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Abstract— Contact-rich tasks present significant challenges
for robotic manipulation policies due to the complex dynamics
of contact and the need for precise control. Vision-based
policies often struggle with the skill required for such tasks,
as they typically lack critical contact feedback modalities like
force/torque information. To address this issue, we propose
FoAR, a force-aware reactive policy that combines high-
frequency force/torque sensing with visual inputs to enhance
the performance in contact-rich manipulation. Built upon the
RISE policy, FoAR incorporates a multimodal feature fusion
mechanism guided by a future contact predictor, enabling
dynamic adjustment of force/torque data usage between non-
contact and contact phases. Its reactive control strategy also al-
lows FoAR to accomplish contact-rich tasks accurately through
simple position control. Experimental results demonstrate that
FoAR significantly outperforms all baselines across various
challenging contact-rich tasks while maintaining robust per-
formance under unexpected dynamic disturbances. Project
website: https://tonyfang.net/FoAR/.

I. INTRODUCTION

Contact-rich manipulation is an essential field in robotics,
involving tasks that require sustained, intricate contact with
objects or environments [21]. Such tasks, including as-
sembly [9, 26], wiping [11, 16], and peeling [2, 15], are
inherently challenging due to the complex dynamics of force
and precise control required. Unlike simple pick-and-place
operations [27], contact-rich manipulation demands nuanced
interaction and real-time adaptation to variations in object
properties. As a result, developing effective algorithms and
learning models for contact-rich manipulation is crucial for
enabling more versatile and interactive robot systems.

In recent years, significant progress has been made in
vision-based robotic manipulation policies [1, 3, 5, 13, 18,
23, 25, 28, 29]. However, these policies often fall short of
achieving the dexterity required for contact-rich manipula-
tions, as they typically lack crucial contact feedback, such
as force/torque and tactile information.

In contact-rich manipulation, integrating force/torque sens-
ing offers an intuitive and versatile approach by directly
capturing the physical interactions between the robot and
its environment since contact inherently produces forces and
torques. In addition to the force and torque information,
several previous works seek to improve the ability of the
robot in contact-rich manipulation by incorporating other
auxiliary modalities like audio [7, 14, 16, 17], and tactile [6,
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Fig. 1: Overview of the FoAR Policy for Contact-Rich Robotic
Manipulations. Vision alone struggles to distinguish contact from
non-contact states in contact-rich tasks, underscoring the need for
integrating force/torque information. Our FoAR policy combines
vision and force/torque inputs to predict robot actions along with
a future contact probability ¢. Reactive control then refines actions
dynamically based on current and predicted future contact states,
enabling precise, force-aware manipulations for contact-rich tasks.

7, 12, 14, 19]. While prior studies [11, 15, 24] have im-
proved contact-rich task performance by incorporating the
force/torque modality, they often combine force/torque data
with vision data through the whole manipulation process,
ignoring the fact that force/torque are sparsely activated. In
practice, tasks like wiping involve multiple phases, such as
picking up an eraser, performing the wiping, and placing the
eraser down. Among these phases, only the wiping phase
requires significant contact interactions. During non-contact
phases of the task, the inherent noise in force/torque data
from real-world sensors might degrade policy performance.

This paper introduces FOAR, a force-aware reactive pol-
icy designed for contact-rich robotic manipulation tasks.
Building on the state-of-the-art real-world robot imitation
policy RISE [23], FoAR effectively integrates high-frequency
force/torque sensing with visual inputs by dynamically bal-
ancing the usage of force/torque data. This enables precise
handling of complex contact dynamics while maintaining
strong performance in non-contact phases. The co-design
of the FOAR policy and its reactive control strategy further
enhances its contact-rich task performance through simple
position control. With only 50 demonstrations per task, FOAR
significantly outperforms baselines across various challeng-
ing contact-rich manipulation tasks.
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Fig. 2: FoAR Architecture. FOAR consists of a point cloud
encoder [23], a force/torque encoder, a future contact predictor, and
a diffusion action head [3]. The scene features and force features
are fused under the guidance of the future contact predictor.

II. METHOD
A. Preliminary

Given an observation p; € RM*6 with N, points ex-
tracted from RGB-D image at current timestep ¢, RISE [23]
m(p:) = art47, learns a direct mapping from the current
observation to future robot actions over a horizon of T, (low-
freq). Building upon RISE, our proposed force-aware policy,
FoAR, incorporates high-frequency force/torque observations
fi—1,.+ € RTeX6 over a historical horizon of T, (high-freq)
as additional inputs.

B. Force-Aware Policy Design

Point Cloud Encoder. Following RISE [23], we employ
sparse 3D encoder [4] with a shallow ResNet architecture [§]
to process the point cloud p; € RNt*6 into sparse point
tokens P, € RN»*512 where N, represents the number of
sparse point tokens after processing. A Transformer [22] with
sparse point encodings [23] is then applied to these point
tokens to generate a scene feature h; € R5'2.

Force/Torque Encoder. The force/torque observation f; €
RS is first processed through a 3-layer MLP to generate the
corresponding force token Fy € R512, These tokens over the
past horizon F; 7 ., € RT>*%12 being inherently time-series
data in nature, are then encoded using a Transformer [22]
with sinusoidal positional encodings applied along the tem-
poral axis, resulting in a force feature h{ € R512,

Feature Fusion. We introduce a future contact predictor
¢(t) € [0, 1] to guide the feature fusion process. Specifically,
the fused feature h; is calculated as follows:

he = |h$30(t) - hi + (1 — o)) - h* |,

where h* is a learnable embedding, and [-; -] is the concate-
nation symbol.

Future Contact Predictor. As discussed in §II-A, we
use current RGB image I; and force/torque data fi_r1 .
as observation inputs to the predictor, since (1) using RGB

Algorithm 1 FoAR Inference with Reactive Control

1: buffer.clear();
2: contact_buffer.clear(); > clear the temporal ensemble buffer.
3: for timestep t <— 0 to Npax — 1 do

4 if ¢t mod Ninference = 0 then > at the inference step.
5: i, I, fi—1,:t, gt < agent.perception; > perception.
6: @, atit+1, < FOAR(pt, fr—1,:¢, It); > inference.
7: if $ < d4 then > non-contact phase.
8: buffer.add(as:++1,);

9: else > contact phase.
10: if force(f;) < 0y and torque(f;) < & then

11: > insufficient force/torque detected.
12: d < avg(as:t+1;)-pos — g:.pos;

13: Qt:¢+T, -POS < Qt:¢t+T, .pOS + € - Cl/”d”z7

14: > update actions towards predicted direction.
15: end if

16: contact _buffer.add(at.¢+1,);

17: end if

18: end if

19: a; < buffer.get(t) if ¢ < &, else contact_buffer.get(t);
20: agent.execute(at); > retrieve and execute the action.
21: end for

images can make the predictor more lightweight given that
it performs similarly with point clouds in contact state
determination; (2) while force/torque data does not directly
predict future contact, it helps correct the predictor when
unexpected contact occurs.

Action Head. The fused feature h; is then used as the
conditioning input for the action denoising process [3, 10,
20] to generate robot end-effector actions by progressively
refining noisy action trajectories.

Supervision. The generated action is supervised by
ground-truth action in demonstration data via L2 10ss L,cion
in the diffusion process. The ground-truth future contact
state is automatically extracted from the demonstrations
based on whether the force/torque data exceeds a threshold
ddemo Within a surrounding time window around the cur-
rent timestep, which supervises the future contact predictor
through binary cross-entropy 10ss Lpredicior- The overall loss
L is a linear combination of both terms:

L = Laction + aﬁprediclora
where « is the weighting factor.

C. Reactive Control in Deployment

We introduce reactive control during deployment, as out-
lined in Alg. 1. Specifically, we threshold the predicted
future contact probability ¢ from the contact predictor to
determine whether the robot will make contact with the
object and whether the predicted end-effector action needs
to be adjusted using force/torque feedback. If ¢ exceeds
the threshold dy4, indicating that the robot is in contact or
will soon make contact with the object, the controller will
check the current force/torque readings f;, and correct the
predicted robot actions if insufficient force/torque is detected.
For action correction (Line 12-14 in Alg. 1), we estimate the
future action direction based on the predicted action chunk
and the current end-effector pose g:, then adjust the predicted
robot actions by a small step € towards that direction.



Wiping: use the eraser to wipe the whiteboard. The robot needs to (1) grasp the eraser, (2) move above a whiteboard with random figures, (3) wipe the figures
on the whiteboard, and (4) place the eraser in the container after wiping. The Wiping (General) task allows arbitrary whiteboard orientations.
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Peeling: use the peeler to peel cucumber. The robot needs to (1) grasp the peeler, (2) move the peeler closer to the board, aligning above the cucumber, (3) peel

the cucumber, and (4) place the peeler in the container after peeling.

Ini . -~

Chopping: use the knife to chop peppers. The robot needs to (1) grasp the knife, (2) move the knife closer to the board, aligning above the pepper, (3) steadily
cut through the pepper, and (4) place the knife to the foam pad.

Fig. 3: Tasks. We carefully design 3 challenging contact-rich tasks that focus on different aspects of the contact-rich manipulations. These
tasks involve both non-contact phases and contact phases to evaluate the policy performance thoroughly.

Wiping Wiping (General) Peeling
Method Design Choice ASR (%) 1
Score 1 ASR (%) 1 Score 1 ASR (%) 1 Score 1 ASR (%) 1 - - Score T —
Grasp Wipe Grasp Wipe Grasp Pecl F/T Freq. w. Predictor w. Reactive Grasp Wipe
ACT [28] 0275 65 50 0250 65 50 0120 95 25 100Hz v 0.650 100 85
Diffusion Policy [3] 0400 75 60 0350 75 50 038 85 70 100Hz v 0.650 100 80
RISE [23] 0500 100 75 0500 90 80 0377 100 50 >Hz v v 0625 100 85
RISE (force-token) 0.575 85 80 0.600 90 80 0487 95 75 10Hz v v 0.800 100 100
RISE (force-concat) 0475 100 65 0.675 100 95 0524 100 80 100HzZ v 7 0875 100 100
FoAR (3D-cls) ~ 0.175 40 35 0200 40 40 0270 95 40
FoAR (ours) 0875 100 100 0850 100 100 0756 100 100 TABLE II: Ablation Results of the Wiping Task

TABLE I: Evaluation Results of the Wiping and Peeling Tasks. ASR denotes
the action success rate, measuring the success rates of the robot in executing certain

actions, regardless of the quality of the actions.

By incorporating reactive control during deployment, our
FoAR policy can effectively handle uncertainties and dy-
namic changes in the environment, allowing the robot to
adapt to real-world variations and achieve more reliable
contact-rich manipulation performance.

III. EXPERIMENTS
A. Setup

Platform. The system employs a Flexiv Rizon arm with
Dahuan AG-95 gripper and OptoForce F/T sensor. Visual
perception is provided by an Intel RealSense D435 camera.
Computation is handled by an Intel i9-10900K/NVIDIA RTX
3090 workstation.

Tasks. As shown in Fig. 3, we design three challenging
contact-rich tasks across two categories: surface force con-
trol (Wiping and Peeling) and instantaneous force impact
(Chopping).

Baselines. We evaluate our proposed approach against five
baseline methods, including the vision-based policy ACT
[28], Diffusion Policy [3], RISE [23] and three ablation
variants: RISE (force-token), RISE (force-concat), and FOAR
(3D-cls).

Metrics. Task performance is quantified through domain-
specific measures: The Wiping task employs a three-tiered

on Several Design Choices. We ablate our design
choices on contact predictor, reactive control, and
high-frequency force/torque sensing.

success metric (1.0 for complete cleaning, 0.5 for partial
success, and 0 for failure) based on residual marker visibility.
For the Peeling operation, effectiveness is measured by the
ratio of removed vegetable skin relative to expert demon-
stration benchmarks. The Chopping evaluation combines
segment count analysis with statistical consistency metrics,
calculating both the mean and standard deviation of normal-
ized segment lengths to assess cutting precision. All tasks
additionally report fundamental action success rates (ASR)
to verify task completion capability.

Protocols. For policy training, we collect 50 expert
demonstrations for the Wiping and Peeling tasks, and 40
for the Chopping task. During evaluation, we run 20 trials
per method for the Wiping and Peeling tasks, and 10 trials
on the Chopping task.

Implementation. FOAR uses 7, = 200 to encode high-
frequency (100Hz) force/torque data, corresponding to ap-
proximately 2 seconds of data. The dimensions of force
tokens, scene feature A, force feature hf , and learnable
embedding h* are all set to 512. For the future contact
predictor, we utilize a ResNetl8 [8] vision encoder and an
MLP-based force encoder, followed by feature concatenation
and a linear layer to output the probability ¢. We combine
the action loss and the predictor loss using o = 0.1 during



Rewis Original Rewrite Move Rewrite + Move
Method
Score T M Score T M Score 1 M Score 1 M
N Grasp Wipe Grasp Wipe Grasp Wipe Grasp Wipe
fovs RISE [23] 0.500 90 80  0.500 80 70  0.600 100 100 0.500 100 70
N RISE (force-token) 0.600 90 80 0450 90 90 0.500 90 80 0.600 100 100
g\\ g FoAR (ours) 0.850 100 100 0.800 100 100 0.850 100 100 0.800 100 100

TABLE III: Robustness Evaluation Results of the Wiping (General) Task. The figure on the left illustrates the dynamic disturbances
in the robustness evaluation. “Original” refers to vanilla evaluation with no disturbances.

160 mm
0.38

130 mm 130 mm
0.31 ! 0.31

# Segments = 3 Avg. Norm. Length = 0.333
Std. Norm. Length = std (0.31, 0.31, 0.38) = 0.061

Fig. 4: Evaluation Metrics of the Chopping Task. We encourage
the robot to divide the pepper into several uniform small segments,
without segments sticking together due to partial cuts.

training. Other hyperparameters remain the same as RISE.
For reactive control in deployment, we set the future contact
probability threshold 6, = 0.9, force threshold 6 = 8N,
torque threshold §; = 5N - m, and small step € = 0.006m.

B. Surface Force Control Tasks: Wiping and Peeling

In surface force control tasks (Wiping and Peeling), the
robot utilizes force/torque data to maintain consistent surface
contact. As shown in Fig. 3, the Wiping task assesses the
ability of the policy to maintain continuous and sustained
contact, while the Peeling task emphasizes precision and sen-
sitivity in manipulation. We report the evaluation results for
the Wiping, Wiping (General), and Peeling tasks in Table I.
Our FoAR policy significantly outperform all baselines and
variants.

C. Instantaneous Force Impact Task: Chopping

The Chopping task evaluates the robot’s ability to handle
instantaneous force impacts, requiring precise force and
torque control that vision data alone cannot provide [25]. The
main challenge lies in accurately assessing the chopping as
the knife’s contact with the pepper and the chopping depth
constantly change. The results in Tab. IV demonstrate that
FoAR outperforms the baseline policy RISE, providing more
reliable and controlled performance in the Chopping task.

Norm. Length ASR (%) 1

Method # Segments T
Avg. | Std. | Grasp Place
RISE [23] 1.8 £0.6 0727 0411 100 30
FoAR (ours) 394+09 0353 0.094 100 70
Oracle (demonstration) 5.0 &+ 0.0 0.200 0.056 100 100

TABLE 1V: Evaluation Results of the Chopping Task. We
also calculate the metrics of the demonstrations as an oracle for
reference.

D. Ablations

Designing contact predictor, applying reactive control,
and integrating high-frequency force/torque sensing en-
able the policy to perform more precise contact-rich
manipulations. To illustrate the importance of these design,
we take the Wiping task as an example. Ablation results can
be found in Tab. II.

E. Robustness to Dynamic Disturbances

FoAR maintains consistent task performance under
unexpected and dynamic environmental disturbances,
demonstrating superior robustness and adaptability. As
shown in Tab. III, FoAR successfully maintains consistent
performance across all robustness evaluations, adapting to
several dynamic environmental disturbances. While RISE
also demonstrates strong generalization ability [23], its per-
formance is limited by the absence of force/torque feedback.
Built upon RISE, FoAR inherits this generalization ability
while leveraging force/torque integration to achieve superior
performance. In contrast, RISE (force-token) struggles in
these complex scenarios, likely due to disturbances forcing
the policy into non-contact phases, requiring action re-
generation. Noise in force/torque data during these transi-
tions further amplifies errors, hindering its effectiveness.

IV. CONCLUSION

In this paper, we propose FoAR, a force-aware reactive
policy tailored for contact-rich robotic manipulation. By in-
troducing a future contact predictor, the policy enables effec-
tive contact-guided feature fusion between force/torque and
visual information, dynamically balancing the contribution
of each modality based on future contact probability. This
design not only enhances precision during contact phases
but also maintains strong performance in non-contact phases.
Additionally, the future contact probability further guides the
reactive control strategy, improving policy performance even
with simple position control.
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