

000 WHICH ENGLISH DO LLMs PREFER? 001 002 TRIANGULATING STRUCTURAL BIAS TOWARD 003 AMERICAN ENGLISH IN FOUNDATION MODELS 004 005

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Large language models (LLMs) are increasingly deployed in high-stakes domains,
 014 yet they expose only limited language settings, most notably “English (US)”,
 015 despite the colonial history and global diversity of English. We interpret dialectal
 016 asymmetries through a holistic postcolonial lens, showing they emerge not only as
 017 downstream failures but as structural artifacts of the LLM development pipeline
 018 itself. Using a curated lexicon of 1,813 American–British variants, we triangulate
 019 evidence across three stages: (i) audits of six major pretraining corpora reveal
 020 systematic skew toward American English, (ii) tokenizer analyses demonstrate that
 021 British forms incur higher segmentation costs, and (iii) generative evaluations with
 022 our proposed DiAlign metric show consistent preference for American variants.
 023 This constitutes the first systematic and multi-faceted examination of dialectal
 024 asymmetries in standard English varieties across the phases of LLM development.
 025 We find that these models exhibit structural bias that privileges American English
 026 as the de facto norm, shaped by geopolitical histories of data curation and linguistic
 027 standardization. Our study raises concerns of linguistic homogenization, epistemic
 028 injustice, and inequity in global AI deployment, while offering practical guidance
 029 for developing more dialectally inclusive language technologies.

030 1 INTRODUCTION

031 The United Nations affirms *language rights* as fundamental, with Article 19 of the Universal Declaration
 032 guaranteeing the freedom to communicate in one’s language of choice. Modern software systems
 033 operationalize this principle through localization (Southwell, 2021), offering explicit language settings.
 034 Large language models (LLMs), increasingly deployed as software-as-a-service in domains
 035 such as education (Shahzad et al., 2025), law (Lai et al., 2024), and public administration (Kulal
 036 et al., 2024; Madan & Ashok, 2023), often lack such flexibility. Despite evidence that English is the
 037 most effective prompting language (Behzad et al., 2024), widely used platforms such as ChatGPT
 038 and Claude expose only “English (US)” as a selectable option. As governments and institutions
 039 adopt these models for administrative processes and public service delivery, the privileging of a single
 040 variety of English acquires systemic significance. This raises foundational questions: Which forms of
 041 English do LLMs prefer, what are the implications for fairness, efficiency, and inclusion, and can (or
 042 should) these preferences be redirected? We address these questions by systematically examining two
 043 dominant standard varieties, American English (AmE) and British English (BrE), through a holistic
 044 postcolonial lens that positions AmE as the digitally dominant and structurally advantaged default
 045 and BrE as a widely institutionalized yet comparatively marginalized variety, and by analyzing how
 046 linguistic asymmetries are encoded and propagated across the entire LLM development pipeline.

047 English is the most widely used international language, serving as an official or special language
 048 in over 75 countries and spoken by more than 1.5 billion people worldwide (Galan, 2025). Its
 049 global dominance reflects *two trajectories*: British colonial expansion, which entrenched English
 050 in governance and education across Africa, Asia, and other regions, and twentieth-century Ameri-
 051 can hegemony, which spread English through commerce, media, and technology (Crystal, 2003;
 052 Nordquist, 2024). This history produced diverse English varieties shaped by local identities (Trudgill,
 053 2000), yet sociolinguistic research shows that power and prestige determine which forms are legit-
 imized or marginalized (Labov, 1972; 2006). Divergences between AmE and BrE span spelling,

vocabulary (Table 1), grammar, structure, idioms, style, and pronunciation (Liz, 2024).¹ BrE retains normative prestige in many former colonies (Figure 1), including South Asia, Nigeria, and Singapore, where it remains embedded in governance, education, and law.² It is also the standard of EU institutions and underpins “Commonwealth English” (Calabrese et al., 2015), actively promoted by the UK across more than 100 countries³ through initiatives such as the Oxford Dictionary, the British Council, and IELTS. AmE, by contrast, dominates global culture and digital communication through Hollywood, music, mass media, and technological platforms (Gonçalves et al., 2018), positioning it as a de facto global norm. The authority of these standards derives not from linguistic merit but from sociopolitical power (Milroy & Milroy, 1999; Lippi-Green, 2012), creating a dynamic where two influential dialects coexist, each exerting distinct cultural and normative influence. While other Englishes exist⁴, this paper focuses on AmE and BrE as the two dominant postcolonial standards.

Central to the success of LLMs is their training on massive corpora drawn largely from the internet, where English dominates, accounting for roughly 50–60% of global web content (Dodge et al., 2021; Petrosyan, 2025). Although dataset compositions are often undisclosed, available evidence indicates that English constitutes about 92.65% of GPT-3’s training data,⁴ 89.7% of Llama 2’s (Touvron et al., 2023), and nearly 90% of Claude 2’s (Anthropic, 2023). For AmE and BrE specifically, the abundance of digitized resources rules out scarcity as a limiting factor. The critical question, then, is which form of English these models preferentially learn, encode, and propagate. While reliance on English-heavy corpora reflects its global dominance, it also foregrounds an underexplored dimension: whether LLMs reproduce asymmetries between AmE and BrE rooted in distinct historical and sociopolitical trajectories. This paper investigates how such dynamics manifest across the LLM development pipeline, examining whether and how models exhibit preferences between AmE and BrE and what those preferences reveal about broader socio-technical biases. This study is driven by an intriguing question: *Which English variety do LLMs implicitly privilege, and with what consequences?*

We seek to identify a root cause: the presence of *structural bias*, a specific and under-studied form of linguistic bias and, to our knowledge, the first systematic and multi-faceted examination of its impact on standard English varieties, wherein language technologies, by design, may favor certain languages, dialects, or sociolects over others (Bender et al., 2021). Such biases can lead to *epistemic injustice* (Fricker, 2007), where marginalized linguistic communities are systematically underrepresented in algorithmic systems (Helm et al., 2024). This distinction is critical: if LLMs implicitly treat AmE as the default or normative form, it raises profound concerns for equitable AI, potentially resulting in linguistic homogenization and degraded user experiences for speakers aligned with British English norms. By interpreting our analysis through a postcolonial lens (§3), we highlight how geopolitical histories of data curation, digital dominance, and linguistic standardization shape pretraining corpora, tokenizers, and generative behaviors of modern LLMs. Rather than documenting performance disparities solely as downstream failures (Ziems et al., 2022; Fleisig et al., 2024), our study probes their root causes by triangulating across the entire LLM development pipeline (data → tokenization → generation). Concretely, our investigation centers on three core research questions:

Research Questions

RQ1: To what extent do large-scale pretraining corpora skew toward American over British English? We provide corpus-level audits of major LLM pretraining datasets to quantify dialectal imbalance in token distributions (Section 5).

RQ2: How do regional tokenizers encode AmE and BrE variants, and what does this reveal about dialectal representation? We examine subword-level disparities across tokenizers developed in American, European, Chinese, and postcolonial contexts (Section 6).

RQ3: Do LLMs exhibit generative preferences for AmE over BrE? We assess output dialectal preferences under contextual prompts, using the proposed DIALIGN score to estimate alignment across lexical, grammatical, structural, stylistic, and multi-word contrasts (Section 7).

¹[wiki/Comparison_of_American_and_British_English](https://en.wikipedia.org/wiki/Comparison_of_American_and_British_English), see Table 8 and Table 9 for illustrative examples.

²en.wikipedia.org/wiki/British_English, see Appendix A for a brief historical background.

³Canadian English blends BrE and AmE influences due to its history and geographical proximity but also has unique features; Indian, Australian, and New Zealand English largely inherit BrE (Acolad, 2020; Liao, 2023).

⁴[OpenAI GPT-3 Dataset Language Statistics \(GitHub, accessed April 26, 2025\)](https://github.com/OpenAI/llm-fairness)

108

2 RELATED WORK

109
 110 **Pretraining data audits and curation.** Nearly all advanced model capabilities originate from
 111 the scope and composition of pretraining data, motivating a growing body of work on auditing and
 112 curation. Analyses highlight how dataset age, coverage, and quality affect generalization (Longpre
 113 et al., 2024), while audits reveal duplication, contamination, and provenance gaps in widely used
 114 corpora (Elazar et al., 2024; Longpre et al., 2025). Beyond audits, strategies for improving data
 115 utility include practical construction recipes for large-scale corpora (Parmar et al., 2024), register- and
 116 domain-aware sampling (Myntti et al., 2025), and recycling filtered web text (Nguyen et al., 2025).
 117 Our study extends this line of work by foregrounding American vs. British English as a dimension of
 118 representational skew, showing how such imbalances can cascade into tokenization disparities and
 119 ultimately shape the generative behavior of LLMs.
 120

121 **Tokenizer fairness.** Biases can arise *before* generation, at the subword segmentation stage. Prior
 122 work shows that semantically equivalent strings can receive uneven tokenization across languages,
 123 with consequences for efficiency, context budget, and cost (Petrov et al., 2023). Recent work
 124 quantifies the *causal* impact of uneven tokenization, showing that collapsing a multi-token span into
 125 a single token can inflate a word’s probability by more than an order of magnitude (Lesni et al., 2025).
 126 Complementary work proposes Parity-Aware Byte-Pair Encoding, which slightly relaxes compression
 127 to equalize token counts across languages and improve cross-lingual fairness (Foroutan et al., 2025).
 128 Tokenization length further correlates with demographic attributes of personal names, reinforcing or
 129 even creating social biases (An & Rudinger, 2023), while small lexical alternations, such as brand
 130 vs. generic drug names, expose fragility in LLM representations (Gallifant et al., 2024). In machine
 131 translation, subword design and training distribution jointly amplify gender bias, with female and
 132 non-stereotypical forms more often fragmented (Iluz et al., 2023). We extend this line of inquiry to
 133 *intra-English* dialects, showing that tokenizers encode uneven segmentation for dialectal variants.
 134

135 **Dialect robustness in NLP tasks.** Work on fairness has shown that dialectal variation, especially
 136 in African American English (AAE) and South Asian Englishes (SAsE), can yield systematic perfor-
 137 mance gaps across core NLP tasks such as tagging, classification, and sentiment analysis (Jørgensen
 138 et al., 2016; Blodgett et al., 2016; Kiritchenko & Mohammad, 2018). Recent studies further reveal
 139 that LLMs encode negative stereotypes toward AAE (Hofmann et al., 2024; Fleisig et al., 2024) and
 140 that SAsE speakers often perceive NLP systems as brittle or exclusionary (Holt et al., 2024). Frame-
 141 works such as Multi-VALUE highlight robustness gaps across dialects (Ziems et al., 2023), but even
 142 standard varieties like AmE and BrE remain underexplored. Our work addresses this gap by probing
 143 the root causes of AmE–BrE variation across the entire LLM development pipeline, interpreting
 144 it through a postcolonial lens as, to our knowledge, one of the earliest systematic examinations of
 145 dialectal asymmetries. An extended discussion of related work is provided in Appendix K.
 146

147

3 INTERPRETING STRUCTURAL BIAS THROUGH A POSTCOLONIAL LENS

148 Postcolonial theory studies how power relations created by colonialism persist after formal empire,
 149 shaping language, culture, and knowledge in both formerly colonized states and former imperial
 150 centers (Bhabha, 1994; Schneider, 2007). The global spread of English was inseparable from British
 151 colonial expansion: BrE was installed as the language of administration, education, and law across
 152 large parts of Africa, Asia, the Caribbean, and the Pacific, and often persisted as the official or de
 153 facto standard after independence (Figure 1). It continues to hold normative prestige in many former
 154 colonies, across much of the Commonwealth, and in key European Union institutions.²

155 By contrast, AmE dominates mass media and digital communication, and LLMs trained on web-scale
 156 internet data are likely to inherit its norms. We ask which variety of English LLMs preferentially
 157 learn, encode, and propagate, focusing on two dominant postcolonial standards, AmE and BrE, whose
 158 institutional status enables a controlled, high-precision comparison. Systematic privileging of AmE
 159 has downstream implications also for other postcolonial Englishes that build on BrE, such as Indian,
 160 Nigerian, and Australian English (Acolad, 2020; Liao, 2023), and raises inclusivity concerns when
 161 users expect BrE-aligned norms, especially in education, journalism, government, and legal texts.

162 Our holistic postcolonial perspective interprets this dialectal skew as a manifestation of *structural*
 163 *bias*, a systematic preference for particular standard varieties, and employs this framing to analyze

Figure 1: Timeline of independence across countries formerly under British colonization. The map highlights the wave of decolonization in the mid-twentieth century, when nations in Africa, Asia, the Caribbean, and the Pacific gained sovereignty. This geopolitical shift marked the decline of direct colonial governance but reinforced the institutional legacy of *British English (BrE)* in education, government, journalism, and law across many of these regions (Tikly, 2016; Phillipson, 2018).

the consequences of such dialectal asymmetries for global inclusivity. We triangulate evidence across the entire LLM development pipeline to surface these structural biases: ① pretraining corpora (§5), ② tokenizer representations (§6), and ③ generative preferences (§7). This triangulation allows us to trace how dialectal asymmetries are introduced, amplified, and manifested in outputs, linking empirical audits of LLM behavior to broader concerns about linguistic homogenization and epistemic injustice in global AI deployment, and motivating component-wise design recommendations for dialect-sensitive corpus construction and filtering, tokenizer design, alignment, and evaluation (§8).

4 DIALECTAL VARIANT CORPUS: TYPOLOGY OF AME–BRE LEXICONS

To operationalize our study of dialectal preferences in LLMs, we construct a curated corpus of 1,813 parallel lexical variants between AmE and BrE. This resource is designed to serve as a reference set of dialectal markers for consistent analysis across the research questions (Sections 5 to 7).

The variant pairs were manually compiled from authentic linguistic sources and web-based lexicons (Table 7). We merged data from multiple sources and removed duplicates to form a unified lexicon. To ensure linguistic comparability and analytical precision, we retained only strict one-to-one word-level mappings, and excluded many-to-one (e.g., “drug store” (AmE) vs. “chemist’s” (BrE)), one-to-many (e.g., “restroom” (AmE) vs. “public toilet” (BrE)), and many-to-many cases (e.g., “parking lot” (AmE) vs. “car park” (BrE)). This constraint aligns with our goal of treating words as atomic units, since words, when tokenized, form the basic building blocks of LLMs. Restricting to one-to-one mappings ensures consistency across analyses and is essential for the tokenizer study [RQ2 (§6)], where precise word-level comparisons are required to directly compare segmentation behavior.

The resulting lexicon spans both orthographic (spelling-based) and lexical (vocabulary-based) differences. Table 1 presents an overview of the typology and distribution of variation types in the corpus, with representative examples. Details on the categorization schema and on the data sources used to construct the variant corpus are provided in Appendix B and Table 7, respectively.

5 RQ1: AUDITING DIALECTAL SKEW IN PRETRAINING CORPORA

To empirically ground our investigation of dialectal structural bias in LLMs, we begin by auditing six major open-access pretraining corpora for statistically significant skew in AmE versus BrE usage.

216 Table 1: Distribution of preferred 1,813 AmE (USA) and BrE (UK) variant pairs across common linguis-
 217 tic categories from the curated corpus. We report the percentage of total entries and representative
 218 examples per category, grouped into orthographic (*spelling*) and vocabulary-based differences.
 219

Category	Difference Type	% of Pairs	Examples	
Orthographic/ Spelling	ends in “-or” (AmE) vs. “-our” (BrE)	2.26%	color (USA)	vs. colour (UK)
	ends in “-ize” (AmE) vs. “-ise” (BrE)	11.58%	organize (USA)	vs. organise (UK)
	ends in “-er” (AmE) vs. “-re” (BrE)	1.65%	center (USA)	vs. centre (UK)
	ends in “-og” (AmE) vs. “-ogue” (BrE)	0.55%	dialog (USA)	vs. dialogue (UK)
	ends in “-ense” (AmE) vs. “-ence” (BrE)	0.22%	defense (USA)	vs. defence (UK)
	“e” (AmE) vs. “ae” (BrE)	4.03%	esthetic (USA)	vs. aesthetic (UK)
	words with single “l” vs. double “l”	8.88%	traveler (USA)	vs. traveller (UK)
Vocabulary	sublexical spelling variation	49.75%	jewelry (USA)	vs. jewellery (UK)
	different lexical items entirely	21.07%	elevator (USA)	vs. lift (UK)

220
 221 Table 2: AmE vs. BrE variant usage across six pretraining corpora, segmented into orthographic
 222 (spelling) and vocabulary-based differences. Each entry reflects the probability of observing either
 223 the AmE or BrE variant for a given word pair. We aggregate these statistics across all 1,813 pairs to
 224 yield corpus-level dialectal distributions, defining a probability distribution over mutually exclusive
 225 outcomes. All results are statistically significant under the Wilcoxon Signed-Rank Test (p -value
 226 < 0.01). Datasets marked with * denote sampled subsets. RedPajama and Dolma include mixed-
 227 domain content (e.g., code, papers, forums, social media). All probabilities are shown as
 228 percentages. LLaMA tokenizer (Grattafiori et al., 2024) was used to compute token statistics.
 229

Data Source	Document Type	Documents	Tokens	Orthographic		Vocabulary	
		(millions)	(billions)	AmE (USA)	BrE (UK)	AmE (USA)	BrE (UK)
Book Corpus (2015)	books	74	1.28	86.81	13.19	75.00	25.00
Wikipedia (2024)	encyclopedic	6.4	4.3	72.94	27.06	61.43	38.57
Common Crawl (C4) (2020)	web pages	365	156	75.12	24.88	67.00	33.00
Falcon RefinedWeb (2023)	web pages	968	600	77.34	22.66	68.35	31.65
RedPajama* (2024)	books, code, papers, forums, social media, mixed	0.93	1.0	76.03	23.97	66.05	33.95
Dolma* (2024)	books, code, papers, forums, social media, mixed	14.28	10	77.30	22.70	67.77	32.23

245
 246 Leveraging our curated set of 1,813 AmE–BrE lexical variant pairs (§4), we compute variant-specific
 247 token distributions to quantify the extent and direction of dialectal imbalance (see Appendices G and
 248 I for details). These lexical markers not only capture surface-level contrasts but also provide reliable
 249 signals of surrounding structural and stylistic tendencies. We refer to any such consistent asymmetry
 250 as *dialectal skew*, which we interpret as indicative of *structural bias* in pretraining corpora.
 251

252 **Methodology** For each corpus, we extract raw frequencies f_{AmE} and f_{BrE} corresponding to each
 253 word pair. To normalize and quantify dialectal usage, we compute a probability distribution:

$$P_{\text{AmE}} = \frac{f_{\text{AmE}}}{f_{\text{AmE}} + f_{\text{BrE}}}, \quad P_{\text{BrE}} = \frac{f_{\text{BrE}}}{f_{\text{AmE}} + f_{\text{BrE}}}.$$

254 These probabilities represent the likelihood of observing either variant within a pair and define a valid
 255 distribution over mutually exclusive outcomes. We aggregate these statistics across all word pairs to
 256 yield corpus-level dialectal distributions, stratified by orthographic and vocabulary-based categories.
 257 To assess the statistical significance of observed directional bias, we apply the Wilcoxon Signed-Rank
 258 Test to the pairwise frequency differences ($f_{\text{AmE}} - f_{\text{BrE}}$). This non-parametric test is well suited for
 259 skewed and zero-inflated distributions typical of large-scale language corpora (Dror et al., 2018). All
 260 corpora yielded p -values below 0.01, confirming significant deviation from dialectal parity.
 261

262 **Results & Analysis** Table 2 reports corpus-level dialectal distributions. All six datasets exhibit a
 263 statistically significant skew toward AmE, particularly in orthographic variants (e.g., *color* vs. *colour*),
 264 where AmE spellings dominate with margins exceeding 70%. Vocabulary-based differences (e.g.,
 265 *elevator* vs. *lift*) show a less extreme, but still consistent, AmE preference. These findings demonstrate
 266 that dialectal skew is not incidental but structurally embedded in the pretraining datasets that serve as
 267 the backbone of modern LLMs.
 268

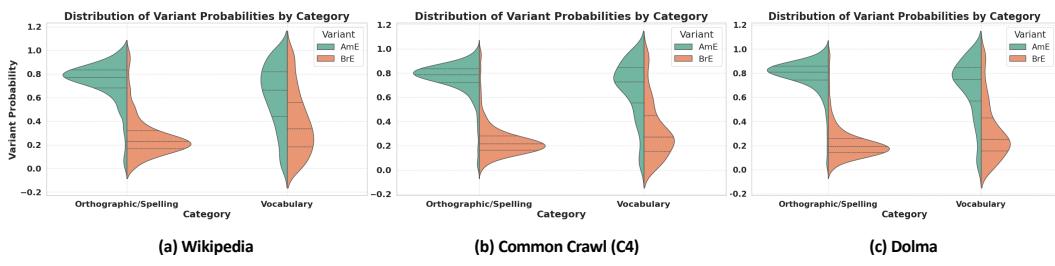


Figure 2: Violin plots showing the distribution of AmE vs. BrE variant probabilities across three pretraining corpora, stratified by linguistic category (orthographic vs. vocabulary). Probabilities are derived from corpus-specific frequencies for 1,813 word pairs, representing mutually exclusive dialectal usage. All distributions show a consistent skew toward AmE variants, especially in spelling patterns. Additional corpora are shown in Appendix (Figure 6).

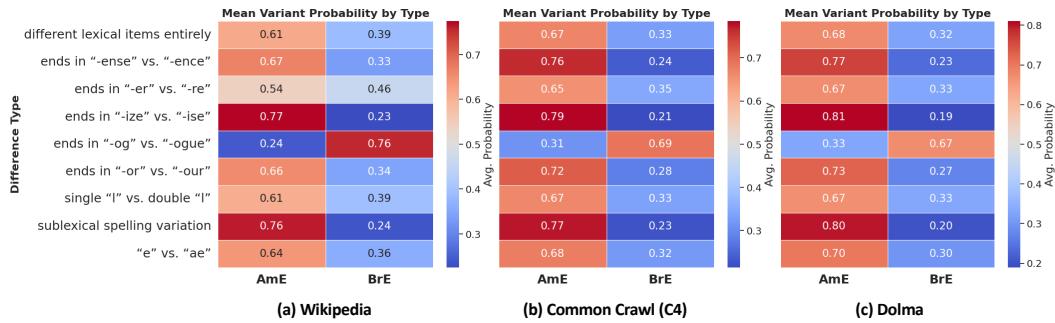


Figure 3: Average probability of observing AmE or BrE variants across word pairs, grouped by linguistic difference type and visualized for three pretraining corpora. Probabilities are computed by normalizing variant frequencies within each pair and averaging across each category, which includes orthographic and vocabulary-based differences. Each cell shows the mean probability for a variant type, with darker shades indicating stronger corpus-level preference. Results consistently reveal a skew toward American English. Additional corpora are presented in Appendix (Figure 7).

To further examine corpus-level dialectal skew, we analyze two complementary visualizations. Figure 2 presents violin plots of AmE vs. BrE variant probabilities stratified by linguistic category. These distributions reveal more pronounced skew for orthographic variants, which cluster toward AmE-preferred spellings. Vocabulary-based differences show slightly more balanced distributions, yet still lean toward AmE variants. Figure 3 further decomposes these trends across *ten* subcategories (e.g., *-ize* vs. *-ise*, *-og* vs. *-ogue*). While most categories reveal dominant AmE preference, one notable exception is the *-og* vs. *-ogue* group, where usage is comparatively balanced. This can be attributed to enduring usage of British spellings such as *catalogue* and *dialogue* in American academic and formal contexts (Neumann, 2023).

Key Takeaway: These results empirically substantiate the presence of dialectal skew in foundational LLM corpora that may propagate into tokenization preferences and model outputs (RQ2 and RQ3).

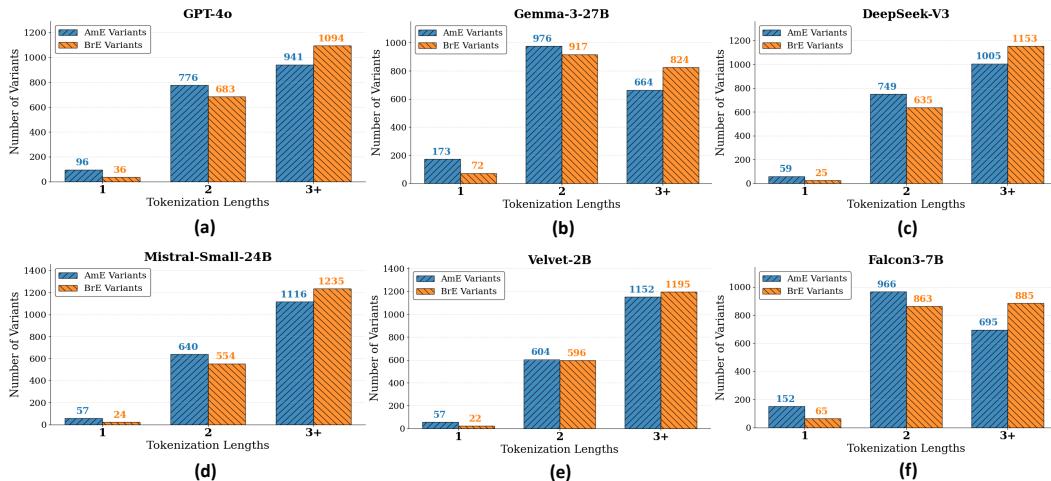
6 RQ2: QUANTIFYING REPRESENTATION IN REGIONAL TOKENIZERS

Tokenization is a foundational yet underexamined component of the LLM pipeline (Ali et al., 2024), with potential to introduce dialectal skew before any model inference or generation occurs. This research question probes whether subword tokenizers, particularly those developed in diverse geopolitical contexts (e.g., USA, Europe, China, and postcolonial regions), encode American and British English variants with equal efficiency in practice.

We hypothesize that tokenizers may encode implicit dialectal preferences due to imbalances in pretraining corpora, vocabulary construction, or regional design goals. If AmE variants are encoded with fewer subword splits than BrE counterparts, it implies latent favoritism toward AmE forms, affecting fluency, latency, token budget, long-context handling, and lexical preferences (Petrov et al., 2023; Ahia et al., 2023), even when the underlying corpora are dialectally balanced.

324
325
326
327
328
329
330
331 Table 3: Fertility scores for AmE and BrE variants across a diverse set of tokenizers, segmented by
332 orthographic and vocabulary-based differences. Lower fertility indicates more efficient tokenization.
333 Δ_o and Δ_v represent the relative gap between AmE and BrE forms. Highlighted **bold** and underlined
334 values denote the best and second-best results. Region-specific tokenizers show varying degrees of
335 dialectal asymmetry. All differences are statistically significant with p -value < 0.01 based on the
336 Wilcoxon signed-rank test, except for Velvet-2B in the orthographic category, marked with \dagger .
337
338
339

Tokenizers	Origin Country	Model Access	Vocab Size	Orthographic			Vocabulary		
				AmE (USA)	BrE (UK)	Δ_o	AmE (USA)	BrE (UK)	Δ_v
GPT-4	USA (USA)	🔒	100K	2.73	2.86	↑ 4.76 %	2.27	2.64	↑ 16.30 %
GPT-4o	USA (USA)	🔒	200K	2.65	2.77	↑ 4.53 %	2.21	2.57	↑ 16.29 %
Llama-3.3-70B	USA (USA)	🔓	128K	2.72	2.85	↑ 4.78 %	2.27	2.63	↑ 15.86 %
Gemma-3-27B	USA (USA)	🔓	262K	2.40	2.53	↑ 5.42 %	2.02	2.35	↑ 16.34 %
DeepSeek-V3	China (CN)	🔓	128K	2.71	2.80	↑ 3.32 %	2.37	2.67	↑ 12.66 %
Mistral-Small-24B	France (FR)	🔓	131K	2.81	2.89	↑ 2.85 %	2.45	2.79	↑ 13.88 %
StableLM-2-1.6B	UK (UK)	🔓	100K	2.73	2.86	↑ 4.76 %	2.27	2.64	↑ 16.30 %
Velvet-2B	Italy (IT)	🔓	127K	2.90	2.88	↓ 0.69 % \dagger	2.40	2.72	↑ 13.33 %
Falcon3-7B	UAE (AE)	🔓	131K	<u>2.44</u>	<u>2.56</u>	↑ 4.92 %	<u>2.03</u>	<u>2.41</u>	↑ 18.72 %



356
357 Figure 4: Granularity analysis of tokenization lengths for AmE and BrE variants across six tokenizers.
358 Each subplot shows the count of variant pairs split into 1, 2, or 3+ subwords. BrE variants consistently
359 exhibit more 3+ segmentations, indicating less efficient tokenization (other tokenizers in Figure 8).

360
361 **Methodology** To assess representational parity at the tokenization layer, we analyze how fairly
362 publicly available regional tokenizers encode AmE–BrE lexical variants. We adopt *fertility*, defined
363 as the average number of subword tokens per word, as our core diagnostic; following its widespread
364 use in evaluating tokenization efficiency (Rust et al., 2021; Ahia et al., 2023; Ali et al., 2024). Lower
365 fertility indicates higher encoding efficiency, while disparities in fertility between dialectal variants
366 reflect representational asymmetries. Parity is achieved when fertility values are comparable across
367 the AmE and BrE forms of each pair.

368 However, fertility captures only a mean-level view. To obtain a more granular picture, we compute
369 the full *token-length distribution* for each tokenizer, reflecting how frequently words are split into 1,
370 2, 3, or more subword units. We refer to this distributional diagnostic as *granularity*. Unlike fertility,
371 granularity reveals long-tail behavior, highlighting how often tokenizers produce excessive fragmen-
372 tation, especially for dialect-specific forms. It also offers insight into how subword vocabularies
373 allocate their finite capacity across dialects.

374 **Results & Analysis** Table 3 and Figure 4 reveal consistent asymmetries in how regional tokenizers
375 encode dialectal variants. Across all models, British forms yield higher fertility (i.e., are tokenized
376 into more subwords), than their American counterparts. This disparity is more pronounced for
377 vocabulary-based differences (up to $\Delta_v = 18.72\%$). Orthographic differences show smaller but
378 systematic gaps (Δ_o ranging from 2.85% to 5.42%).

378 Tokenizers developed outside the USA, particularly in Europe (Mistral, Velvet) and China (DeepSeek),
 379 exhibit improved BrE coverage. Velvet (Italy) uniquely favors BrE orthographic forms ($\Delta_o =$
 380 -0.69%), while DeepSeek (China) shows the lowest vocabulary skew ($\Delta_v = 12.66\%$). DeepSeek
 381 also demonstrates a relatively balanced pattern across variants, which suggests the possibility of
 382 balanced exposure to dialects², or reflects potential differences in pretraining corpora. Gemma
 383 achieves the lowest overall fertility across both dialects due to its large vocabulary size (262K),
 384 suggesting that controlled vocabulary expansion, when guided by dialect-aware corpora, can improve
 385 overall dialectal representation. Granularity patterns in Figure 4 further corroborate these trends. BrE
 386 variants are consistently overrepresented in the 3+ token bin across tokenizers. Falcon and Gemma
 387 tokenize more compactly, reducing excessive fragmentation, especially in the long-tail bins. Notably,
 388 StableLM (UK) mirrors GPT-4 in its asymmetries (also fertility scores in Table 3) due to direct
 389 tokenizer reuse, illustrating the risks of transplanting tokenizers without regional adaptation.
 390

Key Takeaway: These findings expose a consistent yet underexplored layer of dialectal skew embedded within tokenizer design. They highlight the need for dialect-sensitive vocabulary allocation strategies and caution against blindly adopting pretrained tokenizers (Section 8).

394 7 RQ3: EVALUATING DIALECTAL PREFERENCES IN LLM GENERATION

395 Our goal is to evaluate dialectal preferences in LLM generations by assessing whether outputs
 396 align with AmE or BrE. To this end, we introduce DIALIGN, a novel scoring method that aims
 397 to capture commonly preferred lexical, grammatical, structural, stylistic, and multi-word contrasts.
 398 Given a question and a model-generated response, the objective is to *estimate* the dialectal alignment
 399 of the response rather than its factual correctness. DIALIGN is simple, dynamic, and training-
 400 free, leveraging distributional evidence and therefore applicable across diverse contexts, including
 401 pretraining data audits and the filtering of both existing corpora and synthetic data (Section 8).
 402

403 7.1 DIALIGN: DIALECTAL ALIGNMENT SCORE

404 DIALIGN is a frequency-driven scoring function that *estimates* the alignment of a text toward AmE
 405 or BrE using historical corpus statistics. For a given input x , it computes $(P_{\text{AmE}}, P_{\text{BrE}})$, interpreted as
 406 alignment probabilities with $P_{\text{AmE}} + P_{\text{BrE}} = 1$. The procedure consists of *four* stages:
 407

408 **n-gram Extraction.** We extract contiguous n -grams of input to capture grammatical, structural,
 409 stylistic, and multi-word contrasts. For a tokenized input $x = (t_1, \dots, t_N)$, let $\mathcal{G}(x)$ denote all
 410 contiguous n -grams of length $2 \leq n \leq 5$:

$$411 \mathcal{G}(x) = \bigcup_{n=2}^5 \{ g = (t_i, \dots, t_{i+n-1}) \mid 1 \leq i \leq N - n + 1 \}.$$

412 To reduce topical and function-word artifacts, we discard any $g \in \mathcal{G}(x)$ that (i) contains a named
 413 entity (person, organization, location), or (ii) consists exclusively of stopwords.
 414

415 **Frequency Lookup.** For each $g \in \mathcal{G}(x)$, we query the Google Books Ngram corpus⁵ to obtain
 416 normalized average yearly frequencies $f_{\text{AmE}}(g)$ and $f_{\text{BrE}}(g)$ over a period $[y_{\min}, y_{\max}]$, reflecting
 417 forms mostly used or commonly preferred in AmE and BrE. If either frequency is zero, g is discarded.
 418

419 **Signed Divergence per n-gram.** Define the log-ratio

$$420 \text{LR}(g) = \log_2 \left(\frac{f_{\text{AmE}}(g)}{f_{\text{BrE}}(g)} \right).$$

421 Positive values indicate AmE preference, negative values BrE preference, and $\text{LR}(g) = 0$ indicates
 422 no dialectal signal. To down-weight ambiguous n -grams, we introduce a base divergence weight:
 423

$$424 \delta(g) = \frac{|f_{\text{AmE}}(g) - f_{\text{BrE}}(g)|}{f_{\text{AmE}}(g) + f_{\text{BrE}}(g)} \in [0, 1].$$

425
 426 ⁵<https://books.google.com/ngrams/>, which provides frequency distributions from large-scale historical
 427 corpora, grouped into AmE and BrE, and capturing both canonical variants and broader structural contrasts.
 428

432
 433 Table 4: Dialectal preferences of LLMs on Natural Questions (*formal*) and
 434 ELI5 (*informal*) domains. We report percentages of AmE under default
 435 English and British English (en-GB) prompts, with mean AmE confidence
 436 scores in brackets. AmE is the dominant default, though non-U.S. models
 437 and informal domains show greater BrE uptake. **Bold** marks the lowest
 438 AmE percentage in each column; underlined marks the second-lowest.
 439

440 LLMs	441 Origin Country	442 Natural Questions [formal]		443 ELI5 [informal]	
		444 Default English (AmE ^{Default})	445 British English (AmE ^{BrE})	446 Default English (AmE ^{Default})	447 British English (AmE ^{BrE})
GPT-4o	USA (🇺🇸)	79.00% [0.81]	45.33% [0.77]	77.00% [0.82]	<u>34.67%</u> [0.78]
Gemini-2.0-flash	USA (🇺🇸)	76.00% [0.83]	51.00% [0.79]	75.33% [0.82]	42.33% [0.80]
Claude-3.7-sonnet	USA (🇺🇸)	75.67% [0.85]	<u>42.33%</u> [0.80]	73.33% [0.86]	37.67% [0.78]
Llama-3.3-70B	USA (🇺🇸)	74.67% [0.82]	47.33% [0.78]	69.00% [0.79]	<u>30.00%</u> [0.76]
Gemma-3-27B	USA (🇺🇸)	69.33% [0.81]	45.67% [0.78]	<u>68.33%</u> [0.83]	38.00% [0.78]
DeepSeek-V3	China (🇨🇳)	74.67% [0.82]	41.67% [0.78]	73.33% [0.84]	40.47% [0.76]
Mistral-Small-24B	France (🇫🇷)	73.67% [0.81]	48.00% [0.75]	72.33% [0.82]	38.67% [0.76]
StableLM-2-1.6B	UK (🇬🇧)	74.00% [0.79]	69.67% [0.78]	73.33% [0.77]	67.00% [0.77]
Velvet-2B	Italy (🇮🇹)	<u>72.91%</u> [0.80]	69.33% [0.81]	71.00% [0.80]	67.67% [0.80]
Falcon3-7B	UAE (🇦🇪)	73.67% [0.80]	66.00% [0.79]	<u>66.00%</u> [0.81]	63.33% [0.77]

448 We then apply a lexicon-based boost using the variant lexicon \mathcal{D} (Section 4):

$$449 \quad w(g) = \begin{cases} \delta(g) \cdot \beta & \text{if } g \cap \mathcal{D} \neq \emptyset, \\ 450 \quad \delta(g) & \text{otherwise,} \end{cases}$$

451 where $\beta > 1$ is a boosting constant that favors dialect-diagnostic n -grams.

452 **Aggregation and Normalization.** Partition $\mathcal{G}(x)$ by the sign of $\text{LR}(g)$:

$$453 \quad S_{\text{AmE}} = \sum_{\substack{g \in \mathcal{G}(x) \\ \text{LR}(g) > 0}} \text{LR}(g) \cdot w(g), \quad S_{\text{BrE}} = \sum_{\substack{g \in \mathcal{G}(x) \\ \text{LR}(g) < 0}} |\text{LR}(g)| \cdot w(g).$$

454 These are normalized to probabilities:

$$455 \quad P_{\text{AmE}} = \frac{S_{\text{AmE}}}{S_{\text{AmE}} + S_{\text{BrE}}}, \quad P_{\text{BrE}} = \frac{S_{\text{BrE}}}{S_{\text{AmE}} + S_{\text{BrE}}}.$$

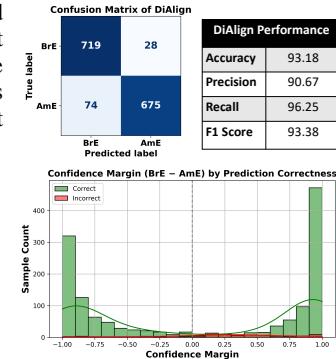
456 Finally, an input x is classified by majority alignment:

$$457 \quad \hat{y}(x) = \arg \max_{d \in \{\text{AmE}, \text{BrE}\}} P_d.$$

458 Full implementation details are given in Appendix C, and Appendix D provides an illustrative, step-
 459 by-step walkthrough with parallel passages highlighting contrasts in spelling, vocabulary, grammar,
 460 and style, reflecting forms mostly used or preferred in each variety.

461 **Meta-evaluation of DiAlign** To validate DiALIGN, we assembled 1,500 short news-style texts
 462 balanced across AmE and BrE (750 each), drawn from HuffPost U.S. News and BBC England
 463 sources (see Appendix E for details). On this benchmark, DiALIGN achieves 93.2% accuracy, 90.7%
 464 precision, 96.3% recall, and an F1 score of 93.4, as shown in Figure 5. An ablation study (Table 5)
 465 shows that divergence weighting and boosting provide complementary gains, with the largest drop
 466 observed when both are removed. The confidence margin distribution in Figure 5 indicates that correct
 467 predictions are mostly made with high certainty, while errors cluster near the decision boundary.

468 **Experimental Setup** We assess dialectal preferences in open-domain QA across two registers:
 469 *formal* (Natural Questions (NQ) (Kwiatkowski et al., 2019)) and *informal* (ELI5 (Fan et al., 2019)).
 470 To avoid lexical priming, we discard questions containing any AmE or BrE variants. For each
 471 question, we elicit two generations under the language conditions *English* and *British English* (en-
 472 GB). Alignment is then estimated with DiALIGN, which produces $(P_{\text{AmE}}, P_{\text{BrE}})$ and assigns the
 473 dialect via arg max (see Section 7.1). We report both the percentages of AmE-classified generations
 474 and the mean AmE alignment confidence P_{AmE} (shown in brackets) in Table 4, denoted $\text{AmE}^{\text{Default}}$ for
 475 the English prompt and AmE^{BrE} for the British English control. Full details of the datasets, filtering,
 476 prompt template (Figure 11), model list, and decoding parameters are provided in Appendix F.



477 Figure 5: Meta-evaluation of Di-
 478 ALIGN. Performance is shown via
 479 confusion matrix, confidence margin
 480 distribution, and summary met-
 481 rrics (Acc, Precision, Recall, F1).

486 **Results & Analysis** As shown in Table 4, AmE is the dominant generative default. Under the
 487 default English condition, most models produce 65–80% AmE outputs often with high confi-
 488 dence (> 0.80). Even when explicitly prompted with British English (en-GB), AmE persists,
 489 rarely dropping below 40%. U.S.-developed models show the strongest AmE preferences, while
 490 non-U.S. models shift slightly more toward BrE, reflecting the influence of pretraining corpora and
 491 tokenizer design [see RQ1 (§5) and RQ2 (§6)]. Notably, Gemma achieves relatively higher BrE
 492 alignment, likely aided by its large 262K vocabulary, as discussed in RQ2 (§6).

493 Dialectal skew also varies by domain. In NQ (formal/encyclopedic), AmE dominates, with BrE
 494 prompts producing only partial shifts. In contrast, ELI5 (informal/conversational) shows greater
 495 BrE uptake, with models like LLaMA-3 dropping to $\sim 30\%$ AmE under en-GB, likely reflecting its
 496 social media-oriented training data. This indicates that conversational registers provide more lexical
 497 flexibility, whereas formal contexts reinforce standardized AmE norms embedded in pretraining
 498 data [RQ1 (§5)]. The persistence of AmE even under BrE prompting aligns with the hypothesis of a
 499 latent English subspace (Wendler et al., 2024; Zhao et al., 2024); our findings suggest this subspace
 500 is structurally AmE dominant, creating a gravitational pull that resists surface-level dialectal steering.

501 **Key Takeaway:** AmE is the entrenched generative default across LLMs, persisting even under
 502 BrE prompts. BrE uptake is stronger in informal domains but limited in formal ones, revealing
 503 *structural biases* shaped jointly by pretraining data [RQ1 (§5)] and tokenizer design [RQ2 (§6)].
 504 This raises inclusivity concerns, as users expecting BrE norms (e.g., in education, journalism, or
 505 institutional contexts) may encounter outputs subtly misaligned with their linguistic expectations.

506 8 DISCUSSION & RECOMMENDATIONS

509 **Dialectal Skew and Broader Implications.** The dialectal skew observed in LLMs likely extends
 510 beyond linguistic variation, reflecting how pretraining data can embed broader cultural tendencies.
 511 By privileging AmE, models may carry forward its norms, values, and worldviews; shaping which
 512 knowledge is legitimized and which practices are marginalized. This resonates with broader critiques
 513 that LLMs can amplify hegemonic perspectives encoded in training corpora (Bender et al., 2021).
 514 Such patterns suggest that dialectal bias intersects with epistemic and political asymmetries, raising
 515 important considerations for technical AI governance and Sovereign AI initiatives (Reuel et al., 2025).

516 **Balancing Pretraining Data for Improved Dialectal Representation.** Dialectal skew is partly
 517 rooted in the construction of pretraining corpora [RQ1 (§5)]. Large web-scale datasets such as
 518 Common Crawl (C4) and Dolma (Figure 10) often include metadata such as source URLs, which can
 519 be leveraged to enrich dialectal coverage for World Englishes that build on BrE, such as Canadian
 520 or Indian English (e.g., .ca, .in). For instance, BrE coverage can be increased by selectively
 521 sampling from .uk domains. When naturally occurring data are scarce, synthetic data generation
 522 may be considered (Liu et al., 2024b); however, such generations risk defaulting to AmE. In this
 523 setting, DiALIGN provides a safeguard by verifying whether synthetic samples align with BrE before
 524 inclusion (§7.1), thereby supporting balanced and representative corpus design. These pretraining
 525 data can be used to continue pretraining base models, improving dialectal representation in LLMs.

526 **Dialect-Sensitive Tokenizer Design.** Another source of bias arises from reusing existing tokenizers
 527 without addressing dialectal asymmetries [RQ2 (§6)]. Current vocabularies disproportionately favor
 528 AmE variants, structurally skewing generation. A practical remedy is dialect-sensitive vocabulary
 529 extension: using our AmE–BrE lexicon and granularity-based diagnostics to identify BrE tokens
 530 absent from the base tokenizer and injecting them via controlled vocabulary expansion (Tejaswi et al.,
 531 2024). *We acknowledge and discuss the study’s limitations and some future directions in Appendix J.*

533 9 CONCLUSION

535 This paper presents the first systematic audit of dialectal asymmetries across the LLM development
 536 pipeline. By triangulating evidence from pretraining corpora, tokenizer behavior, and generative
 537 outputs, we show that AmE emerges as the default and BrE is consistently disadvantaged, revealing
 538 how digital dominance manifests as structural bias. Interpreted through a holistic postcolonial lens,
 539 these findings highlight risks of linguistic homogenization and epistemic injustice, and motivate
 balanced corpora, dialect-sensitive tokenizers, and alignment for inclusive language technologies.

ETHICS STATEMENT

This work examines dialectal asymmetries in LLMs, focusing on American and British English through a postcolonial lens. It does not involve human subjects, personal data, or sensitive attributes. All datasets analyzed are publicly available corpora (e.g., Common Crawl, Wikipedia; Appendix G) and were used solely for research purposes. The curated AmE–BrE lexicon was derived from publicly accessible sources (Table 7) and will be released for non-commercial research under a CC BY-NC-SA 4.0 license⁶, containing no personal or proprietary material.

While our analysis is explicitly restricted to English, we acknowledge that “wordhood” is a language-specific construct and that many languages lack clear orthographic word boundaries or segment linguistic units in very different ways. We therefore view this work as an English-specific instantiation of our framework; extensions to other languages will need to adapt segmentation assumptions to local linguistic norms rather than imposing a Western-centric notion of words.

The ethical relevance of this research lies in documenting and quantifying structural linguistic biases that privilege American English as the *de facto* norm in LLM development. Such biases risk perpetuating epistemic injustice and linguistic homogenization in global AI deployment. Our aim is constructive: by exposing these asymmetries, we provide tools (e.g., DIALIGN) and evidence to support more inclusive, transparent, and dialect-aware language technologies. No harmful applications are proposed, and all methodological artifacts were designed for responsible auditing. In constructing DIALIGN, we explicitly excluded named entities (e.g., personal names, organizations, and locations) to avoid privacy or reputational risks. Also, limitations of our study are discussed in Appendix J.

REPRODUCIBILITY STATEMENT

We have made substantial efforts to ensure the reproducibility of our results. The sources used for curating the AmE–BrE lexicon are presented in Table 7, while the typology of variants and the classification scheme are documented in Appendix B and are also shared in the supplementary material. All six pretraining corpora analyzed are publicly available, with references and HuggingFace links provided in Appendix G, together with a detailed description of our preprocessing pipeline in Appendix I. The implementation details of DiALIGN, including meta-evaluation procedures, are presented in Appendix C and Appendix E, and the experimental setup for assessing dialectal preferences in LLM generation is provided in Appendix F. The code, preprocessing scripts, resources, and test samples are all included in the supplementary material, with a cleaner release version to be made available upon paper acceptance.

REFERENCES

Team Acolad. British, american, international: Different types of english. <https://www.acolad.com/en/services/translation/types-english-language.html>, September 2020. Accessed April 26, 2025.

Orevaoghene Ahia, Sachin Kumar, Hila Gonen, Jungo Kasai, David Mortensen, Noah Smith, and Yulia Tsvetkov. Do all languages cost the same? tokenization in the era of commercial language models. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 9904–9923, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.614. URL <https://aclanthology.org/2023.emnlp-main.614/>.

Mehdi Ali, Michael Fromm, Klaudia Thellmann, Richard Rutmann, Max Lübbingering, Johannes Leveling, Katrin Klug, Jan Ebert, Niclas Doll, Jasper Buschhoff, Charvi Jain, Alexander Weber, Lena Jurkschat, Hammam Abdelwahab, Chelsea John, Pedro Ortiz Suarez, Malte Ostendorff, Samuel Weinbach, Rafet Sifa, Stefan Kesselheim, and Nicolas Flores-Herr. Tokenizer choice for LLM training: Negligible or crucial? In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 3907–3924, Mexico City, Mexico, June 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.247. URL <https://aclanthology.org/2024.findings-naacl.247/>.

⁶<https://creativecommons.org/licenses/by-nc-sa/4.0/>

594 Haozhe An and Rachel Rudinger. Nichelle and nancy: The influence of demographic attributes
 595 and tokenization length on first name biases. In Anna Rogers, Jordan Boyd-Graber, and Naoaki
 596 Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for Computational
 597 Linguistics (Volume 2: Short Papers)*, pp. 388–401, Toronto, Canada, July 2023. Association for
 598 Computational Linguistics. doi: 10.18653/v1/2023.acl-short.34. URL <https://aclanthology.org/2023.acl-short.34/>.

600 Anthropic. Model card and evaluations for claude models. <https://www-cdn.anthropic.com/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226/Model-Card-Claude-2.pdf>, 2023. Accessed
 601 April 27, 2025.

602

603 Paul Baker. *American and British English: Divided by a Common Language?* Cambridge Uni-
 604 versity Press, Cambridge, 2017. ISBN 9781107088863. URL <https://www.cambridge.org/9781107088863>. Corpus-based analysis of historical and contemporary variation between British
 605 and American English.

606

607 Shabnam Behzad, Amir Zeldes, and Nathan Schneider. To ask LLMs about English grammaticality,
 608 prompt them in a different language. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen
 609 (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 15622–15634,
 610 Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/
 611 v1/2024.findings-emnlp.916. URL <https://aclanthology.org/2024.findings-emnlp.916/>.

612

613 Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
 614 dangers of stochastic parrots: Can language models be too big? In *Proceedings of the 2021 ACM
 615 Conference on Fairness, Accountability, and Transparency*, FAccT '21, pp. 610–623, New
 616 York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
 617 10.1145/3442188.3445922. URL <https://doi.org/10.1145/3442188.3445922>.

618

619 Homi K. Bhabha. *The Location of Culture*. Routledge, London, 1994. ISBN 9780415016353. doi:
 620 10.4324/9780203820551. URL <https://doi.org/10.4324/9780203820551>.

621

622 Su Lin Blodgett, Lisa Green, and Brendan O'Connor. Demographic dialectal variation in social
 623 media: A case study of African-American English. In Jian Su, Kevin Duh, and Xavier Carreras
 624 (eds.), *Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing*,
 625 pp. 1119–1130, Austin, Texas, November 2016. Association for Computational Linguistics. doi:
 626 10.18653/v1/D16-1120. URL <https://aclanthology.org/D16-1120/>.

627

628 Su Lin Blodgett, Johnny Wei, and Brendan O'Connor. Twitter Universal Dependency parsing for
 629 African-American and mainstream American English. In Iryna Gurevych and Yusuke Miyao (eds.),
 630 *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume
 631 1: Long Papers)*, pp. 1415–1425, Melbourne, Australia, July 2018. Association for Computational
 632 Linguistics. doi: 10.18653/v1/P18-1131. URL <https://aclanthology.org/P18-1131/>.

633

634 Rita Calabrese, J. K. Chambers, and Gerhard Leitner (eds.). *Variation and Change in Postcolonial
 635 Contexts*. Cambridge Scholars Publishing, Newcastle upon Tyne, UK, 1 edition, 2015. ISBN 978-
 636 1-4438-7611-7. URL <https://www.cambridgesscholars.com/product/978-1-4438-7611-7>.

637

638 Andreas Chari, Sean MacAvaney, and Iadh Ounis. On the effects of regional spelling conventions in
 639 retrieval models. In *Proceedings of the 46th International ACM SIGIR Conference on Research
 640 and Development in Information Retrieval*, SIGIR '23, pp. 2220–2224, New York, NY, USA, 2023.
 641 Association for Computing Machinery. ISBN 9781450394086. doi: 10.1145/3539618.3592030.
 642 URL <https://doi.org/10.1145/3539618.3592030>.

643

644 David Crystal. *English as a Global Language*. Cambridge University Press, Cambridge, UK, 2 edition,
 645 2003. ISBN 9780521530323. doi: 10.1017/CBO9780511486999. URL <https://www.cambridge.org/core/books/english-as-a-global-language/690D300092A3B5E4733677FCC9A42E98>.
 646 Second edition with updated discussions on the global spread of English and its sociolinguistic
 647 implications.

648

649 Dorottya Demszky, Devyani Sharma, Jonathan Clark, Vinodkumar Prabhakaran, and Jacob Eisenstein.
 650 Learning to recognize dialect features. In Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer,
 651 Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty, and Yichao

648 Zhou (eds.), *Proceedings of the 2021 Conference of the North American Chapter of the Association*
 649 *for Computational Linguistics: Human Language Technologies*, pp. 2315–2338, Online, June
 650 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.nacl-main.184. URL
 651 <https://aclanthology.org/2021.nacl-main.184/>.

652
 653 Hannah Devinney, Jenny Björklund, and Henrik Björklund. Theories of “gender” in nlp bias research.
 654 In *Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency*, FAccT
 655 ’22, pp. 2083–2102, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
 656 9781450393522. doi: 10.1145/3531146.3534627. URL <https://doi.org/10.1145/3531146.3534627>.

658 Jesse Dodge, Maarten Sap, Ana Marasović, William Agnew, Gabriel Ilharco, Dirk Groeneveld,
 659 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
 660 colossal clean crawled corpus. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and
 661 Scott Wen-tau Yih (eds.), *Proceedings of the 2021 Conference on Empirical Methods in Natural*
 662 *Language Processing*, pp. 1286–1305, Online and Punta Cana, Dominican Republic, November
 663 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.98. URL
 664 <https://aclanthology.org/2021.emnlp-main.98/>.

665 Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The hitchhiker’s guide to testing
 666 statistical significance in natural language processing. In Iryna Gurevych and Yusuke Miyao (eds.),
 667 *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume*
 668 *1: Long Papers)*, pp. 1383–1392, Melbourne, Australia, July 2018. Association for Computational
 669 Linguistics. doi: 10.18653/v1/P18-1128. URL <https://aclanthology.org/P18-1128/>.

671 Yanai Elazar, Akshita Bhagia, Ian Helgi Magnusson, Abhilasha Ravichander, Dustin Schwenk, Alane
 672 Suhr, Evan Pete Walsh, Dirk Groeneveld, Luca Soldaini, Sameer Singh, Hannaneh Hajishirzi,
 673 Noah A. Smith, and Jesse Dodge. What’s in my big data? In *The Twelfth International Conference*
 674 *on Learning Representations*, 2024. URL <https://openreview.net/forum?id=RvfPnOkPV4>.

675 Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5:
 676 Long form question answering. In Anna Korhonen, David Traum, and Lluís Màrquez (eds.),
 677 *Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics*, pp.
 678 3558–3567, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
 679 v1/P19-1346. URL <https://aclanthology.org/P19-1346/>.

681 Anjalie Field, Su Lin Blodgett, Zeerak Waseem, and Yulia Tsvetkov. A survey of race, racism,
 682 and anti-racism in NLP. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.),
 683 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and*
 684 *the 11th International Joint Conference on Natural Language Processing (Volume 1: Long*
 685 *Papers)*, pp. 1905–1925, Online, August 2021. Association for Computational Linguistics. doi:
 686 10.18653/v1/2021.acl-long.149. URL <https://aclanthology.org/2021.acl-long.149/>.

687 Eve Fleisig, Genevieve Smith, Madeline Bossi, Ishita Rustagi, Xavier Yin, and Dan Klein. Linguistic
 688 bias in ChatGPT: Language models reinforce dialect discrimination. In Yaser Al-Onaizan, Mohit
 689 Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods*
 690 *in Natural Language Processing*, pp. 13541–13564, Miami, Florida, USA, November 2024.
 691 Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.750. URL <https://aclanthology.org/2024.emnlp-main.750/>.

693 Negar Foroutan, Clara Meister, Debit Paul, Joel Niklaus, Sina Ahmadi, Antoine Bosselut, and Rico
 694 Sennrich. Parity-aware byte-pair encoding: Improving cross-lingual fairness in tokenization, 2025.
 695 URL <https://arxiv.org/abs/2508.04796>.

697 Wikimedia Foundation. Wikimedia downloads – wikipedia dump archive, 2024. URL <https://dumps.wikimedia.org>. Accessed: April 11, 2025.

700 Miranda Fricker. *Epistemic Injustice: Power and the Ethics of Knowing*. Oxford University Press,
 701 06 2007. ISBN 9780198237907. doi: 10.1093/acprof:oso/9780198237907.001.0001. URL
<https://doi.org/10.1093/acprof:oso/9780198237907.001.0001>.

702 S. Galan. The most spoken languages worldwide in 2025. <https://www.statista.com/statistics/266808/the-most-spoken-languages-worldwide/>, April 2025. Accessed May 5, 2025.

703

704

705 Jack Gallifant, Shan Chen, Pedro José Ferreira Moreira, Nikolaj Munch, Mingye Gao, Jackson Pond, Leo Anthony Celi, Hugo Aerts, Thomas Hartvigsen, and Danielle Bitterman. Language models are surprisingly fragile to drug names in biomedical benchmarks. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 12448–12465, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.726. URL <https://aclanthology.org/2024.findings-emnlp.726>.

706

707

708

709

710

711

712

713 Bruno Gonçalves, Lucía Loureiro-Porto, José J. Ramasco, and David Sánchez. Mapping the americanization of english in space and time. *PLOS ONE*, 13(5):1–15, 05 2018. doi: 10.1371/journal.pone.0197741. URL <https://doi.org/10.1371/journal.pone.0197741>.

714

715

716 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, and 542 others. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

717

718

719

720

721

722 Tahmid Hasan, Abhik Bhattacharjee, Md. Saiful Islam, Kazi Mubashir, Yuan-Fang Li, Yong-Bin Kang, M. Sohel Rahman, and Rifat Shahriyar. XL-sum: Large-scale multilingual abstractive summarization for 44 languages. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, pp. 4693–4703, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-acl.413. URL <https://aclanthology.org/2021.findings-acl.413>.

723

724

725

726

727

728 Paula Helm, Gábor Bella, Gertraud Koch, and Fausto Giunchiglia. Diversity and language technology: how language modeling bias causes epistemic injustice. *Ethics and Information Technology*, 26(1):8, January 2024. ISSN 1572-8439. doi: 10.1007/s10676-023-09742-6. URL <https://doi.org/10.1007/s10676-023-09742-6>.

729

730

731

732

733 Valentin Hofmann, Pratyusha Ria Kalluri, Dan Jurafsky, and Sharese King. Ai generates covertly racist decisions about people based on their dialect. *Nature*, 633(8028):147–154, September 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07856-5. URL <https://doi.org/10.1038/s41586-024-07856-5>.

734

735

736

737 Faye Holt, William Held, and Diyi Yang. Perceptions of language technology failures from South Asian English speakers. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 4067–4081, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.241. URL <https://aclanthology.org/2024.findings-acl.241>.

738

739

740

741

742 Bar Iluz, Tomasz Limisiewicz, Gabriel Stanovsky, and David Mareček. Exploring the impact of training data distribution and subword tokenization on gender bias in machine translation. In Jong C. Park, Yuki Arase, Baotian Hu, Wei Lu, Derry Wijaya, Ayu Purwarianti, and Adila Alfa Krisnadhi (eds.), *Proceedings of the 13th International Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 885–896, Nusa Dua, Bali, November 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.ijcnlp-main.57. URL <https://aclanthology.org/2023.ijcnlp-main.57>.

743

744

745

746

747

748

749

750 Anna Jørgensen, Dirk Hovy, and Anders Søgaard. Learning a POS tagger for AAVE-like language. In Kevin Knight, Ani Nenkova, and Owen Rambow (eds.), *Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 1115–1120, San Diego, California, June 2016. Association for Computational Linguistics. doi: 10.18653/v1/N16-1130. URL <https://aclanthology.org/N16-1130>.

751

752

753

754

755 Aditya Joshi, Raj Dabre, Diptesh Kanodia, Zhuang Li, Haolan Zhan, Gholamreza Haffari, and Doris Dippold. Natural language processing for dialects of a language: A survey. *ACM Comput. Surv.*,

756 57(6), February 2025. ISSN 0360-0300. doi: 10.1145/3712060. URL <https://doi.org/10.1145/3712060>.

757

758

759 Svetlana Kiritchenko and Saif Mohammad. Examining gender and race bias in two hundred sentiment
760 analysis systems. In Malvina Nissim, Jonathan Berant, and Alessandro Lenci (eds.), *Proceedings
761 of the Seventh Joint Conference on Lexical and Computational Semantics*, pp. 43–53, New Orleans,
762 Louisiana, June 2018. Association for Computational Linguistics. doi: 10.18653/v1/S18-2005.
763 URL <https://aclanthology.org/S18-2005/>.

764

765 Abhinandan Kulal, Habeeb Ur Rahiman, Harinakshi Suvarna, N. Abhishek, and Sahana Dinesh.
766 Enhancing public service delivery efficiency: Exploring the impact of ai. *Journal of Open
767 Innovation: Technology, Market, and Complexity*, 10(3):100329, 2024. ISSN 2199-8531.
768 doi: <https://doi.org/10.1016/j.joitmc.2024.100329>. URL <https://www.sciencedirect.com/science/article/pii/S2199853124001239>.

769

770 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
771 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
772 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
773 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the
774 Association for Computational Linguistics*, 7:452–466, 2019. doi: 10.1162/tacl_a_00276. URL
775 <https://aclanthology.org/Q19-1026/>.

776

777 William Labov. *Sociolinguistic Patterns*. Conduct & communication. University of Pennsylvania
778 Press, Philadelphia, 1972. ISBN 9780812286571. URL https://books.google.ca/books?id=7_gByAEACAAJ.

779

780 William Labov. *The Social Stratification of English in New York City*. Cambridge University
781 Press, Cambridge, 2 edition, 2006. ISBN 9780521528054. URL <https://www.cambridge.org/9780521528054>. Second edition with updated findings on sociolinguistic variation and
782 methodology.

783

784 Jinqi Lai, Wensheng Gan, Jiayang Wu, Zhenlian Qi, and Philip S. Yu. Large language models in law: A
785 survey. *AI Open*, 5:181–196, 2024. ISSN 2666-6510. doi: <https://doi.org/10.1016/j.aiopen.2024.09.002>. URL <https://www.sciencedirect.com/science/article/pii/S2666651024000172>.

785

786

787 Pietro Lesci, Clara Meister, Thomas Hofmann, Andreas Vlachos, and Tiago Pimentel. Causal
788 estimation of tokenisation bias. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and
789 Mohammad Taher Pilehvar (eds.), *Proceedings of the 63rd Annual Meeting of the Association
790 for Computational Linguistics (Volume 1: Long Papers)*, pp. 28325–28340, Vienna, Austria, July
791 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1374. URL <https://aclanthology.org/2025.acl-long.1374/>.

792

793

794 Lei Liao. The analysis of influence and cause of british english on american english and new zealand
795 english. *SHS Web of Conferences*, 168:03006, 2023. doi: 10.1051/shsconf/202316803006. URL
796 <https://doi.org/10.1051/shsconf/202316803006>.

797

798 Yuri Lin, Jean-Baptiste Michel, Erez Aiden Lieberman, Jon Orwant, Will Brockman, and Slav Petrov.
799 Syntactic annotations for the Google Books NGram corpus. In Min Zhang (ed.), *Proceedings of
800 the ACL 2012 System Demonstrations*, pp. 169–174, Jeju Island, Korea, July 2012. Association for
801 Computational Linguistics. URL <https://aclanthology.org/P12-3029/>.

802

803 Rosina Lippi-Green. *English with an Accent: Language, Ideology and Discrimination in
804 the United States*. Routledge, New York, 2 edition, 2012. ISBN 9780415559102. doi:
805 10.4324/9780203348802. URL <https://www.taylorfrancis.com/books/mono/10.4324/9780203348802/english-accent-rosina-lippi-green>. Second edition, revised and ex-
806 panded.

807

808 Jiacheng Liu, Sewon Min, Luke Zettlemoyer, Yejin Choi, and Hannaneh Hajishirzi. Infini-gram:
809 Scaling unbounded n-gram language models to a trillion tokens. In *First Conference on Language
Modeling*, 2024a. URL <https://openreview.net/forum?id=u2vAyMeLMm>.

810 Rubo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
 811 Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on synthetic
 812 data. In *First Conference on Language Modeling*, 2024b. URL <https://openreview.net/forum?id=OJaWBhh61C>.

813

814 R Liz. How british english and american english are different. <https://ranking-articles.com/british-english-and-american-english/>, February 2024. Accessed April 26, 2025.

815

816

817 Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny
 818 Zhou, Jason Wei, Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide
 819 to training data: Measuring the effects of data age, domain coverage, quality, & toxicity. In
 820 Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of
 821 the North American Chapter of the Association for Computational Linguistics: Human Lan-
 822 guage Technologies (Volume 1: Long Papers)*, pp. 3245–3276, Mexico City, Mexico, June
 823 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.179. URL
 824 <https://aclanthology.org/2024.naacl-long.179>.

825

826 Shayne Longpre, Nikhil Singh, Manuel Cherep, Kushagra Tiwary, Joanna Materzynska, William
 827 Brannon, Robert Mahari, Naana Obeng-Marnu, Manan Dey, Mohammed Hamdy, Nayan Saxena,
 828 Ahmad Mustafa Anis, Emad A. Alghamdi, Vu Minh Chien, Da Yin, Kun Qian, Yizhi LI, Minnie
 829 Liang, An Dinh, Shrestha Mohanty, Deividas Mataciunas, Tobin South, Jianguo Zhang, Ariel N.
 830 Lee, Campbell S. Lund, Christopher Klamm, Damien Sileo, Diganta Misra, Enrico Shippole,
 831 Kevin Klyman, Lester James Validad Miranda, Niklas Muennighoff, Seonghyeon Ye, Seungone
 832 Kim, Vipul Gupta, Vivek Sharma, Xuhui Zhou, Caiming Xiong, Luis Villa, Stella Biderman, Alex
 833 Pentland, Sara Hooker, and Jad Kabbara. Bridging the data provenance gap across text, speech,
 834 and video. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 835 <https://openreview.net/forum?id=G5DziesYxL>.

836 Rohit Madan and Mona Ashok. Ai adoption and diffusion in public administration: A systematic
 837 literature review and future research agenda. *Government Information Quarterly*, 40(1):101774,
 838 2023. ISSN 0740-624X. doi: <https://doi.org/10.1016/j.giq.2022.101774>. URL <https://www.sciencedirect.com/science/article/pii/S0740624X22001101>.

839

840 Marc Marone and Benjamin Van Durme. Data portraits: Recording foundation model training data.
 841 In *Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
 842 Track*, 2023. URL <https://openreview.net/forum?id=ZrNRBm0zwE>.

843

844 James Milroy and Lesley Milroy. *Authority in Language: Investigating Standard English*. Rout-
 845 ledge, London, 3 edition, 1999. ISBN 9780415174138. doi: 10.4324/9780203124666. URL
 846 <https://doi.org/10.4324/9780203124666>. Third edition with expanded discussion on lan-
 847 guage standardization and ideological constructs of correctness.

848 Rishabh Misra. News category dataset, 2022. URL <https://arxiv.org/abs/2209.11429>.

849

850 Amanda Myntti, Erik Henriksson, Veronika Laippala, and Sampo Pyysalo. Register always matters:
 851 Analysis of LLM pretraining data through the lens of language variation. In *Second Conference on
 852 Language Modeling*, 2025. URL <https://openreview.net/forum?id=FqXXtSZWEZ>.

853

854 Roberto Navigli, Simone Conia, and Björn Ross. Biases in large language models: Origins, inventory,
 855 and discussion. *J. Data and Information Quality*, 15(2), June 2023. ISSN 1936-1955. doi:
 856 10.1145/3597307. URL <https://doi.org/10.1145/3597307>.

857 Leo Neumann. Catalogue or catalog – british vs. american english. <https://www.bachelorprint.com/au/british-english-vs-american-english/catalogue-or-catalog/>, September
 858 2023. Accessed April 27, 2025.

859

860 Thao Nguyen, Yang Li, Olga Golovneva, Luke Zettlemoyer, Sewoong Oh, Ludwig Schmidt, and Xian
 861 Li. Recycling the web: A method to enhance pre-training data quality and quantity for language
 862 models. In *Second Conference on Language Modeling*, 2025. URL <https://openreview.net/forum?id=1kjhbDz3rn>.

863

864 Elizabeth Nielsen, Christo Kirov, and Brian Roark. Spelling convention sensitivity in neural lan-
 865 guage models. In Andreas Vlachos and Isabelle Augenstein (eds.), *Findings of the Associa-*
 866 *tion for Computational Linguistics: EACL 2023*, pp. 1334–1346, Dubrovnik, Croatia, May
 867 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-eacl.98. URL
 868 <https://aclanthology.org/2023.findings-eacl.98/>.

869 Richard Nordquist. English language: History, definition, and examples. <https://www.thoughtco.com/what-is-the-english-language-1690652>, July 2024. Accessed April 25, 2025.

870

871

872 Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Bo Liu, Aastha Jhunjhunwala, Zhilin Wang,
 873 Mostofa Patwary, Mohammad Shoeybi, and Bryan Catanzaro. Data, data everywhere: A guide for
 874 pretraining dataset construction. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.),
 875 *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
 876 10671–10695, Miami, Florida, USA, November 2024. Association for Computational Linguistics.
 877 doi: 10.18653/v1/2024.emnlp-main.596. URL <https://aclanthology.org/2024.emnlp-main.596/>.

878

879 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Hamza Alobeidli,
 880 Alessandro Cappelli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
 881 dataset for falcon LLM: Outperforming curated corpora with web data only. In *Thirty-seventh*
 882 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2023.
 883 URL <https://openreview.net/forum?id=kM5eGcdCzq>.

884

885 Ani Petrosyan. Languages most frequently used for web content as of february
 886 2025, by share of websites. <https://www.statista.com/statistics/262946/most-common-languages-on-the-internet/>, February 2025. Accessed April 26, 2025.

887

888 Aleksandar Petrov, Emanuele La Malfa, Philip Torr, and Adel Bibi. Language model tokenizers
 889 introduce unfairness between languages. In *Thirty-seventh Conference on Neural Information*
 890 *Processing Systems*, 2023. URL <https://openreview.net/forum?id=78yDLKi95p>.

891

892 Robert Phillipson. *Linguistic Imperialism*, pp. 1–7. John Wiley & Sons, Ltd, 2018. ISBN
 893 9781405198431. doi: <https://doi.org/10.1002/9781405198431.wbeal0718.pub2>. URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/9781405198431.wbeal0718.pub2>.

894

895 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
 896 Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
 897 text-to-text transformer. *J. Mach. Learn. Res.*, 21(1), January 2020. ISSN 1532-4435. URL
 898 <https://dl.acm.org/doi/abs/10.5555/3455716.3455856>.

899

900 Anka Reuel, Benjamin Bucknall, Stephen Casper, Timothy Fist, Lisa Soder, Onni Aarne, Lewis
 901 Hammond, Lujain Ibrahim, Alan Chan, Peter Wills, Markus Anderljung, Ben Garfinkel, Lennart
 902 Heim, Andrew Trask, Gabriel Mukobi, Rylan Schaeffer, Mauricio Baker, Sara Hooker, Irene
 903 Solaiman, Sasha Luccioni, Nitarshan Rajkumar, Nicolas Moës, Jeffrey Ladish, David Bau, Paul
 904 Bricman, Neel Guha, Jessica Newman, Yoshua Bengio, Tobin South, Alex Pentland, Sanmi Koyejo,
 905 Mykel Kochenderfer, and Robert Trager. Open problems in technical AI governance. *Transactions*
 906 *on Machine Learning Research*, 2025. ISSN 2835-8856. URL <https://openreview.net/forum?id=1n04qFMiS0>. Survey Certification.

907

908 Phillip Rust, Jonas Pfeiffer, Ivan Vulić, Sebastian Ruder, and Iryna Gurevych. How good is your
 909 tokenizer? on the monolingual performance of multilingual language models. In Chengqing
 910 Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting*
 911 *of the Association for Computational Linguistics and the 11th International Joint Conference*
 912 *on Natural Language Processing (Volume 1: Long Papers)*, pp. 3118–3135, Online, August
 913 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.243. URL
 914 <https://aclanthology.org/2021.acl-long.243/>.

915

916 Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. The risk of racial bias in
 917 hate speech detection. In Anna Korhonen, David Traum, and Lluís Márquez (eds.), *Proceedings*
 918 *of the 57th Annual Meeting of the Association for Computational Linguistics*, pp. 1668–1678,
 919 Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1163.
 920 URL <https://aclanthology.org/P19-1163/>.

918 Edgar W. Schneider. *Postcolonial English: Varieties around the World*. Cambridge Approaches to
 919 Language Contact. Cambridge University Press, 2007.
 920

921 Tariq Shahzad, Tehseen Mazhar, Muhammad Usman Tariq, Wasim Ahmad, Khmaies Ouahada,
 922 and Habib Hamam. A comprehensive review of large language models: Issues and solutions in
 923 learning environments. *Discover Sustainability*, 6(1):27, 2025. ISSN 2662-9984. doi: 10.1007/
 924 s43621-025-00815-8. URL <https://doi.org/10.1007/s43621-025-00815-8>.

925 Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Author,
 926 Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Jha,
 927 Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, Jacob Morrison, Niklas
 928 Muennighoff, Aakanksha Naik, Crystal Nam, Matthew Peters, Abhilasha Ravichander, Kyle
 929 Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Evan Walsh,
 930 Luke Zettlemoyer, Noah Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
 931 and Kyle Lo. Dolma: an open corpus of three trillion tokens for language model pretraining
 932 research. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 933 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 934 15725–15788, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 935 10.18653/v1/2024.acl-long.840. URL <https://aclanthology.org/2024.acl-long.840/>.

936 Charlie Southwell. The changing face of software localization. <https://altuent.com/insights/the-changing-face-of-software-localisation/>, October 2021. Accessed: September 07,
 937 2025.

938

939 Atula Tejaswi, Nilesh Gupta, and Eunsol Choi. Exploring design choices for building language-
 940 specific LLMs. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the*
 941 *Association for Computational Linguistics: EMNLP 2024*, pp. 10485–10500, Miami, Florida,
 942 USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 943 findings-emnlp.614. URL <https://aclanthology.org/2024.findings-emnlp.614/>.

944 Leon Tikly. Language-in-education policy in low-income, postcolonial contexts: Towards a social
 945 justice approach. *Comparative Education*, 52(3):408–425, 2016. ISSN 0305-0068. doi: 10.1080/
 946 03050068.2016.1185272. URL <https://doi.org/10.1080/03050068.2016.1185272>.

947

948 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 949 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 950 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 951 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 952 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 953 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 954 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 955 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 956 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 957 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 958 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 959 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
 960 2023. URL <https://arxiv.org/abs/2307.09288>.

961 Peter Trudgill. *Sociolinguistics: An Introduction to Language and Society*. Penguin Linguis-
 962 tics. Penguin Books, London, 4 edition, 2000. ISBN 9780140289213. URL <https://www.penguinrandomhouse.com/books/333184/sociolinguistics-by-peter-trudgill/>. Re-
 963 vised edition with updated examples and expanded discussion of global Englishes.

964

965 Maurice Weber, Daniel Y Fu, Quentin Gregory Anthony, Yonatan Oren, Shane Adams, Anton
 966 Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, Ben Athiwaratkun,
 967 Rahul Chalamala, Kezhen Chen, Max Ryabinin, Tri Dao, Percy Liang, Christopher Re, Irina Rish,
 968 and Ce Zhang. Redpajama: an open dataset for training large language models. In *The Thirty-eight*
 969 *Conference on Neural Information Processing Systems Datasets and Benchmarks Track*, 2024.
 970 URL <https://openreview.net/forum?id=lnuXaRpww>.

971 Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in
 972 English? on the latent language of multilingual transformers. In Lun-Wei Ku, Andre Martins,

972 and Vivek Srikanth (eds.), *Proceedings of the 62nd Annual Meeting of the Association for*
 973 *Computational Linguistics (Volume 1: Long Papers)*, pp. 15366–15394, Bangkok, Thailand,
 974 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.820.
 975 URL <https://aclanthology.org/2024.acl-long.820/>.

976 Alexander Wettig, Aatmik Gupta, Saumya Malik, and Danqi Chen. Qurating: selecting high-quality
 977 data for training language models. In *Proceedings of the 41st International Conference on Machine*
 978 *Learning*, ICML’24. JMLR.org, 2024.

980 Alexander Wettig, Kyle Lo, Sewon Min, Hannaneh Hajishirzi, Danqi Chen, and Luca Soldaini.
 981 Organize the web: Constructing domains enhances pre-training data curation. In *Forty-second*
 982 *International Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=boSqwdvJVC>.

984 Hao Xu, Jiacheng Liu, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi. Infini-gram mini:
 985 Exact n-gram search at the Internet scale with FM-index. In Christos Christodoulopoulos, Tanmoy
 986 Chakraborty, Carolyn Rose, and Violet Peng (eds.), *Proceedings of the 2025 Conference on*
 987 *Empirical Methods in Natural Language Processing*, pp. 24955–24980, Suzhou, China, November
 988 2025. Association for Computational Linguistics. ISBN 979-8-89176-332-6. doi: 10.18653/v1/
 989 2025.emnlp-main.1268. URL <https://aclanthology.org/2025.emnlp-main.1268/>.

990 Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do
 991 large language models handle multilingualism? In A. Globerson, L. Mackey, D. Bel-
 992 grave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), *Advances in Neural Infor-*
 993 *mation Processing Systems*, volume 37, pp. 15296–15319. Curran Associates, Inc., 2024. doi:
 994 10.5220/079017-0489. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/1bd359b32ab8b2a6bbafa1ed2856cf40-Paper-Conference.pdf.

996 Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
 997 Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
 998 movies and reading books. In *Proceedings of the 2015 IEEE International Conference on Computer*
 999 *Vision (ICCV)*, ICCV ’15, pp. 19–27, USA, 2015. IEEE Computer Society. ISBN 9781467383912.
 1000 doi: 10.1109/ICCV.2015.11. URL <https://doi.org/10.1109/ICCV.2015.11>.

1002 Caleb Ziemer, Jiaao Chen, Camille Harris, Jessica Anderson, and Diyi Yang. VALUE: Understanding
 1003 dialect disparity in NLU. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 1004 *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume*
 1005 *1: Long Papers)*, pp. 3701–3720, Dublin, Ireland, May 2022. Association for Computational
 1006 Linguistics. doi: 10.18653/v1/2022.acl-long.258. URL <https://aclanthology.org/2022.acl-long.258/>.

1008 Caleb Ziemer, William Held, Jingfeng Yang, Jwala Dhamala, Rahul Gupta, and Diyi Yang. Multi-
 1009 VALUE: A framework for cross-dialectal English NLP. In Anna Rogers, Jordan Boyd-Graber,
 1010 and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association for*
 1011 *Computational Linguistics (Volume 1: Long Papers)*, pp. 744–768, Toronto, Canada, July
 1012 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.44. URL
 1013 <https://aclanthology.org/2023.acl-long.44/>.

1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

Supplementary Material: Appendices

A BRIEF HISTORY

The divergence between British and American English is the outcome of both deliberate acts of standardization and broader sociopolitical forces. A formalized “British standard” crystallized with Samuel Johnson’s 1755 dictionary, which codified spelling conventions and consolidated authority in literary and educational practice. In contrast, an “American standard” emerged with Noah Webster’s 1828 dictionary, which advocated simplified and distinct spellings as a marker of cultural independence from Britain (Baker, 2017). These codifications established the orthographic contrasts that remain central to dialectal variation today.

The global dissemination of English was inseparable from British colonial expansion. Across Africa, Asia, the Caribbean, and the Pacific, British English became entrenched in governance, education, and law, often persisting as the official or de facto standard after independence. Today, it continues to hold normative prestige across much of the Commonwealth, underpins European Union institutions, and is actively promoted by the UK through initiatives such as the Oxford Dictionary, the British Council, and standardized assessments like IELTS. This trajectory is briefly illustrated in Figure 1, which depicts the mid-twentieth-century wave of decolonization, when many newly sovereign nations retained the linguistic imprint of British English in state institutions.

By contrast, American English spread primarily through twentieth-century cultural and economic influence, propelled by mass media, technological innovation, and global commerce (Crystal, 2003; Nordquist, 2024). It dominates digital communication and popular culture, positioning AmE as a de facto global norm. Importantly, the authority of both standards rests not on linguistic merit but on sociopolitical power and institutional reinforcement (Milroy & Milroy, 1999; Lippi-Green, 2012). This layered history explains why AmE and BrE continue to exert cultural and normative influence in different regions and underscores the sociolinguistic significance of examining dialectal alignment in modern foundation models for global inclusivity.

B DIALECTAL VARIANT GROUPING

To structure our set of 1,813 AmE–BrE word-variant pairs, we employ a deterministic, rule-based procedure that assigns each pair to exactly one of ten mutually exclusive groups, in descending order of precedence. These ten groups are further collapsed into three high-level categories: *Orthographic/Spelling*, *Vocabulary*, and *Uncategorized*.

Group Definitions. We classify each pair according to the first matching rule in the following list:

- **Group 1 (-or vs. -our):** suffix -or (AmE) \leftrightarrow suffix -our (BrE).
- **Group 2 (-ize vs. -ise):** suffix -ize (AmE) \leftrightarrow suffix -ise (BrE).
- **Group 3 (-er vs. -re):** suffix -er (AmE) \leftrightarrow suffix -re (BrE).
- **Group 4 (-og vs. -ogue):** suffix -og (AmE) \leftrightarrow suffix -ogue (BrE).
- **Group 5 (single “l” vs. double “ll”):** AmE single “l” \leftrightarrow BrE double “ll”.
- **Group 6 (-ense vs. -ence):** suffix -ense (AmE) \leftrightarrow suffix -ence (BrE).
- **Group 7 (ae vs. e):** BrE form contains “ae” where the AmE form replaces it with “e”.
- **Group 8 (same length, small edit):** pairs of equal length whose Levenshtein distance is 1–2 (i.e., minor sublexical shifts).
- **Group 9 (different words):** pairs whose lengths differ or whose edit distance exceeds 2 (i.e., entirely distinct lexical items).
- **Group 10 (miscellaneous):** all remaining pairs not captured by the above rules.

Category Assignment. We map each of the ten groups to one of three overarching categories:

- **Orthographic/Spelling (Groups 1–8):** These groups reflect systematic spelling alternations (e.g. “-or”/“-our”, “-ize”/“-ise”, double vs. single “l”, “ae” vs. “e”, etc.).
- **Vocabulary (Group 9):** True lexical substitutions (e.g. “elevator” vs. “lift”) in which the AmE and BrE forms share no orthographic root.

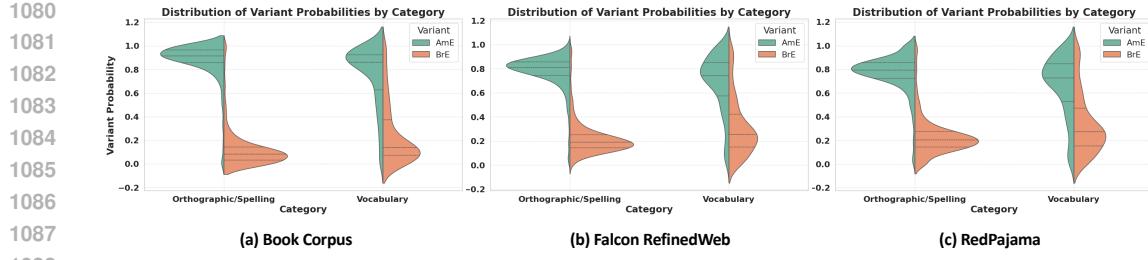


Figure 6: Violin plots showing the distribution of AmE vs. BrE variant probabilities across three pretraining corpora (a) Book Corpus, (b) Falcon RefinedWeb, and (c) RedPajama, stratified by linguistic category (orthographic vs. vocabulary). Probabilities are derived from corpus-specific frequencies for 1,813 word pairs, representing mutually exclusive dialectal usage. All distributions show a consistent skew toward AmE variants, especially in spelling patterns.

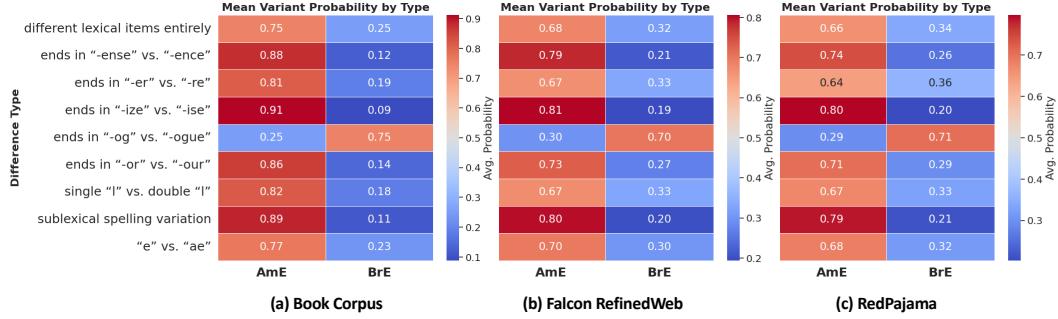


Figure 7: Average probability of observing AmE or BrE variants across word pairs, grouped by linguistic difference type and visualized for three pretraining corpora: (a) Book Corpus, (b) Falcon RefinedWeb, and (c) RedPajama. Probabilities are computed by normalizing variant frequencies within each pair and averaging across each category, which includes orthographic and vocabulary-based differences. Each cell shows the mean probability for a variant type, with darker shades indicating stronger corpus-level preference. Results consistently reveal a skew toward AmE.

- **Uncategorized (Group 10):** Exceptional or edge-case pairs that do not fit any of the above patterns.

This classification scheme is both exhaustive and mutually exclusive, ensuring robust coverage of our curated variant inventory. It provides a linguistically principled basis for analyzing American English (AmE) vs. British English (BrE) variants.

C IMPLEMENTATION DETAILS OF DIALIGN

We provide here the implementation details of the DIALIGN scoring procedure used to estimate American and British English alignment in model generations. The design emphasizes efficiency and robustness.

Parameterization. The key parameters of DIALIGN are as follows:

- **n-gram range:** $n \in \{2, 3, 4, 5\}$, enabling the capture of grammatical, structural, multi-word contrasts, and stylistic variation beyond isolated tokens while avoiding sparsity at higher orders. This range aligns with the Google Books Ngram corpus, which provides reliable statistics up to 5-grams.
- **Temporal range:** $[y_{\min}, y_{\max}] = [1950, 2022]$, balancing contemporary representativeness with sufficient historical depth to smooth short-term fluctuations.
- **Smoothing:** set to 0 to use raw frequency distributions. In practice, unsmoothed counts yield clearer discriminative signals for dialectal contrasts.

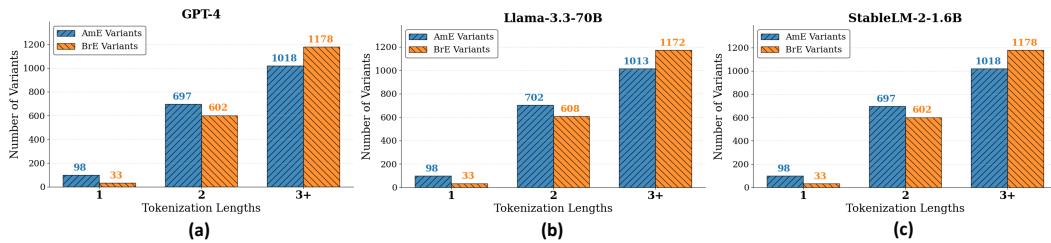


Figure 8: Granularity analysis of tokenization lengths for AmE and BrE variants across three regional tokenizers: (a) GPT-4 (b) Llama-3.3-70B, and (c) StableLM-2-1.6B. Each subplot shows the count of variant pairs split into 1, 2, or 3+ subwords. BrE variants consistently exhibit more 3+ segmentations, indicating finer-grained and less efficient tokenization.

- **Boosting factor:** $\beta = 1.5$, applied to lexicon-derived dialectal markers to amplify their influence in the alignment score.

While these parameter choices are principled, they are not unique. Alternative configurations of n -gram order, temporal window, smoothing, or boosting may yield different or improved performance. The present setup serves as a transparent, reproducible baseline that future work can refine or extend.

Frequency Lookup. Frequencies are collected dynamically via the Google Books Ngram API using the `requests` library, avoiding the need to download terabytes of raw corpus data (Lin et al., 2012), which is impractical in most academic settings. For each candidate n -gram, we query both American English (AmE, corpus ID 17) and British English (BrE, corpus ID 6), aggregating case-insensitive counts. The API returns normalized yearly frequencies (relative to the total number of tokens per year), which we average over the specified range, with exponential-backoff retries to guard against transient failures. To avoid repeated calls, we maintain a persistent n -gram cache on disk: once an $(n$ -gram, corpus) pair has been queried, subsequent samples reuse the cached value. This setup yields an online, efficient, and reproducible mechanism for alignment estimation.

Filtering. To reduce topical and functional noise, n -grams are excluded if they:

- contain named entities such as persons, organizations, or locations (e.g., “Barack Obama”, “New York”), detected using NLTK’s named entity recognition (NER) via chunking⁷, or
- consist solely of stopwords (e.g., “in the”, “and a”), identified using the NLTK stopword list.

This filtering step ensures that retained n -grams are stylistically and grammatically informative.

Overall, this procedure yields alignment scores that reflect grammatical and stylistic choices at the n -gram level while integrating informative priors from lexicon-based boosting. The design choices align with the broader methodological goals of capturing structural dialectal skew.

D WALKTHROUGH OF DIALIGN WITH ILLUSTRATIVE INPUT

To illustrate the operation of DIALIGN, we provide parallel input texts in American English (AmE) and British English (BrE). Figure 9 shows the two versions of the same passage, highlighting contrasts in orthography, vocabulary, syntax, and style. DIALIGN first segments the input into contiguous n -grams ($n = 2 \dots 5$), then in the frequency lookup stage queries Google Books N-grams (AmE corpus ID 17, BrE corpus ID 6) to obtain corpus frequencies. The aggregated evidence is finally normalized to return alignment probabilities ($P_{\text{AmE}}, P_{\text{BrE}}$).

The passages embed a wide spectrum of dialectal contrasts, reflecting forms that are mostly used or commonly preferred in one variety over the other:

- **Spelling:** *traveler* (AmE) / *traveller* (BrE), *organizing* (AmE) / *organising* (BrE), *realized* (AmE) / *realised* (BrE), *program* (AmE) / *programme* (BrE), *spilled* (AmE) / *spilt* (BrE).

⁷NLTK provides implementations for NER and stopword lists; see <https://www.nltk.org>

1188 “*The traveler was organizing notes in the lecture hall on the*
 1189 *weekend, and he realized he just ate, so he wasn’t hungry. The*
 1190 *team are winning, right? He stood in line for a cookie, learned the*
 1191 *result from the program, and dreamed of finishing by December 31,*
 1192 *2024. They suggested he go, though he must have already done the*
 1193 *work. At the train station, he spoke of having spilled his tea before*
 1194 *taking the elevator to the first floor. Later, his colleague said she*
 1195 *had gotten a new book while in college, ordered French fries with a*
 1196 *side of ketchup, wore a sweater over her shirt, and bought potato*
 1197 *chips at the grocery store. In the fall semester she lived on Main*
 1198 *Street near the gas station, took a math class in the parking lot*
 1199 *building, and always carried her cell phone in her purse.”*

American English (AmE)

“*The traveller was organising notes in the lecture theatre at the*
 weekend, and he realised he had just eaten, so he wasn’t hungry. The
 team are winning, aren’t they? He queued for a biscuit, learnt the
 result from the programme, and dreamt of finishing by 31 December
 2024. They suggested he should go, though he must have done the
 work already. At the railway station, he spoke of having spilt his tea
 before taking the lift to the ground floor. Later, his colleague said she
 had got a new book while at university, ordered chips with a side of
 tomato sauce, wore a jumper over her shirt, and bought crisps at the
 supermarket. In the autumn term she lived in High Street near the
 petrol station, took a maths course in the car park building, and
 always carried her mobile phone in her handbag.”

British English (BrE)

Google Books Ngram

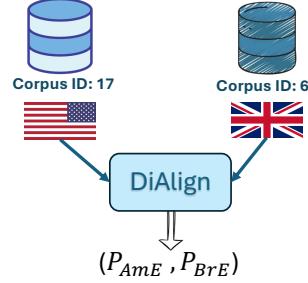


Figure 9: Illustrative walkthrough of DiALIGN. Parallel passages in AmE and BrE highlight contrasts in spelling, vocabulary, grammar, and style, reflecting forms mostly used or preferred in each variety. Frequencies are retrieved from the Google Books Ngram corpora (AmE: ID 17, BrE: ID 6), and DiALIGN outputs alignment probabilities ($P_{\text{AmE}}, P_{\text{BrE}}$).

- **Vocabulary:** *cookie (AmE) / biscuit (BrE), elevator (AmE) / lift (BrE), lecture hall (AmE) / lecture theatre (BrE), train station (AmE) / railway station (BrE).*
- **Verb morphology (past tense):** forms such as *dreamed (AmE) / dreamt (BrE), learned (AmE) / learnt (BrE), gotten (AmE) / got (BrE).*
- **Tense and aspect:** *I just ate (AmE, simple past) / I’ve just eaten (BrE, present perfect).*
- **Collective noun agreement:** *The team is winning (AmE) / The team are winning (BrE).*
- **Discourse markers:** *right? (AmE) / aren’t they? (BrE).*
- **Subjunctive usage:** *They suggested he go (AmE) / They suggested he should go (BrE).*
- **Auxiliary phrasing:** *must have already done (AmE) / must have done (BrE).*
- **Prepositional usage:** *on the weekend (AmE) / at the weekend (BrE).*
- **Date format:** *December 31, 2024 (AmE) / 31 December 2024 (BrE).*
- **Floor reference:** *first floor (AmE) / ground floor (BrE).*
- **Institutional idioms:** *in college (AmE) / at university (BrE), fall semester (AmE) / autumn term (BrE).*
- **Food collocations:** *French fries with a side of ketchup (AmE) / chips with a side of tomato sauce (BrE); potato chips at the grocery store (AmE) / crisps at the supermarket (BrE).*
- **Clothing collocations:** *wore a sweater (AmE) / wore a jumper (BrE).*
- **Transport and location idioms:** *on Main Street near the gas station (AmE) / in High Street near the petrol station (BrE); parking lot (AmE) / car park (BrE).*
- **Education phrases:** *took a math class (AmE) / took a maths course (BrE).*
- **Everyday objects:** *cell phone in her purse (AmE) / mobile phone in her handbag (BrE).*

By embedding orthographic, lexical, grammatical, and multi-word collocational contrasts in a unified passage, this walkthrough illustrates how DiALIGN leverages n -gram frequency divergences across $n = 2 \dots 5$ to capture dialectal alignment. The example highlights that the method accounts not only for single-word substitutions but also for structural and idiomatic usage patterns.

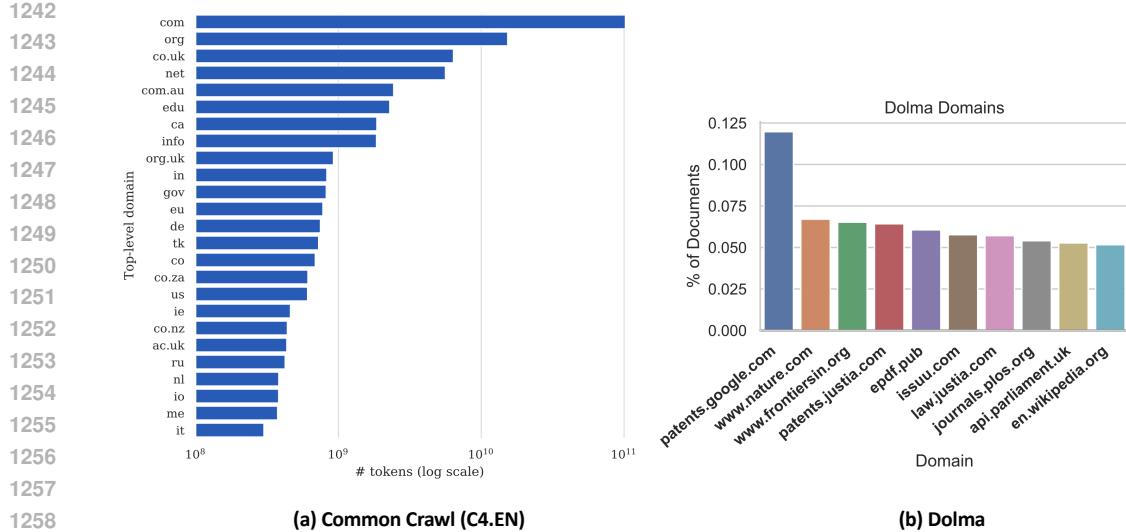


Figure 10: Domain distributions in two widely used pretraining corpora for LLMs. (a) Top-level domains in Common Crawl (C4.EN) (Raffel et al., 2020), showing heavy concentration in .com and .org with much lower representation of .co.uk, suggesting a potential AmE skew. (b) High-frequency domains in Dolma (Soldaini et al., 2024), reflecting a narrower, curated set of sources that is comparatively more balanced but remains predominantly U.S.-centric.

E DETAILS OF THE META-EVALUATION OF DIALIGN

To validate DIALIGN, we require texts that predominantly reflect American English (AmE) or British English (BrE) spelling, vocabulary, grammar, and other stylistic preferences. Since no standard dataset exists with explicit AmE–BrE annotations, we identified corpora where dialectal variation is strongly embedded in the source of the texts. These corpora serve as a reasonable proxy for meta-evaluating DIALIGN.

BrE Samples. For BrE, we draw from the XL-Sum dataset (Hasan et al., 2021), which contains abstractive summaries across multiple languages sourced from the BBC News website⁸. BBC is a UK-based outlet that predominantly adopts British spelling and stylistic conventions, making it an appropriate source for BrE texts. We focus on the English portion of the dataset. Each data entry includes an `id` field indicating the article identifier; we select those beginning with the prefix `uk-england-` to ensure regional specificity. From these entries, we use the `summary` field as our text sample and randomly sample 750 instances.

AmE Samples. For AmE, we use the News Category Dataset (Misra, 2022), which consists of headlines and short descriptions collected from HuffPost⁹ across multiple topical categories. As HuffPost is a U.S.-based news outlet, it predominantly employs American spelling and usage. We specifically extract texts from the category “U.S. NEWS”¹⁰. For each entry, we take the `short_description` field and randomly select 750 instances.

Dataset Statistics. This yields two balanced sets of 750 samples each, one from AmE sources and one from BrE sources, for a total of 1,500 samples. The average length of AmE samples is 34.4 words, while BrE samples average 24.7 words. The balanced design ensures comparability between the two groups while reflecting real-world stylistic preferences in their respective dialects.

Justification and Limitations. Although these datasets are not explicitly annotated for dialect, the provenance of the sources (HuffPost for AmE, BBC for BrE) provides strong dialectal signals in

⁸<https://huggingface.co/datasets/csebuetnlp/xlsum>

⁹<https://www.huffpost.com/>

¹⁰<https://huggingface.co/datasets/heegyu/news-category-dataset>

1296 Table 5: Ablation study of DIALIGN. We report classification performance (Accuracy, Precision,
 1297 Recall, F1 Score) and average confidence (Avg. Conf.) for AmE and BrE predictions. Removing
 1298 either the divergence weighting (DW) or boosting factor (BF) degrades performance, with the largest
 1299 drop when both are removed.

Ablations	Accuracy	Precision	Recall	F1 Score	Avg. Conf. (AmE)	Avg. Conf. (BrE)
DIALIGN (final)	93.18	90.67	96.25	93.38	0.84	0.91
– w/o Divergence Weight (DW)	92.25	89.29	95.98	92.52	0.77	0.85
– w/o Boosting Factor (BF)	92.25	89.29	95.98	92.52	0.82	0.89
– w/o Both (DW + BF)	91.31	88.13	95.45	91.65	0.75	0.83

1306 **Prompt template for RQ3: Evaluating Dialectal Preferences in LLM Generation**

1307 Answer the following question in {language}. Write a single, coherent
 1308 paragraph in plain text, using descriptive and open-ended language. Avoid
 1309 bullet points, lists, or formatting. Your response must be exactly
 1310 {WORD_LIMIT} words long—no more, no fewer. Count your words carefully.

1311 Question: {question}

1312 Figure 11: Prompt used to elicit model outputs under two language conditions. We set WORD_LIMIT=

1313 50 and vary {language} $\in \{\text{English, British English (en-GB)}\}$.

1314 spelling, vocabulary, and grammatical constructions. Using such domain-specific proxies allows us
 1315 to meta-evaluate DIALIGN in the absence of manually curated dialectal benchmarks. A limitation
 1316 of this approach is that domain effects—such as differences in journalistic style between BBC and
 1317 HuffPost—may introduce secondary variation beyond dialect. Nevertheless, the strong and systematic
 1318 orthographic, lexical, and grammatical signals in these sources make them reliable proxies for AmE
 1319 and BrE in our evaluation.

1320 **F DETAILS OF THE EXPERIMENTAL SETUP FOR RQ3**

1321 **Task and Objective.** We evaluate dialectal preferences of LLM generations in an open-domain
 1322 QA setting. Given a question, a model produces one short paragraph; the goal is to *estimate* the
 1323 dialectal alignment of the output (AmE vs. BrE), not its factual correctness. Alignment is measured
 1324 with DIALIGN, which outputs (P_{AmE} , P_{BrE}) and assigns the dialect via arg max (see Section 7.1).

1325 **Datasets.** We use two complementary QA corpora to span formal and informal registers:

- 1326 • **Natural Questions (NQ)** (Kwiatkowski et al., 2019)¹¹: real Google search questions paired
 1327 with Wikipedia answers; emphasizes formal, encyclopedic style.
- 1328 • **ELI5** (Fan et al., 2019)¹²: community QA from Reddit; answers are conversational and
 1329 descriptive; emphasizes everyday style.

1330 Together these provide a broad stylistic spectrum (formal + informal) for testing dialectal defaults.

1331 **Preprocessing and Sampling.** To mitigate noise and reduce lexical leakage from prompts, we
 1332 apply two filters:

- 1333 • **Length filter:** discard items with fewer than 5 words in the question or fewer than 30 words
 1334 in the gold answer. This ensures sufficient content for $n=2 \dots 5$ scoring and aligns with our
 1335 word-length constraint.

11¹¹<https://huggingface.co/datasets/sentence-transformers/natural-questions>

12¹²<https://huggingface.co/datasets/sentence-transformers/eli5>

1350
 1351 • **Variant-free questions:** remove questions containing any AmE or BrE lexical variants,
 1352 using the full dialectal variant corpus of 3,626 entries (see Section 4), to avoid priming the
 1353 output dialect.

1354 From the filtered pool, we uniformly sample 600 questions (300 from NQ and 300 from ELI5).

1355
 1356 **Prompting Protocol.** Each question is posed under two language settings: *English* and *British*
 1357 *English* (*en-GB*). The latter tests whether explicit British conditioning attenuates AmE defaults.
 1358 We fix WORD_LIMIT= 50 to standardize length across models and datasets while providing enough
 1359 context for bi- to 5-grams used by DIALIGN. The exact prompt is shown in Figure 11.

1360
 1361 **Models and Decoding Parameters.** We evaluate a range of open- and closed-source LLMs
 1362 spanning diverse geopolitical contexts (e.g., USA, Europe, China, UAE). To isolate prompt effects,
 1363 decoding is held constant across both language conditions:

$$1364 \text{temperature} = 0.0, \quad \text{top_p} = 1.0, \quad \text{max_tokens} = 512.$$

1365 These settings enable clean comparison of dialectal tendencies: *temperature*=0 (greedy) removes
 1366 sampling variance; *top_p*=1 disables nucleus filtering, keeping the model’s *full vocabulary and grammar*
 1367 available under both “English” and “British English (*en-GB*)” prompts; and *max_tokens*=512
 1368 prevents truncation of the 50-word target. With decoding fixed, any change in DiAlign scores is
 1369 attributable to the prompt’s dialectal conditioning rather than decoding noise or capacity limits.

1370
 1371 **Scoring with DIALIGN.** Each generated paragraph is segmented into contiguous *n*-grams
 1372 ($n=2 \dots 5$). We query Google Books N-grams (AmE: ID 17, BrE: ID 6) for *normalized* yearly
 1373 frequencies and aggregate evidence using signed log-ratios with bounded divergence weighting and a
 1374 lexicon-based boost (see Section 7.1). This yields ($P_{\text{AmE}}, P_{\text{BrE}}$) and a predicted dialect via arg max.

1375
 1376 **Zero-Signal Exclusions.** If both probabilities are zero, i.e., $(P_{\text{AmE}}, P_{\text{BrE}}) = (0, 0)$, we exclude the
 1377 item from summary statistics.¹³ Exclusion keeps reported rates focused on texts with measurable
 1378 evidence.

1379
 1380 **Outcome Measures.** For each dataset and language condition, we report (i) the percentage of
 1381 generations classified as AmE and (ii) the mean AmE alignment confidence to visualize decision
 1382 certainty. Our goal is to measure the default dialect of LLMs and, when prompted with British
 1383 English (*en-GB*), determine how much of the output still aligns with AmE.

1384 G DETAILS OF PRETRAINING DATASETS

1385 We audited six widely used pretraining corpora to assess dialectal skew between American and British
 1386 English (see Table 2). Below we briefly describe each dataset.

1387
 1388 • **BookCorpus** (Zhu et al., 2015): A collection of unpublished novels widely used in NLP pre-
 1389 training. It provides narrative-style English text, with approximately 74 million documents
 1390 and 1.28 billion tokens.¹⁴

1391 • **Wikipedia** (Foundation, 2024): Encyclopedic text from Wikipedia dumps, spanning diverse
 1392 domains with formal writing style. The version used contains 6.4 million documents and
 1393 4.3 billion tokens.¹⁵

1394 • **Common Crawl (C4)** (Raffel et al., 2020): A cleaned and deduplicated subset of Common
 1395 Crawl web pages, containing large-scale web text used in many LLMs. It includes 365
 1396 million documents and 156 billion tokens.¹⁶

1397
 1398
 1399 ¹³This case is empirically rare and arises when surviving *n*-grams lack reliable corpus evidence in both
 1400 dialects or when their weighted contributions cancel under divergence weighting, indicating insufficient dialectal
 1401 signal.

1402 ¹⁴<https://huggingface.co/datasets/bookcorpus/bookcorpus>

1403 ¹⁵<https://huggingface.co/datasets/wikimedia/wikipedia>

1404 ¹⁶<https://huggingface.co/datasets/allenai/c4>

Table 6: Word-length adherence across models in RQ3: Evaluating Dialectal Preferences in LLM Generation (Section 7). Each model was instructed to produce exactly 50 words per answer. The table reports average length, standard deviation, and range across Natural Questions (formal) and ELI5 (informal), under both default English and British English (en-GB) prompts. Closed-source models (🔒) generally stay close to the target, while open-weight models (🔓) exhibit larger variance.

LLMs	Model Access	Natural Questions (NQ) [formal]				ELI5 [informal]			
		Default English (%AmE ^{Default})		British English (%AmE ^{BR})		Default English (%AmE ^{Default})		British English (%AmE ^{BR})	
		#Words	Range	#Words	Range	#Words	Range	#Words	Range
1410	1411	1412	1413	1414	1415	1416	1417	1418	1419
GPT-4o	🔒	50.19 [1.75]	[46–57]	50.32 [1.61]	[45–56]	50.41 [1.60]	[47–55]	50.35 [1.53]	[46–55]
Gemini-2.0-flash	🔒	52.74 [2.71]	[46–60]	51.92 [2.89]	[45–61]	53.10 [2.62]	[47–61]	52.82 [2.95]	[44–60]
Claude-3.7-sonnet	🔒	45.25 [2.29]	[39–52]	45.49 [2.35]	[39–57]	47.70 [2.45]	[42–56]	47.38 [2.32]	[41–54]
Llama-3.3-70B	🔓	41.68 [7.12]	[16–50]	41.47 [7.44]	[18–50]	41.33 [7.83]	[21–50]	40.10 [8.48]	[18–51]
Gemma-3-27B	🔓	49.03 [2.82]	[42–58]	49.19 [2.64]	[44–61]	49.18 [2.84]	[43–60]	49.90 [2.74]	[44–58]
DeepSeek-V3	🔓	53.03 [4.13]	[48–102]	53.40 [5.10]	[47–103]	53.60 [4.66]	[48–98]	53.33 [4.97]	[4–96]
Mistral-Small-24B	🔓	51.44 [18.80]	[13–318]	50.18 [10.97]	[20–88]	57.26 [11.68]	[23–120]	56.78 [10.43]	[34–101]
StableLM-2-1.6B	🔓	82.94 [39.90]	[8–364]	74.33 [40.15]	[8–351]	96.82 [24.23]	[23–199]	92.64 [24.76]	[41–199]
Velvet-2B	🔓	47.07 [30.94]	[8–406]	44.56 [23.03]	[8–135]	65.48 [18.55]	[22–122]	63.10 [17.25]	[31–120]
Falcon3-7B	🔓	44.01 [10.87]	[18–83]	41.72 [10.45]	[19–83]	49.41 [9.47]	[25–80]	48.14 [9.39]	[23–91]

- **Falcon RefinedWeb** (Penedo et al., 2023): A large-scale web dataset developed for training Falcon models, built from Common Crawl with refined filtering and deduplication. It comprises 968 million documents and 600 billion tokens.¹⁷
- **RedPajama** (Weber et al., 2024): A curated reproduction of LLaMA training data sources, spanning books, code, academic papers, and forums. We used the 1T-token sampled version containing roughly 0.93 million documents and 1 billion tokens.¹⁸
- **Dolma** (Soldaini et al., 2024): A large, open-source, mixed-domain dataset created by AI2, combining books, code, papers, forums, and social media. We used the v1.6-sample subset, containing about 14.3 million documents and 10 billion tokens.¹⁹

H ANALYSIS OF WORD-LENGTH ADHERENCE

Although all models were prompted to generate exactly 50 words, Table 6 reveals systematic variation in adherence. Closed-source models such as GPT-4o and Gemini remain tightly clustered around the target ($SD \approx 2$, ranges $\approx 45\text{--}60$), demonstrating robust decoding control.

In contrast, several open-weight models (e.g., StableLM, Velvet-2B) deviate substantially, with ranges exceeding 300 words in some cases. These deviations reflect weaker alignment between decoding instructions and generation behavior, likely due to differences in fine-tuning objectives and training data coverage. Notably, the distribution of deviations is consistent across formal (NQ) and informal (ELI5) registers, indicating that instruction-following fidelity is more strongly tied to model architecture and alignment strategy than to domain.

Overall, while DiALIGN can still assess dialectal alignment on over- or under-length generations, strict word-length control remains a challenge for many open-weight models.

I PREPROCESSING PIPELINE FOR AUDITING PRETRAINING CORPORA

Before computing variant-specific distributions, we standardized all corpora through a consistent preprocessing pipeline to ensure comparability across datasets. The pipeline was designed to remove noise, enforce uniform text structure, and minimize artifacts that could confound dialectal counts. The steps were as follows:

¹⁷<https://huggingface.co/datasets/tiiuae/falcon-refinedweb>

¹⁸<https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T-Sample>

¹⁹<https://huggingface.co/datasets/allenai/dolma>

1458 First, all text was lowercased to eliminate case-based discrepancies in variant matching. HTML
 1459 tags, hyperlinks, and email addresses were stripped, as they typically represent metadata rather than
 1460 natural language. Non-ASCII characters were removed to focus the analysis on English orthography
 1461 and avoid spurious matches. To prevent hyphenated or slash-separated forms from obscuring token
 1462 boundaries (e.g., *well-being* or *and/or*), we replaced hyphens and slashes with whitespace. All
 1463 non-alphabetic characters, including punctuation and digits, were also replaced with whitespace,
 1464 leaving only alphabetic content. Finally, whitespace was normalized by collapsing multiple spaces
 1465 and line breaks into a single space, yielding a clean token sequence.

1466 This preprocessing pipeline ensured that AmE and BrE variants (as defined in our curated lexicon of
 1467 1,813 AmE–BrE pairs; see Section 4) were counted under consistent conditions across corpora.
 1468

1469 J LIMITATIONS & FUTURE DIRECTIONS

1470 While our work provides the first systematic audit of dialectal skew in LLMs, we acknowledge several
 1471 key limitations and suggest some future directions. We outline these below:
 1472

1473 **Dialect Focus.** Our analysis centers on AmE and BrE, two dominant postcolonial standard English
 1474 varieties with outsized institutional influence and well-documented contrasts (see Section 1 and
 1475 Section 3). This deliberate choice enables a controlled, high-precision comparison using clearly
 1476 distinguishable variant pairs. However, this scope does not directly include the wider spectrum of
 1477 World Englishes (e.g., Australian, Indian, and Nigerian) that are built on and largely inherit BrE, as
 1478 well as multilingual contexts where bias patterns may differ. In particular, any systematic privileging
 1479 of AmE over BrE is likely a lower bound on the challenges faced by postcolonial Englishes influenced
 1480 by BrE and by non-standard local varieties of BrE that were adopted under colonial rule. Our current
 1481 experiments do not directly model these varieties; instead, they provide a clear and reproducible
 1482 foundation for extending our triangulation methodology, (1) pretraining data audits, (2) tokenizer
 1483 representation, and (3) generative preference, to other dialects and languages in future work.
 1484

1485 **Curated Lexicon Coverage.** Our lexicon of 1,813 AmE–BrE pairs captures strict one-to-one
 1486 contrasts (see Section 4). Excluding many-to-one and one-to-many mappings and idiomatic multi-
 1487 word expressions improves precision and ensures consistency across analyses but reduces breadth.
 1488 Vocabulary-based variants constitute about 21% of the pairs, and only a small subset consists of cases
 1489 where part of speech or fine-grained context is likely to change interpretation; for these, we rely on
 1490 type-level counts rather than context-sensitive tagging, since computing POS over six pretraining
 1491 corpora (more than 770 billion tokens in total) would be infeasible in our academic setting. At this
 1492 scale, aggregate frequencies are expected to approximate overall dialectal preferences, but the lexicon
 1493 remains static and may miss emerging or domain-specific terms, so our analyses for RQ1 cannot flag
 1494 asymmetries beyond this predefined scope.
 1495

1496 **Domain and Prompt Scope.** Our response generation experiments focused on open-domain QA
 1497 with short (50-word) responses in two registers: *formal* (Natural Questions) and *informal* (ELI5). This
 1498 controlled setup enabled a clean comparison across styles but does not extend to dialogue, long-form
 1499 generation, or domain-specific contexts (e.g., legal, medical). Filtering out queries with explicit
 1500 dialect markers (e.g., *colour*, *centre*) avoided priming (see Section 7), improving internal validity
 1501 but leaving unexplored cases where user inputs contain dialectal cues. Real-world practices like
 1502 code-switching, mixed dialects, or creative writing may yield different outcomes, so generalizability
 1503 should be approached with caution.
 1504

1505 **Scalability of N-gram Analysis.** Conducting this study in an academic setting imposed storage
 1506 constraints. Consequently, for the pretraining data audit (RQ1), we relied on Hugging Face’s streaming
 1507 mode²⁰ to analyze massive corpora without local storage. For the generative evaluation (RQ3), which
 1508 requires the Google Ngram corpus for DIALIGN, we avoided hosting the reference dataset on local
 1509 disk by implementing a dynamic querying pipeline using the `requests` library coupled with persistent
 1510 on-disk caching (as detailed in Appendix C). While recent advancements like Infini-gram (Liu
 1511 et al., 2024a; Xu et al., 2025) enable efficient n-gram search over massive target corpora, applying
 1512

²⁰<https://huggingface.co/docs/datasets/en/stream>

1512 DiALIGN at the scale of pretraining data remains constrained by the *reference* side: querying the
 1513 Google Books API for the trillions of unique n-grams found in web-scale data is computationally
 1514 prohibitive. Future work with sufficient resources could combine such efficient indexing with a local
 1515 reference corpus to enable a fully granular dialectal audit of pretraining data.
 1516

1517 **Limitations of DiALIGN.** DiALIGN is a frequency-driven metric that relies on n-gram divergences
 1518 and curated boosts, so generic passages without distinctive markers may yield neutral or undefined
 1519 scores. We excluded such “zero-signal” cases (see Appendix F), though subtler stylistic cues (e.g.,
 1520 tone, syntax) may go undetected. Our meta-evaluation used BBC (BrE) and HuffPost (AmE) news
 1521 as proxies, which introduces possible style confounds beyond dialect. In addition, dependence on
 1522 Google Books n-grams ties the metric to written usage, which may underrepresent contemporary
 1523 internet discourse or emerging slang. Despite these caveats, DiALIGN achieved over 93% accuracy
 1524 on test data, demonstrating its value as a simple, dynamic, and training-free diagnostic, while leaving
 1525 room for refinement with modern corpora or extended linguistic features.
 1526

1527 K EXTENDED RELATED WORK

1529 **Pretraining data audits and curation.** Nearly all advanced model capabilities originate from
 1530 the scope and composition of pretraining data, motivating a growing body of work on auditing
 1531 and curation. A systematic “Pretrainer’s Guide” isolates the effects of data age, domain coverage,
 1532 quality, and toxicity on downstream generalization (Longpre et al., 2024). Complementary audits
 1533 highlight duplication, contamination, and low-quality artifacts in widely used corpora: *WIMBD*
 1534 exposes benchmark leakage and toxic segments in C4 and RedPajama (Elazar et al., 2024), while
 1535 *Data Portraits* propose efficient membership-testing tools for tracing model training data (Marone &
 1536 Durme, 2023). At a broader scale, the multimodal provenance gap has been documented, showing how
 1537 modern corpora for text, speech, and video disproportionately rely on Western-centric, web-crawled
 1538 sources (Longpre et al., 2025).
 1539

1540 Beyond audits, recent work develops strategies to improve data utility. Practical recipes have been
 1541 synthesized for constructing trillion-token datasets (Parmar et al., 2024). *QuRating* leverages LLM-
 1542 based pairwise judgments for data quality selection (Wettig et al., 2024). Other approaches emphasize
 1543 linguistic structure: register-aware sampling improves generalization across genres (Myntti et al.,
 1544 2025), while domain-based organization of web text enhances pretraining curation (Wettig et al.,
 1545 2025). Methods for sustaining scale, such as rewriting filtered-out content, show how recycling web
 1546 text can mitigate looming data shortages (Nguyen et al., 2025).
 1547

1548 Together, these studies underscore that beyond scale or raw token count, representational balance in
 1549 pretraining data is vital, not only in terms of quality and domain coverage, but also along dimensions
 1550 such as dialect, register, provenance, duplication, and licensing. Our audit of American versus British
 1551 English builds on this perspective by explicitly quantifying the relative distributions of AmE and BrE
 1552 across major pretraining datasets. In doing so, we frame dialectal representation as a corpus-level
 1553 property whose imbalances may propagate into tokenization disparities and, ultimately, influence the
 1554 generative preferences of LLMs.
 1555

1556 **Tokenizer fairness.** Tokenization has emerged as a critical yet underexamined locus of bias in
 1557 the LLM pipeline. At scale, subword vocabularies introduce systematic disparities well before
 1558 inference: semantically identical content can receive radically different segmentation depending on
 1559 language or script, with observed gaps of up to an order of magnitude. These disparities directly
 1560 affect latency, effective context windows, and monetary cost for users (Petrov et al., 2023). Follow-up
 1561 analyses further reveal that tokenization length and corpus frequency correlate with demographic
 1562 attributes of personal names, thereby confounding fairness evaluations and, in some cases, *creating*
 1563 bias through over-segmentation of underrepresented forms (An & Rudinger, 2023). Robustness
 1564 studies in specialized domains complement this picture: LLMs show marked sensitivity to lexical
 1565 alternations (e.g., brand vs. generic drug names), underscoring representational brittleness tied to
 1566 subword allocation and vocabulary coverage (Gallifant et al., 2024).
 1567

1568 In machine translation, causal analyses disentangle training distribution from subword effects, demon-
 1569 strating that female and non-stereotypical gender inflections are disproportionately fragmented.
 1570

1566 Importantly, modest interventions, such as token-embedding fine-tuning, can mitigate these disparities
 1567 without degrading overall translation quality (Iluz et al., 2023).

1568 Taken together, these studies establish tokenization as a structural source of unfairness across
 1569 languages and demographic categories. Yet, dialectal variation within a single language, particularly
 1570 English as a global lingua franca, remains underexplored. Our work extends this line of inquiry
 1571 by examining American vs. British English, showing that tokenizers trained on corpora shaped
 1572 by distinct geopolitical and cultural regimes encode uneven *fertility* (length of segmentation) and
 1573 *granularity* (consistency of representation) for dialectal variants.

1574
 1575 **Dialect robustness in NLP tasks.** Research on fairness in NLP has largely focused on social
 1576 categories such as gender (Devinney et al., 2022), race and ethnicity (Field et al., 2021), and
 1577 religion (Navigli et al., 2023), as well as on variation across regional or ethnic dialects, most notably
 1578 African American English (AAE) and South Asian Englishes (SAsE) (Demszky et al., 2021; Holt et al.,
 1579 2024; Joshi et al., 2025). AAE has been the most extensively studied, with consistent performance
 1580 gaps reported in part-of-speech tagging (Jørgensen et al., 2016), language classification (Blodgett et al.,
 1581 2016), sentiment analysis (Kiritchenko & Mohammad, 2018), dependency parsing (Blodgett et al.,
 1582 2018), hate speech detection (Sap et al., 2019), and natural language understanding (NLU) (Ziems
 1583 et al., 2022). Beyond task performance, recent studies show that LLMs propagate negative stereotypes
 1584 toward AAE (Hofmann et al., 2024), producing outputs that are less coherent and more likely to
 1585 reinforce stigmatized portrayals (Fleisig et al., 2024).

1586 Complementary perspectives highlight broader concerns about dialectal fairness. User-centered
 1587 evaluations indicate that SAsE speakers frequently perceive NLP and ASR systems as brittle or
 1588 exclusionary, with errors disproportionately concentrated in dialectal usage (Holt et al., 2024).
 1589 Synthetic frameworks such as *Multi-VALUE* stress-test models across dozens of English dialects
 1590 and hundreds of linguistic features, revealing systematic robustness gaps in reasoning and semantic
 1591 understanding (Ziems et al., 2023). More narrowly, orthographic conventions themselves can
 1592 impact performance: retrieval models degrade when queries and documents follow different spelling
 1593 conventions (Chari et al., 2023), and LMs exhibit sensitivity to observed versus novel spelling
 1594 variants (Nielsen et al., 2023). More broadly, surveys of dialectal NLP compile taxonomies of
 1595 datasets, benchmarks, and methodologies, underscoring that while significant progress has been made
 1596 for non-standard or low-resource varieties, even widely used standards such as American and British
 1597 English remain underexamined from a fairness perspective (Joshi et al., 2025).

1598 Taken together, this body of work motivates our study, which situates AmE–BrE variation within the
 1599 broader literature on dialectal bias. Unlike prior research that has largely emphasized marginalized or
 1600 low-resource varieties, we extend the inquiry to two globally institutionalized standards of English.
 1601 By framing this comparison through a postcolonial lens, we highlight how geopolitical histories of
 1602 data curation and linguistic standardization shape the pretraining corpora, tokenizers, and generative
 1603 behaviors of modern LLMs. In doing so, our work moves beyond documenting disparities to probing
 1604 their root causes across the entire LLM development pipeline.

1605 L USAGE OF LARGE LANGUAGE MODELS

1606
 1607 We disclose that large language models were used in limited, assistive roles. Specifically, they
 1608 supported (1) text polishing: improving grammar, spelling, phrasing, and word choice, with all
 1609 suggestions reviewed by the authors, and (2) code assistance: generating small snippets for data
 1610 preprocessing and filtering as scaffolds. All outputs were manually verified and tested, and the
 1611 authors remain fully responsible for the research content and conclusions.

1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620 Table 7: Key linguistic and web-based sources used for constructing the AmE–BrE lexicon. Variant
 1621 pairs were manually compiled, merged across multiple sources, and deduplicated to form a unified
 1622 reference set for consistent analysis.

Source	Title (<i>linked</i>)	Description
Wikipedia	American and British English spelling differences	A widely cited reference outlining systematic orthographic differences between American and British English. The page provides examples of variant spellings (e.g., <i>color</i> vs. <i>colour</i>), historical background, and explanations of regional conventions. It served as one of the authentic linguistic resources for curating consistent one-to-one variant pairs in our lexicon.
ThoughtCo.	American English to British English Vocabulary	A curated reference list of American and British English vocabulary differences, created by experienced educators and subject experts. Provides reliable lexical contrasts in an accessible format, supporting the construction of our AmE–BrE lexicon.
Research Article	Mapping the Americanization of English in Space and Time	An empirical study tracing how American English variants spread globally across regions and over time. Offers quantitative evidence of AmE–BrE lexical contrasts, providing authoritative grounding for the curated variant pairs in our unified lexicon.
IELTS	British vs. American English in the IELTS Test: Key Differences	An official IELTS guide highlighting key vocabulary, spelling, and grammar differences between AmE and BrE. The resource systematically documents contrasts across domains such as food, school, homes, and grammar, making it a practical reference for understanding standardized English variations.
Grammarly	How to Select Your English Dialect	A practical guide from Grammarly explaining how to switch between English dialects in writing tools, highlighting spelling, vocabulary, and usage variations (AmE vs BrE). Because it enumerates common dialectal choices in real writing, it serves as a useful supplementary resource for identifying variant pairs.
SpellZone	Sixty American English Words and their British English Counterparts	SpellZone provides a practical reference list of 60 common AmE–BrE word pairs, illustrating clear lexical contrasts in spelling and vocabulary. The resource highlights straightforward one-to-one mappings useful for systematic dialectal analysis.
IELTS	Differences between British vs. American English	A guidance article from IELTS that outlines vocabulary, spelling, and grammatical contrasts between AmE and BrE, emphasizing how learners must maintain internal consistency between the dialects. This resource helps validate by showing differences accepted in international testing and educational settings.
SpellZone	Differences between British and American English spelling	It provides an overview of common orthographic contrasts (e.g. “colour/color”, “centre/center”, “-re” vs “-er”) between BrE and AmE. This resource was used as a web-based lexicon support to validate our curated variant pairs.
British Council	Differences between British and American English	An educational article by the British Council outlining vocabulary, grammar, and spelling distinctions between British and American English. It supports validation of variant pairs and highlights pedagogically recognized dialectal contrasts.
IELTS Liz	UK US Spelling Main Differences	A practical guide by IELTS Liz summarizing the core orthographic differences between British and American spelling. This resource helps cross-check variant consistency and supports the curated lexicon’s alignment with real exam-related usage.
Word Finder	British vs. American English Words	A comparative list of British and American English words, highlighting more than just spelling shifts ('-u') and covering vocabulary contrasts in everyday usage. It offers additional variant candidates and informs our lexicon selection process.
Language Gallery	British VS American Spelling: What’s the Difference?	A language-education blog article detailing common orthographic differences between British and American English (e.g., “realise/realize,” “theatre/theater”). It served as a supplementary web-based lexicon to inform our manual variant curation.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
Table 8: British and American English distinctions across orthography, grammar, and formatting. Entries reflect majority-preference usage; examples are illustrative rather than exhaustive.

Category	British English (BrE)	American English (AmE)
o vs. ou	<i>colour, honour, behaviour</i>	<i>color, honor, behavior</i>
-re vs. -er endings	<i>centre, fibre, theatre</i>	<i>center, fiber, theater</i>
-ise vs. -ize endings	<i>recognise, authorise</i>	<i>recognize, authorize</i>
-yse vs. -yze endings	<i>analyse, paralyse, catalyse</i>	<i>analyze, paralyze, catalyze</i>
Single vs. double l (inflection)	<i>travelled, counselled</i>	<i>traveled, counseled</i>
-ll + -ly suffix	<i>skilfully, wilfully</i>	<i>skillfully, willfully</i>
Composite vowels	<i>anaesthetic, diarrhoea, paediatric, oestrogen</i>	<i>anesthetic, diarrhea, pediatric, estrogen</i>
Final silent -e/-ue	<i>catalogue, analogue, axe</i>	<i>catalog, analog, ax</i>
Silent -e before suffix	<i>ageing, likeable</i>	<i>aging, likable</i>
-ce vs. -se (noun/verb)	<i>licence (n), practise (v)</i>	<i>license (n/v), practice</i>
-ce vs. -se nouns	<i>defence, offence</i>	<i>defense, offense</i>
Programme vs. program	<i>TV programme, postgraduate programme</i>	<i>TV program, graduate program</i>
Orthographic pairs	<i>grey, cheque, manoeuvre, tyre, storey</i>	<i>gray, check, maneuver, tire, story (floor)</i>
Directional suffix -ward(s)	<i>towards, forwards, upwards</i>	<i>toward, forward, upward</i>
Sceptic/k alternation	<i>sceptic, sceptical</i>	<i>skeptic, skeptical</i>
Judgement spelling	<i>judgement</i>	<i>judgment</i>
Maths/Math	<i>maths</i>	<i>math</i>
Season name	<i>autumn</i>	<i>fall</i>
Present perfect vs. past	<i>I've just eaten.</i>	<i>I just ate.</i>
Mandative subjunctive	<i>They suggested he should apply.</i>	<i>They suggested he apply.</i>
shall vs. will	<i>I shall go tomorrow.</i>	<i>I will go tomorrow.</i>
Irregular verb morphology	<i>learnt, dreamt, spoilt</i>	<i>learned, dreamed, spoiled</i>
Collective noun agreement	<i>The team are winning.</i>	<i>The team is winning.</i>
Possession verb	<i>I've got a car.</i>	<i>I have a car.</i>
Got vs. gotten	<i>He's got very tired.</i>	<i>He's gotten very tired.</i>
Prepositional usage	<i>at the weekend, in a team</i>	<i>on the weekend, on a team</i>
Tag questions	<i>You're ready, aren't you?</i>	<i>You're ready, right?</i>
Subjunctive usage	<i>They suggested he should go.</i>	<i>They suggested he go.</i>
Auxiliary ellipsis	<i>He must have done.</i>	<i>He must have.</i>
Numerals (“and”)	<i>one hundred and twenty</i>	<i>one hundred twenty</i>
Restrictive relative marker	<i>the report which was submitted</i>	<i>the report that was submitted</i>
Possession questions	<i>Have you got a pen?</i>	<i>Do you have a pen?</i>
Necessity negative	<i>You needn't attend.</i>	<i>You don't need to attend.</i>
Difference construction	<i>different from / different to</i>	<i>different from / different than</i>
Quotation marks	Prefers single quotes “...q”	Prefers double quotes “...”
Commas/periods in quotes	Outside the closing quotes	Inside the closing quotes
Abbreviations with periods	<i>Mr, Dr</i>	<i>Mr., Dr.</i>
Oxford/serial comma	Rare	Common
Date format (written)	<i>31 December 2024</i>	<i>December 31, 2024</i>
Date punctuation (written)	<i>19 September 1973</i>	<i>September 19, 1973</i>
Date format (numeric)	<i>31/12/2024 (DD/MM/YYYY)</i>	<i>12/31/2024 (MM/DD/YYYY)</i>
Legal/institutional terms	<i>Ministry of Defence</i>	<i>Department of Defense</i>
Institutional article usage	<i>in hospital; at university</i>	<i>in the hospital; at the university</i>
Floor numbering	<i>ground floor, first floor (one up)</i>	<i>first floor, second floor (one up)</i>
Time notation	<i>11.15 pm; 23.15 common</i>	<i>11:15 PM; 24-hour less common</i>

1728
 1729 Table 9: British and American English preferences in everyday domains (transport, household, food,
 1730 etc), emphasizing majority-preference usage; examples are illustrative rather than exhaustive.

1732 Category	1733 British English (BrE)	1734 American English (AmE)
1733 Preposition before days	1734 <i>She resigned on Thursday.</i>	1735 <i>She resigned Thursday.</i>
1734 Street naming	1735 <i>in the High Street</i>	1736 <i>on Main Street</i>
1735 Transitivity (protest)	1736 <i>protest against discrimination</i>	1737 <i>protest discrimination</i>
1736 Ditransitives (write)	1737 <i>write to me</i>	1738 <i>write me</i>
1737 Meeting collocation	1738 <i>meet the team</i>	1739 <i>meet with the team</i>
<i>Transport & wayfinding</i>		
1739 Pedestrian crossing	1740 <i>zebra crossing</i>	1741 <i>crosswalk</i>
1740 Junction type	1741 <i>roundabout</i>	1742 <i>traffic circle / rotary</i>
1741 Road maintenance	1742 <i>roadworks</i>	1743 <i>road work</i>
1742 Parking payment	1743 <i>pay and display</i>	1744 <i>metered parking</i>
1743 Perimeter road	1744 <i>ring road</i>	1745 <i>beltway</i>
1744 Vehicle hire	1745 <i>hire car / car hire</i>	1746 <i>rental car / car rental</i>
1745 Estate car vs. wagon	1746 <i>estate car</i>	1747 <i>station wagon</i>
<i>Household & services</i>		
1747 Postal addressing	1748 <i>postcode</i>	1749 <i>ZIP code</i>
1748 Carry-on baggage	1749 <i>hand luggage</i>	1750 <i>carry-on</i>
1749 Washing liquid	1750 <i>washing-up liquid</i>	1751 <i>dish soap</i>
1750 Waste container	1751 <i>dustbin</i>	1752 <i>trash can / garbage can</i>
1751 Clothes washer	1752 <i>washing machine</i>	1753 <i>washer</i>
1752 Cash dispenser	1753 <i>cashpoint</i>	1754 <i>ATM</i>
1753 Public convenience	1754 <i>public toilet</i>	1755 <i>restroom</i>
1754 Mobile device	1756 <i>mobile phone</i>	1757 <i>cell phone</i>
<i>Food & drink</i>		
1755 Confection	1756 <i>candyfloss</i>	1757 <i>cotton candy</i>
1756 Frozen treat	1758 <i>ice lolly</i>	1759 <i>popsicle</i>
1757 Leafy green	1760 <i>rocket</i>	1761 <i>arugula</i>
1758 Soft drink	1762 <i>fizzy drink</i>	1763 <i>soda</i>
1759 Allium term	1763 <i>spring onion</i>	1764 <i>green onion / scallion</i>
1760 Cake term	1764 <i>fairy cake</i>	1765 <i>cupcake</i>
<i>Places & urban terms</i>		
1762 City core	1763 <i>city centre</i>	1764 <i>downtown</i>
1763 Real estate profession	1765 <i>estate agent</i>	1766 <i>realtor / real estate agent</i>
1764 Holiday lodging	1767 <i>holiday let</i>	1768 <i>vacation rental</i>
1765 Queueing term	1768 <i>post office queue</i>	1769 <i>post office line</i>
1766 Queueing expression	1770 <i>join the queue</i>	1771 <i>wait in line</i>
1767 Public transport info	1772 <i>railway timetable</i>	1773 <i>train schedule</i>
<i>Education & work</i>		
1768 Practical training	1769 <i>work placement</i>	1770 <i>internship</i>
1769 Assessment term	1771 <i>marking scheme</i>	1772 <i>grading rubric</i>
1770 Student level	1773 <i>first-year student</i>	1774 <i>freshman</i>
1771 Residence	1775 <i>halls of residence</i>	1776 <i>dorm / residence hall</i>
<i>Single-word vocabulary</i>		
1773 flat / apartment	1774 <i>flat</i>	1775 <i>apartment</i>
1774 lorry / truck	1776 <i>lorry</i>	1777 <i>truck</i>
1775 pavement / sidewalk	1777 <i>pavement</i>	1778 <i>sidewalk</i>
1776 wardrobe / closet	1778 <i>wardrobe</i>	1779 <i>closet</i>
1777 lift / elevator	1779 <i>lift</i>	1780 <i>elevator</i>
1778 petrol / gas	1780 <i>petrol</i>	1781 <i>gas</i>
1779 railway / railroad	1781 <i>railway</i>	1782 <i>railroad</i>
1780 holiday / vacation	1782 <i>holiday</i>	1783 <i>vacation</i>