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ABSTRACT

Trust region methods and maximum entropy methods are two state-of-the-art
branches used in reinforcement learning (RL) for the benefits of stability and ex-
ploration in continuous environments, respectively. This paper proposes to inte-
grate both branches in a unified framework, thus benefiting from both sides. We
first transform the original RL objective to a constraint optimization problem and
then proposes trust entropy actor-critic (TEAC), an off-policy algorithm to learn
stable and sufficiently explored policies for continuous states and actions. TEAC
trains the critic by minimizing the refined Bellman error and updates the actor by
minimizing KL-divergence loss derived from the closed-form solution to the La-
grangian. We prove that the policy evaluation and policy improvement in TEAC
is guaranteed to converge. We compare TEAC with 4 state-of-the-art solutions
on 6 tasks in the MuJoCo environment. The results show that TEAC with opti-
mized parameters achieves similar performance in half of the tasks and notably
improvement in the others in terms of efficiency and effectiveness.

1 INTRODUCTION

With the use of high-capacity function approximators, such as neural networks, reinforcement learn-
ing (RL) becomes practical in a wide range of real-world applications, including game playing (Mnih
et al., 2013; Silver et al., 2016) and robotic control (Levine et al., 2016; Haarnoja et al., 2018a).
However, when dealing with the environments with continuous state space or/and continuous ac-
tion space, most existing deep reinforcement learning (DRL) algorithms still suffer from unstable
learning processes and are impeded from converging to the optimal policy.

The reason for unstable training process can be traced back to the use of greedy or ε-greedy policy
updates in most algorithms. With the greedy update, a small error in value functions may lead
to abrupt policy changes during the learning iterations. Unfortunately, the lack of stability in the
training process makes the DRL unpractical for many real-world tasks (Peters et al., 2010; Schulman
et al., 2015; Tangkaratt et al., 2018). Therefore, many policy-based methods have been proposed
to improve the stability of policy improvement (Kakade, 2002; Peters & Schaal, 2008; Schulman
et al., 2015; 2017). Kakade (2002) proposed a natural policy gradient-based method which inspired
the design of trust region policy optimization (TRPO). The trust region, defined by a bound of
the Kullback-Leibler (KL) divergence between the new and old policy, was formally introduced in
Schulman et al. (2015) to constrain the natural gradient policy changing within the field of trust.
An alternative to enforcing a KL divergence constraint is to utilize the clipped surrogate objective,
which was used in Proximal Policy Optimization (PPO) (Schulman et al., 2017) to simplify the
objective of TRPO while maintaining similar performance. TRPO and PPO have shown significant
performance improvement on a set of benchmark tasks. However, these methods are all on-policy
methods requiring a large number of on-policy interaction with environment for each gradient step.
Besides, these methods focus more on the policy update than exploration, which is not conducive to
finding the global optimal policy.

The globally optimal behavior is known to be difficult to learn due to sparse rewards and insuf-
ficient explorations. In addition to simply maximize the expected reward, maximum entropy RL
(MERL) (Ziebart et al., 2008; Toussaint, 2009; Haarnoja et al., 2017; Levine, 2018) proposes to
extend the conventional RL objective with an additional “entropy bonus” argument, resulting in the
preferences to the policies with higher entropy. The high entropy of the policy explicitly encourages
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exploration, thus improving the diverse collection of transition pairs, allowing the policy to capture
multi-modes of good policies, and preventing from premature convergence to local optima. MERL
reforms the reinforcement learning problem into a probabilistic framework to learn energy-based
policies to maintain the stochastic property and seek the global optimum. The most representative
methods in this category are soft Q-learning (SQL) (Haarnoja et al., 2017) and Soft Actor Critic
(SAC) (Haarnoja et al., 2018b;c). SQL defines a soft Bellman equation and implements it in a prac-
tical off-policy algorithm which incorporates the entropy of the policy into the reward to encourage
exploration. However, the actor network in SQL is treated as an approximate sampler, and the con-
vergence of the method depends on how well the actor network approximates the true posterior. To
address this issue, SAC extends soft Q-learning to actor-critic architecture and proves that a given
policy class can converge to the optimal policy in the maximum entropy framework. However, off-
policy DRL is difficult to stabilize in policy improvement procedure (Sutton & Barto, 1998; van
Hasselt et al., 2018; Ciosek et al., 2019) which may lead to catastrophic actions, such as ending the
episode and preventing further learning.

Several models have been proposed to benefit from considering both the trust region constraint and
the entropy constraint, such as MOTO (Akrour et al., 2016) , GAC (Tangkaratt et al., 2018), and
Trust-PCL (Nachum et al., 2018). However, MOTO and GAC cannot efficiently deal with high-
dimensional action space because they rely on second-order computation, and Trust-PCL suffers
from algorithm efficiency due to its requirement of trajectory/sub-trajectory samples to satisfy the
pathwise soft consistency.

Therefore, in this paper, we propose to further explore the research lines of unifying trust region
policy-based methods and maximum entropy methods. Specifically, we first transform the RL prob-
lem into a primal optimization problem with four additional constraints to 1) set an upper bound of
KL divergence between the new policy and the old policy to ensure the policy changes are within
the region of trust, 2) provide a lower bound of the policy entropy to prevent from a premature con-
vergence and encourage sufficient exploration, and 3) restrain the optimization problem as a Markov
Decision Process (MDP). We then leverage the Lagrangian duality to the optimization problem to
redefine the Bellman equation which is used to verify the policy evaluation and guarantee the pol-
icy improvement. Thereafter, we propose a practical trust entropy actor critic (TEAC) algorithm,
which trains the critic by minimizing the refined Bellman error and updates the actor by minimizing
KL-divergence loss derived from the closed-form solution to the Lagrangian. The update proce-
dure of the actor involves two dual variables w.r.t. the KL constraint and entropy constraint in the
Lagrangian. Based on the Lagrange dual form of the primal optimization problem, we develop
gradient-based method to regulate the dual variables regarding the optimization constraints.

The key contribution of the paper is a novel off-policy trust-entropy actor-critic (TEAC) algorithm
for continuous controls in DRL. In comparison with existing methods, the actor of TEAC updates
the policy with the information from the old policy and the exponential of the current Q function, and
the critic of TEAC updates the Q function with the new Bellman equation. Moreover, we prove that
the policy evaluation and policy improvement in trust entropy framework is guaranteed to converge.
A detailed comparison with similar work, including MOTO (Akrour et al., 2016), GAC (Tangkaratt
et al., 2018), and Trust-PCL (Nachum et al., 2018), is provided in Sec. 4 to explain that TEAC is the
most effective and most theoretically complete method. We compare TEAC with 4 state-of-the-art
solutions on the tasks in the MuJoCo environment. The results show that TEAC is comparable with
the state-of-the-art solutions regarding the stability and sufficient exploration.

2 PRELIMINARIES

A RL problem can be modeled as a standard Markov decision process (MDP), which is represented
as a tuple 〈S,A, r, p, p0, γ〉. S and A denote the state space and the action space, respectively.
p0(s) denotes the initial state distribution. At time t, the agent in state st selects an action at
according to the policy π(a|s), in which the performance of the state-action pair is quantified by the
reward function r(st, at) and the next state of the agent is decided by the transition probability as
st+1 ∼ p(st+1|st, at). The goal of the agent is to find the optimal policy π(a|s) to maximize the
expected reward Es0,a0,... [

∑∞
t=0 γ

tr (st, at)], where s0 ∼ p0(s) and st+1 ∼ p(st+1|st, at). γ is a
discount factor (0 < γ < 1)) which quantifies how much importance we give for future rewards.
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The state-action value function Qπ(st, at) and the value function V π(st) are then defined as:

Qπ (st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr (st+l, at+l)

]
, V π (st) = Eat,st+1,...

[ ∞∑
l=0

γlr (st+l, at+l)

]
.

For the continuous environments, which is the focus of this paper, S andA denote finite dimensional
real valued vector spaces, s denotes the real-valued state vector, and a denotes the real-valued action
vector. The expected reward can be defined as :

J (π) = E(s,a)∼ρπ(s,a) [Qπ(s,a)] = Eρπ(s)π(a|s) [Qπ(s,a)] , (1)

where ρπ(s) and ρπ(s,a) denote the (discounted) state and (discounted) state-action marginals of
the trajectory distribution induced by a policy π(a|s). 1

3 OUR METHOD

This section explains the details and features of the TEAC framework with the focus on the mathe-
matical deductions and proofs of the guaranteed policy improvement and convergence in an actor-
critic architecture.

3.1 PRIMAL AND DUAL OPTIMIZATION PROBLEM

To stabilize the training process and steer the exploration, in addition to simply maximizing the
expected reward with (ε-) greedy policy updates, we propose to 1) confine the KL-divergence be-
tween neighboring policies in the training procedure to avoid large-step policy updates, and 2) favor
a stochastic policy with relatively larger entropy to avoid premature convergence due to insufficient
exploration. Therefore, we define the RL problem as a primal optimization problem with additional
constraints, given as:

maxπ Eρπ(s)π(a|s)[Q̂(s,a)],
subject to Eρπ(s) [KL (π(·|s)‖πold(·|s))] ≤ τ,

Eρπ(s)[H(π(·|s))] ≥ η,
Eρπ(s)

∫
π(a|s)da = 1,

Eρπ(s)π(a|s)p(s′|s,a)V̂ (s′) = Eρπ(s′)V̂ (s′),

(2)

where Q̂(s,a) is a critic estimating the state-action value function whose parameter is learned such
that Q̂(s,a) ≈ Qπ(s,a), π(·|s) is the policy distribution to be learned, πold(·|s) is the prior policy
distribution, and V̂ (s′) is a state feature function estimating the state value function of the next state.
The term KL (π(·|s)‖πold(·|s)) = Eπ(a|s)[log π(a|s) − log πold(a|s)] confines the KL-divergence
between the distributions of the new and old policies. The third constraint ensures that the state-
action marginal of the trajectory distribution is a proper probability density function. As the state
marginal of the trajectory distribution needs to comply with the policy π(a|s) and the system dy-
namics p(s′|s,a), i.e., ρπ(s)π(a|s)p(s′|s,a) = ρπ(s′), meanwhile the direct matching of the state
probabilities is not feasible in continuous state spaces, the use of V̂ (s′) in the fourth constraint which
can be also considered as state features, helps to focus on matching the feature averages. These last
two constraints formally restrain the optimization problem within a MDP framework.

The objective is to maximize the expected reward of a policy while ensuring it satisfies the lower
bound of entropy and upper bound of distance from the previous policy. The constraint of KL-
divergence term helps to avoid the abrupt difference between the new and old policies, while the
constraint of the entropy term helps to promote the policy exploration.

The entropy constraint is crucial in our optimization problem for two reasons: 1) Prior studies show
that the use of KL-bound leads to a rapid decrease of the entropy, thus bounding the entropy helps
to lower the risk of premature convergence induced by the KL-bound; 2) Each iteration of policy
update will modify the critic Q̂(s,a) and the state distribution ρπ(s), thus changing the optimization

1Following Sutton et al. (2000), we use ρπ in the paper to implicate that ρπ is the stationary distribution of
states under π and independent of s0 for all policies.
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landscape of the policy parameters. The entropy constraint ensures the exploration in the action
space in case of evolving optimization landscapes.

The Lagrangian of this optimization problem is denoted as:

L(π, α, β, λ, ν) =Eρ(s)π(a|s)[Q̂(s,a)] + α
(
τ − Eρ(s) [KL (π(·|s)‖πold(·|s))]

)
+ β

(
Eρ(s)[H(π(·|s))]− η

)
+ λ

(
Eρ(s)

∫
π(a|s)da− 1

)
+ ν(Eρ(s)π(a|s)p(s′|s,a)V̂ (s′)− Eρ(s′)V̂ (s′)),

(3)

where α, β, λ, ν are the dual variables, and for the sake of brevity, we use ρ(s) to represent ρπ(s).
Eq. 3 is a super set of trust region and maximum entropy methods. That is, β = 0 leads to an
equivalent objective function as the standard trust region, while α = 0, which indicates that the
KL-divergence bound is not active, leads to a maximum entropy RL objective that SAC tries to
solve.

Take derivative of L w.r.t. π and set the derivative to zero:

∂πL =Eρ(s)

[∫ (
Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s)− νV̂ (s)+

Ep(s′|s,a)[νV̂ (s′)]

)
da

]
− (α+ β + λ)

=Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s)− νV̂ (s) + Ep(s′|s,a)[νV̂ (s′)]

− (α+ β + λ)

=0.

(4)

Continuous problem domains require a practical approximation to the policy update function. We
use neural networks as function approximators to parameterize the policy and Q function. Specifi-
cally, the Q function, known as critic, is modeled as expressive neural networks Qφ(s,a), and we
follow Lillicrap et al. (2016) to build a target critic network Qφ̄ which mitigates the challenge of
overestimation. Meanwhile, the policy, known as actor, is parameterized by πθ(·|s) as a Gaussian
with mean and covariance given by neural networks, and we also build up another neural network
πθ̂(·|s) with the same architecture as πθ to enable us to facilitate policy learning by leveraging the
“old” policy within our framework.

3.2 CRITIC UPDATE

Given the fact that we sample actions from the actor network as parameterized Gaussian distribution
and the value function should satisfy Bellman equation2,

V̂ (s) = Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s) + Ep(s′|s,a)[V̂ (s′)]− (α+ β + λ) (5)

The last constant term in Eq.5 can be ignored as it does not affect the Bellman iteration when
neural networks are used to approximate the value function. Therefore, the Bellman equation can
be redefined in our framework.

According to Eq.5, we could compute the value of a fixed policy π. Starting from any function
Q : S ×A→ R, we define our modified Bellman backup operator.

Definition 3.1 Bellman Equation. A modified Bellman backup operator T π is defined as

T πQ(s,a) , r + γEp(s′|s,a)[V (s′)], (6)

where
V (s) = Eπ(a|s) [Q(s,a)− (α+ β) log π(a|s) + α log πold(a|s)] (7)

is the trust entropy state-value function in our framework.

2we could utilize any form of state features V̂ (s′). Thus, νV̂ (s′) can be seen as another form of state
features. Therefore, ν can be arbitrary
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In the sequel, Q(s,a) stands for the state-action value function obtained by iteratively applying
the modified Bellman backup operator in Eq.6 and Eq.7, which is the trust entropy Q-value in our
framework. Meanwhile, the policy evaluation can be verified accordingly.

Lemma 1 (Trust Entropy Policy Evaluation). LetQk+1 = T πQk, the sequenceQk will converge to
the trust entropy Q-value of π as k →∞ when considering a mapping Q0 : S ×A → R with |A| <
∞ and the Bellman backup operator T π .

Proof. See Appendix A.1.

The learning of Q function can utilize off-policy methods to acquire high sample efficiency. Hence,
the parameters can be trained by minimizing the squared Bellman error, given as:

LQ(φ) = E(s,a)∼D

[
1

2
(Qφ (s,a)− y)

2

]
, (8)

where D is the replay buffer, Qφ(s,a) represents the Q network (also known as critic network)
which is parameterized by φ, and y = r (s,a) + γEs′∼p

[
Vφ̄ (s′)

]
, where Vφ̄ denotes the value

function obtained from the target critic network Qφ̄ with Eq. 7. The inclusion of the target critic
network helps to stabilize the training. As suggested in Lillicrap et al. (2016), φ̄ is updated via
φ̄← κφ+ (1− κ)φ̄ where 0 ≤ κ ≤ 1. We set κ = 0.005 in the experiments. The expected squared
Bellman error is computed with samples drawn from the replay buffer using mini-batch. Thus, the
approximate gradient of the squared Bellman error LQ(φ) w.r.t. φ is:

∇̂φLQ(φ) =∇φQφ (a, s) (Qφ (s,a)− (r(s,a) + γ
(
Qφ̄ (s′,a′)−

(α+ β) log πθ (a|s′) + α log πθ̂(a|s
′))),

(9)

where θ and θ̂ are parameters of current policy and old policy respectively, and a′ is sampled from
current policy πθ given s′.

3.3 ACTOR UPDATE

Setting ν = 0 in Eq.4 in fact does not change the optimization problem. Therefore, a closed-form
solution regarding the policy is given as:

π(a|s) = πold(a|s)
α

α+β exp

(
Q̂(s,a)

α+ β

)
exp

(
−α+ β + λ

α+ β

)

∝ πold(a|s)
α

α+β exp

(
Q̂(s,a)

α+ β

)
,

(10)

where exp
(
−α+β+λ

α+β

)
is the normalization term of π(a|s) (The detailed derivation is provided

in A.2). It should be noted that MORE (Daniel et al., 2016), MOTO (Akrour et al., 2016), GAC
(Tangkaratt et al., 2018), and Trust-PCL (Nachum et al., 2018) can also been viewed as prior work
stemming from Eq.10. However, it is infeasible to use Eq.10 to directly update the policy given the
fact that we cannot guarantee that the resulting policy remains in the same policy class when weigh-
ing the old policy with the exponential of Q function without any assumption. Different strategies
have been applied in the prior work to address this issue, and the detailed discussion is provided in
Sec. 4.

To improve the tractability of policies, as Haarnoja et al. (2018c), we require the policy is selected
from a set of policies π ∈ Π, which is a parameterized Gaussian distribution family. This is guaran-
teed by the use of the Kullback-Leibler divergence to ensure the improved policy locates in the same
policy set. Since the normalization term exp

(
−α+β+λ

α+β

)
is intractable and does not contribute to

the gradient of the new policy, it can be ignored. Therefore, the policy is updated by

Lπ(θ) = Es∼D
[
DKL

(
πθ (a|s) ‖

(
πθ̂(a|s)

α
α+β exp

(
Q(s,a)

α+ β

)))]
, (11)
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whereD is the replay buffer, πθ represents the parameterized policy, πθ̂ represents the parameterized
old policy, and a in Q is sampled from the current policy πθ. In practice, the old policy network
equals to the policy network in the last iteration. Therefore, we could leverage another actor network
to keep the old policy by copying θ to θ̂ after computing the loss function of the policy and before
the back propagation in each iteration (The detailed algorithm is provided in Appendix C). With the
assumption of policy being Gaussian, the policy improvement can be guaranteed in our framework.

Lemma 2 (Trust Entropy Policy Improvement). Given a policy π and an old policy π̂, define a new
policy

π̃(a|s) ∝ π̂(a|s)
α

α+β exp

(
Qπ(s,a)

α+ β

)
, ∀s. (12)

If Q is bounded,
∫
π̂(a|s)

α
α+β exp

(
Qπ(s,a)
α+β

)
da is bounded for any s (for all π, π̂ and π̃),

and the policies are the parameterized Gaussian networks. Then we can obtain Qπ̃(s,a) ≥
Qπ(s,a),∀s,a.

Proof. See Appendix A.3.

In other words, in the policy improvement, we use the information from the old policy and exponen-
tial of the Q function induced by the current policy to derive the policy of next iteration. Because
the Q function is a non-linear function approximation parameterized by neural networks and can be
differentiated, the reparameterization trick a = fθ(ξ; s), where ξt is an input noise vector sampled
from standard normal distribution, can be applied. Then, the approximate gradient of Lπ(θ) w.r.t. θ
is given as:

∇̂θLπ(θ) =∇θ(α+ β) log (πθ(a|s))−∇aQφ(s,a)∇θfθ(ξ; s). (13)

3.4 DUAL VARIABLES UPDATE

This section explains the updates of dual variables (α and β) throughout the entire framework.

The dual function, which is derived by substituting π(a|s) in the Lagrangian (Eq. 3) with its form in
Eq.10, is given as:

g(α, β) = ατ − βη − (α+ β) · Eρ(s)
[
−α+ β + λ

α+ β

]
. (14)

As exp
(
α+β+λ
α+β

)
is the normalization term of π(a|s), the dual function can be represented as:

g(α, β) = ατ − βη + Eρ(s) [α · log πold(a|s) +Q(s,a)− (α+ β) · log π(a|s)] . (15)

The approximate gradient of g(α, β) w.r.t. α and β are:

∇̂αg(α) = τ − log πθ(a|s) + log πθ̂(a|s), (16)

∇̂βg(β) = −η − log πθ(a|s), (17)
which enable us to find the “proper” α and β with the gradient descent method, satisfying the KL
and entropy constraints in Eq.2. The dual variable updates, along with the trust entropy Q function
updates (Sec. 3.2) and trust entropy policy updates (Sec. 3.3), constitute the main components of our
framework.

4 CONNECTION WITH PREVIOUS WORK

The most related methods to our work are MOTO (Akrour et al., 2016) , GAC (Tangkaratt et al.,
2018), and Trust-PCL (Nachum et al., 2018) as they also consider both the trust region constraint
and the entropy constraint.

MORE (Daniel et al., 2016) considers the two constraints in the domain of stochastic search opti-
mization. MOTO (Akrour et al., 2016) extends MORE to the sequential decision making domain. In
MOTO, Q function is estimated by using a quadratic surrogate function of the state and action space,
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and the policy of a log-linear Gaussian form is updated according to the KL-divergence bounding
constraint and a variable lower bound of entropy determined by the policy of each iteration.

GAC (Tangkaratt et al., 2018) further extends MOTO by 1) approximating the Q function with a
truncated Taylor series expansion and parameterizing them with a deep neural network, and 2) learn-
ing log-nonlinear Gaussian form policies. In some sense, MOTO, GAC, and ours can be viewed as
solving the optimization problem with the same constraints as stated in Eq.2. After leveraging the
Lagrangian of the optimization problem, the corresponding closed form solution for the policy up-
dating is shown in Eq.10. However, Eq.10 also indicates that the new policy is derived by weighing
the old policy and the exponential of Q function (see the R.H.S of Eq.10), which may deviate the
updated policy from the expected policy distribution class. Consequently, the KL constraint will be
no longer preserved (Akrour et al., 2018). These methods differ from each other by using different
strategies to circumvent the issue. MOTO utilizes a quadratic Q function and assumes the policy is
of log-linear Gaussian form. Consequently, MOTO can update the policy in a non-parameterized
way. GAC adopts the similar strategy as MOTO to learn a non-parameterized Gaussian actor, and
then uses this actor to guide a parameterized actor with supervised learning. However, it is hard
for MOTO and GAC to deal with high-dimensional action space because they rely on second-order
computation. In comparison, we redefine the Bellman equation and guarantee the policy improve-
ment by updating policies with Eq.11. Therefore, our method resolves the challenge simply with a
more general assumption of Gaussian policy class.

Moreover, when dealing with the dual function

g(α, β) = ατ − βη + (α+ β)Eρ(s)

[
log

∫
πold(a|s)

α
α+β exp

(
Q̂(s,a)

α+ β

)
da

]
, (18)

where the integral term is intractable, MOTO and GAC reply on complex second-order computation
to make it tractable. In contrast, we resolve the challenge by leveraging the policy to transform
the dual function into a simpler form which can still be optimized in first-order computation, e.g.,
stochastic gradient descent method, with the policy improvement guaranteed.

Trust-PCL (Nachum et al., 2018) addresses the challenge with a different perspective by integrating
path consistency learning (PCL) (Nachum et al., 2017), which is developed in the maximum en-
tropy framework, and trust region policy optimization method. PCL, which is the base algorithm of
trust-PCL, suggests that the optimal policy and state values should satisfy pathwise soft consistency
property along any sampled trajectory, thus allowing the use of off-policy data. Consequently, the
single-step temporal consistency of state-value function in Trust-PCL is

V ∗ (st) = Ert,st+1 [rt − (τ + λ) log π∗ (at | st) + λ log π̃ (at+i | st+i) + γV ∗ (st+1)] , (19)

which is similar to our state-value function. However, our method differs from Trust-PCL in 3 ways:
1) Trust-PCL focuses on updating the state-value function while our method focuses on updating the
Q function. 2) Trust-PCL updates the policy directly with the temporal consistency squared error
while we use Eq.11. 3) As each update iteration in Trust-PCL requires trajectory/sub-trajectory sam-
ples to satisfy the pathwise soft consistency, it significantly compromises the algorithm efficiency.
In comparison, our method requires only state-action pairs for each update iteration and is capable
of finding (sub-)optimal value for every dual variable in each update iteration.

It should be noted that proximal policy optimization (PPO) (Schulman et al., 2017) can also achieve
trust region constraint and encourage unpredictably actions by adding entropy bonus to its loss
function. However, the entropy bonus in PPO is one-off effect which only considers the current
state but no future states of the agent. In comparison, our method can be considered as maximum
long-term entropy with constraint policy in trust region.

5 EXPERIMENTS

We experimented to investigate the following questions: (1) In comparison with state-of-the-art
algorithms, does TEAC have a better performance in terms of sample efficiency and computational
efficiency? (2) How should we choose hyperparameters τ and η and how can these two variables
affect the performance?
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Figure 1: Performance comparisons on six MuJoCo tasks trained for 3 million timesteps. The
horizontal axis indicates number of environment steps. The vertical axis indicates the average
return. We trained three different instances of each algorithm with different random seeds, with
each instance performing an evaluation every 4,000 environment steps. The solid lines represent
the mean and the shaded regions mark the minimum and maximum returns over the three trials. We
set η as the negative of action space dimension of the task, and set τ = 0.005 for all tasks.

5.1 SETUP

We experimented the continuous control tasks (HalfCheetah-v3, Hopper-v3, Humanoid-v3,
Walker2d-v3, Swimmer-v3, Ant-v3) available from the MuJoCo environment (Todorov et al., 2012).
We compared our method TEAC with 1) proximal policy optimization (PPO) (Schulman et al.,
2017), a stable and effective on-policy policy gradient algorithm; 2) SAC (Haarnoja et al., 2018c),
the state-of-the-art off-policy algorithm for learning maximum entropy policies whose temperature
is adjusted automatically; 3) Trust-PCL (Nachum et al., 2018), an off-policy method optimizing
maximum entropy RL objective with trust region; and 4) GAC (Tangkaratt et al., 2018), an off-
policy method utilizing second-order information of critic. For Trust-PCL and GAC, we used their
original implementation provided by their authors3 4 5. For PPO and SAC, we used the implemen-
tation publicly provided by OpenAI 6, and adapted SAC to its automatically adjusting version in
Haarnoja et al. (2018c). For convenience, we developed our algorithm based on spinningup version
of SAC7. The pseudo-code of our method is provided in Appendix C and the source code is available
at https://github.com/ICLR2021papersub/TEAC.

TEAC requires to specify hyperparameters τ , which represents the desired maximum KL-
divergence, and η, which specifies the desired minimum entropy, before training. As the require-
ments of stability and exploration vary in different tasks, we set η as the negative of action space
dimension of the task, and set τ = 0.005 for all tasks. The settings of effective hyperparameters are
provided in Appendix D.

3Trust-PCL code: https://github.com/tensorflow/models/ tree/master/research/pcl rl
4GAC code: https://github.com/voot-t/guide-actor-critic
5Due to the second-order computation complexity, we only finished testing GAC on HalfCheetah-v3 and

Hopper-v3 at the time of paper submission. The experimental results show that we can achieve better perfor-
mance than GAC in much shorter running time. We will complete the comparison before the rebuttal begins.

6OpenAI spinningup code: https://github.com/openai/spinningup
7https://github.com/openai/spinningup/tree/master/spinup/algos/pytorch/sac
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5.2 RESULTS

Fig. 1 illustrates the training curve for each algorithm. In general, when τ = 0.005, TEAC has simi-
lar performance as SAC in simpler tasks which have lower dimension of actions, such as Hopper-v3,
Walker2d-v3, and Ant-v3. However, for complex tasks with higher dimension of actions, such as
Huamoid-v3, TEAC gains significant performance improvement.

We also experimented and compared different settings of τ and η for their impact on the perfor-
mance. As there are no reasonable approaches to set τ , we simply compared seven different value
levels in the tasks. The results show that the selection of proper τ value for each task can signifi-
cantly boost the performance of TEAC (see more details in Appendix B), and generally τ should be
smaller for tasks with higher complexity. For example, when we set τ = 0.001 in Humanoid-v3,
TEAC had more than 10% performance gain than that of τ = 0.005. The reason can be attributed
to the stability of the algorithm. For complex tasks, the policy needs more exploration to find the
global optima, resulting in larger update steps. Without the help of trust region constraint, the pol-
icy will explore arbitrarily in the policy space, losing its bearings and getting trapped in some bad
settle-points.

For η, as we are dealing with continuous distributions, the entropy can be negative (Abdolmaleki
et al., 2016). Hence, η should be a small value. We have investigated several heuristic approaches for
setting η provided in MORE, GAC, and SAC, but none of them can serve as a general and effective
solution (see more details in Appendix B). Thus, in our experiments, we simply set η as the negative
of action space dimension similar to SAC.

6 CONCLUSION

In this paper, we propose to integrate two branches of research in RL, trust region methods for better
stability and maximum entropy methods for better policy exploration during the learning, to benefit
from both sides. We first transform the original RL objective to a constraint optimization problem
with the constraints of upper bound KL-divergence to avoid the abrupt difference between the new
and old policies and lower bound entropy to promote the policy exploration. Therefore, the Bellman
equation is redefined accordingly to guide the system loss evaluation. Consequently, we introduce
TEAC, an off-policy algorithm to learn stable and sufficiently explored policies for continuous states
and actions. TEAC utilizes two Actor networks to achieve the policy improvement by leveraging the
information from the old policy and the exponential of current Q function represented in the critic
network. The results show that TEAC with optimized parameters achieves similar performance in
half of the tasks and notably improvement in the others in terms of efficiency and effectiveness.
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APPENDIX

A DERIVATIONS AND PROOFS

A.1 TRUST ENTROPY POLICY EVALUATION

Lemma A.1 (Trust Entropy Policy Evaluation). Let Qk+1 = T πQk, the sequence Qk will con-
verge to the trust entropy Q-value of π as k → ∞ when considering a mapping Q0 : S × A →
R with |A| <∞ and the Bellman backup operator T π .

Proof. We define the reward function in trust entropy framework as

rπ(s,a) , r(s,a) + (α+ β) · Es′∼p [Eα′∼π [π(·|s′)]]− α · Es′∼p [Eα′∼π [πold(·|s′)]] . (20)

We rewrite the update rule as

Q(s,a)← rπ(s,a) + γEs′∼p,a′∼π [Q(s′,a′)] . (21)

Following Sutton & Barto (1998), we can realize the standard convergence for policy evaluation.

A.2 DERIVATION OF THE SOLUTION OF LAGRANGIAN

By taking derivative of L w.r.t. π and setting the derivative to zero,

∂πL =Eρ(s)

[∫ (
Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s)− νV̂ (s)+

Ep(s′|s,a)[νV̂ (s′)]

)
da

]
− (α+ β + λ)

=Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s)− νV̂ (s) + Ep(s′|s,a)[νV̂ (s′)]

− (α+ β + λ)

=0

(22)

Given the fact that we sample actions from the actor network as parameterized Gaussian distribution
and the value function should satisfy Bellman equation, if we set ν = 0, the function can be rewritten
as

0 =Q̂(s,a)− (α+ β) log π(a|s) + α log πold(a|s)− (α+ β + λ) (23)

The solution of π(a|s) is:

π(a|s) = πold(a|s)
α

α+β · exp

(
Q̂(s,a)

α+ β

)
· exp

(
−α+ β + λ

α+ β

)
. (24)

Here, we combine the third constraint in Eq. 2 with the solution Eq. 24:

1 =Eρ(s)
[∫

π(a|s)da

]
=Eρ(s)

[∫
πold (a | s)

α
α+β · exp

(
Q̂(s,a)

α+ β

)
· exp

(
−α+ β + λ

α+ β

)
da

]
.

(25)

Given the fact that α, β, and λ are constants which are independent of s and a, we can get

1 =Eρ(s)

[∫
πold (a | s)

α
α+β · exp

(
Q̂(s,a)

α+ β

)
· exp

(
−α+ β + λ

α+ β

)
da

]

=Eρ(s)

[∫
πold (a | s)

α
α+β · exp

(
Q̂(s,a)

α+ β

)
da

]
· exp

(
−α+ β + λ

α+ β

)
,

(26)
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Thus,

exp

(
−α+ β + λ

α+ β

)−1

= Eρ(s)

[∫
πold (a | s)

α
α+β · exp

(
Q̂(s,a)

α+ β

)
da

]
. (27)

Hence, the term exp
(
α+β+λ
α+β

)
acts as a normalization term. Therefore,

π(a|s) ∝ πold(a|s)
α

α+β exp

(
Q̂(s,a)

α+ β

)
. (28)

A.3 TRUST ENTROPY POLICY IMPROVEMENT

Lemma A.2 (Trust Entropy Policy Improvement). Given a policy π and an old policy π̂, define a
new policy

π̃(a|s) ∝ π̂(a|s)
α

α+β exp

(
Qπ(s,a)

α+ β

)
, ∀s. (29)

If Q is bounded,
∫
π̂(a|s)

α
α+β exp

(
Qπ(s,a)
α+β

)
da is bounded for any s (for all π, π̂ and π̃),

and the policies are the parameterized Gaussian networks. Then we can obtain Qπ̃(s,a) ≥
Qπ(s,a),∀s,a.

Proof. With the definition of the V function, we can get:

V π(s) = Eτ∼π,s0=s,a0=a

[ ∞∑
t=0

γt(r(st, at)− (α+ β) · log π(·|st) + α · log π̂(·|st))

]
(30)

Here, τ = (s0, a0, s1, a1, . . . ) denotes the trajectory originating at (s,a). Using a telescoping
argument, we have:

V π̃(s)− V π(s) =Eτ∼π̃,s0=s,a0=a

[ ∞∑
t=0

γt(r(st, at)− (α+ β) · log π̃(·|st) + α · log π(·|st))

]
− V π(s)

=Eτ∼π̃,s0=s,a0=a[

∞∑
t=0

γt(r(st, at)− (α+ β) · log π̃(·|st) + α · log π(·|st)

+ V π(st)− V π(st))]− V π(s)

(a)
=Eτ∼π̃,s0=s,a0=a[

∞∑
t=0

γt(r(st, at)− (α+ β) · log π̃(·|st) + α · log π(·|st)

+ γV π(st+1)− V π(st))]

(b)
=Eτ∼π̃,s0=s,a0=a[

∞∑
t=0

γt(r(st, at)− (α+ β) · log π̃(·|st) + α · log π(·|st)

+ γE[V π(st+1)|st, at]− V π(st))]

=Eτ∼π̃,s0=s,a0=a[

∞∑
t=0

γt(Qπ(st, at)− V π(st)− (α+ β) · log π̃(·|st) + α · log π(·|st))]

=
1

1− γ
Es′∼ρπ̃(s)Ea∼π̃(·|s)[γ

t(Qπ(s′, a)− V π(s′)− (α+ β) · log π̃(·|s′) + α · log π(·|s′))],
(31)

where (a) rearranges terms in the summation and cancels the V (s0) term with the −V (s) outside
the summation, and (b) uses the tower property of conditional expectations and the final equality
follows from the definition of ρπ̃(s). Consider Eq.24 can be rewritten as:

π(a|s) = exp

(
α

α+ β
log π̂(a|s) +

Qπ(s,a)

α+ β

)
exp

(
−α+ β + λ

α+ β

)
, (32)
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where exp
(
−α+β+λ

α+β

)
is normalization term. Assume we follow the gradient ascent update rule

and that the distribution ρ(s) is strictly positive i.e. ρ(s) > 0 for all states s. Following the work
Agarwal et al. (2020), with the help of the gradient of the softmax policy class, we can get∑

a∈A
π̃(a|s)(Q(s, a)− V (s)− (α+ β) · log π̃(·|s) + α · log π(·|s)) ≥ 0, (33)

Then we get V π̃(s) ≥ V π(s), as well as Qπ̃(s, a) ≥ Qπ(s, a) holds for all states s and actions a.

A.4 DERIVATION OF THE DUAL FUNCTION

To obtain the dual function, we take the solution of π(a|s) into Eq. 3:

L(π, α, β, λ) =Eρ(s)π(a|s)[Q̂(s,a)] + α
(
τ − Eρ(s) [KL (π(·|s)‖πold(·|s))]

)
+ β

(
Eρ(s)[H(π(·|s))]− η

)
+ λ

(
Eρ(s)

∫
π(a|s)da− 1

)
=Eρ(s)π(a|s)[Q̂(s,a)]

− (α+ β)Eρ(s)π(a|s)

[
Q̂(s,a)

α+ β
+

α

α+ β
log πold(a|s)− α+ β + λ

α+ β

]

+ αEρ(s)π(a|s) [log πold(a|s)] + λ

(
Eρ(s)

∫
π(a|s)da− 1

)
+ ατ − βη

=ατ − βη − (α+ β) · Eρ(s)
[
−α+ β + λ

α+ β

]
.

(34)

This loss function can be rewritten as

L(α, β) =ατ − βη + (α+ β)Eρ(s)
[
log

(
exp

(
α+ β + λ

α+ β

))]
=ατ − βη + (α+ β)Eρ(s)

[
log

∫
πold(a|s)

α
α+β exp

(
Q̂(s,a)

α+ β

)
da

]
=g(α, β)

(35)

Meanwhile, we can rewrite Eq.24 as

exp

(
α+ β + λ

α+ β

)
=
πold(a|s)

α
α+β · exp

(
Q̂(s,a)
α+β

)
π(a|s)

(36)

With Eq.36, the loss function becomes

L(α, β) =ατ − βη + (α+ β)Eρ(s)

log

πold(a|s)
α

α+β · exp
(
Q̂(s,a)
α+β

)
π(a|s)


=ατ − βη + (α+ β)Eρ(s)

[
α

α+ β
log πold(a|s) +

Q̂(s,a)

α+ β
− log π(a|s)

]
=ατ − βη + Eρ(s)

[
α · log πold(a|s) + Q̂(s,a)− (α+ β) · log π(a|s)

]
.

(37)
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B HYPERPARAMETER ANALYSIS FOR τ AND η
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(a) HalfCheetah-v3
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(b) Hopper-v3
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(c) Humanoid-v3
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(d) Walker2d-v3
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(e) Swimmer-v3
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(f) Ant-v3

Figure 2: Performance with different τ on six MuJoCo tasks. τ = 0.001 achieves about 8000 as
the return in Humanoid-v3, and τ = 0.005 achieves about 130 as the return in Swimmer-v3. These
two results surpass all benchmark algorithms significantly.

The impact of τ on the performance of TEAC was evaluated with τ ∈
(0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1). Fig.5 shows that tuning τ for different tasks may achieve
significant performance improvement in TEAC.

Similar to SAC (Haarnoja et al., 2018c), we set η to the negative of action space dimension in our
own experiments. Besides, there are other techniques in existing methods. MORE (Abdolmaleki
et al., 2016) changes the entropy constraint to

E − E0 ≥ γ (Eold − E0)⇒ η = γ (Eold − E0) + E0 (38)

where E ≈ Eρ(s) [H (πθ(a|s))] denotes the expected entropy of the current policy, Eold ≈
Eρ(s)

[
H
(
πθ̂(a|s)

)]
denotes the expected entropy of the old policy, and E0 denotes the entropy

of a base policy N (a|0, 0.01I). GAC improves this technique to adjust η heuristically by

η = max (γ (E − E0) + E0, E0) . (39)

We compared these three different techniques on Hopper-v3, Humanoid-v3 and Ant-v3. Fig. 3
shows that there is no outstanding difference from them. Therefore, we simply set η as the negative
of action space dimension similar to SAC.
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Figure 3: Performance with different η in three Mujoco tasks with τ = 0.1.
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C ALGORITHMS

Algorithm 1 TEAC: Trust Entropy Actor Critic

Input:
Initial actor πθ(a|s), old actor πθ̂(a|s),
critic Qφ1

and Qφ2
8, target critic network φ̄1 ← φ1, φ̄2 ← φ2,

KL divergence bound τ , entropy bound η, learning rate ωac, ωα, ωβ ,
an empty replay pool D = ∅

1: for each iteration do
2: for each environment step do
3: Observe state st and sample action at ∼ πθ(at|st)
4: Execute at, receive reward r(st,at) and next state s′t ∼ p(s′t|st,at)
5: Add transition to replay buffer D ← D ∪ {(st,at, r (st,at) , s

′
t)}

6: end for
7: for each gradient step do
8: Sample N mini-batch samples {(si,ai, ri, s′i)}Ni=1 uniformly from D
9: Sample actions a′i ∼ πθ(a|s′i), compute Qtar(s

′
i, a
′
i):

Qtar(s
′
i,a
′
i) = min(Qφ̄1

(s′i,a
′
i), Qφ̄2

(s′i,a
′
i)) (40)

10: Compute yi, update φ by, e.g., Adam, and update φ̄ by moving average:

yi = ri + γ
(
Qtar(s

′
i,a
′
i)− (α+ β) log πθ(a|s′i) + α log πθ̂(a|s

′
i)
)

(41)

φj ← φj − ωac∇φj
1

N

N∑
i=1

(
Qφj (si,ai)− yi

)2
, j ∈ {1, 2} (42)

φ̄j ← κφj + (1− κ)φ̄j , j ∈ {1, 2} (43)
11: Sample actions ã ∼ πθ(a|si), compute Q(si, ã):

Q(si, ã) = min(Qφ1
(si, ã), Qφ2

(si, ã)) (44)

12: Compute loss function of θ:

L(θ) =
1

N

N∑
i=1

(
(α+ β) log πθ(a|si)− α log πθ̂(a|si)−Q(si, ã)

)
(45)

13: Update θ̂ using θ̂ ← θ
14: Update θ by, e.g., Adam:

θ ← θ − ωac∇θL(θ) (46)
15: Compute loss function of dual variables α and β:

L(α) = − 1

N

N∑
i=1

α ·
(
log πθ(a|si)− log πθ̂(a|si)− τ

)
(47)

L(β) = − 1

N

N∑
i=1

β · (log πθ(a|si) + η) (48)

16: Update dual variables α and β:

α← α− ωα∇αL(α), β ← β − ωβ∇βL(β) (49)

17: end for
18: end for
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D HYPERPARAMETERS

Table 1 lists the effective hyperparameters of TEAC used in the experiments, of which the results
are shown in Fig. 1.

Table 1: TEAC Hyperparameters

Parameter Value
optimizer Adam (Kingma & Ba, 2015)

learning rate for actor and critic 1 · 10−3

learning rate for α 1 · 10−4

learning rate for β 1 · 10−3

discount (γ) 0.99
replay buffer size 106

number of hidden layers (all networks) 2
number of hidden units per layer 256
number of samples per minibatch 100

target entropy (η) -dim(A))(e.g., -6 for HalfCheetah-v3)
max divergence for KL (τ ) 0.005

nonlinearity ReLU
target smoothing coefficient κ 0.005

target update interval 1
gradient steps 1
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(f) Ant-v3

Figure 4: Performance comparisons on six MuJoCo tasks. Notice that the blue line is the perfor-
mance of our model which setting different τ with respect to different tasks. In this figure, we
set τ = 0.5 for HalfCheetah-v3, τ = 0.05 for Ant-v3, τ = 0.1 for Hopper-v3, τ = 0.001 for
Humanoid-v3, τ = 0.005 for Swimmer-v3, and τ = 0.1 for Walker2d-v3.

8Our implementation also makes use of two Q-functions (critic networks) to mitigate positive bias in the
policy improvement step , follows Fujimoto et al. (2018) and Haarnoja et al. (2018b) .
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F ADDITIONAL CONTINUOUS CONTROL EXPERIMENTS WITH SIX
INSTANCES
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Figure 5: Performance comparisons on six MuJoCo tasks. We trained six different instances of all
algorithms with different random seeds. In this case, for TEAC, we set η as the negative of action
space dimension of the task, and set τ = 0.005 for all tasks.
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