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Abstract

Sparse Autoencoders (SAEs) have emerged as a useful tool for interpreting the1

internal representations of neural networks. However, naively optimising SAEs for2

reconstruction loss and sparsity results in a preference for SAEs that are extremely3

wide and sparse. We present an information-theoretic framework for interpreting4

SAEs as lossy compression algorithms for communicating explanations of neural5

activations. We appeal to the Minimal Description Length (MDL) principle to6

motivate explanations of activations which are both accurate and concise. We7

further argue that interpretable SAEs require an additional property, “independent8

additivity”: features should be able to be understood separately. We demonstrate9

an example of applying our MDL-inspired framework by training SAEs on MNIST10

handwritten digits and find that SAE features representing significant line segments11

are optimal, as opposed to SAEs with features for memorised digits from the12

dataset or small digit fragments. We argue that using MDL rather than sparsity13

may avoid potential pitfalls with naively maximising sparsity such as undesirable14

feature splitting and that this framework naturally suggests new hierarchical SAE15

architectures which provide more concise explanations.16

1 Introduction17

Sparse Autoencoders (SAEs) (Le, 2013; Makhzani and Frey, 2013) were developed to learn a18

dictionary of sparsely activating features that describe a given dataset. They have recently become19

popular tools for interpreting the internal activations of large foundation language models, often20

finding human-understandable features (Sharkey et al., 2022; Huben et al., 2024; Bricken et al.,21

2023b).22

Interpretability, in particular human-understandability, is difficult to optimise for since ratings—from23

humans or auto-interpretability methods (Bills et al., 2023)—are not differentiable at training time24

and often cannot be efficiently obtained. Researchers often use sparsity, the number of nonzero25

feature activations as measured by the L0 norm, as a proxy for interpretability. SAEs are typically26

trained with an additional L1 penalty in their loss function to promote sparsity.27

We adopt an information theoretic view of SAEs, inspired by Grünwald (2007), which views SAEs28

as explanatory tools that compress neural activations into communicable explanations. This view29

suggests that sparsity may appear as a special case of a larger objective: minimising the description30

length of the explanations. This operationalises Occam’s razor for selecting explanations: all else31

equal, prefer the more concise explanation.32

We introduce this information theoretic view by describing how SAEs can be used in a communication33

protocol to transmit neural activations. We then argue that interpretability requires explanations34

to have the property of independent additivity, which allows individual features to be interpreted35
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separately and discuss SAE architectures that are compatible with this property. We find that sparsity36

(i.e. minimizing L0) is a key component of minimizing description length but there are cases where37

sparsity and description length diverge. In these cases, minimizing description length directly gives38

more intuitive results. We demonstrate our approach empirically by finding the Minimal Description39

Length solution for SAEs trained on the MNIST dataset.40

2 SAEs are communicable explanations41

SAEs aim to provide explanations of neural activations in terms of "features"1. Here we reformulate42

SAEs as solving a communication problem: suppose that we would like to transmit the neural43

activations x to a friend with some tolerance ε, either in terms of the reconstruction error or change in44

the downstream cross-entropy loss. Using the SAE as an encoding mechanism, we can approximate45

the representation of the activations in two parts. First, we send them the SAE encodings of the46

activations z = Enc(x). Second, we send them a decoder network Dec(·) that recompiles these47

activations back to (some close approximation of) the neural activations, x̂ = Dec(z).48

This is closely analogous to two-part coding schemes (Grünwald, 2007) for transmitting a program49

via its source code and a compiler program that converts the source code into an executable format.50

Together the SAE activations and the decoder provide an explanation of the neural activations, based51

on the definition below.52

Definition 2.1 An explanation e of some phenomena p is a statement e(p) for which knowing e(p)53

gives some information about p. An explanation is typically a natural language statement2.54

The description length (DL) of an explanation is the number of bits needed to transmit the explanation.55

For an SAE, this would be DL = |z|bits + |Dec(·)|bits. The first term is O(n) and the second term is56

O(1) in the dataset size so the first term dominates in the large data regime.57

Occam’s Razor: All else equal, an explanation e1 is preferred to explanation e2 if DL(e1) < DL(e2).58

Intuitively, the simpler explanation is the better one. We can operationalise this as the Minimal59

Description Length (MDL) Principle for model selection: Choose the model with the shortest60

description length which solves the task. It has been observed that lower description length models61

often generalise better (MacKay, 2003).62

Definition 2.2 We define the Minimal Description Length (MDL) as MDLε(x) = minDL(SAE)63

where Loss(x, x̂) < ε and x̂ = SAE(x). We say an SAE is ε-MDL-optimal if it obtains this64

minimum.65

3 Interpretability requires independent additivity66

Following Occam’s razor we prefer simpler explanations, as measured by description length. But67

SAEs are not intended to simply give compressed explanations. They are also intended to give68

explanations that are interpretable and ideally human-understandable.69

SAE features can be interpreted either as causal results of the model inputs (which we can see70

by analyzing feature activation patterns) or they can be interpreted as causes of the model outputs71

(which we can see through conducting interventions on the features and seeing the downstream72

effects). In both cases, we want to be able to understand each SAE feature independently, without73

needing to control for the activations of the other features. If all the feature activations are causally74

entangled—as is the case for the dense neural activations themselves—then they are not interpretable.75

Note that for D features there are O(D2) pairs of features and
∑K

i

(
D
i

)
possible sets of features76

1Here we use the term "feature" as is common in the literature to refer to a linear direction which corresponds
to a member of the set of a (typically overcomplete) basis for the activation space. Ideally the features are
relatively monosemantic and correspond to a single (causally relevant) concept. We make no guarantees that the
features found by an SAE are the "true" generating factors of the system.

2We will treat SAE activations and feature vectors as explanations themselves. Technically, we would want
to do the additional step of interpreting their activation patterns or the results of causal interventions to get a
natural language statement.
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Figure 1: Examples of different SAE architectures. All but nonlinear decoders are compatible with
independent additivity as feature activations correspond to adding a separate vector to the output.
Architectures with directed tree decoders or which allow for vectors lying within a subspace are
potentially more communication efficient since a child node can only be active if its parent node is
active.

which is much too large for humans to hold in working memory. So for feature explanations to be77

human-understandable we cannot have the all the features being entangled such that understanding a78

single concept requires understanding arbitrary feature interactions.79

Hence, for interpretability, we need to be able to understand features independently of each other80

such that understanding a collection of features together is equivalent to understanding all the features81

separately. We call this property independent additivity, defined below.82

Definition 3.1 Independent Additivity: An explanation e based on a vector of feature activations83

z⃗ =
∑

i z⃗i is independently additive if e(z⃗) ≈
∑

i e(z⃗i). We say that a set of features zi are84

independently additive if they can be understood independently of each other and the explanation of85

the sum of the features is the sum of the explanations of the features3.86

The independent additivity condition is directly analogous to the "composition as addition" property of87

the Linear Representation Hypothesis (LRH) discussed in Olah (2024). Independent additivity relates88

to the SAE features being composable via addition with respect to the explanation - this is a property89

of the SAE Decoder. In the Linear Representation Hypothesis however, Composition as Addition is90

about the underlying true features (i.e. the generating factors of the underlying distribution), which is91

a property of the underlying distribution.92

It is immediate from the definition that Independent Additivity holds for linear decoders however, we93

note that this condition also allows for more general decoder architectures. For example, features can94

be arranged to form a collection of directed trees, shown in fig. 1, where arrows represent the property95

"the child node can only be active if the parent node is active"4. Here each feature still corresponds to96

its own vector direction in the decoder. Since each child feature has a single path to its root feature,97

there are no interactions to disentangle and the independent additivity property still holds, in that98

each tree can be understood independently in a way that’s natural for humans to understand, as a99

multi-dimensional feature. An advantage of the directed-tree SAE decoder structure is that it can be100

more description-length efficient as shown in fig. 5.101

Independent additivity of feature explanations also implies that the description length of the set of102

activations, {zi}, is the sum of the lengths for each feature DL({zi}) =
∑

i DL(zi). If we know103

the distribution of the activations, pi(z), then it is possible to send the activations using an average104

description length equal to the distribution’s entropy, DL(zi) = H(pi) ≡
∑

z∈Z −pi(z) log2 pi(z).105

For directed trees, the average description length of a child feature would be the conditional entropy,106

DLchild(zi) = H(pi| parent active), which accounts for the fact that DL = 0 when the parent is not107

3Note that here the notion of summation depends on the explanation space. For natural language explanations,
summation of adjectives is typically concatenation ("big" + "blue" + "bouncy" + "ball" = "The big blue bouncy
ball"). For neural activations, summation is regular vector addition (x̂ = Dec(z⃗) =

∑
i Dec(zi) ).

4In practice, we typically expect feature trees to be shallow structures which capture causal relationships
between highly related features. A particularly interesting example of this structure is a group-sparse autoencoder
where linear subspaces are densely activated together.
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Figure 2: Finding the minimal description length (MDL) solution for SAEs trained on MNIST. A)
Description length vs sparsity (L0) for a set of hyperparameters with the same reconstruction error.
B) Plot of the number of alive features as a function of sparsity (L0). C) A random sample of SAE
features at the 95th, 80th, 50th, 20th, and 5th percentiles of feature density respectively.

active. This is one reason that directed tree-style SAEs can potentially have smaller descriptions than108

conventional SAEs.109

4 SAEs should be sparse, but not too sparse110

Naively we might see SAEs as decompressing neural activations which contain densely packed111

features in superposition. To see that SAEs are producing compressed explanations of activations we112

must note that the inherent feature sparsity means that it is more efficient to communicate SAE latent113

features rather than neural activations even though the dimension of the latent dimension is higher.114

The description length for a set of SAE activations (under independent additivity) with distribution115

p(z) is given by H(p) =
∑

z∈Z −p(z) log2 p(z). For exposition, consider a simpler formulation116

where we directly consider the bits needed without prior knowledge of the distributions. For a set of117

feature activations with L0 nonzero elements out of D dictionary features, an upper bound on the118

description length is119

DL ≲ L0(B + log2 D) (1)
where B is the effective precision of each float and log2 D is the number of bits required to specify120

which features are active. To achieve the same loss, higher sparsity (lower L0) typically requires a121

larger dictionary, so there’s an inherent trade-off between decreasing L0 and decreasing the dictionary122

size in order to reduce description length.123

As an illustrative example, in Appendix B, we compare reasonable hyperparameters for GPT-2 SAEs124

to dense/narrow and sparse/wide extreme hyperparameters. We show that an SAE (Bloom, 2024)125

has a description length of approximately 1405 bits per input token, compared to 5376 bits for126

transmitting the dense neural activations and 13,993 bits for a one-hot encoding of all possible token127

sequences of length 128. Here the SAE at intermediate sparsity and width has the lower description128

length.129

5 MDL-SAEs find interpretable and composable features for MNIST130

Lee (2001) describe the classical method for using the Minimal Description Length (MDL) criteria131

for model selection. Here we choose between model hyperparameters (in particular the SAE width132

and expected L0) for the optimal SAE. Our algorithm for finding the MDL-SAE solution and details133

for this case study are given in Appendix A.134

We trained SAEs on the MNIST dataset of handwritten digits (LeCun et al., 1998) and find the set of135

hyperparameters resulting in the same test MSE. We see three basic regimes:136

• High L0, narrow SAE width (C, D in fig. 2): Here, the description length (DL) is linear137

with L0, suggesting that the DL is dominated by the number of bits needed to represent the138

L0 nonzero floats. The features appear as small sections of digits that could be relevant to139

many digits (C) or start to look like dense features that one might obtain from PCA (D).140
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Figure 3: A toy model of undesirable feature splitting. The SAE can learn two boolean features
without feature splitting (A) or three mutually exclusive boolean features with feature splitting (B)
which always has lower L0. Minimizing description length provides a decision boundary (C) for
when feature splitting is preferred or not.

• Low L0, wide SAE width (A in fig. 2): Though L0 is small, the DL is large because as the141

SAE becomes wider, additional bits are required to specify which activations are nonzero.142

The features appear closer to being full digits, i.e. similar to samples from the dataset.143

• The MDL solution (B in fig. 2): There’s a balance between the two contributions to the144

description length. The features appear like longer line segments or strokes for digits, but145

could apply to multiple digits.146

In this example, the MDL solution finds a meaningful decomposition of digits into stroke-like features.147

More dense SAEs find less interpretable point-like features, while sparser SAEs find features that148

resemble examples from the dataset and fail to decompose the digits into reusable and composable149

features.150

6 Optimising for MDL can reduce undesirable feature splitting151

In large language models, SAEs with larger dictionaries learn finer-grained versions of features152

learned in smaller SAEs, a phenomenon known as "feature splitting" (Bricken et al., 2023b). Feature153

splitting that introduces a novel conceptual distinction is desirable but some feature splitting—for154

example, learning dozens of features representing the letter "P" in different contexts (Bricken et al.,155

2023b)—is undesirable and can waste dictionary capacity while not giving more explanatory power.156

A toy model of undesirable feature splitting is an SAE that represents the AND of two boolean157

features, A and B, as a third feature direction. The two booleans represent whether the feature vectors158

vA and vB are present or not, so there are four possible activations: 0, vA, vB , and vA + vB .159

No Feature Splitting: Say that the SAE only learns two boolean feature vectors, vA and vB , as160

shown in fig. 3. It is still capable of reconstructing A ∧B as the sum vA + vB . The L0 would simply161

be the expectation of the boolean activations, so L0 = pA + pB and the description length would be162

DL = H(pA) +H(pB) where H(p) is the entropy of a Bernoulli variable with probability p.163

Feature Splitting: In this case, the SAE learns three mutually exclusive features. A ∧B is explicitly164

represented with the vector vA + vB while the two other features represent A ∧ ¬B and B ∧ ¬A165

with vectors vA and vB . This setup has the same reconstruction error but has lower L0 = pA∧¬B +166

pB∧¬A + pA∧B = pA + pB − pA∧B since the probabilities for A ∧ ¬B, say, are reduced as167

pA∧¬B = pA − pA∧B . Note that the L0 (sparsity) is necessarily lower than in the non-feature168

splitting case.169

Even though feature splitting always results in a lower L0, it does not always result in the smallest170

description length. The phase diagram in fig. 3 shows the case where pA = pB . If the correlation171

coefficient ρ between A and B is small then representing only A and B, but not A ∧B, takes fewer172

bits so the preferred solution avoids feature splitting. However, if the correlation is large, then feature173

splitting is preferred since A ∧B occurs frequently enough that explicitly representing it reduces the174

description length. In this way, minimizing description length can limit the amount of undesirable175
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feature splitting and gives us a concrete decision criteria to understand when we might expect feature176

splitting.177

7 Hierarchical features allow for more efficient coding schemes178

Often features are semantically or causally related and this should allow for more efficient coding179

schemes. For example, consider the hierarchical concepts "Animal" (A) and "Bird" (B). Since all180

birds are animals, the "Animal" feature will always be active when the "Bird" feature is active. A181

conventional SAE would represent these as separate feature vectors, one for "Bird" (B) and one for182

"Generic Animal" (A ∧ ¬B), that are never active together, as shown in fig. 5. This setup has a low183

L0, equal to the probability of "Animal", pA, since something is a bird, a generic animal, or neither.184

An alternative approach would be to define a variable length coding scheme (Salomon, 2007). For185

example, one might consider first sending the activation for "Animal" (A) and only if "Animal" is186

active, sending the activation for "Animal is a Bird" (B|A). Now the description length is given as187

DL = H(pA) + pAH(pB|A) which is always fewer bits compared to the conventional SAE with188

DL = H(pA − pB) +H(pB), (see the phase diagram in fig. 5). The overall L0 however is higher189

because sometimes two activations are nonzero at the same time, so L0 = pA + pB|A.190

This case illustrates the potential to reduce description length by matching the SAE architecture191

more closely to the hierarchical and causal structure of the data distribution. We also see another192

case where optimising for sparsity differs to the MDL approach - hierarchical structures of the type193

described above are never beneficial when optimising for sparsity but when thinking in terms of194

Description Length, there are clear benefits to using the semantic structure of the data.195

8 Related Work196

Bricken et al. (2023a) also consider how information measures relate to SAEs and find that "bounces"197

in entropy correspond to dictionary sizes with the correct number of features in synthetic experiments.198

We find a similar bounce in description length in a non-synthetic experiment. We go further by199

studying several examples where minimal description length gives more intuitive features and discuss200

more description-efficient SAE architectures.201

As in Ramirez and Sapiro (2012), we use the MDL approach for the Model Selection Problem202

using the criteria that the best model for the data is the model that captures the most useful structure203

from the data. Chan et al. (2024) use Mechanistic Interpretability techniques to generate compact204

formal guarantees (i.e. proofs) of model performance and also note a deep connection between205

interpretability and compression.206

9 Conclusion207

In this work, we have presented an information-theoretic perspective on Sparse Autoencoders as208

explainers for neural network activations. Using the MDL principle, we provide some theoretical209

motivation for existing SAE architectures and hyperparameters. We also hypothesise a mechanism210

for, and criteria to describe, the commonly observed phenomena of feature splitting. In the cases211

where feature splitting can be seen as undesirable for downstream applications, we hope that, using212

this theoretical framework, the prevalence of undesirable feature splitting could be decreased in213

practical modelling settings.214

Historically, evaluating SAEs for interpretability has been difficult without human interpretability215

ratings studies, which can be labour intensive and expensive. We propose that operationalising inter-216

pretability as efficient communication can help in creating principled evaluations for interpretability,217

requiring less subjective and expensive SAE metrics. We would be excited about future work which218

explores to what extent variants in SAE architectures can decrease the MDL of communicated latent219

feature activations. In particular, we suggest that exploiting causal structure inherent in the data220

distribution may be important to efficient coding.221
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A SAE communication protocol269
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SAEs as a communication protocol

Figure 4: A schematic showing a sparse autoencoder (SAE) being used to communicate an input by
transmitting the encoded activations and decoding them into a reconstruction of the input.

B Comparison of GPT-2 SAE hyperparameters270

• Reasonable SAEs: Bloom (2024)’s open-source SAEs for GPT-2 layer 8 have L0 = 65,271

D = 25, 000. Given B = 7 bits per nonzero float (8-bit quantization with the sign fixed to272

positive), the description length per input token is 1405 bits.273

• Dense Activations: A dense representation that still satisfies independent additivity would274

be to send the neural activations directly instead of training an SAE. GPT-2 has a model size275

of d = 768, the description length is simply DL = B d = 5376 bits per token.276

• One-hot encodings: At the sparse extreme, our dictionary has a row for each neural277

activation in the dataset, so L0 = 1 and D = (vocab size)seq len. GPT-2 has a vocab size of278

50,257 and the SAEs are trained 128 token sequences. All together this gives DL = 13, 993279

bits per token.280

Although the comparison is slightly unfair because the SAE is lossy (93% variance explained) and the281

other cases are lossless, these calculations demonstrate that reasonable SAEs are indeed compressed282

compared to the dense and sparse extremes. We hypothesise that the reason that we’re able to get this283

helpful compression is that the true features from the generating process are themselves sparse.284

Note the difference here from choosing models based on the reconstruction loss vs sparsity (L0)285

Pareto frontier. When minimising L0, we are encouraging decreasing L0 and increasing D until286

L0 = 1. Under the MDL model selection paradigm we are typically able to discount trivial solutions287

like a one-hot encoding of the input activations and other extremely sparse solutions which make the288

reconstruction algorithm analogous to a k-Nearest Neighbour classifier.289

C Details on determining the MDL-SAE290

C.1 Algorithm291

1. Specify a tolerance level, ε, for the loss function. The tolerance ε is the maximum allowed292

value for the loss, either the reconstruction loss (MSE for the SAE) or the model’s cross-293

entropy loss when intervening on the model to swap in the SAE reconstructions in place of294

the clean activations. For small datasets using a reconstruction, the test loss should be used.295

2. Train a set of SAEs within the loss tolerance. It may be possible to simplify this task by296

allowing the sparsity parameter to also be learned.297

3. Find the effective precision needed for floats. The description length depends on the float298

quantisation. We typically reduce the float precision until the change in loss results in the299

reconstruction tolerance level is exceeded.300
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4. Calculate description lengths. With the quantised latent activations, the entropy can be
computed from the (discretized) probability distribution, {piα}, for each feature i, as

H =
∑
i,α

−piα log piα

5. Select the SAE that minimizes the description length i.e. the ε-MDL-optimal SAE.301

C.2 Details for MNIST case study302

For MNIST, we trained BatchTopK SAEs (Bussmann et al., 2024), typically for 1000+ epochs303

until the test reconstruction loss converged or stopping early in cases of overfitting. Our desired304

MSE tolerance was 0.0150. Discretizing the floats to roughly 5 bits per nonzero float gave an305

average change in MSE of ≈ 0.0001, which was roughly the scale over which MSE varied for the306

hyperparameters used.307

Gao et al. (2024) find that as the SAE width increases, there’s a point where the number of dead308

features starts to rise. In our experiments, we noticed that this point seems to be at a similar point to309

where the description length starts to increase as well, although we did not test this systematically310

and this property may be somewhat dataset dependent.311

D Description lengths for hierarchical features312

“Generic Animal” 
(A ⋀ not B)

A)   Separate features

“Bird” (B)

B)  Hierarchical features C)   Description Lengths

“Animal” (A)

“Animal is a bird” (B | A)

H
ierarchy better

Hierarchical
features preferred 

Figure 5: Two naturally hierarchical boolean features, such as "Animal" and "Bird", can be learned
as separate mutually exclusive features (A) or in hierarchy (B) where the child feature can only be
active if the parent feature is active, captured by the conditional probability pB|A. C) The hierarchical
case always has lower description length (DL) since the child feature’s activations need not be sent
when the parent is not active.
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