graph coun-
terparts and we recover such matrices when F(v) ∼= R and
Fv⊴ev = 1 for all v ∈ V and e ∈ E.

Vector bundles. When restriction maps are orthogonal,
we call the sheaf a vector bundle, a structure analogous to
connections on Riemannian manifolds. For this reason, the
sheaf Laplacian also takes the name connection Laplacian
(Singer & Wu, 2012). In this case the product FT

u⊴eFv⊴e is
also orthogonal and is denoted Ouv referring to the transfor-
mation a vector undergoes when moved across a manifold
via parallel transport. In this case we denote the node-stalk
at v by B(v), the bundle-adjacency by AB and the bun-
dle Laplacian LB, and its random-walk normalized version
LB := Idn×dn −D−1

B AB. We illustrate the difference be-
tween the bundle Laplacian and standard graph Laplacian
in Figure 1.

Consider a d-dimensional vector field over the graph, i.e.
a d-dimensional feature vector at each node denoted and
stacked column-wise into a vector X ∈ Rnd. Similarly to

the graph case, the operation D−1
B ABX is an averaging over

the vector field, and LB a measure of smoothness, since:(
D−1

B ABX
)
u
=

1

du

∑
u:(v,u)∈E

Ouvxv ∈ Rd, and

(LBX)u =
1

du

∑
u:(v,u)∈E

(xu −Ouvxv) ∈ Rd.

3. Bundle Neural Networks
In this Section, we derive the Bundle Neural Network model
from heat diffusion equations over flat vector bundles. We
can write a heat diffusion equation (or simply heat equa-
tion) over a vector bundle as a differential equation whose
evolution equation with initial condition X(0) = X is:

∂tX(t) = −LBX(t) , X(0) := X .

It is well known (see Hansen & Gebhart (2020)) that the
solution can be written using matrix exponentiation as:

X(t) = exp(−tLB)X(0)

We call the operator HB(t) := exp(−tLB) ∈ Rnd×nd the
bundle heat kernel. Computing the heat kernel is necessary
to solve the heat equation. An exact solution can be com-
puted using spectral methods. For small t, one can instead
consider the truncated Taylor expansion centered at 0. Bod-
nar et al. (2022) instead approximates the solution using the
Euler discretization with unit time step of the heat equation.

However, all these methods pose a challenge when the bun-
dle is learned as in Bodnar et al. (2022), since the heat
kernel has to be recomputed after every gradient update
of the learned bundle structure. This high computational
overhead limits the usability of Sheaf Neural Networks in
applications.

Flat vector bundles. To address the scalability issues of
general vector bundles, we consider the special case of flat
vector bundles where every node u gets assigned an orthog-
onal map Ou, and restrictions factorize as Ovu = OT

v Ou.

2

BuNN for message diffusion on graphs

Graph General bundle Flat bundle

Figure 2. Comparison of different Laplacians, from left to right: standard Laplacian, general bundle Laplacian, flat bundle Laplacian. Flat
bundle Laplacian is amenable since it can be factored into a synchronization step, a standard Laplacian, and a desynchronization step.

Consequently, the bundle Laplacian factors:

LB = OT (L ⊗ Id)O,

where O ∈ Rnd×nd is block diagonal with v-th block being
Ov. We illustrate the differences between standard Lapla-
cian, general bundle Laplacian, and flat bundle Laplacian
in Figure 2. This factorization avoids the O

(
d3|E|

)
cost of

computing the restriction map over each edge. Additionally,
it allows to cast the bundle heat equation into a standard
graph heat equation sandwiched between synchronization
and desynchronization steps. This reduces the computation
of the bundle heat kernel to that of the cheaper graph heat
kernel, an operator that does not change depending on the
bundle structure and can, therefore, also be pre-computed.

The model. The BuNN layer occurs in four steps, as il-
lustrated in Figure 1 in which steps 1, 2, 3, and 4 also
correspond to the Equations below. First, the bundle maps
Ov are computed using a neural network ϕ and the use of
Householder reflections. Second, an encoder step updates
the initial node signals via a matrix W ∈ Rd×d, and bias
b ∈ Rd. Next, the features are diffused over the learned
vector bundle. Finally, a non-linearity σ is applied. We
summarize the steps in the following equations:

O(ℓ)
v := ϕ(ℓ)(G,X(ℓ), v) ∀v ∈ V (1)

h(ℓ)
v := O(ℓ)

v

T
W(ℓ)O(ℓ)

v x(ℓ)
v + b(ℓ) ∀v ∈ V (2)

Z(ℓ+1) := HB(t)H
(ℓ) (3)

X(ℓ+1) := σ
(
Z(ℓ+1)

)
(4)

The diffusion time t in Equation 3 is a hyperparameter deter-
mining the scale at which messages are diffused. We provide
additional algorithmic details in the Appendix (Section G).

Due to space consideration, we leave the theoretical analysis
of BuNN to the Appendix (Sections C and D). There we
provide formal statements and proofs supporting our claims
on over-smoothing, over-squashing, and expressivity.

Comparison with Sheaf Neural Networks. Flat vector
bundles are a special case of cellular sheaves (Curry, 2014;
Bodnar et al., 2022), meaning that our model has close
connections to Sheaf Neural Networks (SNNs) (Hansen &
Gebhart, 2020; Bodnar et al., 2022; Barbero et al., 2022b;a;
Battiloro et al., 2024). While most SNNs operate on fixed
sheaves (Hansen & Gebhart, 2020; Barbero et al., 2022a;
Battiloro et al., 2024), we focus on learning sheaves as in
Neural Sheaf Diffusion (NSD) from Bodnar et al. (2022).
BuNNs distinguish themselves from NSD in several ways.
First, NSD approximates the heat equation using a time-
discretized solution to the heat equation, which results in a
standard message passing algorithm. In contrast, the direct
use of the heat kernel allows BuNNs to break away from
the explicit message-passing paradigm. Secondly, the use
of flat bundles increases scalability since the bundle maps
are computed at the node level. Additionally, flat bundles
guarantees path independence, a requirement for the theory
in Bodnar et al. (2022) to hold, often not satisfied for general
sheaf constructions such as ones used in NSD. Thirdly, we
allow ϕ to be any GNN while NSD restricts ϕ to be an MLP.
We found that incorporating the graph structure in ϕ im-
proved the experimental results. The update in Equation 2
is also different to NSD, and is necessary to prove our main
theoretical result, Theorem D.3. We provide experimental
comparisons to NSDs in the experimental section and show
that BuNNs significantly outperform their sheaf counter-
parts. We provide a summarized comparison between
GCNs, SNNs, and BuNNs in Table 4 of the Appendix.

4. Experiments
In this Section, we evaluate BuNNs on synthetic and real-
world benchmarks. We provide supplementary information
on the implementation and precise experimental details in
the Appendix (Sections G and H respectively).

3

BuNN for message diffusion on graphs

Figure 3. Synthetic over-squashing (left) and over-smoothing
(right) tasks on barbell and clique graphs, respectively. In both
cases, the blue nodes output the average over the red nodes and
vice-versa.

4.1. Synthetic experiments: over-squashing and
over-smoothing

Tasks. In this experiment, we propose two new syn-
thetic tasks to test the capacity of models to alleviate over-
squashing and over-smoothing. We compare BuNNs to
MPNNs and simple baselines on these two new datasets.
The tasks are node-regression tasks, in which nodes must
average the input features of a subset of nodes as illustrated
in Figure 3.

As a first task we evaluate the capacity of models to alleviate
over-squashing. The graph is fixed to the barbell graph,
consisting of two fully connected graphs and bridged by
a single edge. Exchanging information between the two
clusters is very challenging due to the bottleneck. The input
features are sampled randomly in each cluster, with positive
values in one cluster and negative in the other. The goal of
the task is for each node to return the mean input over nodes
from the opposite cluster. This requires information to be
transferred across the bottleneck, making it a difficult task
for models suffering from over-squashing.

As a second experiment, we test the capacity to mitigate
over-smoothing. The graph is fully connected, in which
all nodes are connected. The fully connected graph is a
worst-case scenario for over-smoothing since after one step
of message passing, the features are already fully averaged
over the graph. This makes it challenging to predict different
outputs over the different nodes. The input features are
sampled randomly, half with positive values and half with
negative values. The task is for positive nodes to return the
mean output over the negative nodes and vice-versa.

Setup. As a first baseline, we consider a constant predic-
tor always predicting 0, the expected mean over the whole
graph, making it unaware of any cluster-specific informa-

tion. As a second baseline, we consider the cluster-specific
constant predictor predicting the expected mean over the
opposite cluster, that is, ±

√
3

2 , depending on the cluster. Ad-
ditionally, we consider GNN baselines to be a node-level
MLP, GCN (Kipf & Welling, 2017), GraphSAGE (Hamil-
ton et al., 2017), GAT (Veličković et al., 2018), and NSD
(Bodnar et al., 2022). The width of MPNNs is fixed to the
minimal depth to avoid under-reaching, namely 3 for the
Barbell and 1 for the fully connected graph, and ensure the
width is large (> 128) considering the task. We compare
these to a BuNN with an MLP learning the bundle maps of a
comparable number of parameters and the same depth. We
use Adam optimizer with 10−3 learning rate, batch size 1,
and train for 500 epochs. We use 100 samples for training
and 100 samples for testing.

Results. The results for N = 10 are reported in Table 1. All
MPNNs perform poorly on the over-squashing task. This
is explained by the fact that this task requires the exchange
of information between nodes at a high resistance distance.
In contrast, BuNNs solve this task perfectly since a larger
hyper-parameter t > 10 allows to operate at a more ap-
propriate scale of the graph. For the over-smoothing task,
all MPNNs except NSD perform poorly. GCN and GAT
perform particularly poorly, which is natural since they are
the models with a formal proof of over-smoothing (Cai &
Wang, 2020; Wu et al., 2023). As expected, both NSD and
BuNNs solve the task perfectly, since they are designed to
mitigate over-smoothing.

Table 1. Mean squared error (MSE) of different models for the
over-squashing and over-smoothing experiments on the barbell
and clique graphs, respectively.

Task
Barbell

(over-squashing)
Clique

(over-smoothing)
Base. 1 30.97± 0.42 30.94± 0.42
Base. 2 1.00± 0.07 0.99± 0.08
MLP 1.08± 0.07 1.10± 0.08
GCN 1.05± 0.08 29.65± 0.34
SAGE 0.90± 0.29 0.86± 0.10
GAT 1.07± 0.09 20.97± 0.40
NSD 1.09± 0.15 0.08± 0.02
BuNN 0.01± 0.07 0.03± 0.01

4.2. Real-world tasks

We evaluate BuNNs on the Long Range Graph Benchmark
(Dwivedi et al., 2022) and the heterophilic tasks from
Platonov et al. (2023). In our experiments, we report results
both for the BuNN model described in Section 3 and a slight
variation inspired by MixHop GNNs (Abu-El-Haija et al.,
2019), which we call BuNN-Hop. We found this variation
to perform exceptionally well on some real-world tasks.

4

BuNN for message diffusion on graphs

Table 2. Results for the heterophilic tasks. Accuracy is reported for roman-empire and amazon-ratings, and ROC AUC is
reported for minesweeper, tolokers, and questions. Best results are denoted by First and Second. Asterisk∗ denotes that some
runs ran out of memory on an NVIDIA A10 GPU (24 GB).

roman-empire amazon-ratings minesweeper tolokers questions
GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
SAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
GAT 80.87± 0.30 49.09± 0.63 92.01± 0.68 83.70± 0.47 77.43± 1.20
GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
GT 86.51± 0.73 51.17± 0.66 91.85± 0.76 83.23± 0.64 77.95± 0.68
GT-sep 87.32± 0.39 52.18± 0.80 92.29± 0.47 82.52± 0.92 78.05± 0.93
NSD 80.41± 0.72 42.76± 0.54 92.15± 0.84 78.83± 0.76∗ 69.69± 1.46∗

BuNN 91.75± 0.39 53.74± 0.51 98.99± 0.16 84.78± 0.80 78.75± 1.09
BuNN-Hop 89.63± 0.59 52.01± 0.45 97.91± 0.30 84.33± 0.77 78.68± 1.04

Heterophilic datasets. As we show in Sections 4.1 and C,
BuNNs are provably capable of avoiding over-smoothing.
It is, therefore, natural to test how BuNN performs on het-
erophilic graphs where over-smoothing is recognized as an
important limitation (e.g., Yan et al. (2022)). We follow
their methodology to evaluate BuNN on the 5 heterophilic
tasks proposed in Platonov et al. (2023). We run the mod-
els with 10 different seeds and report the mean and stan-
dard deviation of the test accuracy for roman-empire
and amazon-ratings, and mean and standard devia-
tion test ROC AUC for minesweeper, tolokers, and
questions. We use the standard baselines from Platonov
et al. (2023), and also NSD from (Bodnar et al., 2022).
We provide the hyper-parameters for our models in the Ap-
pendix (Section H.2).

We report the results in Table 2. BuNN achieves the best
score on all tasks, with an average relative improvement of
4.4%. Its score on minesweeper is particularly impres-
sive, which is significantly ahead of the rest and for which
BuNN solves the task perfectly. We found that the optimal
value of t over our grid search varies across datasets, being
1 for amazon-ratings and 100 for roman-empire.
BuNN-Hop also performs similarly but tends slightly infe-
rior to BuNN on 3 of the datasets and inferior on 2. BuNN
consistently outperforms the sheaf-based model NSD. Such
results showcase the strong modeling capacity of BuNN in
heterophilic settings.

Long Range Graph Benchmark. In Section C.2, we show
that BuNNs have desirable properties when it comes to over-
squashing and modeling long-range interactions. To verify
such claims empirically, we evaluate BuNN on tasks from
the Long Range Graph Benchmark (LRGB) (Dwivedi et al.,
2022). We consider the Peptides dataset consisting of
15 535 graphs which come with two associated graph-level
tasks, Peptides-func and Peptides-struct. The
graph classification task in Peptides-func is to predict
the function of the peptide from 10 classes, while the
regression task in Peptides-struct is inferring the

Table 3. Results for the Peptides-struct and
Peptides-func tasks from the Long Range Graph Benchmark
(results are ×100 for clarity). The best result is bold.

Peptides -func -struct
Model Test AP ↑ Test MAE ↓
GCN 68.60± 0.50 24.60± 0.07
GINE 66.21± 0.67 24.73± 0.17
GatedGCN 67.65± 0.47 24.77± 0.09
GPS 65.34± 0.91 25.09± 0.14

DReW 71.50± 0.44 25.36± 0.15
GAPH ViT 69.42± 0.75 24.49± 0.16

BuNN 71.03± 0.22 24.98± 0.12
BuNN-Hop 71.92± 0.22 24.63± 0.25

3D properties of the peptides. In both cases, we follow
the standard experimental setup detailed by Dwivedi et al.
(2022) alongside the updated suggestions from Tönshoff
et al. (2023). Baseline models are taken from Tönshoff et al.
(2023) and include MPNNs, transformers, and the current
SOTA models (Gutteridge et al., 2023; He et al., 2023).

We report the results in Table 3. BuNNs achieve, to the
best of our knowledge, a new state-of-the-art result on
Peptides-func. The results on Peptides-struct
are also competitive, with BuNN-Hop remaining within a
standard deviation from the best result. The strong perfor-
mance provides further evidence of the long-range capabili-
ties of BuNNs.

5. Conclusion
By proposing Bundle Neural Networks, we show that ge-
ometric structures are helpful to overcome the current lim-
itations of existing graph machine learning methods. We
showed, through synthetic experiments, that message diffu-
sion on bundles can mitigate issues such as over-smoothing,
and over-squashing. Finally, we showed that BuNNs per-
form well on a range real-world benchmarks.

5

BuNN for message diffusion on graphs

References
torch-householder: Efficient Householder transformation

in PyTorch. URL https://www.obukhov.ai/
torch-householder.html.

Abu-El-Haija, S., Perozzi, B., Kapoor, A., Alipourfard, N.,
Lerman, K., Harutyunyan, H., Steeg, G. V., and Gal-
styan, A. MixHop: Higher-Order Graph Convolutional
Architectures via Sparsified Neighborhood Mixing. In
Proceedings of the 36th International Conference on Ma-
chine Learning, pp. 21–29. PMLR, May 2019.

Alon, U. and Yahav, E. On the bottleneck of graph neural
networks and its practical implications. In International
Conference on Learning Representations, 2021.

Azizian, W. and marc lelarge. Expressive power of invariant
and equivariant graph neural networks. In International
Conference on Learning Representations, 2021.

Barbero, F., Bodnar, C., Borde, H. S. d. O., Bronstein, M.,
Veličković, P., and Liò, P. Sheaf Neural Networks with
Connection Laplacians. In Proceedings of Topological,
Algebraic, and Geometric Learning Workshops 2022, pp.
28–36. PMLR, November 2022a.

Barbero, F., Bodnar, C., Borde, H. S. d. O., and Lio’, P.
Sheaf Attention Networks. In NeurIPS 2022 Workshop
on Symmetry and Geometry in Neural Representations,
2022b.

Battiloro, C., Wang, Z., Riess, H., Di Lorenzo, P., and
Ribeiro, A. Tangent bundle convolutional learning: From
manifolds to cellular sheaves and back. IEEE Transac-
tions on Signal Processing, 72:1892–1909, 2024. doi:
10.1109/TSP.2024.3379862.

Bodnar, C., Giovanni, F. D., Chamberlain, B. P., Lio, P., and
Bronstein, M. M. Neural Sheaf Diffusion: A Topological
Perspective on Heterophily and Oversmoothing in GNNs.
In Advances in Neural Information Processing Systems,
2022.

Cai, C. and Wang, Y. A Note on Over-Smoothing for Graph
Neural Networks. In ICML Graph Representation Learn-
ing workshop. arXiv, 2020.

Curry, J. M. Sheaves, cosheaves and applications. Univer-
sity of Pennsylvania, 2014.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals and
Systems, 2(4):303–314, December 1989.

Di Giovanni, F., Rowbottom, J., Chamberlain, B. P.,
Markovich, T., and Bronstein, M. M. Graph Neural Net-
works as Gradient Flows: understanding graph convolu-
tions via energy, October 2022.

Di Giovanni, F., Giusti, L., Barbero, F., Luise, G., Lio’,
P., and Bronstein, M. On Over-Squashing in Message
Passing Neural Networks: The Impact of Width, Depth,
and Topology, February 2023. arXiv:2302.02941 [cs,
stat].

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf,
G., Luu, A. T., and Beaini, D. Long range graph bench-
mark. In Thirty-sixth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track,
2022.

Geerts, F. and Reutter, J. L. Expressiveness and approxima-
tion properties of graph neural networks. In International
Conference on Learning Representations, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural Message Passing for Quantum Chem-
istry. In Proceedings of the 34th International Conference
on Machine Learning, pp. 1263–1272. PMLR, July 2017.

Gutteridge, B., Dong, X., Bronstein, M., and Di Giovanni, F.
Drew: dynamically rewired message passing with delay.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Hamilton, W. L., Ying, R., and Leskovec, J. Inductive
representation learning on large graphs. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, NIPS’17, pp. 1025–1035, Red Hook,
NY, USA, 2017. Curran Associates Inc.

Hansen, J. and Gebhart, T. Sheaf Neural Networks. In
NeurIPS Workshop TDA and Beyond, 2020.

He, X., Hooi, B., Laurent, T., Perold, A., LeCun, Y., and
Bresson, X. A generalization of vit/mlp-mixer to graphs.
In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

Kipf, T. N. and Welling, M. Semi-Supervised Classification
with Graph Convolutional Networks. In International
Conference on Learning Representations, 2017.

Li, Q., Han, Z., and Wu, X.-M. Deeper Insights into Graph
Convolutional Networks for Semi-Supervised Learning.
In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18), pp. 3538–3545. As-
sociation for the Advancement of Artificial Intelligence,
February 2018. ISBN 978-1-57735-800-8.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and Leman Go
Neural: Higher-Order Graph Neural Networks. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 33
(01):4602–4609, July 2019.

6

https://www.obukhov.ai/torch-householder.html
https://www.obukhov.ai/torch-householder.html

BuNN for message diffusion on graphs

Obukhov, A. Efficient Householder transformation
in PyTorch, 2021. URL https://github.com/
toshas/torch-householder.

Oono, K. and Suzuki, T. Graph Neural Networks Exponen-
tially Lose Expressive Power for Node Classification. In
International Conference on Learning Representations,
2020.

Platonov, O., Kuznedelev, D., Diskin, M., Babenko, A., and
Prokhorenkova, L. A critical look at the evaluation of
GNNs under heterophily: Are we really making progress?
In The Eleventh International Conference on Learning
Representations, 2023.

Rosenbluth, E., Tönshoff, J., and Grohe, M. Some Might
Say All You Need Is Sum. In Proceedings of the Thirty-
Second International Joint Conference on Artificial In-
telligence, pp. 4172–4179, Macau, SAR China, August
2023. International Joint Conferences on Artificial Intelli-
gence Organization.

Rosenbluth, E., Tönshoff, J., Ritzert, M., Kisin, B., and
Grohe, M. Distinguished in uniform: Self-attention vs.
virtual nodes. In The Twelfth International Conference
on Learning Representations, 2024.

Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., and
Monfardini, G. The Graph Neural Network Model. IEEE
transactions on neural networks / a publication of the
IEEE Neural Networks Council, 20:61–80, January 2009.

Singer, A. and Wu, H.-T. Vector diffusion maps and the
connection Laplacian. Communications on Pure and
Applied Mathematics, 65(8):1067–1144, 2012.

Sperduti, A. Encoding Labeled Graphs by Labeling RAAM.
In Advances in Neural Information Processing Systems,
volume 6. Morgan-Kaufmann, 1993.

Tönshoff, J., Ritzert, M., Rosenbluth, E., and Grohe, M.
Where did the gap go? reassessing the long-range graph
benchmark. In The Second Learning on Graphs Confer-
ence, 2023.

Topping, J., Giovanni, F. D., Chamberlain, B. P., Dong, X.,
and Bronstein, M. M. Understanding over-squashing and
bottlenecks on graphs via curvature. In International
Conference on Learning Representations, 2022.

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations,
2018.

Wang, X. and Zhang, M. How Powerful are Spectral Graph
Neural Networks, June 2022.

Wu, X., Ajorlou, A., Wu, Z., and Jadbabaie, A. Demysti-
fying Oversmoothing in Attention-Based Graph Neural
Networks. Advances in Neural Information Processing
Systems, 36:35084–35106, December 2023.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How Powerful
are Graph Neural Networks? In International Conference
on Learning Representations, 2019.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D.
Two sides of the same coin: Heterophily and oversmooth-
ing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp.
1287–1292, Los Alamitos, CA, USA, dec 2022. IEEE
Computer Society.

7

https://github.com/toshas/torch-householder
https://github.com/toshas/torch-householder

BuNN for message diffusion on graphs

A. Additional Background
GNNs and feature transformations. A GNNΘ is a (continuous) map parameterized by Θ that takes as input a graph
alongside node signals G = (V,E,X) and outputs a transformed signal (V,E,X′). A GNN on a graph G is therefore
a feature transformation GNNΘ : Rn×c → Rn×c′ . Given a collection of graphs G, with feature space R, a feature
transformation F of G is an assignment of every graph G ∈ G to a feature transformation FG : RnG×c → RnG×c′ . The set
of (continuous) feature transformations over a collection of graphs in G is denoted C

(
G,Rc,Rc′

)
.

Cellular sheaves. A cellular sheaf (Curry, 2014) (F ,G) over an undirected graph G = (V,E) augments G by attaching to
each node v and edge e a vector space space called stalks and denoted by F(v) and F(e), usually the stalks are copies of Rd

for some d. Additionally, every incident node-edge pair v ⊴ e gets assigned a linear map between stalks called restriction
maps and denoted Fv⊴e : F(v) → F(e). Given two nodes v and u connected by an edge (v, u), we can transport a
vector xv ∈ F(v) from v to u by first mapping it to the stalk at e = (v, u) using Fv⊴e, and mapping it to F(u) using the
transpose FT

u⊴e. As a generalization of the graph adjacency matrix, the sheaf adjacency matrix AF ∈ Rnd×nd is defined as
a block matrix in which each d× d block (AF)uv is FT

u⊴eFv⊴e if there is an edge between u and v and 0d×d if there is
not. We similarly define the block diagonal degree matrix DF ∈ Rnd×nd as (DF)vv := dvId×d. Finally, we define the
sheaf Laplacian as LF = DF −AF . These matrices act as bundle generalizations of their well-known standard graph
counterparts and we recover such matrices when F(v) ∼= R and Fv⊴ev = 1 for all v ∈ V and e ∈ E.

B. Comparison to other models
In this Section we compare BuNNs to Graph Convolution Networks and Sheaf Neural Networks.

Link to Graph Convolutional Networks. It is possible to derive Graph Convolutional Networks (GCNs) (Kipf &
Welling, 2017) as an approximation of BuNNs operating over a trivial bundle. Setting t = 1 Equation 3 becomes
Z(l+1) = exp(−LG)H

(l). The approximation exp(−LG) ≈ 1− LG gives the update Z(l+1) = (1− LG)H
(l) = AGH

(l)

recovering the GCN update. Section C.1 shows that BuNNs can avoid over-smoothing, highlighting an important difference
between GCNs and BuNNs.

Table 4. Comparison between GCN, SNN, and BuNN in terms of propagation and message type, as well as their capability of mitigating
issues related to GNNs.

GCN SNN BuNN

Propagation AGX LFX HB(t)X

Message type Standard
(Local)

Standard
(Local)

Diffusive
(Global)

No under-reaching ✗ ✗ ✓

No over-squashing ✗ ✗ ✓

No over-smoothing ✗ ✓ ✓

C. Properties of Bundle Neural Networks
In this Section, we give a formal analysis of the BuNN model. In Section C.1, we derive the fixed points of the bundle
heat diffusion, which is the subspace of signals towards which solutions converges exponentially fast, and show that despite
converging to fixed points, BuNNs can retain information at the node level and therefore avoid over-smoothing. Section C.2
discusses how our model can capture long-range interactions and mitigate over-squashing.

First, we show that the heat equation over flat vector bundles can be casted in terms of a standard graph heat equation:

Lemma C.1. For every node v, the solution at time t of the heat equation on a connected bundle G = (V, E, O) with input
node features X satisfies:

(HB(t)X)v =
∑
u∈V

H(t, v, u)OT
v Ouxu,

whereH(t) is the standard graph heat kernel, andH(t, v, u) ∈ R its the entry at (v, u).

8

BuNN for message diffusion on graphs

C.1. Fixed points and over-smoothing.

A significant limitation of MPNNs is the problem of over-smoothing, the phenomenon of node features becoming increasingly
indistinguishable with the increase of the MPNN’s depth. Over-smoothing has been repeatedly highlighted as one of the
critical problems in GNNs, making training deep GNNs much more challenging. Such behavior is related to the diffusion
used in MPNNs being similar to that of heat diffusion on graphs (Di Giovanni et al., 2022), which converges to uninformative
fixed points1 resulting in a loss of information at the node level. Bodnar et al. (2022) show that the richer sheaf (or bundle)
structure, however, gives rise to more interesting limiting behavior. Indeed, by Lemma C.1, since limt→∞H(t, v, u) = du

2|E| ,
the limit over time of a solution is 1

2|E|
∑

u∈V duO
T
v Ouxu. To better understand the space of fixed points, notice that any

signal Y ∈ Rn×d expressible as yv = 1
2|E|

∑
u∈V duO

T
v Ouxu for some X is a fixed point. For any two nodes u, v we get:

Ovyv =
1

2|E|
∑
w∈V

dwOwxw = Ouyu. (5)

Consequently, the fixed points of vector diffusion have a global geometric dependency where all nodes relate to each other
by some orthogonal transformation, e.g. the output in Figure 1.

Equation 5 provides insight into the smoothing properties of BuNNs. When the bundle is trivial, the equation reduces to
yv = yu, with no information at the node level, i.e. over-smoothing. When it is non-trivial, the output signal can vary across
the graph (e.g., yv ̸= yu for two nodes u and v). We summarize this in Proposition C.2.

Proposition C.2. Let Y be the output of a BuNN layer with t =∞, where G is a connected graph, and the bundle maps
are not all equal. Then, there exists u, v ∈ V connected such that yv ̸= yu.

C.2. Over-squashing and long range interactions.

While message-passing in MPNNs constitutes a strong inductive bias, this local mechanism is problematic when the task
requires the MPNN to capture interactions between distant nodes. These issues have been attributed mainly to the over-
squashing of information (Alon & Yahav, 2021). Topping et al. (2022) and Di Giovanni et al. (2023) formalize over-squashing
through a sensitivity analysis, giving upper bounds on the partial derivatives of the outputs of the MPNN with respect to
the input. In particular, they show that under weak assumptions on the message function, the Jacobian of MPNNs satisfies

|∂ (MPNNΘ(X))u /∂xv| ≤ cr (Ar)uv , (6)

for any nodes u, v, where r is the depth of the network and c is a constant. Given two nodes u, v at a distance r,
message-passing will require at least r layers for the two nodes to communicate and overcome under-reaching. If r is large,
distant nodes can communicate, but Di Giovanni et al. (2023) show that over-squashing becomes dominated by vanishing
gradients. Built on top of such sensitivity analysis, we compute the Jacobian for BuNN:

Lemma C.3. Let BuNN be a linear layer defined by Equations 2 & 3 with hyperparameter t. Then, for any connected graph
and nodes u, v, we have

∂ (BuNN (X))u
∂xv

= H(t, u, v)OT
uWOv,

The form of the Jacobian in Lemma C.3 differs significantly from the usual form in Equation 6. First, all nodes communicate
in a single BuNN layer since H(t, u, v) > 0 for all u, v, and t, allowing for direct pair-wise communication between
nodes, making a BuNN layer operate globally similarly to the attention mechanism in the Transformer model, and therefore
overcome under-reaching. Secondly, taking t to be large allows BuNNs to operate on a larger scale, allowing stronger
communication between distant nodes and overcoming over-squashing without the vanishing gradient problem. Indeed,
H(t, u, v) converges to du

2|E| exponentially fast with t→∞, showing that for larger scales the sensitivity between two nodes
does not depend on how they are connected.

Further, Lemma C.3 gives a finer picture of the capabilities of BuNNs. For example, to mitigate over-squashing a node may
decide to ignore information received from certain nodes while keeping information received from others. This allows the
model to reduce the receptive field of certain nodes. We formalize such a behavior in Corollary C.4.

1Up to degree scaling if using the symmetric-normalized Laplacian, see Li et al. (2018).

9

BuNN for message diffusion on graphs

Corollary C.4. Consider n nodes u, v, and wi, for i = 1, . . . n− 2, of a connected graph with 2 dimensional bundle such
that xv ̸= xwi and xu ̸= xwi ∀i. Then in a BuNN layer, at a given channel, the node v can learn to ignore the information
from all wis while keeping information from u.

D. Expressivity of the model
In this Section, we study the expressive power of BuNNs at the node level from a function approximation perspective. We note
that such expressive power is strictly stronger than the more common graph-level expressivity, which usually relates GNNs to
the Weisfeiler-Leman hierarchy. In node-level approximation, we desire our model to be able to approximate arbitrary feature
transformations over the nodes. Further, existing work generally focuses on a fixed graph or graphs of bounded size (Azizian
& marc lelarge, 2021; Geerts & Reutter, 2022; Wang & Zhang, 2022). In contrast, we focus on the more challenging case
of potentially infinite families of graphs, known as uniform approximation (Rosenbluth et al., 2023). Such analysis studies
the class of feature transformation that GNN architectures can approximate over a potentially infinite collection of graphs G.
Given input and output dimensions c and c′, a family of GNNs will parameterize a subset of continuous feature transformation
C(G,Rc,Rc′) over G. It is natural to ask which feature transformations a specific family of GNNs can or cannot parameterize.
To this end, we introduce the notion of compact uniform approximation as an amendment to the definition of uniform
approximation from Rosenbluth et al. (2023) and discuss our specific choice in the Appendix (Section F).

Definition D.1. Let F ⊆ C(G,Rc,Rc′) be a set of feature transformations over a family of graphs G, and let H ∈
C(G,Rc,Rc′) a feature transformation over G. We say that F compactly uniformly approximates H , if for all finite subsets
K ⊆ G, for all compact K ⊂ Rc, and for all ϵ > 0, there exists an F ∈ F such that for all G ∈ K and X ∈ KnG , we have
that ||FG(X)−HG(X)||∞ ≤ ϵ.

As we show in Proposition D.2, bounded-depth MPNNs fail to have this property for any arbitrary G, since fixing the depth
of the MPNNs to ℓ, we can take a single compactly featured graph G ∈ G with diameter larger than ℓ. As there is a node
whose receptive field does not include all nodes in such a G, the architecture cannot uniformly approximate every function
on G.2

Proposition D.2. There exists a family G consisting of connected graphs such that bounded-depth MPNNs are not compact
uniform approximators, even if enriched with unique positional encoding.

It was shown in Rosenbluth et al. (2024) that even with injective Positional Encodings (PEs), there are functions that
MPNNs with virtual-nodes cannot approximate uniformly while transformers can, and vice-versa. Instead, we prove that our
model is compactly uniformly universal given injective PEs. To the best of our knowledge, this is the first positive uniform
approximation result for a GNN, demonstrating the remarkable modeling capabilities of BuNNs.

Theorem D.3. Let G be a set of connected graphs with injective positional encodings. Then 2-layer deep BuNNs with
encoder/decoder have compact uniform approximation over G.

In particular, let ϵ > 0 and H be a feature transformation on a finite subset K ⊆ G and K ⊆ Rd a compact set, then there is
a 2-layer deep BuNN with width of order O

(∑
G∈K |VG|

)
that approximates H over

⊔
G∈K KnG ⊆

⊔
G∈G RnGd. In other

words, the required hidden dimension of BuNN is only linearly dependent on the number of nodes in the family of graphs.

E. Proofs
In this Section, we provide proof of the theoretical results from the main text. Namely Lemma C.1, Proposition C.2,
Lemma C.3, Corollary C.4, Proposition D.2, and finally Theorem D.3.
Lemma C.1. For every node v, the solution at time t of heat diffusion on a connected bundle G = (V, E, O) with input
node features X satisfies:

(HB(t)X)v =
∑
u∈V

H(t, v, u)OT
v Ouxu, (7)

whereH(t) is the standard graph heat kernel, andH(t, v, u) ∈ R its the entry at (v, u).

Proof. Since LB = OT
BLOB we getHB(t, u, v) = OT

BH(t, u, v)OB.
2This phenomenon in MPNNs is often called ‘under-reaching’.

10

BuNN for message diffusion on graphs

E.1. Over-smoothing: proofs of Section C.1.

In this section, we prove the result of over-smoothing. This result follows straightforwardly from Lemma C.1.
Proposition C.2. Let Y be the output of a BuNN layer with t =∞, where G is a connected graph, and the bundle maps are
not all equal. Then, u, v ∈ V is connected such that yv ̸= yu almost always.

Proof. Consider a stable signal X ∈ kerLB and pick u, v ∈ V such that Ou ̸= Ov . As X is stable, it must have 0 Dirichlet
energy, so we must have that Ouyu = Ovyv, but as Ou ̸= Ov we have that yu ̸= yv, which holds except in degenerate
cases such as when the matrices Ou are reducible, or when the original signal is the zero vector.

E.2. Over-squashing: proofs of Section C.2.

In this Section we prove our results on over-squashing and long-range interactions. The Jacobian result follows straightfor-
wardly from Lemma C.1 and the definition of a BuNN layer, and the Corollary follows from the Jacobian result.
Lemma C.3. Let BuNN be a linear layer defined by Equations 2 & 3. Then, for any connected graph and nodes u, v, we
have

∂ (BuNN (X))u
∂xv

= H(t, u, v)OT
uWOv,

and therefore

lim
t→∞

∂ (BuNN (X))u
∂xv

=
dv
2|E|

OT
uWOv.

Proof. The result follows from the closed-form solution of the heat kernel from Lemma C.1. We start by applying the
bundle encoder from Equation 2 that updates each node representation as hv = OT

v WOvxv + b. We therefore compute

∂ (BuNN (X))u
∂xv

=
∂

∂xv

[∑
v∈V

H(t, u, v)OT
uOv

(
OT

v WOvxv + b
)]

(8)

= H(t, u, v)OT
uWOv. (9)

The second statement follows from the fact thatH(t, u, v)→ du

2|E|

To illustrate the flexibility of such a result, we examine a setting in which we want nodes to select which nodes they receive
information from, therefore ‘reducing’ their receptive field.
Corollary C.4. Consider n nodes u, v, and wi, for i = 1, . . . n− 2 of a connected graph G with 2 dimensional features
such that xv ̸= xwi and xu ̸= xwi ∀i. Assume the bundle structure is learned with a node-level MLP. Then, in a given
channel, node v can learn to ignore the information from all wis while keeping information from u.

Proof. We denote y the output of the layer, and index the two dimensions by super-scripts, i.e. y =

(
y(1)

y(2)

)
. Our goal is to

have ∂y(1)
v

∂yu
̸=

(
0 0

)
, while ∂y(1)

v

∂ywi
=

(
0 0

)
for all i. This would make the first channel of the output at v insensitive to the

input at all wis while being sensitive to the input at node u.

Fix Ov = Ou =

(
0 1
1 0

)
and Owi

=

(
1 0
0 1

)
. Such maps can always be learned by an MLP, by the assumptions on

xv, xu, and xwi
and by the universality of MLPs. Let the weight matrix be W =

(
w11 w12

w21 w22

)
. By Lemma C.3 we get

∂yv

∂xu
= H(t, v, u)OT

v WOu = H(t, v, u)
(
w22 w12

w21 w11

)
and ∂yv

∂xwi
= H(t, v, wi)O

T
v WOwi = H(t, v, wi)

(
w21 w22

w11 w12

)
.

Setting w21 and w22 to 0 gives ∂y(1)
v

∂xwi
=

(
0 0

)
and ∂y(1)

v

∂xu
= H(t, v, u)

(
0 w12

)
̸= 0, as desired.

11

BuNN for message diffusion on graphs

E.3. Expressivity of BuNNs: proofs of Section D.

We now turn to BuNN’s expressivity. Before proving that BuNNs have compact uniform approximation, we prove that
MPNNs fail to have this property. This proves BuNNs’ superiority and shows that uniform expressivity is a good theoretical
framework for comparing GNN architectures.
Proposition D.2. There exists a family G consisting of connected graphs such that bounded-depth MPNNs are not compact
uniform approximators, even if enriched with unique positional encoding.

Proof. Let G be any family of connected graphs with an unbounded diameter (for example, the n× n grids with n→∞).
Let the depth of the MPNN be L. Let G ∈ G be a graph with diameter > L, and let u and v be two nodes in VG at
distance > L. Note that the output at v will be insensitive to the input at u, and therefore, the MPNN cannot capture feature
transformations where the output at v depends on the input at u. This argument holds even when nodes are given unique
positional encodings.

We now turn to our main theoretical contribution. The proof of Theorem D.3 is split into two parts. The first proves that
1-layer BuNNs have compact uniform approximation over linear feature transformations. The second part is extending to
continuous feature transformation, which is an application of classical results.

We start by recalling what a linear feature transformation over a family of graphs G is:

Definition E.1. A linear feature transformation L ∈ C(G,Rc,Rc′) over a family of graphs G is an assignment of each graph
G ∈ G to a linear map LG : RnGc → RnGc

′
. Here, linearity means that for any two node-signals X1 ∈ Rnc and X2 ∈ Rnc′ ,

and any real number α ∈ R, it holds that LG (αX1) = αLG (X1), and LG (X1 +X2) = LG (X1) + LG (X2).

In the proof, we use the following Theorem, which adapts classical results about the universality of MLPs.

Theorem E.2. If a class of neural networks has compact uniform approximation over G with respect to linear functions
and contains non-polynomial activations, then it has compact universal approximation over G with respect to continuous
functions.

Proof. Classical theorems such as Theorem 1 in (Cybenko, 1989) allow us to approximate any continuous function over a
compact set by composing a linear map C, an activation σ, and an affine map A ·+b. By assumption, we can implement the
linear map, the activation, and the affine map; hence, by composing them, we can approximate any continuous function over
the compact set.

We are now ready to prove the paper’s main result: that, given injective positional encodings, BuNNs are compact universal
approximators.
Theorem D.3. Let G be a set of connected graphs with injective positional encodings. Then there is a 2-layer deep BuNN
with compact uniform approximation over G.

In particular, let ϵ > 0 and h be a feature transformation supported on
⊔

G∈K KnG ⊆
⊔

G∈G RnGd with K ⊆ G finite and
K ⊆ Rd a compact set, then there is a 2-layer deep BuNN with width O

(∑
G∈K |VG|

)
that approximates h with uniform

error < ϵ.

Proof. Reducing to linear approximation. It suffices to show that a BuNN layer can approximate any linear feature
transformation L because we can apply classical results such as Theorem E.2 to get universal approximation of 2-layer deep
networks with activation. Following Definition D.1, we aim to show that we can approximate a linear feature transformation
L on any compact subset. For this, we fix ϵ > 0, the finite subset K ⊆ G, and compact feature space K ⊆ Rc. In fact, we
assume that K = Rc since approximating a linear map on any compact feature space is equivalent to approximating it on the
whole space because a linear map defined on a neighborhood of the 0 vector can be extended uniquely to the whole vector
space. Our goal is therefore to find a parameterization of a single BuNN layer such that for any graph G ∈ K and for any
input feature X ∈ RnGc, we have ∥LG (X)−BuNNG (X) ∥∞ < ϵ. We will show that L can be parameterized exactly. Since
L is linear, it suffices to find a linear BuNN layer that satisfies for any G ∈ K and any X ∈ RnGc, ∂(L(X))u

∂xv
=

∂(BuNNX)u
∂xv

.

By Lemma C.3, we have ∂ BuNN(X)u
∂xv

= H(t, u, v)OuWOT
v . Hence, since MLPs are universal and the positional encodings

are injective, it suffices to find bundle maps O : V→ O (k) and W such that 1
nGdu

∑
v∈V OT

uWOv =
∂(LX)u
∂Xv

for every
u, v ∈ V.

12

BuNN for message diffusion on graphs

Defining the encoder and decoder: In order to find such a BuNN, we first need a linear encoder lift : Rc → R2ck

which will be applied at every node before applying a 2ck dimensional BuNN layer. The lifting transformation maps
each node vector Xu to the concatenation of k vectors Xu interleaved with k vectors 0⃗ ∈ Rc. This is equivalent to the
linear transformation given by left multiplication by (Ic×c,0, . . . , Ic×c,0)

T ∈ R2ck×c. After the 2ck dimensional BuNN
network, we will also need a linear decoder pool : R2ck → Rc applied to every node individually, which is the sum
of the k different c-dimensional vectors that are at even indices. This is equivalent to left multiplication by the matrix
(Ic×c,0c×c, . . . , Ic×c,0c×c) ∈ Rc×2ck. These two can be seen as a linear encoder and linear decoder, often used in practical
GNN implementations. We prove the result by adding the lifting and pooling layers and using the higher dimensional
B̂uNN layer, so BuNN = pool ◦B̂uNN ◦ lift.

Defining the ‘universal bundle’: We fix k =
∑

G∈K |VG|, so we can interpret our embedding space as a lookup
table where each index corresponds to a node v ∈

⊔
G∈K VG. In turn, we can think of the parameter matrix

W ∈ R(
∑

G∈K|VG|)×(
∑

G∈K|VG|) as a lookup table where each entry corresponds to a pair of nodes in our dataset K.
Still thinking of the indices of the 2ck dimensions as 2c-dimensional vectors indexed by the k nodes in our dataset, we
define Ou ∈ O (2ck) as a block diagonal matrix with k different 2c-dimensional blocks. These are all set to the identity

except for the block at the index corresponding to node u, which is defined as
(
0c×c Ic×c

Ic×c 0c×c

)
which is a 2c× 2c matrix

that acts by permuting the first c dimensions with the second c dimensions.

Computing the partial derivatives. Since our model BuNN is a composition of linear maps, and since the maps pool and
lift are applied node-wise, we get

∂ (BuNN (X))u
∂xv

= pool
∂
(
B̂uNN (lift (X))

)
u

∂ lift (Xv)
lift

= (Ic×c,0c×c, . . . , Ic×c,0c×c)H(t, u, v)OT
uWOv (Ic×c,0c×c, . . . , Ic×c,0c×c)

T

= H(t, u, v)
∑

1≤k1, k2≤k

(Ic×c,0c×c)O
T
uWOv (Ic×c,0c×c)

T

We proceed by partitioning the indexing by (k1, k2) into four cases. The first case is C1 =
{(k1, k2) such that (k1 ̸= u, v and k2 ̸= u, v) or(k1 = k2 = u or k1 = k2 = v)} for which both Ou and Ov act like the
identity. The second case is C2 = {(k1, k2) such that k1 = u and k2 ̸= u, v} where Ou flips the first c rows with the second
c rows and Ov acts like the identity. C3 = {(k1, k2) such that k2 = j and k1 ̸= u, v} where Ov flips the first c columns
with the second c columns, and Ou acts like the identity on the rows. Finally, the last case is when k1 = u and kv = v in
which Ov flips the rows and Ov flips the columns.

. . . = H(t, u, v)
∑

1≤k1, k2≤k

(Ic×c,0c×c)O
T
uWOv (Ic×c,0c×c)

T

= H(t, u, v) (Ic×c,0c×c)

 ∑
(k1,k2)∈C1

(
Wk1k2

00 Wk1k2
01

Wk1k2
10 Wk1k2

11

)
+

∑
(k1,k2)∈C2

(
Wk1k2

10 Wk1k2
11

Wk1k2
00 Wk1k2

01

)

+
∑

(k1,k2)∈C3

(
Wk1k2

01 Wk1k2
00

Wk1k2
11 Wk1k2

10

)
+

(
Wij

11 Wij
10

Wij
01 Wij

00

) (Ic×c,0c×c)
T

Finally, after applying (Ic×c,0c×c) on the left and (Ic×c,0c×c)
T on the right (an operation that selects the upper left c× c

block), we observe that setting all Wk1k2
00 = Wk1k2

01 = Wk1k2
10 to 0c×c and setting Wuv

11 := 1
H(t,u,v)

∂(LX)u
∂xv

if the nodes
corresponding to k1 and k2 lie in the same graph and 0c×c otherwise. This allows us to conclude that any linear layer can be
parameterized.

13

BuNN for message diffusion on graphs

F. Discussion on compact uniform approximation versus uniform approximation
A strong definition of expressivity that deals with infinite collections of graphs was proposed in Rosenbluth et al. (2023). This
definition subsumes graph-isomorphism testing (where the input feature on graphs is constant) and is finer than graph-level
function approximation since it works at the node level. Furthermore, it also deals with infinite families of graphs, as
opposed to most mainstream theorems of GNN expressivity, which are proved for graphs of bounded size (e.g. Azizian &
marc lelarge (2021); Geerts & Reutter (2022)) (see Section 2 for the notation and definition of features transformations).

Definition F.1 (From Rosenbluth et al. (2023)). Let c, c′ ∈ N and take R as feature space. Consider a collection of graphs
G. Let Ω ⊆ C

(
G,Rc,Rc′

)
be a set of feature transformations over G, and let H ∈ C

(
G,Rc,Rc′

)
a feature transformation

over G. We say that Ω uniformly additively approximates H , notated Ω ≈ H if ∀ϵ > 0 ∀ compact Kn ⊂ Rnc ∃F ∈
Ω such that:, ∀G ∈ G ∀X ∈ KnGc ∥FG (X)−HG (X)∥∞ ≤ ϵ where the sup norm ∥ · ∥∞ is taken over all nodes and
dimensions of nGc

′ dimensional output.

Note that this definition differs from our Definition D.1 in that it requires uniform approximation over all graphs in G
simultaneously, while we allow the width to vary with the finite subset K ⊆ G, similar to how classical results allow the
width to vary with the compact set over which to approximate the function. Such a definition has proven useful in Rosenbluth
et al. (2023) to distinguish different aggregation functions and in Rosenbluth et al. (2024) to distinguish MPNNs with virtual
nodes from Transformers. However, we argue that the definition above is too strong for a finite parameter GNN. This is
because it requires uniform approximation over a non-compact set, which contrasts with traditional work on expressivity
and is generally unfeasible and impractical. Indeed, finite-parameters MLPs are not universal over the whole domain R
under the ℓ∞-norm. On an infinite collection of featured graphs, the topology is the disjoint union topology on

⊔
G∈G RnGd,

a compact subset consists of a finite set of graphs, and for each graph G only non-zero on a compact subset of Rnd. For
these reasons, we introduce Definition D.1, which is still rich enough to distinguish between BuNNs and MPNNs.

G. Algorithmic and Implementation details
In this Section, we provide more details on the implementation of BuNNs. We start by discussing how to use several
vector-field channels when the input dimension is greater than the bundle dimension. We then discuss how to use several
bundles at once when a single bundle is insufficient. We then combine both views, namely having several vector-field
channels on several bundles at once. Finally, we describe how we compute our bundle maps in the experiments.

Extending to several vector-field channels. When the signal dimension exceeds the bundle dimension, i.e. c > d, we
cannot directly apply BuNNs to the input signal. In that case, we first transform the signal into a hidden dimension, a multiple
of the bundle dimension, i.e.c = dp. We reshape the input signal into p channels of d-dimensional vector fields, where we
apply the diffusion step (Equation 3) on each p channels simultaneously, and we apply the weight matrix W ∈ Rdp×dp

by first flattening the node signals into dp dimensions, then multiplying by W, and then reshaping it into p channels of d
dimensional vector fields.

Extending to several bundles. Learning a high dimensional orthogonal matrix O(d) becomes expensive since the manifold
of orthogonal matrices is d(d−1)

2 dimensional. However, we can compute many low-dimensional bundles in parallel. In
practice, we found that using several 2-dimensional bundles was enough. Computing b different 2-dimensional bundles
requires only b-parameters since the manifold O(2) is 1-dimensional. We, therefore, also use different ‘bundle channels’
given by an additional hyper-parameter – the number of bundles, which we denote b. Given an input signal of dimension
c = db, we can decompose the signal into b bundle channels of dimension d. We can compute the diffusion step (Equation 3)
for each bundle in parallel. For the update step (Equation 2), we apply the weight matrix W ∈ Rbd×bd by first flattening the
node signals into bd dimensions, then multiplying by W, and then reshaping it into b bundle channels of d dimensional
vector fields over b different bundle structures.
Remark G.1. We note that using b different d dimensional bundles is equivalent to parameterizing a subset of one
bd-dimensional structure, consisting of the orthogonal map O ∈ O(bd) ⊂ Rbd×bd that are block diagonal matrices
O =

⊕
i=1...b Oi, with each Oi ∈ O(d).

Extending to several bundles and vector-field channels. We can combine the above two observations. Given an input
signal of dimension c = bdp, we can subdivide this into b different bundle structures of dimension d and p channels for each
bundle. We diffuse on the appropriate bundle structure and flatten the vector fields into a c× c vector before applying the
learnable parameters.

14

BuNN for message diffusion on graphs

Algorithm 1 Taylor expansion implementation of a BuNN layer

Input: Normalized graph Laplacian L, Orthogonal maps O(ℓ)
v ∀v ∈ G, Node features X(ℓ) ∈ Rn×d, Time t, Maximum

degree K, Channel mixing matrix W(ℓ), bias b(ℓ)

Output: Updated node features X(ℓ)

h
(ℓ)
v ← O

(ℓ)
v

T
x
(ℓ)
v ∀v ∈ V {Go to global representation}

H(ℓ) ← HW(ℓ) + b(ℓ) {Update features with parameters}
X(ℓ+1) ← H(ℓ) {approximation of degree 0}
for k = 1, . . .K do
H(ℓ) ← − t

kLH
(ℓ) {Term of degree k}

X(ℓ+1) ← X(ℓ+1) +H(ℓ) {Approximation of degree k}
end for
x
(ℓ+1)
v ← O

(ℓ)
v

T
x
(ℓ+1)
v ∀v ∈ V {Return to local representation}

X(ℓ+1)

Computing the bundle maps. In our experiments, we noticed that having several bundles of dimension 2 was more efficient
than one bundle of large dimensions, while there was no clear performance gain when using higher dimensional bundles. To
compute the b bundle maps Ov we therefore only need b rotation angles θv, one per bundle. In our experiments, we use
Housholder reflections using the python package noa or direct parameterization. For direct parameterization, we do the
following: since the matrix group O(2) is disconnected, we always take b to be even and parameterize half the bundles as

rotation matrices r(θ) =
(

cos (θ) sin (θ)
− sin (θ) cos (θ)

)
and the other half to correspond to matrices with determinant −1, which

can be parameterized by r∗(θ) =

(
cos (θ) sin (θ)
sin (θ) − cos (θ)

)
. We compute the angles θ as in Equation 1 where the network ϕ(ℓ)

is either an MLP or a GNN. The network ϕ is either shared across layers or differing at every layer.

Taylor approximation algorithm. We now provide pseudo-code on how we implement Equations 2, and 3. We then
proceed with a complexity analysis. The key idea of the algorithm is that the bundle heat kernel can be approximated
efficiently using the standard graph heat kernel.

The complexity of the algorithms is as follows. There are 3 matrix-vector multiplications done at each node in lines 1, 2,
and 8, which are done in O

(
3d2|V|

)
. The for loops consist of matrix-matrix multiplications, which are done in O (d|E|)

with sparse matrix-vector multiplication. The memory complexity is O
(
(d+ d2)|V|

)
since we need to store d dimensional

vectors and the orthogonal maps for each node. The exact implementation is described in Algorithm 1

Spectral method. We now describe how to implement a BuNN layer using the eigenvectors and eigenvalues of the
Laplacian.

Algorithm 2 Spectral implementation of a BuNN layer

1: Input: Eigenvectors and eigenvalues graph Laplacian (ϕi, λi)i, Orthogonal maps O
(ℓ)
v ∀v ∈ G, Node features

X(ℓ) ∈ Rn×d, Time t, Maximum degree K, Channel mixing matrix W(ℓ), bias b(ℓ)

2: Output: Updated node features X(ℓ)

3: h
(ℓ)
v ← O

(ℓ)
v x

(ℓ)
v ∀v ∈ V {Sync.: Go to global representation}

4: H(ℓ) ← HW(ℓ) + b(ℓ) {Update features with parameters}
5: X(ℓ+1) ←

∑
i e

−tλiϕiϕ
T
i H

(ℓ) {Spectral solution to heat equation}
6: x

(ℓ+1)
v ← O

(ℓ)
v

T
x
(ℓ+1)
v ∀v ∈ V {Desync.: Return to local representation}

7: X(ℓ+1)

G.1. Householder reflections.

Many different parameterizations of the group O(n) exist. While direct parameterizations are possible for n = 2, 3 it
becomes increasingly complex to do so for larger n, and a general method working for all n is a desirata. While there
are several methods to do so, we use Householder reflection since it is used in related methods (Bodnar et al., 2022). We

15

BuNN for message diffusion on graphs

use the Pytorch package from (?). Given given k vectors vi ∈ Rd, define the Householder matrices as Hi = I − 2
viv

T
i

∥vi∥2
2

,

and define U =
∏k

i=1 Hi. All orthogonal matrices may be obtained using the product of d such matrices. Hence the map
Rd×d → O(d) mapping V = (vi) to U is a parameterization of the orthogonal group. We use pytorch implementations
allowing autograd provided in (Obukhov, 2021).

G.2. BuNN-Hop extension.

In practice we also explored a variation of BuNNs inspired by MixHop (Abu-El-Haija et al., 2019) which we call BuNN-Hop
(described in Algorithm 3). We found that a slightly different model performed better on the Peptides benchmark datasets.
One layer of the model can be derived by running a discrete time diffusion process with update X(t) = ABX(t − 1)

and integrating over it using attention term α(t). The resulting update equation is Y =
∑K

k=1 αkA
k
BX where α satisfy∑K

k=1 αk = 1.

Algorithm 3 BuNN-Hop layer implementation.

1: Input: Normalized graph adjacency A, Orthogonal maps O(ℓ)
v ∀v ∈ G, Node features X(ℓ) ∈ Rn×d, Maximum degree

K, Channel mixing matrix W(ℓ), bias b(ℓ), attention terms α(ℓ)

2: Output: Updated node features X(ℓ)

3: h
(ℓ)
v ← O

(ℓ)
v

T
x
(ℓ)
v ∀v ∈ V {Go to global representation}

4: H(ℓ) ← HW(ℓ) + b(ℓ) {Update features with parameters}
5: X(ℓ+1) ← H(ℓ) {approximation of degree 0}
6: for k = 1, . . .K do
7: H(ℓ) ← AH(ℓ) {Term of degree k}
8: X(ℓ+1) ← X(ℓ+1) +α

(ℓ)
k H(ℓ) {Approximation of degree k}

9: end for
10: x

(ℓ+1)
v ← O

(ℓ)
v

T
x
(ℓ+1)
v ∀v ∈ V {Return to local representation}

11: X(ℓ+1)

H. Experiment details
In this Section we provide additional information about the experiments on the heterophilic graph benchmarks, the LRGB
benchmarks, and the synthetic experiments. All experiments were ran on a cluster using NVIDIA A10 (24 GB) GPUs, each
experiment using at most 1 GPU. Each machine in the cluster has 64 cores of Intel(R) Xeon(R) Gold 6326 CPU at 2.90GHz,
and ∼500GB of RAM available. The synthetic experiments from Section 4.1 were run on CPU and each run took roughly
20 minutes. The heterophilic experiments from Section 4 were run GPU and varied between 5 minutes to 1.5 hours. The
LRGB experiments were run on GPU and varied between 0.5 hours and 4 hours.

H.1. LRGB: training and tuning.

For peptides-func and peptides-struct we use a fixed parameter budget of ∼ 500k as in Dwivedi et al. (2022).
We fix hyper-parameters to be the best GCN hyper-parameters from Tönshoff et al. (2023), and tune only BuNN-specific
parameters as well as the use of BatchNorm. In Table 5, we report the grid of hyper-parameters that we searched, and denote
in bold the best combinations of hyper-parameters. The parameters fixed from Tönshoff et al. (2023) are the following:

• Dropout 0.1

• Learning rate 0.001

• Head depth 3

• Positional Encoding: LapPE for struct and RWSE for func

• Optimizer: AdamW with a cosine annealing learning rate schedule and linear warmup.

• Batch size 200

16

BuNN for message diffusion on graphs

• Weight decay 0

• We use skip connection as implemented in Dwivedi et al. (2022) and not in Tönshoff et al. (2023). That is, the skip
connection does not skip the non-linearity.

For the BuNN specific parameters, we use 2 dimensional bundles, whose angles θ we compute with the help of a small
SumGNN architecture using a sum aggregation as defined by θ

(ℓ)
v = σ

(
Wsx

(ℓ)
v +Wn

∑
u∈N (v) x

(ℓ)
u

)
where the input

dimension is the hidden dimension, the hidden dimension is twice the number of bundles and the output is the number of
bundles. The number of SumGNN layers is a hyper-parameter we tune. When it is 0 we use a 2 layer MLP with hidden
dimension also twice number of bundles. For each hyper-parameter configuration, we set the hidden dimension in order to
respect to the parameter budget. We use truncated Taylor series for this implementation.

Parameters All Values Best Values
BuNN BuNN-Hop

func struct func struct
Num bundles b 4, 8, 16 16 16 16 16

Number of BuNN layers 1 − 6 6 4 6 4
Number of SumGNN layer 0 − 3 1 0 6 4
Max expansion degree K 1 2 4 8 16 32 64 128 128 1 64 64

Time t 0.1, 1, 5, 6, 7, 8, 9, 10,∞ 1 6 N/A N/A

Table 5. Grid of hyper-parameters for peptides-func and peptides-struct.

H.2. Heterophilic graphs: training and tuning.

For the heterophilic graphs we use the source code from Platonov et al. (2023) in which we add our layer definition. We
report all training parameters that we have tuned. Namely, we use GELU activation functions, the Adam optimizer with
learning rate 3 × 10−5, and train all models for 2000 epochs and select the best epoch based on the validation set. To
compute the bundle maps, we compute the parameters θ with a GraphSAGE architecture shared across layers (ϕ method
= shared) or different at each layer (ϕ method = not shared), with hidden dimension dimension the number of bundles.
The number of layers of this GNN is a hyper-parameter we tuned, which when set to 0 we use a 2 layer MLP. For each
task we manually tuned parameters, which are subsets of the combinations of parameters in the grid from Table 6. The
implementation of the heat kernel used is either truncated Taylor series with degree 8, or the Spectral implementation. We
report the best performing combination of parameters in Table 7.

Parameters All Values
Hidden dim 256, 512

Num bundles b 8, 16, 32, 64, 128, 256
Bundle dimension d 2

Number of BuNN layers 1 − 8
Number of GNN layer ϕ 0 − 8

Taylor expansion degree K 8
Time t 0.1, 1, 10, 100

ϕ method shared, not shared
Dropout 0.0, 0.2

Learning rate 3× 10−4, 3× 10−5

Table 6. Parameters searched when tuning on the heterophilic graph benchmark datasets.

17

BuNN for message diffusion on graphs

Parameters Best Values
roman-empire amazon-ratings minesweeper tolokers questions

Hidden dim 512 512 512 512 256
Num bundles b 64 64 256 256 128

Bundle dim 2 2 2 2 2
Number of BuNN layers 6 2 8 6 6
Number of GNN layer 8 0 8 7 6

Taylor expansion degree K N/A N/A 8 8 8
Time t 100 1 1 1 1

ϕ method not shared not shared not shared not shared shared
Dropout 0.2 0.2 0.2 0.2 0.2

Learning rate 3× 10−4 3× 10−4 3× 10−5 3× 10−5 3× 10−5

Table 7. Best parameter for each dataset in the heterophilic graph benchmarks.

18

