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Abstract

Data-poisoning backdoor attacks are serious security threats to machine learning
models, where an adversary can manipulate the training dataset to inject backdoors
into models. In this paper, we focus on in-training backdoor defense, aiming to
train a clean model even when the dataset may be potentially poisoned. Unlike most
existing methods that primarily detect and remove/unlearn suspicious samples to
mitigate malicious backdoor attacks, we propose a novel defense approach called
PDB (Proactive Defensive Backdoor). Specifically, PDB leverages the “home
field” advantage of defenders by proactively injecting a defensive backdoor into
the model during training. Taking advantage of controlling the training process,
the defensive backdoor is designed to suppress the malicious backdoor effectively
while remaining secret to attackers. In addition, we introduce a reversible mapping
to determine the defensive target label. During inference, PDB embeds a defensive
trigger in the inputs and reverses the model’s prediction, suppressing malicious
backdoor and ensuring the model’s utility on the original task. Experimental results
across various datasets and models demonstrate that our approach achieves state-
of-the-art defense performance against a wide range of backdoor attacks. The code
is available at https://github.com/shawkui/Proactive_Defensive_Backdoor.

1 Introduction

In recent years, deep neural networks (DNNs) have become ubiquitous across diverse fields, powering
applications such as face recognition, self-driving vehicles, and medical image analysis [1, 13, 25, 38].
However, alongside these advancements, the vulnerability of DNNs to malicious attacks presents a
critical challenge to their safety and reliability. A particularly alarming threat arises from backdoor
attacks, where adversaries secretly introduce backdoors into DNN models during training by subtly
altering a fraction of the dataset. This manipulation ensures the model’s standard performance on
uncontaminated data but erroneously assigns a pre-determined label to any input carrying a specific
trigger. Considering its real threats to machine learning systems, especially in security-critical
scenarios, it’s a practical necessity to investigate and propose effective defense strategies against such
attacks to safeguard real-world applications.

To mitigate the threats posed by backdoor attacks, researchers have actively explored various backdoor
defense techniques throughout the life cycle of machine learning systems [45]. In this paper, we
specifically delve into in-training backdoor defense [44–46], which aims to train machine learning
models using datasets that may be contaminated with poisoned data. Most existing methods in this
field primarily focuses on identifying suspicious samples through various means, along with mitigating
the backdoor effect by directly removing [3, 48] or applying some techniques (e.g., unlearning [20, 4],
or relabel [15, 26, 60]) to the suspicious samples. Despite achieving remarkable performance in
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backdoor defense, these methods face certain limitations and challenges. First, most existing works
rely on specific assumptions such as the latent separability [3] or the early learning of poisoned
samples [20, 60, 51] to identify the poisoned samples. However, these assumptions may not hold
under more sophisticated attacks [31]. As accurately detecting poisoned samples is crucial for those
methods, any deviation from their underlying assumptions could lead to performance degradation
and compromise their effectiveness. Second, some methods, such as DBD [15], NAB [26], and V&B
[60], necessitate complex modifications to the training process, resulting in a substantial increase in
training costs.

In this paper, instead of following the traditional detection-and-mitigation pipeline, we propose a
proactive approach that leverages the “home field” advantage of defenders. Our method, called PDB
(short for Proactive Defensive Backdoor), aims to fight malicious backdoor attacks by injecting a
proactive defensive backdoor introduced by the defenders themselves. The primary objective of PDB
is to suppress the malicious backdoor with a defensive backdoor while keeping the model’s utility
on original task. Specifically, When the defensive trigger is presented, the defensive backdoor will
dominate the prediction of the proactively backdoored model, effectively suppressing the malicious
backdoor’s impact. Importantly, our defensive backdoor allows for the restoration of the ground truth
label to maintain the model’s utility on the original task. To achieve this goal, we first analyze the
objective for an effective defensive backdoor and introduce four essential design principles, including
reversibility, inaccessibility to attackers, minimal impact on model performance, and resistance
against other backdoors. Then, we construct an additional defensive poisoned dataset, subsequently
utilizing such dataset and the whole poisoned dataset to train the model. Consequently, if only the
malicious trigger is present, the model remains under the control of the malicious backdoor. However,
when the defensive trigger appears, the defensive backdoor is activated, mitigating the malicious
backdoor effect. To evaluate its effectiveness, we compare PDB with five state-of-the-art (SOTA)
in-training defense methods across seven SOTA data-poisoning backdoor attack methods involving
different model structures and datasets. Our experimental results demonstrate that PDB achieves
comparable or even superior performance compared to existing baselines.

Our main contributions are threefold: 1) We break away from the traditional detection-and-mitigation
pipeline by proposing a novel mechanism that injects a proactive defensive backdoor during training,
which suppresses the malicious backdoor while preserving the model’s utility on the original task,
without any specific assumptions about potential malicious backdoor attacks. 2) By analyzing the
primary objective, we introduce essential design principles for an effective defensive backdoor
and propose a practical algorithm to implement the defensive backdoor. 3) We conduct extensive
experiments to evaluate the effectiveness of our method and compare it with five SOTA defense
methods across seven challenging backdoor attacks, spanning diverse model structures and datasets,
demonstrating the superior performance of the proposed method.

2 Related work

Backdoor attacks. DNNs face significant security threats from backdoor attacks, which are
designed to maintain normal performance on regular inputs while forcing the network to output a
predetermined target when a specific trigger is introduced. These attacks can be generally categorized
into two types based on the property of the trigger: static-pattern backdoor attacks and dynamic-
pattern backdoor attacks. The seminal instance of static-pattern backdoors, BadNets [12], employed
fixed triggers like white squares. To enhance trigger stealthness, the Blended approach [5] was
introduced, which merges the trigger with the host image in a subtle manner. Recognizing the
potential for detection in fixed-pattern triggers, the research has pivoted towards dynamic-pattern
backdoor attacks. Innovations in this direction, such as SSBA [22], WaNet [30], LF [49], WPDA [35],
IRBA [10], VSSC [41] and TAT [6], have focused on crafting sample-specific triggers that are more
challenging to identify. Techniques to refine the stealthness of triggers have been furthered by works
like Sleeper-agent [36] and Lira [8], which optimize the output to be more covert. The sophistication
of backdoor attacks has recently been advanced by strategies for learning-based poisoning sample
selection [58] and re-activation attack [57]. To execute attacks without altering the consistency
between the image and its label, ’clean label’ attacks have been introduced. For example, LC [33]
and SIG [2] employed counterfactual methods and additional techniques to modify the image while
maintaining label consistency subtly.

2



Backdoor defenses. The main purpose of backdoor defense is to alleviate the vulnerabilities of
DNNs to backdoor attacks by employing various strategies during different stages of the model
lifecycle. Therefore, backdoor defenses are typically categorized into three types: pre-training,
in-training, and post-training. Pre-training defenses concentrate on the detection and removal of
poisoned data points before training. For example, AC [3] leverages unusual activation patterns
to weed out poisoned data, while Confusion Training [32] relies on a model trained specifically to
recognize poisoned instances. VDC [59] utilizes the capabilities of large multimodal language models
for the same purpose. Post-training defenses are applied after a model has been trained. A line of
works in this direction focusing on pruning [24, 47, 53, 52, 23] or fine-tuning [55, 28] to neutralize
the backdoor. Besides, I-BAU [50], NPD [56], and SAU [43] reverse potential backdoor triggers by
adversarial techniques to cleanse the model. NAD [21] employs a slightly poisoned model to assist in
retraining a heavily compromised one.

This paper mainly focuses on the in-training defenses that aim to prevent backdoor insertion during
the training phase. Along this direction, ABL [20] utilizes the observation that the poisoned samples
are easier to learn than normal samples, resulting in the different learning speeds between benign and
poisoned samples, to detect and unlearn the poisoned samples. Based on similar observation, V&B
[60] first trains a backdoored model to capture the backdoor effect and utilizes the backdoored model
to train a benign model by detecting and applying a series of operations on the suspicious samples.
Similarly, CBD [51] first trains a backdoored model for a few epochs and trains a benign model by
reweighting the samples and deconfounding the representation. DBD [15] splits the training process
into three steps and employs self-supervised learning techniques to detect suspicious samples and
train a benign model. D-ST [4] leverages the fact that benign samples are less sensitive to image
transformations to detect suspicious samples and employs semi-supervised learning to train a benign
model. Recently, a few attempts have been made to defend against malicious attacks by incorporating
proactive attacks [54, 26]. The work most closely aligned with our approach is NAB [26], which
first identifies and then relabels potentially poisoned samples in the dataset, subsequently embedding
non-adversarial triggers into the suspicious samples to mitigate the backdoor effect. In contrast to
their methodology, our technique offers a more straightforward solution, eliminating the need for
costly detection and relabeling processes, thus reducing overall costs and complexity. In essence, we
demonstrate that injecting a defensive backdoor alone is sufficient to defend against backdoor attacks
without requiring detection and relabeling of the poisoned samples. We refer readers to [45] for more
defense in adversarial machine learning.

3 Method

In Section 3.1, we introduce the essential notations and define the threat model in this paper. Subse-
quently, we explore the principles behind effective defensive backdoors, illustrated with practical
examples in Section 3.2. We present the overall pipeline for our proposed method in Section 3.3.

3.1 Problem setting

Notations. Considering a sample x ∈ X with label y ∈ Y , a DNN model fθ parameterized by θ is
trained to classify x. The space Y = [1, · · · ,K] denotes the space of candidate labels (K ≥ 2), and
X represents the sample space. In the context of backdoor attack, we denote the trigger by ∆ and the
trigger injection operator by ⊕. Consequently, given a benign sample x, the poisoned sample can be
generated by x⊕∆. It’s important to note that the injection operator ⊕ can vary according to the
type of trigger ∆.

Threat model. We consider a data poisoning scenario for malicious backdoor attack where the
attacker can only manipulate a portion of the training dataset to plant trigge but cannot control the
training process. By poisoning the dataset, the model trained on the manipulated dataset Dtr would
normally perform for benign input but classify the inputs with malicious trigger ∆ to predefined
target ŷ. Besides, we define the portion of manipulated samples as the poisoning ratio of backdoor
attack.

The defender faces a situation where a potentially poisoned dataset is given. The defender aims to
train a model where the malicious backdoor fails to be activated by the malicious trigger, and the
model’s utility on the original task is maintained. We assume a small benign dataset Dcl is reserved
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for the defender, which can be obtained by various means, including but not limited to purchase from
reputable data vendors, generation via state-of-the-art generative models [7, 11, 16], collection from
the internet, or applying data cleansing methods [45]. Moreover, we assume that the defender does
not have knowledge of either the malicious trigger ∆ or the malicious target label ŷ.

3.2 Proactive defensive backdoor

In this paper, we aim to defend the unknown malicious backdoor with the trigger ∆, by inserting a
proactive defensive backdoor with a trigger ∆1 into the model. Our primary objective is to ensure that
when ∆1 is presented, the model’s output will be controlled by ∆1 rather than ∆, thereby suppressing
the malicious backdoor. Besides, the model’s utility on the original task should be preserved, i.e.,
user can still get the true prediction of the benign sample with the defensive trigger. To achieve such
a defense goal, the desired defensive backdoor attack should follow the principles below:

• Principle 1: Reversibility. The defensive backdoor must be reversible, such that the ground truth
label can be restored from the prediction of benign samples attached with ∆1. Such a requirement
is crucial for preserving the model performance on benign inputs with ∆1.

• Principle 2: Inaccessibility to attackers. The defensive trigger ∆1 should be meticulously
designed to be non-replicable and undiscoverable by potential attackers. By doing so, we prevent
adversaries from exploiting the same trigger or using inversion techniques to identify it.

• Principle 3: Minimal impact on model performance. While stealth is not a strict requirement
for the defensive trigger, modified samples should retain sufficient characteristics of the original
data. This ensures accurate label recovery from the model’s predictions in the presence of ∆1.

• Principle 4: Resistance against other backdoors. To effectively mitigate malicious backdoors,
the defensive backdoor should be resistant to various backdoor attacks, not only known attacks but
also potential future backdoors.

In light of the principles outlined above, we delve into the practical design of our defensive backdoor2.

Label 0 Label 1 Label 2 Label 3

Label 0 Label 1 Label 2 Label 3

Figure 1: Illustration of bijective mapping with
h(y) = (y + 1) mod K, with K = 4.

Following Principle 1. For the first principle,
we propose to assign the target label by a bijec-
tive mapping h : Y → Y , such that the target
label of a sample with label y is h(y) and the
ground truth label of a poisoned image with la-
bel y is h−1(y). A typical choice of h and h−1 is
h(y) = (y+1) mod K and h−1(y) = (y− 1)
mod K where mod represents the modulo
operation and K is the number of classes. It’s
worth noting that in the context of DNNs, h can
also be formulated as a function of logits or fea-
tures such as h(ϕ(x)) = −ϕ(x) and h−1(ϕ(x)) = −ϕ(x) where ϕ(x) corresponds to the features
or logits of input. This flexibility allows for a broader range of target label assignment strategies.

Original Image Mask Pixel Value

Figure 2: Demonstration of generating a defensive
poisoned sample. V /∈ [0, 1] is the pixel value
of trigger, ⊙ is the element-wise product. For
the mask, 0 is represented by black, while 1 is
represented by white.

Following Principle 2 & 3. To follow the sec-
ond and third principles, the design of the trigger
is essential. Consider the patched trigger as an
illustrative example, which can be constructed
by carefully determining its position and pat-
tern. Regarding the trigger’s position, it should
be crafted to preserve the core visual patterns
of the original image, ensuring that the primary
content remains unaltered. As for the trigger’s
pattern, we leverage the “home field” advantage
of the defender, designing a trigger that operates
beyond the conventional pixel space. Specifi-
cally, for an image with pixel values in the range of [0, 1] , the trigger is engineered to modify regions

2It’s important to acknowledge that alternative designs may also adhere to these principles.
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to values beyond this range. This modification renders the trigger infeasible and not invertible by
attackers, given the natural constraints of image data.

Following Principle 4. Following the fourth principle, the defensive backdoor is required to be
resistant against other backdoors in the dataset. To meet such requirements, the key point is that the
defender can control the training process, a "home filed" advantage that attackers lack. On the one
hand, the defender can design a strong defensive backdoor, e.g., adopting a large trigger. On the
other hand, the defensive backdoor can be further enhanced by controlling the training process, e.g.,
applying data augmentation or adjusting the weight of defensive poisoned samples. More discussion
and empirical findings are presented in Appendix C.7.

3.3 Backdoor injection

Data preparation
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Figure 3: Overview of the proposed method. The trigger of the malicious backdoor is a white square,
and its target label is 0. The trigger of the defensive backdoor is represented by a white shield, and
the target label mapping is h(y) = (y + 1) mod 10 and h−1(y) = (y − 1) mod 10 .

As depicted in Figure 3, our proposed method involves three key steps:

Data preparation. Given a well-designed defensive backdoor with trigger ∆1 and a target label
mapping h, a defensive poisoned dataset is first constructed by

D̂def = {(x⊕∆1, h(y))|∀(x, y) ∈ Dcl}. (1)

Model training. Now, a model can be trained on the combination of the malicious poisoned dataset
Dtr and the defensive poisoned dataset D̂def . Then, a well-trained model will normally perform
for benign inputs while controlled by the corresponding backdoor when either the trigger ∆ or ∆1

is presented. However, if both ∆ and ∆1 are simultaneously presented, the model may become
confused due to the lack of such samples in the training dataset. As aforementioned, to ensure that
the defensive trigger ∆1 effectively defeats an unknown trigger ∆, some backdoor enhancement
strategies such as data augmentation or increasing sample weight can be adopted to enhance the
defensive backdoor. In summary, the overall training objective is formulated as follows:

min
θ

∑
(x,y)∈Dtr

L0(fθ(x), y) +
∑

(x,y)∈D̂def

λ1L1(fθ(x), y) + λ2L2(fθ(τ(x)), y), (2)

where Dtr and D̂def are the maliciously poisoned training dataset and the defensive poisoned dataset,
respectively. The operation τ enhances the defensive backdoor by applying operation on the defensive
poisoned samples (e.g., adding noise: τ(x) = x+ ϵ with ϵ ∼ N (0, 1)).
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In (2), the first term stands for the loss on the poisoned dataset, the second term stands for the loss
of injecting our defensive backdoor, and the third loss aims to enhance the defensive backdoor. We
use L0, L1, and L2 to represent the loss function for each term, which are usually Cross-Entropy
losses if not specified. The parameters λ1 and λ2 are introduced to balance the contributions of the
respective loss components. More details for the model training and implementation can be found in
Appendix A.

Inference. During the inference, each input sample x is initially embedded with the defensive
trigger, and the model’s prediction fθ(x⊕∆1) is obtained. Subsequently, the authentic prediction is
reconstructed via the inverse mapping h−1(fθ(x⊕∆1)).

Below, we provide a high-level pseudocode representation of our proposed method for training and
inference:

Algorithm 1 Proactive Defensive Backdoor (PDB)
Input: Model fθ, poisoned training set Dtr, reserved benign dataset Dcl, defensive trigger ∆1,
defensive target mapping h, max iteration number T .
Initialize fθ.
▷ Data preparation
Construct the defensive poisoned dataset D̂def = {(x⊕∆1, h(y)|(x, y) ∈ Dcl).
▷ Model training
for t = 0, ..., T − 1 do

for each mini-batch in Dtr ∪ D̂def do
Update θ w.r.t. objective in (2).

end for
end for
▷ Inference
for each input sample x do

Predict its label by h−1(fθ(x⊕∆1)).
end for

4 Experiments

4.1 Experiment setting

Backdoor attack. To assess our method, we consider seven leading backdoor attacks: BadNets [12],
Blended method [5], Sinusoidal Signal (SIG) attacks [2], Sample-Specific Backdoor Attacks (SSBA)
[22], WaNet [30], BPP attack [42] and TrojanNN attack [27]. Note that to expand our evaluation scope,
we have modified certain attacks originally intended for training-controllable scenarios by excluding
their training control components and we postpone the details to Appendix A. For a consistent and
reliable evaluation, we utilize configurations from the BackdoorBench framework [44, 46], which
offers a standardized backdoor attack assessment platform. Each attack is implemented with a 5%
poisoning rate, targeting the 0th label if not specified. The performance of these attacks is measured
across three benchmark dataset, i.e., CIFAR-10 [17], Tiny ImageNet [18], and GTSRB [37], and
analyzed using three neural network architectures, i.e., PreAct-ResNet18 [14] VGG19-BN [34]
and ViT-B-16 [9]. Due to limitations in space, we present results for GTSRB and VGG19-BN in
Appendix B. It is important to note that the clean label attack SIG is only applicable to CIFAR-10
with the set poisoning ratio. Additional information on these attacks is available in Appendix A.

Backdoor defense. In this paper, we benchmark our approach against popular and advanced
backdoor defense methods, including AC [3], Spectral signatures [39], ABL [20], DBD [15], NAB
[26]. For a fair comparison, we adopt the configurations recommended by the BackdoorBench
framework [44, 46]. Note that we were unable to achieve satisfactory results for DBD on Tiny
ImageNet with ViT-B-16, so it has been excluded in this case. For our method, we set the reserved
dataset size to 10% of the training dataset unless otherwise specified. The chosen parameters are
λ1 = 1 and λ2 = 1. To enhance the defensive backdoor, each defensive poisoned sample is sampled
five times in an epoch, and we set τ(x) = x + 0.1 · ϵ with ϵ ∼ N (0, 1). The defensive backdoor
utilizes a target mapping function h(y) = (y + 1) mod K, along with a patch trigger with pixel
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value 2 as illustrated in Figure 2. More details on the defense methods and supplementary experiments
are postponed in Appendix A and Appendix B.

Metrics. To measure the effectiveness of each defense method, we employ three key metrics:
Accuracy on benign data (ACC), Attack Success Rate (ASR), and Defense Effectiveness Rating
(DER). ACC is the metric indicating model’s performance for predicting the benign samples correctly,
while ASR quantifies the proportion of poisoned samples that are incorrectly classified to the attacker’s
intended target label. For our method, the ACC is measured by predicting the benign samples with a
defensive trigger to the defensive target, or equivalently reversing the prediction of the benign sample
with a defensive trigger to the true label. A higher ACC and a lower ASR signify successful backdoor
mitigation.

The DER, used in [55, 43], is a metric ranging from 0 to 1, designed to evaluate the trade-off between
maintaining ACC and reducing ASR. It is defined by the following equation:

DER = [max(0,∆ASR)−max(0,∆ACC) + 1]/2, (3)

where ∆ASR and ∆ACC represent the respective decreases in ASR and ACC between model without
defense and model with defense.

Note: Superior defense methods are characterized by higher ACC, lower ASR, and higher DER. In
the forthcoming experimental results, the best and second-best performing methods are denoted with
boldface and underline, respectively.

4.2 Main results

Table 1: Results (%) on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 92.64 88.74 90.27 75.61 55.38 91.21 69.4 58.96 84.08 0.00 90.09 87.68 2.11 90.84 79.36 0.33 87.57 91.08 0.38 93.40

Blended [5] 93.67 99.61 91.54 98.93 49.27 91.43 99.42 48.97 65.78 0.00 85.86 75.0 99.99 40.66 90.21 0.34 97.90 91.36 0.70 98.30

SIG [2] 93.64 97.09 90.24 93.32 50.18 91.79 96.36 49.44 46.14 0.00 74.79 74.86 95.58 41.37 90.71 0.00 97.08 91.79 0.06 97.59

SSBA [22] 93.27 94.91 88.47 92.64 48.73 92.01 93.19 50.23 81.6 0.09 91.58 72.19 11.34 81.24 90.52 1.07 95.55 91.58 0.46 96.38

WaNet [30] 91.76 85.5 91.96 88.72 50.0 91.47 83.84 50.68 69.49 95.20 38.86 72.22 9.93 78.01 85.17 2.16 88.38 91.47 0.92 92.14

BPP [42] 91.47 99.34 89.64 97.96 49.78 92.10 99.82 50.0 82.89 99.93 45.71 81.71 99.98 45.12 82.86 76.94 56.90 90.43 1.90 98.20

Trojan [27] 93.79 99.99 89.40 99.93 47.83 86.30 99.38 46.56 18.64 100.00 12.42 72.34 100.0 39.27 87.41 1.16 96.23 91.78 0.58 98.70

Average 92.89 95.03 90.22 92.45 50.17 90.90 91.63 50.69 64.09 42.17 62.76 76.57 59.85 59.50 86.61 11.71 88.51 91.36 0.71 96.39

Table 2: Results (%) on Tiny ImageNet with ViT-B-16 and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 76.15 99.72 75.66 99.49 49.87 74.18 99.47 49.14 78.19 99.79 50.00 28.88 99.83 26.36 73.71 0.00 98.64

Blended [5] 76.00 99.83 77.58 99.77 50.03 76.30 99.62 50.11 78.17 99.93 50.00 38.43 99.79 31.24 72.70 0.00 98.26

SSBA [22] 75.30 98.86 76.01 97.01 50.93 76.96 98.73 50.07 78.40 99.59 50.00 42.03 99.37 33.36 72.65 0.00 98.11

WaNet [30] 60.90 99.74 75.68 92.46 53.64 74.27 95.91 51.91 77.62 95.37 52.18 21.89 99.76 30.50 72.82 0.01 99.86

BPP [42] 63.08 99.69 76.89 95.23 52.23 76.58 95.92 51.88 78.19 96.55 51.57 30.37 96.76 35.11 73.30 0.00 99.84

Trojan [27] 74.98 99.77 77.94 99.78 50.00 75.36 99.84 50.00 78.40 99.92 50.00 24.15 100.00 24.58 73.00 0.00 98.89

Average 71.07 99.60 76.63 97.29 51.12 75.61 98.25 50.52 78.16 98.52 50.63 30.96 99.25 30.19 73.03 0.00 98.94

Table 1 and Table 2 show the proposed method’s defense performance compared with other methods,
from which we can find:

PDB achieves consistent efficacy in mitigating backdoor threats across various attacks, datasets
and models. Specifically, PDB achieves the top-2 lowest ASR across five out of seven attacks on the
CIFAR-10 dataset. It also ranks top-2 across all attacks on the GTSRB (Table 7) and Tiny ImageNet.
This consistent performance underscores PDB’s ability to generalize well across different datasets
and attacks. For AC and Spectral, both methods rely on the latent representation of images to detect
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poisoned samples. AC identifies poisoned samples through clustering in the latent space, considering
smaller clusters as likely to contain poisoned data. Spectral detects outliers in the latent space to
identify such samples. However, with a poisoning ratio of 5% for Tiny ImageNet (200 classes, each
class accounts for 0.5%), the poisoned samples become the majority within the target class, breaking
the underlying assumptions of both methods and resulting in high ASR values. Additionally, while
ABL, DBD, and NAB can defend against certain attacks, they fall short against more sophisticated
adversaries, highlighting PDB’s robust defense performance.

PDB achieves an excellent balance between defense performance and model utility. Apart from its
robust defensive performance, PDB distinguishes itself through its ability to preserve benign accuracy.
Unlike ABL, DBD, and NAB, which often sacrifice considerable benign accuracy in exchange for
reduced ASR, leading to lower DER values, PDB maintains a high DER by effectively managing
this trade-off. The preservation of model utility, without compromising defense effectiveness, further
solidifies PDB’s status as a promising strategy in backdoor defense.

The results demonstrate the superiority of PDB in defending against backdoor attacks. By effectively
reducing ASR and maintaining a high DER, PDB stands out as a valuable defense approach for
backdoor attack.

4.3 Analysis

Understanding the effect of PDB. To elucidate the underlying mechanism of PDB, we delve into
the impact of the defensive backdoor by analyzing the T-SNE embeddings and the Trigger Activation
Change (TAC). TAC, adapted from Zheng et al. [52], is designed to measure the change of activation
values for each neuron when comparing maliciously poisoned samples to their benign counterparts.
Let ϕ be a feature extractor which maps an input image x to the latent activations. For an input image
x, we can construct the malicious poisoned sample x⊕∆. In PDB, a defensive trigger is added to the
malicious poisoned sample, crafting sample x⊕∆⊕∆1, aiming to suppress the malicious backdoor.
Therefore, for dataset D, we define

TAC w/o ∆1 =

∑
x∈D(ϕ(x⊕∆)− ϕ(x))

|D|
, (4)

TAC w/ ∆1 =

∑
x∈D(ϕ(x⊕∆⊕∆1)− ϕ(x))

|D|
. (5)

In Figure 4, we present the visualization results for the BadNets attack on the CIFAR-10 dataset,
utilizing a poisoning ratio of 5% alongside a PreAct-ResNet architecture. The illustration reveals that
planting a defensive trigger to the inputs prompts a shift in the feature space, resulting in the formation
of new clusters and effectively alleviating the backdoor effect. Moreover, the TAC analysis for both
the initial and final blocks demonstrates that the incorporation of a defensive trigger substantially
mitigates the activation changes triggered by the malicious backdoor.

T-SNE Embedding TAC, Block 1 TAC, Block 4

Neuron Neuron

TA
C

TA
C

Figure 4: Visualization of T-SNE and TAC for the BadNets attack on CIFAR-10 with a poisoning
ratio of 5% and PreAct-ResNet. The T-SNE visualizes features in the 4th block of PreAct-ResNet18,
and TAC is calculated for both the 1st and the 4th blocks (4 blocks in total). Neurons are indexed in
descending order based on their TAC values without ∆1.
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Defense effectiveness under different poisoning ratios. To investigate the influence of poisoning
ratios on defense performance, we evaluate our method against attacks with poisoning ratios ranging
from 1% to 40% on CIFAR-10 with PreAct-ResNet18. The results are summarized in Table 3, from
which we can find that the proposed method can consistently mitigate malicious backdoor effect
across a wide range of poisoning ratios. For a more comprehensive evaluation of the influence of the
poisoning ratio, please refer to Appendix B.

Table 3: Defense results (%) under different poisoning ratios on CIFAR-10 and PreAct-ResNet18.

Poisoning ratio → 1% 5% 10% 20% 40%

Defense → No Defense PDB (Ours) No Defense PDB (Ours) No Defense PDB (Ours) No Defense PDB (Ours) No Defense PDB (Ours)

Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets [12] 93.14 74.73 91.59 0.31 92.64 88.74 91.08 0.38 91.32 95.03 90.25 0.40 90.17 96.12 89.18 0.16 86.16 97.77 86.32 0.28

Blended [5] 93.76 94.88 91.77 1.20 93.67 99.61 91.36 0.70 93.47 99.92 91.21 0.92 92.92 99.92 90.74 1.51 91.74 99.98 89.04 0.27

BPP [42] 90.81 87.23 90.73 1.38 91.47 99.34 90.43 1.90 90.69 99.78 90.47 1.11 91.45 99.71 90.44 1.29 90.66 99.99 89.22 0.49

Average 92.57 85.61 91.36 0.96 92.59 95.90 90.96 0.99 91.83 98.24 90.64 0.81 91.51 98.58 90.12 0.99 89.52 99.25 88.19 0.34

Training cost comparison. We first analyze the training complexity of PDB and we refer readers to
BackdoorBench[44] for the training complexity of other methods. Let Csl be the supervised training
complexity. Then, we denote the size of the training dataset and the size of the defensive poisoned
dataset by Ntr and Ndef , respectively. Let F be the frequency of sampling defensive poisoned

samples. The training complexity of PDB is given by: O
((

1 +
F ·Ndef

Ntr

)
· Csl

)
.

To evaluate the empirical runtime, i.e., training time of different defense methods, we conduct
experiments against the BadNets attack for the PreAct-ResNet18 architecture on CIFAR-10 and
GTSRB, ViT-B-16 for Tiny ImageNet, all with a poisoning ratio of 5%. The experiments are
conducted on an RTX 4090Ti GPU, and the results are summarized in Table 4. From Table 4, We can
find since F ·Ndef

Ntr
is set as a small value, the runtime of PDB is not much larger than the baseline

(i.e., No Defense). In contrast, the runtime of DBD and NAB are significantly higher due to their
reliance on self-supervised and semi-supervised training techniques.

Table 4: Running time (s) comparison of defense methods.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

GTSRB 801 637 1642 1634 7495 3081 1573

CIFAR-10 919 658 2278 1805 8351 3679 1853

Tiny 2938 2524 9952 6034 26932 11698 4913

Resistance to ALL2ALL attack. We also evaluate PDB for ALL2ALL attacks on CIFAR-10 using
PreAct-ResNet18. The poisoning ratio is set to 5% and the target labels for samples with labels y are
(y + 2) mod K (different from the defensive target). The experimental results are summarized in
Table 5. Notably, PDB achieves the best defending performance, demonstrating superior effectiveness
in defending against backdoor attacks with multiple targets.

Table 5: ALL2ALL attack results (%) on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 92.50 61.33 90.10 53.7 52.61 92.33 57.73 51.72 52.46 59.96 30.66 87.10 4.52 75.70 80.51 62.74 44.00 90.68 2.72 78.40

Blended [5] 93.51 83.87 91.36 78.56 51.58 93.72 84.66 50.00 68.04 35.62 61.39 75.24 26.62 69.49 90.34 79.09 50.80 91.87 3.95 89.14

SIG [2] 93.52 88.15 91.49 83.07 51.52 94.02 88.77 50.00 67.20 59.67 51.08 76.19 20.26 75.28 82.65 83.19 47.04 91.73 3.13 91.62

Resistance to adaptive attack. In our previous experiments, we assumed that attackers had no
knowledge of the defense method. However, when attackers are aware of the deployment of PDB,
they may design adaptive attacks to bypass the defense. One straightforward approach is to strengthen
the malicious backdoor to counteract the defensive backdoor. To assess our method’s resistance to
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such adaptive attacks, we evaluate it against BadNets with varying trigger sizes and poisoning ratios,
representing different strengths of backdoor attacks. The results, summarized in Table 6, demonstrate
that PDB can consistently mitigate backdoor against adaptive attacks with various malicious trigger
size and poisoning ratios. Note that to keep the stealthness of malicious backdoor, its poisoning ratio
and trigger size is expected to be constrained. However, the defensive backdoor can utilize a large
trigger size and high sampling frequency to meet the Principle 4, therefore, mitigating the malicious
backdoor.

Table 6: Defense results (%) against adaptive attacks with different poisoning ratios.

Poisoning ratio → 10% 20% 30%

Defense → No Defense PDB (Ours) No Defense PDB (Ours) No Defense PDB (Ours)

Malicious trigger size ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

4x4 92.39 96.83 90.66 0.18 91.14 97.67 90.01 0.21 90.38 98.13 89.65 0.49

5x5 93.11 97.69 91.28 0.29 92.79 97.98 90.97 0.28 92.20 98.30 90.02 0.56

6x6 93.26 98.16 91.62 0.27 92.48 98.68 90.83 0.33 92.01 98.83 90.03 0.69

7x7 93.65 98.66 91.46 0.31 93.07 99.03 91.03 0.56 92.56 99.23 90.48 0.67

8x8 93.51 99.24 91.16 0.37 92.82 99.38 91.14 0.58 92.53 99.50 90.27 0.74

9x9 93.45 99.53 91.12 0.51 92.76 99.67 90.84 0.56 92.15 99.72 90.39 0.67

10x10 93.20 99.66 91.37 0.54 93.17 99.74 90.76 0.78 92.58 99.81 90.45 0.82

Appendix structure. Due to page limitations, more experiments and analyses have been moved to
the Appendix. The Appendix is structured as follows: In Appendix A, we provide the details for
the experiments, including the implementation of our method, the parameters, and the setting for
all attacks and defense methods. In Appendix B, we provide a more comprehensive comparison
between our method and baselines across different datasets, poisoning ratios, and model structures.
In Appendix C, we discuss the influence of key components for PDB, such as triggers, targets, and
reserved datasets, and make comparisons to more baselines.

5 Conclusion

In this paper, we propose a proactive approach to defend against malicious backdoor attacks in
DNNs. Rather than relying on traditional detection and mitigation pipeline, our method, PDB,
leverages the “home field” advantage of defenders to inject a defensive backdoor to fight against
malicious backdoor. To achieve such a goal, we introduce four essential design properties for an
effective defensive backdoor: reversibility, inaccessibility to attackers, minimal impact on model
performance, and resistance to other backdoors. By incorporating a defensive backdoor during
training, we suppress the impact of malicious backdoors when the defensive trigger is present. Our
approach offers several advantages over existing methods. First, it does not rely on accurate detection
of poisoned samples and any assumption for attacks, avoiding performance degradation when some
poisoned samples evade detection. Second, PDB does not require complex modifications to the
training process, minimizing training cost. In summary, PDB provides a novel and effective defense
method against backdoor attacks, enhancing the safety and reliability of DNNs.

Limitations and future work. Currently, PDB faces several key limitations. First, its reliance on
clean samples presents a practical challenge, prompting the exploration of alternative sources, such
as generated data. Second, investigating PDB across diverse machine learning tasks is essential for
broader applicability. Addressing these limitations through future research will enhance the defense’s
effectiveness and facilitate its widespread adoption in safeguarding machine learning systems against
backdoor attacks.

Broader impacts. The broader impacts can be considered from both positive and negative perspec-
tives. On the positive side, PDB enhances the security and reliability of DNNs, thereby contributing
to the trustworthiness of AI technologies. However, there are potential negative implications that
should be considered. The technique could potentially be misused if it falls into the wrong hands,
who might use the defensive backdoor mechanism for nefarious purposes.
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A Experiment details

In our experiments, we adapted all baselines and settings from BackdoorBench [44]. Moreover,
all checkpoints of attack methods are sourced from BackdoorBench and the defense results are
aligned with the leaderboard in BackdoorBench if applicable. Below, we outline the details of various
backdoor attacks:

A.1 Attack details

• BadNets [12] is one of the earliest works for backdoor learning, which inserts a small
patch of fixed pattern to replace some pixels in the image. We use the default setting in
BackdoorBench.

• Blended backdoor attack (Blended) [5] uses an alpha-blending strategy to fuse images with
fixed patterns. We set α = 0.2 as the default in BackdoorBench. Note that a large α causes
visual-perceptible changes to clean samples, making the Blended Attack challenging for
defense methods.

• Sinusoidal signal backdoor attack (SIG) [2] is a clean-label attack that perturbs clean images
in the target label using a sinusoidal signal as the trigger. We use the default setting in
BackdoorBench.

• Sample-specific backdoor attack (SSBA) [22] uses an auto-encoder to fuse a trigger into
clean samples and generate poisoned samples. We use the default setting in BackdoorBench.

• Warping-based poisoned networks (WaNet) [30] is also a training-controllable attack that
perturbs clean samples using a warping function to construct poisoned samples. We use the
default setting in BackdoorBench.

• Bppattack (BPP) [42] is also a training-controllable attack that employs image quantization
and dithering as the Trojan trigger. We use the default setting in BackdoorBench.

• Trojaning attack on neural networks (TrojanNN) [27] inverses the neural network to generate
a general trojan trigger. We use the default setting in BackdoorBench.

Adaptation to data poisoning attack. In our paper, we explore scenarios where attacks can only
utilize data poisoning techniques. To facilitate a more comprehensive comparison of our method,
we modify attacks originally designed for training-controllable scenarios, removing the training
component to adapt them to a data poisoning setting.

A.2 Defense details

Here, we summarize the details of each defense method used:

• AC [3] is a detection method that detects the poisoned sample using the abnormal clustering
for poisoned samples. By removing the detected samples, AC can effectively defend against
backdoor attack. We use the default setting in BackdoorBench.

• Spectral [39] is a detection method that detects the poisoned sample using the abnormal
Spectral Signature for poisoned samples. By removing the detected samples, AC can
effectively defend against backdoor attack. We use the default setting in BackdoorBench.

• ABL [20] utilizes the early-learning phenomenon of poisoned samples to detect poisoned
samples and then unlearns them to mitigate the backdoor effect. We use the default setting
in BackdoorBench.

• DBD [15] divides the training process into three stages and uses self-supervised techniques
to detect the poisoned sample and learn a clean model. We use the default setting in
BackdoorBench.

• NAB [26] first employs an advanced detection method to filter the poisoned samples. Then,
the detected samples are relabeled by employing other techniques and planted with non-
adversarial triggers to suppress the backdoor. In this work, we use the detection method
from ABL and the self-supervised method from DBD to relabel the samples. For other
settings, We use the default setting in BackdoorBench.
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• FT finetunes the model on a small, clean, reserved dataset to mitigate the backdoor effect.
We use the default setting in BackdoorBench.

• FP [24] is a pruning-based method that prunes neurons according to their activations and then
fine-tunes the model to keep clean accuracy. We use the default setting in BackdoorBench.

• NC [40] first optimizes a possible trigger to detect backdoored models. If detected as
backdoored, unlearn the optimized trigger. If detected as clean, the model is returned
unchanged.

• NAD [21] uses Attention Distillation to mitigate backdoors. We use the default setting in
BackdoorBench.

• i-BAU [50] uses adversarial training with UAP and hyper-gradient to mitigate the backdoor.
We use the default setting in BackdoorBench.

• PDB (Ours) defends backdoor attack by injecting defensive backdoor. We set the reserved
dataset size to 10% of the training dataset. The chosen parameters are λ1 = 1 and λ2 = 1.
To enhance the defensive backdoor, each defensive poisoned sample is sampled five times in
an epoch, and we set τ(x) = x+0.1 · ϵ with ϵ ∼ N (0, 1). The defensive backdoor utilizes
a target mapping function h(y) = (y + 1) mod K, along with a 7× 7 patch trigger with
pixel value 2 as illustrated in Figure 2.

Adaptation to ViT-B-16. For all experiments on CIFAR-10 and GTSRB, we train the model 100
epochs with batch size 256 for fair comparison. For Tiny ImageNet with ViT-B-16, we consider a
fine-tuning task as recommended by BackdoorBench. Specifically, we train each model 10 epochs
with batch size 128 and initialize the model with pre-trained weights.

B Additional experiment results

This section provides additional experiment results to supplement the observations claimed in
Section 4.

B.1 Main experiments on GTSRB with PreAct-ResNet18

Table 7, 8, and 9 summarize the results of various defense methods against backdoor attacks on
the GTSRB dataset using the PreAct-ResNet18 model architecture. These methods were evaluated
at different poisoning ratios (1.0%, 5.0%, and 10.0%). Notably, the results demonstrate that PDB
effectively mitigates backdoor attacks, consistently achieving top-2 defense performance across all
cases.

Table 7: Results on GTSRB with PreAct-ResNet18 and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 97.3 57.95 97.55 84.67 50.0 96.36 92.51 49.53 95.8 0.00 78.22 78.76 0.00 69.70 84.06 92.32 43.38 96.75 0.00 78.70

Blended [5] 98.84 99.93 97.48 99.73 49.42 97.58 99.83 49.41 44.18 0.00 72.63 83.08 100.00 42.12 87.94 99.34 44.84 97.00 0.03 99.03

SSBA [22] 98.11 99.34 97.16 98.3 50.05 97.31 97.96 50.29 80.2 0.01 90.71 81.57 99.96 41.73 94.14 13.57 90.90 97.61 0.02 99.41

WaNet [30] 97.42 92.85 95.91 54.1 68.62 96.85 62.12 65.08 1.45 99.40 2.02 84.09 0.01 89.76 84.96 9.53 85.43 96.92 0.00 96.17

BPP [42] 98.21 98.97 97.64 83.67 57.37 97.36 87.3 55.42 12.77 100.00 7.28 82.52 0.00 91.64 89.39 0.00 95.08 97.46 0.00 99.11

Trojan [27] 98.55 100.0 97.00 100.0 49.22 97.94 100.0 49.7 83.42 0.00 92.43 73.17 0.01 87.30 89.32 12.10 89.33 97.73 0.00 99.59

Average 98.07 91.51 97.12 86.74 54.11 97.23 89.95 53.24 52.97 33.23 57.22 80.53 33.33 70.38 88.3 37.81 74.83 97.24 0.01 95.33
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Table 8: Results on GTSRB with PreAct-ResNet18 and poisoning ratio 10.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 97.24 59.25 95.53 95.94 49.14 96.83 94.22 49.79 93.82 0.00 77.92 82.75 0.00 72.38 95.34 0.03 78.66 97.05 0.00 79.53

Blended [5] 98.58 99.99 98.61 100.0 50.0 98.76 100.0 50.0 32.99 0.00 67.2 81.73 99.97 41.58 95.91 2.87 97.23 96.98 0.02 99.18

SSBA [22] 97.98 99.56 96.60 99.47 49.36 97.57 99.55 49.8 63.21 0.58 82.1 91.11 99.94 46.56 96.82 0.85 98.77 96.42 0.00 99.00

WaNet [30] 97.74 94.25 96.36 72.65 60.11 96.94 74.82 59.32 21.35 84.09 16.88 84.03 0.00 90.27 82.88 75.26 52.07 97.36 0.00 96.94

BPP [42] 97.43 99.9 97.43 88.69 55.6 97.73 93.32 53.29 10.51 99.94 6.54 86.47 100.00 44.52 81.92 32.01 76.19 97.40 0.00 99.93

Trojan [27] 98.57 100.0 96.76 100.0 49.1 97.73 100.0 49.58 78.19 0.00 89.81 87.09 100.00 44.26 97.75 0.06 99.56 96.90 0.00 99.17

Average 97.92 92.16 96.88 92.79 52.22 97.59 93.65 51.96 50.01 30.77 56.74 85.53 66.65 56.60 91.77 18.51 83.75 97.02 0.00 95.63

Table 9: Results on GTSRB with PreAct-ResNet18 and poisoning ratio 1.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 98.35 50.26 98.42 81.73 50.00 97.32 86.26 49.49 0.48 100.00 1.06 84.29 0.00 68.10 87.16 3.51 67.78 96.62 0.00 74.27

Blended [5] 98.8 95.67 97.10 94.34 49.82 97.70 94.02 50.28 28.22 2.27 61.41 83.4 99.97 42.30 86.6 97.14 43.9 98.20 6.13 94.47

SSBA [22] 98.75 94.54 96.83 86.5 53.06 97.28 87.65 52.71 4.12 68.09 15.91 88.6 0.00 92.20 88.08 95.41 44.67 98.06 0.49 96.68

WaNet [30] 97.08 62.24 96.48 4.14 78.75 97.35 28.02 67.11 29.75 33.21 30.86 87.15 0.00 76.16 85.29 2.7 73.87 97.30 0.00 81.12

BPP [42] 98.26 62.21 97.11 40.91 60.08 98.12 64.61 49.93 6.41 20.48 24.94 78.41 0.00 71.18 87.55 55.82 47.85 96.52 0.00 80.24

Trojan [27] 98.17 100.0 97.38 100.0 49.60 97.72 100.0 49.77 21.69 0.00 61.76 81.74 0.00 91.78 84.39 99.82 43.2 96.83 0.00 99.33

Average 98.23 77.49 97.22 67.94 56.89 97.58 76.76 53.22 15.11 37.34 32.66 83.93 16.66 73.62 86.51 59.07 53.54 97.26 1.10 87.69

B.2 Main experiments on CIFAR-10 with PreAct-ResNet18

Table 10 and 11 summarize the results of different defense methods against backdoor attacks on the
CIFAR-10 dataset using the PreAct-ResNet18 model architecture. These methods were evaluated at
different poisoning ratios (1.0% and 10.0%). Notably, they achieved the top-2 lowest ASR in 12 out
of 14 cases.

Table 10: Results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 10.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 91.32 95.03 88.80 86.23 53.14 89.98 92.41 50.64 83.32 0.00 93.52 89.65 1.28 96.04 75.51 0.08 89.57 90.25 0.40 96.78

Blended [5] 93.47 99.92 88.52 99.72 47.63 90.35 99.84 48.48 77.3 0.73 91.51 69.91 99.98 38.22 86.25 0.12 96.29 91.21 0.92 98.37

SIG [2] 84.48 98.27 82.41 94.61 50.79 83.01 92.27 52.26 57.8 0.00 85.79 60.67 100.0 38.10 83.07 17.54 89.66 91.10 0.00 99.13

SSBA [22] 92.88 97.86 90.00 96.23 49.37 89.63 90.5 52.05 80.79 0.00 92.88 63.5 99.51 35.31 88.77 1.84 95.95 90.95 0.19 97.87

WaNet [30] 91.25 89.73 91.93 96.8 50.0 91.94 90.17 50.0 83.19 0.00 90.84 80.9 6.61 86.39 80.01 0.88 88.81 90.92 0.29 94.56

BPP [42] 90.69 99.78 89.29 99.73 49.32 92.34 99.72 50.03 78.55 13.77 86.94 68.65 100.0 38.98 75.66 0.21 92.27 90.47 1.11 99.22

Trojan [27] 93.42 100.0 89.75 99.97 48.18 89.70 100.0 48.14 11.07 100.00 8.82 66.23 100.0 36.40 86.17 1.49 95.63 91.24 0.59 98.62

Average 91.07 97.23 88.67 96.19 49.78 89.56 94.99 50.23 67.43 16.36 78.61 71.36 72.48 52.78 82.21 3.17 92.60 90.88 0.50 97.79

Table 11: Results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 1.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 93.14 74.73 88.88 27.18 71.65 92.62 74.2 50.01 72.81 53.20 50.6 78.09 2.99 78.35 90.85 1.43 85.50 91.59 0.31 86.44

Blended [5] 93.76 94.88 89.77 86.09 52.40 93.27 93.32 50.53 66.26 0.17 83.61 70.18 8.04 81.63 86.65 3.23 92.27 91.77 1.20 95.84

SIG [2] 93.82 83.4 90.0 74.81 52.38 93.09 85.91 49.63 64.33 0.00 76.96 75.01 67.82 48.38 88.73 2.40 87.96 90.21 1.19 89.30

SSBA [22] 93.43 73.44 89.61 27.92 70.85 92.71 54.79 58.97 83.11 56.33 53.4 78.52 1.13 78.70 85.11 64.51 50.31 91.56 1.02 85.28

WaNet [30] 90.65 12.63 89.53 4.87 53.32 92.79 8.81 51.91 65.43 53.43 37.39 79.74 4.60 48.56 85.91 21.92 47.63 91.45 0.82 55.91

BPP [42] 90.81 87.23 89.13 16.74 84.40 91.94 21.02 83.11 55.61 11.78 70.13 86.3 6.91 87.91 91.06 45.62 70.81 90.73 1.38 92.89

Trojan [27] 93.58 99.97 89.72 99.53 48.29 92.83 99.61 49.8 24.73 100.00 15.58 74.49 99.99 40.45 88.52 5.67 94.62 90.01 1.90 97.25

Average 92.74 75.18 89.52 48.16 61.90 92.75 62.52 56.28 61.75 39.27 55.38 77.48 27.36 66.28 88.12 20.68 75.58 91.05 1.12 86.13
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B.3 Main experiments on CIFAR-10 with VGG19-BN

Table 12, 13, and 14 summarize the results of different defense methods against backdoor attacks on
the CIFAR-10 dataset using the VGG19-BN model architecture. These methods were evaluated at
different poisoning ratios (1.0%, 5%, and 10.0%). Impressively, PDB achieves the top-2 lowest ASR
in 20 out of 21 cases.

Table 12: Results on CIFAR-10 with VGG19-BN and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 91.19 93.92 85.75 88.49 50.0 9.97 99.99 9.39 90.35 21.18 85.95 61.15 2.61 80.63 75.28 2.79 87.61 87.43 1.17 94.50

Blended [5] 92.24 99.43 87.18 97.82 48.28 10.0 100.0 8.88 75.92 0.12 91.50 52.72 99.99 30.24 76.36 6.52 88.52 86.14 1.09 96.12

SIG [2] 91.91 97.23 86.30 97.11 47.26 70.18 96.84 39.33 84.29 0.00 94.81 54.16 99.36 31.13 76.65 0.64 90.66 88.77 0.00 97.05

SSBA [22] 91.53 90.39 85.93 74.07 55.36 10.0 100.0 9.23 79.72 38.47 70.06 48.43 97.05 28.45 77.14 12.84 81.58 87.34 4.87 90.67

WaNet [30] 87.42 94.32 86.03 52.47 70.23 10.0 100.0 11.29 69.85 98.71 41.22 56.72 19.82 71.90 62.73 55.31 57.16 87.87 2.15 96.09

BPP [42] 89.3 98.3 86.50 72.54 61.48 10.0 100.0 10.35 39.62 0.00 74.31 59.82 17.05 75.89 48.10 84.27 36.42 87.96 0.07 98.45

Trojan [27] 92.26 99.99 86.74 99.97 47.25 10.71 97.26 10.59 76.25 0.00 91.99 47.8 100.00 27.77 88.00 2.68 96.53 87.61 0.00 97.67

Average 90.84 96.23 86.35 83.21 54.26 18.69 99.16 14.15 73.71 22.64 78.55 54.4 62.27 49.43 72.04 23.58 76.92 87.59 1.33 95.79

Table 13: Results on CIFAR-10 with VGG19-BN and poisoning ratio 1.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 91.51 79.87 86.58 9.01 82.96 89.80 55.54 61.31 79.32 88.57 43.9 54.81 11.12 66.02 76.48 5.72 79.56 88.67 1.34 87.84

Blended [5] 91.83 94.19 87.17 85.10 52.21 90.07 93.07 49.68 85.11 95.13 46.64 55.09 0.00 78.73 67.57 10.40 79.76 87.46 4.38 92.72

SIG [2] 92.11 92.79 87.22 79.34 54.28 89.10 1.36 94.21 87.37 92.86 47.63 55.92 0.00 78.3 76.45 88.38 44.38 88.31 8.30 90.34

SSBA [22] 91.9 38.08 86.90 10.61 61.23 89.82 24.12 55.94 77.15 61.7 42.62 58.45 12.20 46.21 71.51 44.13 39.80 86.02 2.24 64.98

WaNet [30] 90.12 23.47 86.56 5.19 57.36 10.00 100.00 9.94 10.03 100.0 9.96 55.8 15.22 36.97 61.62 22.64 36.17 88.63 1.52 60.23

BPP [42] 89.2 47.71 86.43 4.64 70.15 10.00 100.00 10.40 84.03 11.11 65.72 56.81 7.67 53.83 75.22 26.57 53.58 88.36 1.36 72.76

Trojan [27] 91.97 99.92 87.57 99.68 47.92 90.47 28.72 84.85 80.36 99.98 44.2 55.68 99.87 31.88 68.77 6.37 85.18 87.55 7.70 93.90

Average 91.23 68.0 86.92 41.94 60.87 67.04 57.54 52.33 71.91 78.48 42.95 56.08 20.87 55.99 71.09 29.17 59.78 87.86 3.84 80.40

Table 14: Results on CIFAR-10 with VGG19-BN and poisoning ratio 10.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 90.42 94.43 84.81 93.83 47.50 10.00 100.0 9.79 89.50 12.16 90.68 56.35 20.95 69.71 37.38 1.54 69.92 86.03 1.47 94.29

Blended [5] 91.91 99.5 86.21 99.17 47.32 10.00 100.0 9.04 85.18 4.60 94.08 46.97 99.97 27.53 35.24 3.01 69.91 88.04 0.24 97.69

SIG [2] 83.48 98.87 79.00 99.8 47.76 27.90 98.6 22.34 31.68 0.00 73.53 43.4 99.97 29.96 80.64 6.48 94.77 79.48 0.00 97.43

SSBA [22] 90.85 95.11 85.54 90.61 49.60 10.00 100.0 9.57 86.27 0.16 95.19 51.21 98.81 30.18 74.21 2.64 87.91 85.82 0.70 94.69

WaNet [30] 84.58 96.49 85.05 80.78 57.86 10.00 100.0 12.71 68.10 99.82 41.76 56.87 36.84 65.97 68.73 36.18 72.23 86.99 2.41 97.04

BPP [42] 89.32 99.79 86.62 93.22 51.93 90.00 99.16 50.32 72.09 100.00 41.38 54.07 99.96 32.38 52.92 89.00 37.19 87.79 0.12 99.07

Trojan [27] 91.57 100.0 87.07 99.97 47.77 10.00 100.0 9.22 81.70 0.00 95.06 46.6 100.0 27.51 80.45 2.21 93.33 87.73 0.00 98.08

Average 88.88 97.74 84.90 93.91 49.96 23.99 99.68 17.57 73.50 30.96 75.96 50.78 79.5 40.46 61.37 20.15 75.04 85.98 0.71 96.90

B.4 Main experiments on Tiny ImageNet with ViT-B-16

To demonstrate the effectiveness and scalability of PDB, we evaluate our proposed method against
backdoor attacks on the Tiny ImageNet dataset using the ViT-B-6 model architecture. We consider
different poisoning ratios (1.0%, 5%, and 10.0%). The results, presented in Table 15, highlight our
method’s ability to effectively mitigate backdoor attacks for a large dataset and a large model.
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Table 15: Results on Tiny ImageNet with ViT-B-16.

Poisoning ratio → 10% 5% 1%

Defense → No Defense PDB (Ours) No Defense| PDB (Ours) No Defense PDB (Ours)

Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets [12] 73.96 99.79 72.88 0.01 76.15 99.72 73.71 0.00 76.98 97.45 74.87 0.01

Blended [5] 75.28 99.93 73.85 0.00 76.00 99.83 72.70 0.00 77.39 98.03 74.24 0.00

SSBA [22] 76.37 99.28 74.27 0.00 75.30 99.86 72.65 0.00 76.05 88.96 74.62 0.00

WaNet [30] 62.68 99.61 74.46 0.00 60.90 99.73 72.82 0.01 63.40 95.87 74.49 0.05

BPP [42] 61.81 99.82 72.83 0.00 63.08 99.68 73.30 0.00 62.98 94.21 73.84 0.00

Trojan [27] 75.16 99.86 72.72 0.00 74.98 99.76 73.00 0.00 77.15 99.07 75.01 0.00

Average 70.88 99.72 73.50 0.00 71.07 98.86 73.03 0.00 72.33 95.03 74.51 0.01

B.5 Experiments on invisible backdoor attack and low-poisoning ratio attack

As aforementioned, the proposed method, PDB, does not rely on specific assumptions about the
type of attack, making it effective for defending against both invisible backdoor attacks and attacks
with low poisoning ratios. To demonstrate this effectiveness, we conducted experiments using low
poisoning ratios (0.5% and 0.1%) for both Visible and Invisible attacks. The results are summarized
in Table 16, from which we can find that PDB can consistently mitigate backdoor attacks.

Table 16: Results on PreAct-ResNet18 and CIFAR10 for invisible and low poisoning ratio attacks

Trigger Type → Visible Visible Invisible Invisible Invisible Invisible Invisible Invisible Invisible Invisible

Attack → BadNet BadNet Blended Blended Sig Sig SSBA SSBA WaNet WaNet

Poisoning ratio ↓ Defense ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

0.10% No Defense 93.61 1.23 93.80 56.11 93.73 41.27 93.89 1.62 92.18 0.78

0.10% PDB 91.55 0.87 91.91 0.36 91.59 0.39 91.72 0.42 91.87 0.89

0.50% No Defense 93.76 50.06 93.68 93.30 93.80 82.43 93.41 35.67 91.27 1.12

0.50% PDB 91.62 0.60 91.66 0.31 91.72 0.12 91.65 0.54 91.72 0.92

C Discussion and additional analysis

C.1 Influences of reserved dataset

We explore the impact of the reserved dataset on defense performance, considering both dataset size
and source:

• Dataset size. We investigate the influence of reserved dataset size using the CIFAR-10 dataset,
a 5% poisoning ratio, and the PreAct-ResNet architecture. Figure 5 summarizes the results,
demonstrating that our proposed method effectively mitigates malicious backdoor effects across a
wide range of reserved dataset sizes. Notably, increasing the reserved dataset significantly improves
the accuracy of our method.
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Figure 5: Defense results with different sizes of the reserved dataset. The ratio represents the ratio of
the reserved dataset compared with the whole training dataset. Note that the Defense ASR is below
1% and may be barely visible.
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• Defense with generated dataset. As generative models have evolved, incorporating the generated
dataset as an additional source for backdoor defense has become practical and reasonable. To
explore the source of this reserved dataset, we assess our method using the generated data CIFAR-
5m from Nakkiran et al. [29]. with DDPM. Our findings, summarized in Table 17, demonstrate
that the advanced generative model can indeed supply a sufficient dataset for applying our defense
strategy.

Table 17: Defense results using generated dataset on CIFAR-10 and PreAct-ResNet18 (%).

Attack → BadNets [12] Blended [5] SIG [2] SSBA [22] Average

Defense ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

No Defense 92.64 88.74 93.67 99.61 93.64 97.09 93.27 94.91 93.31 95.09

PDB (Ours) 91.08 0.38 91.36 0.70 91.79 0.06 91.58 0.46 91.45 0.40

PDB (Ours)+Generate Dataset 90.17 0.48 90.90 0.97 91.33 0.00 91.49 0.56 91.24 0.78

C.2 Influences of the trigger and target

Mask 1 Mask 2 Mask 3

(a) (b) (c)

Figure 6: The masks of patched triggers.

In this section, we explore the impact of trigger design and target assignment strategy. Specifically,
we evaluate different trigger configurations using a patch trigger with three distinct masks (illustrated
in Figure 6). Additionally, we consider two target assignment strategies, i.e., h1(y) = (y + 1)
mod K and h2(ϕ(x)) = −ϕ(x), where y is the hard label and ϕ(x) is the logits for the model
output. Our experiments, detailed in Table 18, demonstrate the effectiveness of our method across
various defensive backdoor designs.

Table 18: Results on PDB with different configurations.

Configuration → Config 1 (a+h1) Config 2 (b+h1) Config 3 (c+h1) Config 4 (a+h2)

Defense → No Defense PDB (Ours) PDB (Ours) PDB (Ours) PDB (Ours)

Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

BadNets [12] 92.64 88.74 91.08 0.38 90.09 0.40 90.89 0.76 89.93 0.81

Blended [5] 93.67 99.61 91.36 0.70 89.20 0.04 90.45 0.03 91.96 0.00

SIG [2] 93.64 97.09 91.79 0.06 91.17 0.10 92.13 0.38 91.51 0.00

SSBA [22] 93.27 94.91 91.58 0.46 91.03 0.21 89.58 0.37 91.85 0.09

Average 93.31 95.09 91.45 0.40 90.37 0.19 90.76 0.38 91.31 0.23

Special case study: Same target label for malicious backdoor and defensive backdoor. While
our trigger remains inaccessible to the attacker, the target assignment strategy could potentially be
stolen or coincidentally used by the attacker. In this scenario, we conduct experiments where both
the attacker and the defender employ the same target assignment strategy but different triggers. Our
results demonstrate that our method remains effective in such cases. Specifically, assuming both
the attacker and defender choose h(y) = (y + 1) mod K, we summarize the results in Table 19,
highlighting our method’s resilience even when the attacker uses the same target label as the defender.
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Table 19: Results on attacks with the same target label as defensive backdoor.

Poisoning Ratio → 5% 10%

Defense → No Defense PDB (Ours) No Defense PDB (Ours)

Attack ↓ ACC ASR ACC ASR ACC ASR ACC ASR

BadNet 92.54 65.85 91.37 1.01 91.89 74.42 91.26 1.00

Blended [5] 93.71 83.68 92.28 1.64 93.74 86.85 92.03 1.99

BPP [42] 90.92 86.42 91.89 1.45 91.49 87.71 91.95 1.57

SIG [2] 93.73 88.02 92.02 1.59 93.40 90.61 91.91 1.29

Average 92.73 80.99 91.89 1.42 92.63 84.90 91.79 1.46

C.3 Influences of augmentation

In this section, we explore the impact of augmentation on enhancing defensive backdoors using
the CIFAR-10 dataset, a 5% poisoning ratio, and the PreAct-ResNet architecture. We specifically
investigate Gaussian noise augmentation by setting τ(x) = x+ α ∗ ϵ with ϵ ∼ N (0, 1) determines
the augmentation intensity. The results are summarized in Figure 7. Notably, even without any
augmentation (α = 0), PDB exhibits significant efficacy, likely due to the robustness of the defense
mechanisms and our controlled training injection process. Furthermore, as augmentation strength
increases, the ASR decreases, albeit at the cost of reduced ACC, indicating a tradeoff between
augmentation intensity and model performance.
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Figure 7: Defense results with different strength of augmentation.

C.4 Comparison with post-training methods

Given a reserved dataset, the defender may follow a ‘poisoned first and mitigation later’ manner to
train the backdoored model first and employ post-training method to mitigate the backdoor effect.
Therefore, to thoroughly evaluate our method, we compare it with SOTA post-training approaches that
aim to remove backdoor effects after model training. To ensure fairness, we adopt the common prac-
tice of reserving 5% of the training data for post-training evaluation. Our experiments are conducted
on the CIFAR-10 dataset using PreAct-ResNet18 with a 5% poisoning ratio. The summarized results
in Table 20 demonstrate that our method consistently achieves superior performance in defending
against backdoor attacks, highlighting its promising effectiveness.

Table 20: Results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 5.0%.

Defense → No Defense FT FP [24] NC [40] NAD [21] i-BAU [50] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 92.64 88.74 91.22 4.49 91.42 92.47 17.47 85.55 89.89 1.17 92.41 91.03 4.73 91.20 89.21 0.81 92.25 89.34 0.66 92.39

Blended [5] 93.67 99.61 93.25 98.78 50.21 93.46 98.87 50.27 93.66 99.61 50.00 93.10 99.06 49.99 85.92 36.33 77.76 90.24 0.87 97.66

SIG [2] 93.64 97.09 92.84 96.42 49.93 93.27 99.79 49.81 93.65 97.09 50.00 92.49 96.98 49.48 86.12 3.50 93.03 90.26 0.01 96.85

SSBA [22] 93.27 94.91 93.08 87.46 53.63 93.05 87.14 53.77 91.04 0.80 95.94 92.49 88.63 52.75 89.43 2.30 94.39 90.02 0.38 95.64

WaNet [30] 91.76 85.5 93.47 31.32 77.09 92.14 26.10 79.7 91.76 85.50 50.00 93.31 50.40 67.55 91.13 6.11 89.38 89.96 0.90 91.40

BPP [42] 91.47 99.34 93.37 3.46 97.94 85.98 3.11 95.37 91.47 99.34 50.00 93.09 3.53 97.91 91.35 5.72 96.75 90.9 3.17 97.80

Trojan [27] 93.79 99.99 92.90 44.22 77.44 83.89 12.11 88.99 92.59 95.06 51.87 92.68 4.24 97.32 89.42 7.49 94.06 89.64 0.19 97.82

Average 92.89 95.03 92.88 52.31 71.09 90.61 49.23 71.92 92.01 68.37 62.89 92.60 49.65 72.31 88.94 8.90 91.09 90.05 0.88 95.65
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C.5 Detailed comparison to NAB

As previously mentioned, the work most relevant to our research is NAB [26], which presents a
promising and impressive approach for enhancing backdoor defense methods. In this context, we
conduct a detailed analysis to highlight the distinctions between our method, PDB, and NAB.

PDB does not rely on poisoned sample detection. Our method diverges from the conventional
“detection-mitigation” pipeline by operating independently of any poison detection methods. In
contrast, NAB relies on identifying poisoned samples to deploy its defensive trigger.

PDB does not depend on suspicious sample relabeling. Unlike NAB, our method does not require
accurate sample relabeling. In NAB, detected samples are equipped with a defensive trigger and
subsequently relabeled. Unfortunately, if a few clean samples are mistakenly labeled as “suspicious,”
the defensive trigger may function as a malicious one if further relabeling is incorrect. Note that
accurately relabeling a sample is getting harder as the dataset gets larger. Therefore, we observe
such scenarios appear more frequently in large datasets during our experiments. For instance, when
applying the BadNets attack with a 5% poisoning ratio on Tiny ImageNet using ViT-B-16, NAB’s
model accuracy drops from 73.60% (without a defensive trigger) to 28.88% (with the trigger) due to
low relabel correctness and poison detection rates.

C.6 Resistance to ALL2ALL attack

In this section, we compare PDB with other baselines in ALL2ALL attacks on CIFAR-10 using
PreAct-ResNet18. The poisoning ratio is set to 5% and 10%. Specifically, the target labels for
samples with original labels y are adjusted to (y + 2) mod K (different from the defensive target).
The experimental results are summarized in Table 21 and Table 22. Notably, PDB achieves the best
defending performance, demonstrating superior effectiveness in countering backdoor attacks with
multiple targets.

Table 21: ALL2ALL attack results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 5.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 92.5 61.33 90.1 53.7 52.61 92.33 57.73 51.72 52.46 59.96 30.66 87.1 4.52 75.70 80.51 62.74 44.0 90.68 2.72 78.40

Blended [5] 93.51 83.87 91.36 78.56 51.58 93.72 84.66 50.0 68.04 35.62 61.39 75.24 26.62 69.49 90.34 79.09 50.8 91.87 3.95 89.14

SIG [2] 93.52 88.15 91.49 83.07 51.52 94.02 88.77 50.0 67.2 59.67 51.08 76.19 20.26 75.28 82.65 83.19 47.04 91.73 3.13 91.62

BPP [42] 90.92 86.42 91.26 83.67 51.37 93.72 87.52 50.0 33.44 19.69 54.62 77.48 2.24 85.37 86.32 83.33 49.24 91.89 1.45 92.48

Average 92.61 79.94 91.05 74.75 51.77 93.45 79.67 50.43 55.28 43.74 49.44 79.0 13.41 76.46 84.96 77.09 47.77 91.54 2.81 87.91

Table 22: ALL2ALL attack results on CIFAR-10 with PreAct-ResNet18 and poisoning ratio 10.0%.

Defense → No Defense AC [3] Spectral [39] ABL [20] DBD [15] NAB [26] PDB (Ours)

Attack ↓ ACC ASR ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER ACC ASR DER

BadNets [12] 91.82 72.2 88.89 65.73 51.77 90.54 72.11 49.4 26.34 27.9 39.41 85.52 5.25 80.32 83.47 60.34 51.76 90.53 2.49 84.21

Blended [5] 93.54 87.04 91.01 82.12 51.19 93.83 87.09 50.0 74.11 56.56 55.53 80.08 22.48 75.55 88.68 79.7 51.24 91.89 3.02 91.18

SIG [2] 93.64 90.65 91.18 87.14 50.52 93.58 90.68 49.97 86.47 82.69 50.4 68.23 42.20 61.52 82.05 83.85 47.6 92.08 2.68 93.20

BPP [42] 91.49 87.71 91.66 85.97 50.87 93.99 89.41 50.0 75.58 74.15 48.82 81.9 2.68 87.72 84.44 81.52 49.57 91.95 1.57 93.07

Average 92.62 84.4 90.68 80.24 51.09 92.98 84.82 49.84 65.62 60.32 48.54 78.93 18.15 76.28 84.66 76.35 50.04 91.61 2.44 90.42

C.7 Design of defensive trigger and the satisfaction to Principle 4

Here, we summarize the aforementioned experiments and provide a comprehensive discussion about
how to meet Principle 4 (Resistance against other backdoors) from the following perspectives:

• Design of defensive trigger:
1. Defensive trigger size: Trigger size directly contributes to the strength of the defensive

backdoor. In Table 23, we evaluate PDB with a square defensive trigger with sizes ranging
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from 1x1 to 9x9. From Table 23, we can find that a larger trigger leads to a stronger defensive
backdoor, resulting in a higher ACC and a lower ASR. However, as the trigger size increases,
it may interfere with the visual content of the image, leading to a slight decrease in ACC.
Notably, as the square trigger has strong visibility, a trigger with size 1x1 can still alleviate the
malicious backdoor to some extent.

Table 23: Results on PreAct-ResNet18 with Poisoning Ratio 5% and different defensive trigger size

Attack → BadNet BadNet Blended Blended Sig Sig SSBA SSBA WaNet WaNet

Defensive Trigger size ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

1x1 48.75 6.88 52.34 5.06 53.15 5.22 52.03 6.20 58.04 4.26

2x2 74.39 3.37 81.38 2.71 81.13 2.32 77.49 3.87 76.49 3.98

3x3 86.08 0.26 85.60 0.67 86.94 0.07 87.01 0.49 85.70 0.97

4x4 89.46 0.28 90.07 0.56 90.38 0.07 89.60 0.44 89.98 0.92

5x5 91.51 0.33 92.22 0.31 92.35 0.06 92.14 0.64 92.05 0.97

6x6 90.78 0.32 91.93 0.49 92.04 0.04 91.82 0.41 91.52 0.91

7x7 91.08 0.38 91.36 0.70 91.79 0.06 91.58 0.46 91.47 0.92

8x8 90.48 0.33 91.56 0.40 91.59 0.02 91.41 0.39 91.44 0.86

9x9 90.21 0.32 91.24 0.39 90.79 0.03 90.92 0.32 90.87 0.56

2. Defensive trigger position: As aforementioned, the position of the defensive trigger is
essential for Principle 3, i.e., minimal impact on model performance. Table 24 shows that
triggers placed in different positions (corner, random, and center) achieve a similar effect in
defending against backdoor attacks. However, placing a trigger at the center of an image
significantly degrades accuracy, as the trigger masks the core patterns of the image.

Table 24: Results on PreAct-ResNet18 with Poisoning Ratio 5% and different positions

Attack → BadNet BadNet Blended Blended Sig Sig SSBA SSBA WaNet WaNet

Defensive Trigger Position ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

Corner 91.08 0.38 91.36 0.7 91.79 0.06 91.58 0.46 91.47 0.92

Random 88.79 0.69 90.10 0.81 90.12 0.16 89.39 0.66 89.49 0.97

Center 87.35 0.63 87.82 0.44 88.19 0.06 87.93 0.89 87.70 0.93

3. Pixel value: For a square trigger, pixel value is also an important parameter for PDB. In
Table 25, we evaluate PDB with a square defensive trigger with different pixel values, from
which we can find that PDB can achieve high effectiveness across different pixel values.

Table 25: Results on PreAct-ResNet18 with Poisoning Ratio 5% and different pixel values

Attack → BadNet BadNet Blended Blended Sig Sig SSBA SSBA WaNet WaNet

Pixel ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

1.50 90.69 0.57 91.40 0.56 91.74 0.09 91.54 0.60 91.44 0.83

2.00 91.08 0.38 91.36 0.7 91.79 0.06 91.58 0.46 91.47 0.92

2.50 90.99 0.48 91.39 0.50 91.77 0.04 91.48 0.80 91.54 0.54

-0.50 90.94 0.48 91.78 0.91 91.56 0.01 91.64 0.61 91.69 0.60

-1.00 90.84 0.23 92.31 0.07 91.81 0.00 91.85 1.07 91.83 0.90

-1.50 90.86 0.29 91.62 1.00 91.88 0.00 91.43 0.66 91.86 0.78

• Backdoor enhancement strategy during training:
1. Increasing sampling frequency: Given a fixed number of defensive poisoned samples, the

defensive backdoor can be further enhanced by increasing the sampling frequency of poisoned
samples, forcing the model to pay more attention to defensive poisoned samples. Table 26
shows that a larger sampling frequency leads to a stronger defensive backdoor, resulting in
a higher ACC and a lower ASR. Note that for the malicious attacker, the poisoning ratio is
expected to be low to ensure the stealthiness of the attack.

2. Data augmentation: From Fig 7, we can find that PDB, without any sample augmen-
tation (α = 0), exhibits significant efficacy with ASR lower than 2%. As augmentation
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Table 26: Results on PreAct-ResNet18 with poisoning ratio 5% and different sampling frequencies

Attack → BadNet BadNet Blended Blended Sig Sig SSBA SSBA WaNet WaNet

Frequency ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

1 91.01 0.69 91.19 1.48 91.38 4.62 91.19 1.24 91.13 1.07

3 91.06 0.57 91.27 1.39 91.73 0.10 91.28 0.72 91.44 0.97

5 91.08 0.38 91.36 0.70 91.79 0.06 91.58 0.46 91.47 0.92

7 91.34 0.27 91.56 0.59 91.98 0.04 91.89 0.43 91.84 0.27

9 92.15 0.20 92.19 0.50 92.27 0.02 92.30 0.31 92.48 0.16

strength increases, the ASR decreases, indicating a stronger augmentation can help further
enhance PDB’s effectiveness. However, a tradeoff between augmentation intensity and model
performance is also observed.

In summary, a visible trigger with larger trigger size, higher sampling frequency, and data augmenta-
tion contribute to meeting Principle 4.

C.8 Factors that influence the accuracy of PDB

Here, we would like to discuss the factors that influence the accuracy of PDB:

• Model capacity and data complexity:
1. Model capacity: Since PDB introduces additional task, i.e., injecting defensive backdoor,

increasing the model capacity helps to increase the accuracy of PDB, as evidenced in Table 27.

Table 27: Results on different models

Model ResNet-18 ResNet-18 ResNet-34 ResNet-34 ResNet-50 ResNet-50

Metric ACC ASR ACC ASR ACC ASR

No Defense 92.54 76.27 93.08 82.48 93.76 87.26

PDB 91.81 0.29 92.63 0.28 93.67 0.18

2. Dataset complexity: By comparing defense results with different datasets, we can find that
by decreasing the dataset complexity, the accuracy of PDB increases significantly.

• Strength of defensive backdoor:
1. Strength of augmentation: From Figure 7, we can find that there exists a tradeoff between

ACC and ASR. Therefore, the accuracy of PDB can be boosted by reducing the strength of
augmentation.

2. Sampling frequency: From Table 26, we can find that by increasing the sampling frequency
of defensive poisoned samples, the accuracy of PDB can be boosted.

3. Trigger size: Table 23 shows that a proper choice of trigger size can also help to increase the
accuracy. Therefore, if a validation set is accessible, a proper trigger size can be chosen to
increase accuracy.

In summary, due to the "home field advantage" of PDB, there are several ways to maintain a high
accuracy even in the case of a low malicious poisoning ratio, such as increasing model capacity, sim-
plifying the dataset, reducing the strength of augmentation to defensive poisoned samples, increasing
the sampling frequency and choosing a proper defensive trigger size.

C.9 Novelty and comparison with backdoorIndicator

Here, we highlight the distinctions between our approach and BackdoorIndicator [19].

First, we would like to clarify the following differences between our work and backdoorIndicator
[19]:

25



• Threat model: [19] targets decentralized training (FL) setting, where multiple clients train models
locally and contribute updates to a central server. Our work considers a centralized training setting
where only a central server is used.

• Task: [19] focuses on detecting malicious clients, whereas our method aims to train a secure model
on a poisoned dataset without clients.

• Motivation: [19] is built on the motivation that planting subsequent backdoors with the same target
label enhances previously planted backdoors, therefore, providing a way to detect the poisoned
clients, while our method is based on the motivation that planting a concurrent reversible backdoor
can help to mitigate the malicious backdoor.

• Methodology: [19] utilizes OOD samples for backdoor client detection while our method con-
structs a proactive defensive poison dataset, following well-designed principles.

Second, we would like to discuss the challenges in direct utilizing backdoorIndicator in our setting:

• BackdoorIndicator is designed to detect malicious clients within a federated learning (FL) context.
This makes it challenging to apply BackdoorIndicator directly to our centralized environment since
the task of identifying backdoored clients does not naturally fit into this setting (only a central
server).

• For comparison between BackdoorIndicator and our method, we need to emulate an FL scenario
by assigning each image to a separate client (ensuring existence of benign client), thereby creating
50,000 local models from the CIFAR-10 dataset to defend a single attack with PreAct-ResNet18.
This would require an impractical amount of computational resources, estimated at over 30,000
hours (1,250 days) of training time and 30TB of storage space using a server with a single RTX
3090 GPU.

C.10 Comparison to FT-SAM

To address the comparison with FT-SAM [55], we have adapted their method to our experimental
setting. It’s worth noting that in [55], the authors employ the Blended attack with a blending ratio
of 0.1 (Blended-0.1), whereas we use a blending ratio of 0.2 (Blended-0.2). For consistency and
completeness, we have now included experiments using both blending ratios, and the results are
shown below:

Table 28: Results on PreAct-ResNet18 with FT-SAM

Attack → BadNet BadNet Blended-0.2 Blended-0.2 Blended-0.1 Blended-0.1 Sig Sig SSBA SSBA

Poisoning ratio ↓ Defense ↓ ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR

5% FT-SAM 92.66 1.22 92.87 31.54 92.76 2.87 92.82 1.80 92.83 3.27

5% PDB 91.08 0.38 91.36 0.70 91.85 0.22 91.79 0.06 91.58 0.46

From Table 28, we can find FT-SAM can achieve a higher accuracy as it aims to fine-tune a backdoored
model while PDB aims to train a model from scratch. Consistent with [55], Table 28 shows that
FT-SAM can mitigate backdoor attacks for most cases, except for the Blended-0.2. We observe that
FT-SAM struggles to defend against blended attacks with higher blending ratios, such as 0.2. Notably,
PDB achieves a significantly lower ASR across all cases, with an average ASR below 0.5%.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction of the paper accurately reflect the paper’s
contributions and scope. They clearly state that the paper addresses the challenge of training
a clean model on a potentially poisoned dataset by proposing a novel defense mechanism.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations of the work performed by the authors. In
the "Limitations and future work" section, we acknowledge that their implementation of the
reversible backdoor defense has several key limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper appears to provide detailed information on the experimental setup
based on a popular Benchmark Project, including the datasets used, the model architectures,
the backdoor attack strategies, and the defense mechanisms compared.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Provided in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Provided in the main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Provided in the main text and the appendix. Due to space limit, the bar are
mainly visualized in the plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in the main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Provided in the main text.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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