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ABSTRACT

Stein variational gradient descent (SVGD) is a particle based approximate infer-
ence algorithm with largely well understood theoretical properties. In recent years,
many variants of SVGD have been proposed and shown to share those proper-
ties. A preliminary test of the hybrid kernel variant (h-SVGD) has demonstrated
promising results on image classification with deep neural network ensembles.
However, the theoretical properties of h-SVGD have not yet been established, and
its practical advantages have not been fully explored. In this paper, we define a
hybrid kernelised Stein discrepancy (h-KSD) and prove that the h-SVGD update
direction is optimal within an appropriate reproducing kernel Hilbert space. We
also prove a descent lemma that guarantees a decrease in the KL divergence at
each step along with other limit results. Numerical results demonstrate that h-
SVGD mitigates the variance collapse behaviour of SVGD at no additional com-
putational cost whilst remaining competitive at inference tasks.

1 INTRODUCTION

Approximating intractable posterior distributions is an important task in Bayesian inference and
machine learning. Two widely used approaches are Markov Chain Monte Carlo (MCMC) meth-
ods and Variational Inference (VI). Despite their asymptotic guarantees, MCMC methods are often
slow to converge and their samples suffer from high autocorrelation (Brooks et al., 2011). On the
other hand, VI methods approximate the intractable distribution by minimising the KL divergence
within a parametric family (Blei et al., 2017; Zhang et al., 2018). VI reduces the problem to one of
optimisation, but the accuracy of the solution is limited by the flexibility of the parametric family.

Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) is a deterministic sampling al-
gorithm that imposes no parametric form on the approximating distribution, possesses asymptotic
guarantees (Lu et al., 2019; Korba et al., 2020; Nüsken & Renger, 2023), and provides a fast al-
ternative to MCMC methods (Liu et al., 2017). SVGD deterministically updates a set of particles
until their empirical distribution approximates the target distribution. The update direction is that
of steepest descent of the KL divergence within the zero-centred unit ball of a reproducing kernel
Hilbert space (RKHS). This RKHS requires a choice of kernel, with typical choices including the
radial basis function (RBF) (Liu & Wang, 2016), inverse multiquadratic (IMQ) (Gorham & Mackey,
2017), and log inverse (Chen et al., 2018) kernels.

The first term in the SVGD update direction is a kernel-smoothed gradient force that moves particles
towards regions of high probability density. The second is a repulsive force between particles that
prevents mode collapse. This repulsive force is driven by the same kernel used in the gradient term.
The hybrid kernel variant (h-SVGD) generalises SVGD by allowing different kernels to be used in
the gradient and repulsive terms. D’Angelo et al. (2021) demonstrate that in the setting of deep
neural network ensembles, h-SVGD outperforms other SVGD variants on image classification tasks
and improves functional diversity. However, the second kernel prevents h-SVGD from inheriting
the theoretical properties of vanilla SVGD in a straightforward manner.

1.1 PREVIOUS WORK

The SVGD algorithm (Liu & Wang, 2016) was formulated using a connection between the ker-
nelised Stein discrepancy (KSD) (Liu et al., 2016) and the derivative of the KL divergence. Since its
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introduction, many variants have been proposed in the literature such as matrix SVGD (Wang et al.,
2019), gradient free SVGD (Han & Liu, 2018), message passing or graphical SVGD (Zhuo et al.,
2018; Wang et al., 2018), stochastic SVGD (Gorham et al., 2020), sliced SVGD (Gong et al., 2021),
Grassman SVGD (Liu et al., 2022), and annealed SVGD (D’Angelo & Fortuin, 2021).

Liu & Wang (2016) showed that the update direction optimally decreases the KL divergence within
the unit ball of the RKHS. Descent lemmas with bounds on the decrease in KL divergence have also
been established (Korba et al., 2020; Salim et al., 2022; Liu, 2017).

Weak convergence in the large particle limit was demonstrated under strong assumptions (Liu, 2017)
then improved with a weaker pseudo-Lipschitz assumption (Gorham et al., 2020). The empirical dis-
tribution converges in the large particle limit to a solution of a non-local nonlinear partial differential
equation (PDE), and this solution converges weakly to the target distribution in the time limit (Lu
et al., 2019). Korba et al. (2020) established a rate of convergence and a Wasserstein bound.

Liu (2017) showed that the dynamics of SVGD in the continuous time limit are described by the
Fokker-Planck PDE. This work interpreted the PDE as a gradient flow for minimising the KL diver-
gence functional and equated the norm of the functional gradient of the KL divergence to the KSD.
The geometric interpretation has been extended in (Duncan et al., 2023; Nüsken & Renger, 2023).

The variance collapse phenomenon, in which samples generated by SVGD underestimate the vari-
ance in high dimensions, has been studied (Ba et al., 2019; 2021). Zhuo et al. (2018) provide condi-
tions under which the size of the repulsive force correlates negatively with dimension, which leads to
the gradient term dominating the SVGD dynamics and particles being prevented from representing
the tails of the target distribution.

1.2 CONTRIBUTIONS AND OUTLINE

This paper contributes the following:

• A proof that the h-SVGD update direction is optimal within a different RKHS to that of
vanilla SVGD, and a hybrid KSD (h-KSD) definition.

• A descent lemma for h-SVGD and results in the continuous time limit, the mean field limit,
the hybrid kernel Stein geometry, and the finite particle regime.

• Numerical experiments demonstrating that h-SVGD can mitigate variance collapse at no
extra computational cost, whilst remaining competitive at inference tasks.

Section 2 introduces notation, then recalls the necessary RKHS theory and the SVGD algorithm.
The h-SVGD algorithm is presented in Section 3. In Section 4, the SVGD theory is extended to the
hybrid kernel setting and the h-KSD is defined. Numerical experiments are presented in Section 5.
The appendix contains proofs, a discussion on the h-KSD, and additional numerical results.

2 BACKGROUND

2.1 NOTATION

Let X ⊆ Rd. Let p denote the target density on X , let sp(x) = ∇x log p(x) denote its score func-
tion, and νp its measure. Assume that p(x) = e−V (x) for some potential V . Let P(X ) be the set of
probability measures on X and PV (X ) the subset where ∥µ∥PV

:=
∫
X (1+V (x))dµ(x) <∞. For

p ≥ 1, let Pp(X ) be the subset where ∥µ∥Pp :=
∫
X ∥x∥

pdµ(x) < ∞ and define the Wasserstein

p-distance between measures µ, ν ∈ Pp(X ) as Wp(µ, ν) :=
(
infs∈S(µ,ν)

∫
∥x− y∥pds(µ, ν)

)1/p
,

where S(µ, ν) is the set of couplings between µ and ν. Given µ ∈ P(X ) and a smooth, invert-
ible transform T : X → X , let T#µ denote the pushforward measure of µ through T . The KL
divergence between two measures µ, ν ∈ P(X ) is denoted by KL(µ ∥ ν).
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2.2 REPRODUCING KERNEL HILBERT SPACES

A function k : X × X → R is positive definite if
∑
i,j aik(xi,xj)aj > 0 for any a1, . . . , ad ∈ R

and x1, . . . ,xd ∈ X . Given a Hilbert spaceH of functions ϕ : X → R, a function k : X ×X → R
is said to be a reproducing kernel forH if it satisfies the reproducing property, ϕ(x) = ⟨ϕ, k(x, ·)⟩H
for all ϕ ∈ H. A positive definite k : X × X → R admits a unique Hilbert space H of functions
ϕ : X → R for which the Dirac functionals δx : H → R, δxϕ = ϕ(x) are all continuous and k is a
reproducing kernel. This Hilbert space is called the reproducing kernel Hilbert space (RKHS) of k
and it is equal to the closure of the span of {k(x, ·) : x ∈ R}.
Let Hd = H × · · · × H denote the Hilbert space of functions ϕ : X → Rd whose components are
all in H, and equip it with the usual inner product ⟨ϕ, ψ⟩Hd =

∑d
i=1⟨ϕi, ψi⟩H. Given two kernels

k1, k2 : X ×X → R, letH1,H2 denote their respective RKHS. The inner product of the direct sum
Hilbert space Hd1 ⊕ Hd2 is given by ⟨(ϕ1, ϕ2), (ψ1, ψ2)⟩Hd

1⊕Hd
2
= ⟨ϕ1, ψ1⟩Hd

1
+ ⟨ϕ2, ψ2⟩Hd

2
. The

algebraic sum H1 +H2 = {ϕ1 + ϕ2 : ϕ1 ∈ H1, ϕ2 ∈ H2} is an RKHS with kernel k1 + k2 and
norm

∥ϕ∥2H1+H2
:= min

{
∥ϕ1∥2H1

+ ∥ϕ2∥2H2
: ϕ1 ∈ H1, ϕ2 ∈ H2, ϕ1 + ϕ2 = ϕ

}
(1)

for all ϕ ∈ H1 +H2. It can be easily checked that (H1 +H2)
d = Hd1 +Hd2 .

For a thorough treatment of RKHS we refer the reader to (Aronszajn, 1950; Steinwart & Christmann,
2008; Berlinet & Thomas-Agnan, 2011).

2.3 STEIN VARIATIONAL GRADIENT DESCENT (SVGD)

The key result from (Liu & Wang, 2016) identifies a transform T : X → X that optimally decreases
the KL divergence from an arbitrary probability measure to νp. More precisely, let H be an RKHS
with kernel k : X × X → R and consider transforms of the form T (x) = x + ϵϕ(x) where ϵ > 0
and ϕ is in the unit ball {ϕ ∈ Hd : ∥ϕ∥Hd ≤ 1}. The maximum value of

−∇ϵKL(T#µ ∥ νp)|ϵ=0 (2)

occurs at ϕkµ,p/
∥∥ϕkµ,p∥∥Hd , where

ϕkµ,p(·) := Ex∼µ [k(x, ·)sp(x) +∇xk(x, ·)] . (3)

When µ is an empirical distribution (i.e. a sum of Dirac measures), the expectation in (3) can be
computed exactly by summing over the particles of each Dirac measure. Using this observation,
the SVGD algorithm starts with an initial set of N particles (xi0)

N
i=1 and iteratively applies the

transform T with (3) as the update direction. At each iteration ℓ, this yields a set of particles (xiℓ)
N
i=1

and a corresponding empirical distribution µℓ = 1
N

∑
i δxi

ℓ
. This is captured in Algorithm 1. The

intention is that after sufficiently many iterations, the set of particles will resemble samples from p
and expectations of the form Ex∼ph(x) can be approximated by Ex∼µℓ

h(x) = 1
N

∑
i h(x

i
ℓ). We

also recall the definition of the KSD from (Liu et al., 2016),

Sk(µ, νp) := Ex,y∼µ
[
(sp(x)− sq(x))

⊤k(x,y)(sp(y)− sq(y))
]
. (4)

Algorithm 1 Stein Variational Gradient Descent (Liu & Wang, 2016)

Input: A target probability distribution νp, a kernel k, an initial set of particles (xi0)
N
i=1 in X , and

a sequence of step sizes (ϵℓ).
Output: A set of particles (xi)Ni=1 in X whose empirical distribution approximates νp.
for iteration ℓ do

xiℓ+1 ← xiℓ + ϵℓϕ̂
∗
µℓ,p

(xiℓ), ∀ i = 1, . . . , N (5)

ϕ̂∗µℓ,p
(x) =

1

N

N∑
j=1

(
k(xjℓ ,x)∇xj

ℓ
log p(xjℓ) +∇xj

ℓ
k(xjℓ ,x)

)
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3 HYBRID KERNEL STEIN VARIATIONAL GRADIENT DESCENT (H-SVGD)

The SVGD update in (5) contains two terms, each using the same kernel. The driving term uses the
score function to move particles towards regions of high probability density, and the repulsive term
prevents particles from collapsing at the modes. The h-SVGD variant proposed by D’Angelo et al.
(2021) uses a different kernel in each term. Let k1 denote the kernel that appears alongside the score
function, let k2 denote the repulsive kernel, and define ∆k := k2 − k1. For the remainder of this
paper, k1 and k2 will both be positive definite. We present h-SVGD in Algorithm 2.

Algorithm 2 Hybrid Kernel Stein Variational Gradient Descent

Input: A target probability distribution νp, two kernels k1, k2, an initial set of particles (xi0)
N
i=1

in X , and a sequence of step sizes (ϵℓ).
Output: A set of particles (xi)Ni=1 in X whose empirical distirbution approximates νp.
for iteration ℓ do

xiℓ+1 ← xiℓ + ϵℓϕ̂
∗
µℓ,p

(xiℓ), ∀i = 1, . . . , N (6)

ϕ̂∗µℓ,p
(x) =

1

N

N∑
j=1

(
k1(x

j
ℓ ,x)∇xj

ℓ
log p(xjℓ) +∇xj

ℓ
k2(x

j
ℓ ,x)

)

4 THEORETICAL PROPERTIES OF H-SVGD

In this section, we identify a natural RKHS in which to develop the h-SVGD theory and justify
its legitimacy as a SVGD variant. We prove that the h-SVGD update direction is optimal within
this RKHS and we define a h-KSD. Other results include a descent lemma, convergence results, a
gradient flow interpretation, and a Wasserstein bound. All proofs are provided in the appendix.

4.1 DEFINITIONS AND ASSUMPTIONS

A function f : X → R is in the Stein class of p (or its corresponding measure) if it is smooth and∫
x∈X ∇x (f(x)p(x)) dx = 0. A function f = (f1, . . . , fd) : X → Rd is in the Stein class of p

if each fi is in the Stein class of p. A kernel k : X × X → R is in the Stein class of p if it has
continuous second order partial derivatives and both k(x, ·) and k(·,y) are in the Stein class of p.
The hybrid Stein operator of p may act on a pair of scalar functions f, g : X → R, a pair of vector
functions f , g : X → Rd, or a pair of kernels k1, k2 : X × X → R by

Sp(f, g)(x) := f(x)sp(x) +∇xg(x),

Sp(f , g)(x) := sp(x)
⊤f(x) +∇xg(x),

Sp ⊗ (k1, k2)(x, ·) := k1(x, ·)sp(x) +∇xk2(x, ·),

respectively. This reduces to the Stein operator (Liu et al., 2016) when acting on two equal functions.

The results in this section require the following technical assumptions on the potential function.

(A1) V ∈ C∞(X ), V ≥ 0, and lim|x|→∞ V (x) = 0.
(A2) There exist constants CV > 0 and q > 1 such that

|V (x)|q ≤ CV (1 + V (x))

for all x ∈ X , and

sup
θ∈[0,1]

∣∣∇2V (θx+ (1− θ)y)
∣∣q ≤ CV (1 + V (x) + V (y)).

(A3) For any α, β > 0, there exists a constant Cα,β > 0 such that

|y| ≤ α |x|+ β =⇒ (1 + |x|)(|∇V (y)|+
∣∣∇2V (y)

∣∣) ≤ Cα,β(1 + V (x)).
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(A4) The Hessian HV of V is well-defined and ∥HV ∥op ≤M for some M > 0.

Assumptions (A1), (A2) and (A3) are identical to those in (Lu et al., 2019), and Assumption (A4) is
identical to Assumption (A2) in (Korba et al., 2020). Assumptions on the kernels are also required.

(B1) There exist symmetric functions K1,K2 : X → R such that k1(x,y) = K1(x − y),
k2(x,y) = K2(x − y), K1 is C2 with bounded derivatives, and K2 is C4 with bounded
derivatives. We use B as a bound for all derivatives in the proofs.

(B2) There exists a constant D > 0 such that both k1 and ∇k2 and are D-Lipschitz, and
∇V (·)k1(·, z) is D-Lipschitz for each z. That is,

|k1(x,x′)− k1(y,y′)| ≤ D (∥x− y∥2 + ∥x
′ − y′∥2) ,

∥∇xk2(x,x
′)−∇yk2(y,y

′)∥ ≤ D (∥x− y∥2 + ∥x
′ − y′∥2) ,

|∇V (x)k1(x, z)−∇V (y)k1(y, z)| ≤ D (∥x− y∥2)
for all x,x′,y,y′, z ∈ X .

(B3) The function Sp ⊗ (k1, k2)(·, ·) is jointly pseudo-Lipschitz. That is, there exists a constant
L > 0 such that

∥Sp ⊗ (k1, k2)(x,y)− Sp ⊗ (k1, k2)(x
′,y)∥2 ≤ L (1 + ∥y∥2) ∥x− x′∥2

∥Sp ⊗ (k1, k2)(x,y)− Sp ⊗ (k1, k2)(x,y
′)∥2 ≤ L (1 + ∥x∥2) ∥y − y′∥2

for all x,x′,y,y′ ∈ X .

Assumption (B1) is a slight relaxation of Assumption 2.1 in (Lu et al., 2019). The first two parts
of Assumption (B2) are hybrid kernel versions of Assumption (B2) from (Korba et al., 2020). The
third part of Assumption (B2) replaces the restrictive Assumption (B1) from (Korba et al., 2020).
The single kernel version of Assumption (B3) was introduced in (Gorham et al., 2020, Theorem 7).

4.2 UPDATE DIRECTION AND H-KSD

Motivated by the h-SVGD update in (6), define the update direction as
ϕk1,k2µ,p (·) := Ex∼µ [Sp ⊗ (k1, k2)(·,x)] . (7)

Let G( · ; k1, µ, p) := Ex∼µ [k1(x, ·)sp(x)] and R( · ; k2, µ) := Ex∼µ [∇xk2(x, ·)] be the gradient
and repulsive terms respectively, so ϕk1,k2µ,p (·) = G(·; k1, µ, p) +R(·; k2, µ). The update transform

T k1,k2
µ,p (x) = x+ ϵϕk1,k2µ,p (x) (8)

and the map Φk1,k2p : µ 7→ (T k1,k2
µ,p )#µ characterise the h-SVGD dynamics. For each ℓ, define

µNℓ+1 := Φk1,k2p (µNℓ ), µ∞
ℓ+1 := Φk1,k2p (µ∞

ℓ ), (9)

where µN0 is the empirical measure of the initial particles (xi0)
N
i=1 drawn i.i.d. from some µ∞

0 .
Remark 1. If k2 is in the Stein class of µ, then G and R can be written in terms of Hilbert-Schmidt
integral operators with kernels k1 and k2 respectively. Since those operators map into H1 and H2

(Steinwart & Christmann, 2008, Theorem 4.26), we have G ∈ Hd1 and R ∈ Hd2 , provided that
log p, log q ∈ L2(µ). This suggests that we optimise the update direction withinHd1 +Hd2 .

The following result justifies the definition of the update direction (7). When H1 = H2, it reduces
to Lemma 3.2 in (Liu & Wang, 2016) up to scaling.
Theorem 4.1. Suppose that k1 and k2 are in the Stein class of p. Then the function from the set
B = {ϕ ∈ Hd1 ∩ Hd2 : ∥2ϕ∥Hd

1+Hd
2
≤ 1} that maximises (2) is ϕk1,k2µ,p /

∥∥2ϕk1,k2µ,p

∥∥
Hd

1+Hd
2

, and this

maximum value is
∥∥ϕk1,k2µ,p

∥∥
Hd

1+Hd
2

.

Since it is known that−∇ϵKL(T#µ ∥ νp)|ϵ=0 = Ex∼µ [Spϕ(x)] (Liu & Wang, 2016, Theorem 3.1),
the above result motivates the definition of a hybrid kernelised Stein discrepancy (h-KSD) given by

Sk1,k2(µ, νp) := max
ϕ∈Hd

1∩Hd
2

{
Ex∼µ [Spϕ(x)]2 : ∥2ϕ∥Hd

1+Hd
2
≤ 1
}
. (10)

With this definition, and noting that Sk1,k2(µ, νp) =
∥∥ϕk1,k2µ,p

∥∥2
Hd

1+Hd
2

, Theorem 4.1 generalises

Theorem 3.8 from (Liu et al., 2016). Note also thatHd1 ∩Hd2 ⊆ Hd1 +Hd2 .
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Remark 2. The inclusion H1 ⊆ H2 is equivalent to k1 ≤ ck2 for some constant c > 0 (Aronszajn,
1950, Part I, Section 13). This is easily verified for many typical kernel choices, including when k1
and k2 are any combination of RBF, IMQ, log-inverse, or Matérn kernels of any bandwidth. So for
kernels of these forms, the optimisation of Theorem 4.1 takes place withinHd1 orHd2 .

Note that Liu et al. (2016) defines the KSD using the score difference. They also present a tractable
formula and a spectral decomposition. Appendix C details why those three forms do not reconcile
with our variational definition of the h-KSD. An interesting piece of future work is to find a tractable
h-KSD formula and apply it to problems such as the goodness-of-fit tests in (Liu et al., 2016).

4.3 LARGE TIME ASYMPTOTICS

The following result extends Theorem 3.3 of (Liu, 2017) to the hybrid kernel setting. It shows that
for a sufficiently small step size, h-SVGD will always decrease the KL divergence. This type of
result is referred to as a descent lemma in the literature. Alternative descent lemmas for SVGD
may be found in (Korba et al., 2020, Proposition 5) and (Salim et al., 2022, Theorem 3.2). We
remark that although the h-KSD is not a valid discrepancy measure, as previously mentioned, the
following descent lemma bounds the decrease in KL divergence in terms of the KSD of one of the
individual kernels. This ensures the KL divergence is strictly decreasing at all times, meaning that
the h-SVGD algorithm avoids the case where Sk1,k2(µ∞

ℓ , νp) = 0 but µ∞
ℓ and νp are not equal

almost everywhere.
Theorem 4.2. Set ϵℓ ≤ (2 supx ρ(∇ϕ∗ + ∇ϕ∗

⊤))−1 where ρ(·) denotes the spectrum radius of a
matrix and ϕ∗ is the optimum direction from Theorem 4.1. Then there exist constants C1, C2 > 0
such thatH2 ⊆ H1 implies

KL(µ∞
ℓ+1 ∥ νp)−KL(µ∞

ℓ ∥ νp) ≤ −ϵℓSk1(µℓ, νp) + ϵ2ℓ

(
C1

(
Sk1(µℓ, νp) + ∥R1∥2Hd

1

)
+ C2

)
andH1 ⊆ H2 implies

KL(µ∞
ℓ+1 ∥ νp)−KL(µ∞

ℓ ∥ νp) ≤ −ϵℓSk2(µℓ, νp) + ϵ2ℓ

(
C1

(
Sk2(µℓ, νp) + ∥R2∥2Hd

2

)
+ C2

)
where we define R1(x) := Ey∼µℓ

[∇y∆k(y,x)] and R2(x) := Ey∼µℓ
[∆k(y,x)sp(y)]. The

constant C1 depends only on p, k1 and k2. However, C2 depends on p, k1, k2 and µℓ.

It can be easily verified that in theH2 ⊆ H1 case, the right hand side is negative when

ϵℓ <
1

C1

(
Sk1(µℓ, νp)

Sk1(µℓ, νp) + ∥R1∥2Hd
1
+ C2

C1

)
,

with a similar condition in the H1 ⊆ H2 case. Although it is not explicit in (Liu, 2017), vanilla
SVGD requires a similar condition to ensure the KL divergence decreases at each step.

In Section 5 we show that a stronger repulsive kernel, that is k1 ≤ k2, can mitigate variance collapse.
In this scheme,H1 ⊆ H2 by Remark 2, and so the rate of decrease of the KL divergence is dominated
by Sk2 . Loosely speaking, we have Sk2 ≤ Sk1 in this case (see Figure 3 of Appendix C), so h-SVGD
can mitigate variance collapse at the expense of slower convergence.

4.4 LARGE PARTICLE LIMIT

The following result extends weak convergence in the population limit (Gorham et al., 2020, The-
orem 7) to the hybrid kernel setting. The only modification is that we require the pseudo Lipschitz
assumption to apply to the hybrid Stein operator instead of the single kernel Stein operator.
Proposition 4.3. If W1(µ

N
0 , µ

∞
0 )→ 0 and Assumption (B3) holds, then W1(µ

N
ℓ , µ

∞
ℓ )→ 0 at each

iteration ℓ.

4.5 CONTINUOUS TIME LIMIT AND GRADIENT FLOW

In this subsection, we recall some definitions from (Liu, 2017) and restate results that apply in the
spaceH := Hd1 +Hd2 . The derivation of the Fokker-Planck equation follows without modification,

∂

∂t
qt(x) = −∇ ·

(
ϕk1,k2µt,p (x)qt(x)

)
,
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where µt are measures corresponding to densities qt in the continuous time t. In this continuous time
limit, we can extend Theorem 3.4 of (Liu, 2017) to the hybrid kernel setting. We remark that this is
a continuous version of Theorem 4.2 and gives a rate of convergence for the h-SVGD dynamics.
Proposition 4.4. Assume KL(µ0 ∥ νp) < ∞. If H2 ⊆ H1, then d

dtKL(µt ∥ νp) = −Sk1(µt, νp).
Similarly, ifH1 ⊆ H2, then d

dtKL(µt ∥ νp) = −Sk2(µt, νp).

Recall that the spaces Hq :=
{
Sqϕ : ϕ ∈ Hd1 ∩Hd2

}
and qHq :=

{
qSqϕ : ϕ ∈ Hd1 ∩Hd2

}
are

equipped with the inner products ⟨f, g⟩Hq
:= ⟨qf, qg⟩qHq

:= ⟨ψq,f , ψq,g⟩H, where

ψq,f := argmin
ψ∈Hd

1∩Hd
2

{∥ψ∥H : Sqψ = f}

for each f ∈ Hq . Recall the covariant gradient of the functional F is an element in the tangent space
qHq satisfying F (q+fdt) = F (q)+⟨gradHF (q), fdt⟩qHq

for all f ∈ qHq . We now generalise part
of Theorem 3.5 from (Liu, 2017) as a first step towards understanding the hybrid Stein geometry.
Proposition 4.5. In the spaceH = Hd1 +Hd2 ,

gradHKL(µ ∥ νp) = ∇ · (ϕk1,k2q,p q), and
∂qt
∂t

= −gradHKL(µt ∥ νp).

It is not clear whether ∥gradHKL(µ ∥ νp)∥2qHq
= Sk(µ, νp) from (Liu, 2017, Theorem 3.5) can be

extended to the hybrid kernel setting due to issues with the h-KSD (see Appendix C). We leave a
detailed study of the hybrid Stein geometry and its connection to the h-KSD for future work.

4.6 MEAN FIELD PDE

This subsection reviews the setup of (Lu et al., 2019) and borrows some notation from (Duncan
et al., 2023). We write Ki(x−y) in place of ki(x,y) for i = 1, 2 (as per Assumption (B1)), noting
that −∇Ki(x − y) = ∇yki(x,y). Also, recall that the density p(x) is assumed to take the form
e−V (x) for some potential function V : X → R, so that sp(x) = −∇xV (x). In the continuous time
limit, the evolution in Algorithm 2 can be described by the following interacting particle system,

dxit
dt

=
1

N

N∑
j=1

(
−K1(x

i
t − xjt )V (xjt )−∇xj

t
K2(x

i
t − xjt )

)
. (11)

In the mean field limit, this particle system can be described by the following PDE,

∂tµt(x) = ∇x ·
(
µt(x)

∫
X
[K1(x− y)∇V (y)−∇yK2(x− y)]µt(dy)

)
. (12)

Definition 4.1. Given a probability measure ν on Rd, a map X(t,x; ν) : [0,∞)×Rd → Rd that is
C1 with respect to t and satisfies

∂tX(t,x; ν) = − (K1 ∗ (∇V µt)) (X(t,x; ν))− (K1 ∗ µt) (X(t,x; ν))

µt = X(t, ·, ν)#ν (13)
X(0,x; ν) = x.

is called a mean field characteristic flow of (11) or of (12)

We introduce some notation here before generalising Theorem 2.4 from (Lu et al., 2019). The
set Y := {u ∈ C(X ,X ) : supx∈X |u(x)− x| <∞} with dY (u, v) = supx∈X |u(x)− v(x)| is a
complete metric space.
Proposition 4.6. Assume (A1) and (B1), and let T > 0. Then there exists a unique solution
X(·, ·, ν) ∈ C1([0, T ];Y ) to (13) and the corresponding µt is a weak solution to (12) that satisfies

∥µt∥PV
≤ ∥νp∥PV

exp (Cmin (∥∇K1∥∞ , ∥∇K2∥∞) t)

for some constant C > 0 depending on K1, K2 and V .

The second kernel enables a stronger bound by careful modification of the proof (see Appendix A).
We remark that this bound describes regularity of the solution to the PDE, not a rate of convergence.
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4.7 FINITE PARTICLES REGIME

Proposition 4.7. Assume (A1), (A4), (B1) and (B2), and let T > 0. For any 0 ≤ ℓ ≤ T
ϵℓ

, there
exists a constant L depending on k1, k2 and p such that

E
[
W 2

2 (µ
N
ℓ , µ

∞
ℓ )
]
≤ 1

2
√
N

√
var(µ∞

0 )eLT (e2LT − 1).

The single kernel version of this result (Korba et al., 2020, Proposition 7) uses an assumption that is
quite restrictive. It requires |V (x)| ≤ CV for some constant CV > 0, which rules out even a normal
target distribution. We relax this with the third part of Assumption (B2) and provide an updated
proof in the appendix along with a hybrid kernel version of (Korba et al., 2020, Lemma 14).

5 EXPERIMENTS

The problem of variance collapse in SVGD has been successfully prevented in the setting of proba-
bilistic graphical models where the conditional dependence structure enables p to be factorised and
R( · ; k2, µ) to be replaced with a set of lower dimensional repulsive forces (Zhuo et al., 2018). Other
methods such as S-SVGD (Gong et al., 2021) and GSVGD (Liu et al., 2022) have demonstrated that
variance collapse can be avoided, although there is an additional computational cost required in these
methods. In particular, S-SVGD requires computation of the optimal test directions, and GSVGD
requires the projectors to be updated at each step. Our numerical experiments demonstrate that even
without a conditional dependence structure, and without incurring additional computational cost,
h-SVGD can mitigate variance collapse while maintaining or improving the inference capabilities
of SVGD. We emphasise that the cost of SGVD and h-SVGD updates are both O(N2). We measure
variance collapse using dimension averaged marginal variance (DAMV), 1

d

∑d
j=1 Varj

(
{xi}Ni=1

)
,

as is standard in the literature (Ba et al., 2019; 2021; Zhuo et al., 2018).

Zhuo et al. (2018) attribute variance collapse to the negative correlation between ∥R( · ; k2, µ)∥∞
and the dimension d. The intuition is that a weak repulsive force in high dimensions will enable
the driving force to move particles closer to a mode, leaving the tails of the distribution underrep-
resented. Our numerical experiments use an RBF kernel for k1 with the bandwidth set using the
median particle distance heuristic (Liu & Wang, 2016). We implement a stronger repulsive kernel
k2 = f(d)k1, where f is an increasing function. The vanilla SVGD, k1 = k2, is presented as a
baseline in each experiment. We emphasise that as per Remark 2, all of our experiments satisfy the
conditions of Theorem 4.2. See Appendix D for further experimental details and results.

5.1 VARIANCE COLLAPSE IN THE PROPORTIONAL LIMIT

In this first example, we run h-SVGD on a sequence of multivariate normal (MVN) distributions up
to a dimension d = 200 with marginal moments of lower dimensions equal across each MVN distri-
butions. Following (Ba et al., 2021), the number of particles N is chosen such that d/N approaches
a proportional limit γ. We present results in three schemes, γ < 1, γ = 1 and γ > 1. Figure 1
shows that scaling the repulsive kernel by

√
d or ln(d) mitigates variance collapse and even slightly

improves the mean estimates in higher dimensions, even in the absence of a conditional depen-
dence structure. The quality of the mean estimate is measured by the dimension averaged squared
mean error (DASME), 1

d

∑d
j=1

(
Ej
[
{xi}Ni=1

]
− µj

)2
where µd,j is the j-th marginal mean of the

d-dimensional MVN.

5.2 BAYESIAN NEURAL NETWORK

In this section, we sample weights from a Bayesian neural network. Aside from scaling the repulsive
kernel, our setup is identical to Liu & Wang (2016). Figure 2 shows that the problem of variance
collapse is mitigated under h-SVGD whilst remaining competitive in inference capabilities. This
is demonstrated by an improved DAMV when scaling the repulsive kernel by

√
d, while the test

metrics of RMSE and LL remain within the range of standard error of the SVGD experiments, with
the exception of the Yacht dataset. Similar results can be seen when scaling the repulsive kernel by
log(d). The values used in Figure 2 are reported in Appendix D (see Tables 1-10). We leave a more

8
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(a) DAMV (γ = 2) (b) DAMV (γ = 1) (c) DAMV (γ = 0.2)

(d) DASME (γ = 2) (e) DASME (γ = 1) (f) DASME (γ = 0.2)

Figure 1: DAMV and DASME of MVN distributions in the proportional limit with kernel scaling.

detailed study of the scaling factor as an area for future work. Appendix D also contains additional
results for this experiment with other kernel forms.

(a) DAMV (b) Test RMSE (c) Test LL

Figure 2: DAMV, RMSE and LL metrics with standard errors for two different scaling choices.

6 CONCLUSION

We developed the theory of the h-SVGD algorithm and defined a h-KSD. These results guarantee
that h-SVGD decreases the KL divergence at each iteration and provide convergence guarantees in
several limits. Our experimental results demonstrate that h-SVGD with a stronger repulsive kernel
mitigates variance collapse whilst remaining competitive in standard inference tasks. We hypoth-
esise that the mitigation of variance collapse comes at the expense of a slower convergence rate
and leave a rigorous verification of this for future work. Two other promising directions for future
work in the h-SVGD theory are reconciling the variational definition of the h-KSD with other ex-
plicit forms in (Liu et al., 2016), and developing the Stein geometry (Duncan et al., 2023; Nüsken
& Renger, 2023) in the hybrid kernel setting. An open problem in the study of vanilla SVGD is
finding a convergence rate in the finite particle regime. Other areas for future work are exploration
of different kernel choices, a detailed study of scaling choices, and incorporation of the hybrid ker-
nel setting with other SVGD variants such as matrix SVGD (Wang et al., 2019) or message passing
SVGD (Zhuo et al., 2018; Wang et al., 2018).
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A PROOFS

Proof of Theorem 4.1. Let ϕ ∈ B. For 1 ≤ i ≤ d, we have the representations

ϕi(x) = ⟨ϕi, k1(x, ·)⟩H1 ,

ϕi(x) = ⟨ϕi, k2(x, ·)⟩H2
.

Theorem 3.1 from Liu & Wang (2016) applies to the transform T (x) = x + ϵϕ(x) for sufficiently
small ϵ and sufficiently smooth ϕ, so

−∇ϵKL(T#µ ∥ νp)|ϵ=0 = Ex∼µ
[
sp(x)

⊤ϕ(x) +∇ · ϕ(x)
]

= Ex∼µ
[
sp(x)

⊤ (⟨ϕ1, k1(x, ·)⟩H1
, . . . , ⟨ϕd, k1(x, ·)⟩H1

)
]

+ Ex∼µ [∇ · (⟨ϕ1, k2(x, ·)⟩H2
, . . . , ⟨ϕd, k2(x, ·)⟩H2

)]

= Ex∼µ

[
⟨ϕ, k1(x, ·)sp(x)⟩Hd

1

]
+ Ex∼µ

[
⟨ϕ,∇xk2(x, ·)⟩Hd

2

]
=
〈
ϕ,G( · ; k1, µ, p)

〉
Hd

1
+
〈
ϕ,R( · ; k2, µ)

〉
Hd

2

=
〈
(ϕ, ϕ), (G( · ; k1, µ, p),R( · ; k2, µ))

〉
Hd

1⊕Hd
2

=
〈
2ϕ, ϕk1,k2µ,p

〉
Hd

1+Hd
2
.

The above also uses the derivative reproducing properties (Zhou, 2008). Applying Lemma B.1 in
the final step requires ϕ ̸= 0. But in the ϕ = 0 case, KL(T#µ ∥ νp) = KL(µ ∥ νp) is constant with
respect to ϵ, so

−∇ϵKL(T#µ ∥ νp)|ϵ=0 = 0 =
〈
0, ϕk1,k2µ,p

〉
Hd

1+Hd
2
.

11
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Now by the Cauchy-Schwarz inequality,

−∇ϵKL(T#µ ∥ µ)|ϵ=0 ≤
∥∥ϕk1,k2µ,p

∥∥
Hd

1+Hd
2

since ϕ ∈ B, with equality when ϕ = ϕk1,k2µ,p /
∥∥2ϕk1,k2µ,p

∥∥
Hd

1+Hd
2

.

Remark 3. The above proof implicitly uses the fact that

Ex∼µ [⟨ϕ, f(x, ·)⟩Hi
] = ⟨ϕ,Ex∼µf(x, ·)⟩Hi

for each ϕ ∈ Hi

for i = 1, 2. The interchange of expectation and inner product can be justified using Bochner
integrals. For details, see (A.32) in (Steinwart & Christmann, 2008). To our knowledge, this is not
made explicit in the literature despite being required in the proofs of results such as (Liu et al., 2016,
Theorem 3.8) and (Liu, 2017, Theorem 3.5).

For ease of notation in the following proof, we omit µℓ and p when writing vector function compo-
nents. In particular, for the update direction we write

ϕk1,k2µℓ,p
(x) = (ϕk1,k21 (x), . . . , ϕk1,k2d (x))

with similar shorthands for the single kernel variants.

Proof of Theorem 4.2. We first prove the result forH2 ⊆ H1. Following the proof in Liu (2017),

KL(µℓ+1 ∥ νp)−KL(µℓ ∥ νp)
≤ −ϵℓEx∼µℓ

[
Spϕk1,k2µℓ,p

(x)
]

+ ϵ2ℓEx∼µℓ

[
1

2
∥∇ log p∥Lip ·

∥∥ϕk1,k2µℓ,p
(x)
∥∥2
2
+ 2

∥∥∇ϕk1,k2µℓ,p
(x)
∥∥2
F

]
≤ −ϵℓEx∼µℓ

[
Spϕk1µℓ,p

(x) + SpR1(x)
]

+ ϵ2ℓEx∼µℓ

[
1

2
∥∇ log p∥Lip ·

∥∥ϕk1,k2µℓ,p
(x)
∥∥2
2
+ 2

∥∥∇ϕk1,k2µℓ,p
(x)
∥∥2
F

]
≤ −ϵℓSk1(µℓ, νp)

+ ϵ2ℓEx∼µℓ

[
1

2
∥∇ log p∥Lip ·

∥∥ϕk1,k2µℓ,p
(x)
∥∥2
2
+ 2

∥∥∇ϕk1,k2µℓ,p
(x)
∥∥2
F
− SpR1(x)

]
. (14)

Note that the first inequality above relies the condition ϵℓ = (2 supx ρ(∇ϕ∗ +∇ϕ∗
⊤))−1, which is

in the statement of Theorem 4.2. For details, see (Liu, 2017, Appendix A.2).

We now bound
∥∥ϕk1,k2µℓ,p

(x)
∥∥2
2

and
∥∥∇ϕk1,k2µℓ,p

(x)
∥∥2
F

. Assuming thatH2 ⊆ H1, then ϕk1,k2i ∈ Hd1 for
each 1 ≤ i ≤ n by Remark 1, and therefore∥∥∥ϕk1,k2i

∥∥∥2
H1+H2

≤
∥∥∥ϕk1,k2i

∥∥∥2
H1

+ ∥0∥2H2

≤
(∥∥∥ϕk1i ∥∥∥H1

+ ∥Ey∼µℓ
[∇yi∆k(y, ·)]∥H1

)2

≤ 2

(∥∥∥ϕk1i ∥∥∥2H1

+ ∥Ey∼µℓ
[∇yi∆k(y, ·)]∥

2
H1

)
(15)

by Equation (1), the triangle inequality, and the inequality (a+ b)2 ≤ 2(a2 + b2), a, b ∈ R.

Using the reproducing property, the Cauchy-Schwarz inequality, the definition of the algebraic sum
RKHS norm (Berlinet & Thomas-Agnan, 2011, Theorem 5) (also see Equation (1)), and the bound

12
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in (15), the first term in the remainder of (14) can be bounded by

∥∥ϕk1,k2µℓ,p
(x)
∥∥2
2
=

d∑
i=1

ϕk1,k2i (x)2

=

d∑
i=1

〈
(k1 + k2)(x, ·), ϕk1,k2i

〉2
H1+H2

≤
d∑
i=1

∥(k1 + k2)(x, ·)∥2H1+H2

∥∥∥ϕk1,k2i

∥∥∥2
H1+H2

≤ 2(k1 + k2)(x,x)

(
Sk1(µℓ, νp) + ∥R1(x)∥2Hd

1

)
. (16)

Similarly, the second term in the remainder of (14) can be bounded by∥∥∇ϕk1,k2µℓ,p
(x)
∥∥2
F
=
∑
i,j

∂xj
ϕk1,k2i (x)2

=
∑
i,j

〈
∂xj

(k1 + k2)(x, ·), ϕk1,k2i

〉2
H1+H2

≤
∑
i,j

∥∥∂xj (k1 + k2)(x, ·)
∥∥2
H1+H2

∥∥∥ϕk1,k2i

∥∥∥2
H1+H2

≤
d∑
j=1

(
∂xj ,x′

j
(k1 + k2)(x,x

′)|x=x′

) d∑
i=1

∥∥∥ϕk1,k2i

∥∥∥2
H1+H2

≤ 2∇x,x′(k1 + k2)(x,x)

(
Sk1(µℓ, νp) + ∥R1(x)∥2Hd

1

)
(17)

where the derivative reproducing property (Zhou, 2008, Theorem 1 (b)) is also used.

Using ∇x,y as a shorthand for the operator
∑
i,j ∂xi

∂yj and defining ∥f∥µℓ
:= Ex∼µℓ

|fi(x)|, we
can bound the final terms in the remainder of (14) by

Ex∼µℓ
[−SpR1(x)] ≤ Ex∼µℓ

[
Ey∼µℓ

[∣∣sp(x)⊤∇y∆k(y,x)
∣∣+ |∇x,y∆k(y,x)|

]]
≤ ∥sp∥µℓ

sup
x,y
|∇y∆k(y,x)|+ sup

x,y
|∇x,y∆k(y,x)| . (18)

The first result follows from combining all the above numbered equations where the constants are

C1 := sup
x

{
∥∇ log p∥Lip (k1 + k2)(x,x) + 4∇x,x′(k1 + k2)(x,x)

}
,

C2 := ∥sp∥µℓ
sup
x,y
|∇y∆k(y,x)|+ sup

x,y
|∇x,y∆k(y,x)| .

WhenH1 ⊆ H2, we follow the same process as above with the decomposition ϕk1,k2µℓ,p
= ϕk2µℓ,p

+R2

instead of ϕk1,k2µℓ,p
= ϕk1µℓ,p

+R1. In this case, the constant C1 is the same, but

C2 := ∥sp∥2µℓ
sup
x,y
|∆k(y,x)|+ ∥sp∥µℓ

sup
x,y
|∇y∆k(y,x)| .

Proof of Proposition 4.3. The proof follows in the same way as that of (Gorham et al., 2020, Theo-
rem 7) with the hybrid Stein operator in place of the usual Stein operator. In particular, the Wasser-
stein pseudo-Lipschitz property of h-SVGD can be established using the same technique as (Gorham
et al., 2020, Lemma 12).

Proof of Proposition 4.4. This is a formal proof recalling the proof in (Liu, 2017, Appendix A.2).
Take the statements of Theorem 4.2, divide by ϵℓ, and take the limit as ϵℓ → 0.
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Proof of Proposition 4.5. This proof follows as in (Liu, 2017, Theorem 3.5) with the reproducing
properties applied in the algebraic sum RKHS.

Proof of Proposition 4.6. The proof largely follows that of Theorem 2.4 Lu et al. (2019) with some
minor adjustments. Notably, after fixing r > 0 and defining

Yr :=

{
u ∈ Y : sup

x∈X
|u(x)− x| < r

}
and the complete metric space

Sr := C([0, T0];Yr),

dS(u, v) := sup
t∈[0,T0]

dY (u(t), v(t))

for some sufficiently small T0 (to be determined later), the operator F must be modified to act on
u ∈ Sr via

F(u)(t,x) = x−
∫ t

0

∫
X
∇K2(u(s,x)− u(s,x′))ν(dx′)ds

−
∫ t

0

∫
X
K1(u(s,x)− u(s,x′))∇V (u(s,x′))ν(dx′)ds.

The relaxed Assumption (B1) and the same techniques of (Lu et al., 2019) are sufficient establish
the required bounds to show that F is a contraction on Sr for sufficiently small T0. So the unique
fixed point X(·, ·; ν) ∈ Sr of F solves (13) in the interval [0, T0].

The min (∥∇K1∥∞ , ∥∇K2∥∞) term emerges because the telescoping in (Lu et al., 2019, Equation
(3.8)) can be performed with either kernel. The remainder of the proof follows (Lu et al., 2019,
Theorems 3.2 and 2.4).

Proof of Proposition 4.7. This follows identically to the proof of (Korba et al., 2020, Proposition 7)
with Lemma B.2 in place of Lemma 14.

B AUXILIARY RESULTS

Lemma B.1. For any f1, g1 ∈ H1 and f2, g2 ∈ H2 where f1 + f2 ̸= 0,

⟨(f1, f2), (g1, g2)⟩H1⊕H2 = ⟨f1 + f2, g1 + g2⟩H1+H2

Proof. Consider the map u : H1 ⊕H2 → H1 +H2 given by u(ϕ1, ϕ2) = ϕ1 + ϕ2. Let its kernel
be denoted by N = u−1({0}) and let N⊥ be the orthogonal complement of N . The restriction of u
to N⊥, denoted by v, is one-to-one and can be used to define an inner product via

⟨ϕ, ψ⟩H1+H2
= ⟨v−1(ϕ), v−1(ψ)⟩H1⊕H2

,

making H1 +H2 an RKHS with kernel k1 + k2 (see (Berlinet & Thomas-Agnan, 2011, Theorem
5)). The assumption f1 + f1 ̸= 0 implies that (f1, f2) ∈ N⊥ and so

(f1, f2) = v−1(f1 + f2).

The decompositionH1 ⊕H2 = N +N⊥ gives

(g1, g2) = (gN1 , g
N
2 ) + v−1(g1 + g2).

Since (gN1 , g
N
2 ) ∈ N and v−1(f1 + f2) ∈ N⊥,

⟨(f1, f2), (g1, g2)⟩H1⊕H2 = ⟨v−1(f1 + f2), (g
N
1 , g

N
2 )⟩H1⊕H2 + ⟨v−1(f1 + f2), v

−1(g1 + g2)⟩H1⊕H2

= ⟨f1 + f2, g1 + g2⟩H1+H2
.

14
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Remark 4. The assumption that f1+f2 ̸= 0 is necessary. Otherwise the right hand side of the above
will contain an inner product of two terms in N , retaining the terms ⟨fN1 , gN1 ⟩H1

and ⟨fN2 , gN2 ⟩H2
.

Lemma B.2. Under assumptions (A1), (A4), (B1), (B2) the map

(z, µ) 7→ E(z, µ) :=

∫
X
−k1(x, z)∇V (x) +∇xk2(x, z)dµ(x)

is L-Lipschitz. That is,

∥E(z, µ)− E(z′, µ′)∥2 ≤ L(∥z − z′∥2 +W2(µ, µ
′))

where L > 0 depends on k1, k2 and V .

Proof. Largely following the proof of Lemma 14 Korba et al. (2020), choosing an optimal coupling
s of µ and µ′,

∥E(z, µ)− E(z′, µ′)∥2 ≤
∣∣∣∣Es [∇V (x)(k1(x, z)− k1(x′, z′))]

+ Es [(∇V (x′)−∇V (x))k1(x
′, z′)]

+ Es [∇xk2(x, z)−∇x′k2(x
′, z)]

∣∣∣∣
≤ DEs [∥x− x′∥2 + ∥z − z′∥2]
+BMEs [∥x− x′∥2]
+DEs [∥x− x′∥2 + ∥z − z′∥2]
≤ (2D +BM) (∥z − z′∥2 +W2(µ, µ

′)) .

Note that the second term is bounded using the relaxed Assumption (B2) and there is no need to
require that |V | is bounded by a constant.

C DISCUSSION ON THE H-KSD

In this section, we discuss why we defined the h-KSD in its variational form instead of using one
of the three other forms in (Liu et al., 2016). We also demonstrate that the h-KSD is not a valid
discrepancy measure. We use the notation Sk(µ, νp) for the KSD with respect to k, and Sk1,k2(µ, νp)
for the h-KSD with respect to (k1, k2) defined in Equation (10).

Theorem 3.6 of (Liu et al., 2016) states that Sk(µ, νp) = Ex,y∼µ
[
Sxp Syp ⊗ k(x,y)

]
with x,y inde-

pendent. If this were to be taken as a starting point for defining a h-KSD, the natural generalisation
would be Ex,y∼µ

[
Sxp Syp ⊗ (k1, k2)(x,y)

]
. However, this quantity can be negative for even simple

choices of k1, k2, νp and µ.

Example 1. Let νp and µ be probability measures on X = R with normal densities N (x; 0, 1)
and N (x; 0, σ) respectively for σ > 0. Let k1 and k2 be RBF kernels with bandwidths h1 and
h2 respectively. Define S∗k1,k2(µ, νp) := Ex,y∼µ

[
Sxp Syp ⊗ (k1, k2)(x,y)

]
and note that h1 = h2

implies S∗k1,k2 = Sk1 = Sk2 . Figure 3 shows a plot of this quantity for σ ∈ [0.7, 1.3] for three
combinations of h1 and h2. The h1 ̸= h2 case demonstrates that S∗k1,k2 can be negative.

The KSD also has as a spectral decomposition. Theorem 3.7 of (Liu et al., 2016) uses the fact that
Sxp Syp ⊗ (k1, k2)(x,y) is a positive definite kernel as a function of x and y. However, this quantity
can be negative for some values of x and y since its expectation can be negative, as shown in the
previous example. So it is not a positive definite kernel, and we cannot apply Mercer’s theorem to
attain the spectral decomposition.

We now turn to the original KSD definition of Equation (4) (Liu et al., 2016, Definition 3.2). Since
the h-SVGD theory has been developed in the algebraic sum RKHSH1+H2 whose kernel is k1+k2,
it may seem natural to propose

Ex,y∼µ
[
(sp(x)− sq(x))

⊤(k1 + k2)(x,y)(sp(y)− sq(y))
]

(19)

as a definition for the h-KSD. This of course simplifies to Sk1(µ, νp) + Sk2(µ, νp). It may make
sense to choose the average of the kernels in the above expression instead of their sum so that the
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Figure 3: A simple example on X = R showing the tractable form of the KSD (Liu & Wang, 2016,
Theorem 3.6) does not extend to the hybrid kernel setting as a discrepancy measure, as it can take
negative values.

h-KSD reduces to the KSD in the single kernel setting, that is, Sk,k = Sk. In fact the RKHS with
kernels k1 + k2 and 1

2 (k1 + k2) contain the same functions and have equivalent norms. However,
from Theorem 4.1 and the subsequent discussion, we have

Sk1,k2(µ, νp) =
Ex∼µ

[
Spϕk1,k2µ,p (x)

]2∥∥∥2ϕk1,k2µ,p

∥∥∥2
H2

1+Hd
2

=
Ex,y∼µ

[
Sxp Syp ⊗ (k1, k2)(x,y)

]2∥∥∥2ϕk1,k2µ,p

∥∥∥2
H2

1+Hd
2

(20)

and it is not clear how this expression can be reconciled with (19).

We now address the issue of whether the h-KSD is a valid discrepancy measure. Recall that a kernel
k is integrally strictly positive definite if∫

X

∫
X
g(x)k(x,y)g(y)dxdy > 0

for any function g satisfying 0 < ∥g∥22 <∞ (Liu et al., 2016, Definition 3.1).
Proposition C.1. For any measures µ and νp with continuous densities q and p respectively, we
have Sk1,k2(µ, νp) ≥ 0. Suppose in addition that the kernels k1 and k2 are integrally strictly
positive definite, ∥p(·) (sp(·)− sq(·))∥22 < ∞, and either H1 ⊆ H2 or H2 ⊆ H1. Then µ = νp
implies Sk1,k2(µ, νp) = 0.

Proof. The variational definition in Equation (10) immediately ensures that Sk1,k2(µ, νp) ≥ 0.

We prove the second statement in theH2 ⊆ H1 case and note that theH1 ⊆ H2 case follows in the
same manner. Suppose that µ = νp almost everywhere. Note that ϕk1,k2µ,p ∈ H1 since H2 ⊆ H1.
Using this along with the first part of this result, Equation (1), and (Liu et al., 2016, Proposition 3.3),
we have

0 ≤ Sk1,k2(µ, νp)

=
∥∥ϕk1,k2µ,p

∥∥2
Hd

1+Hd
2

≤
∥∥ϕk1,k2µ,p

∥∥2
Hd

1

+ ∥0∥2Hd
2

= Sk1(µ, νp)
= 0.
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We caution that this result is not an extension of (Liu et al., 2016, Proposition 3.3) to the hybrid
kernel setting. In particular, the converse of the second statement is false.

Proposition C.2. Under the assumptions of Proposition C.1, Sk1,k2(µ, νp) = 0 does not imply
µ = νp almost everywhere.

Proof. Example 1 showed that Ex,y∼µ
[
Sxp Syp ⊗ (k1, k2)(x,y)

]
may be zero even when µ and νp

are not equal almost everywhere. This is sufficient for a counterexample in light of (20).

Although Sk1,k2 is not a valid discrepancy measure, this does not cause problems for the algorithm
because Proposition 4.2 and Remark 2 ensure a rate of decrease in the KL divergence of Sk1 or Sk2
for standard choices of k1 and k2.

We leave a deeper investigation of the h-KSD for future research. Interesting directions would be
reconciling our variational definition with the original definition in (Liu et al., 2016) and drawing
connections to the Stein geometry (Liu, 2017; Nüsken & Renger, 2023; Duncan et al., 2023).

D EXPERIMENTS

This section contains further details on the numerical experiments presented in Section 5 and addi-
tional numerical results.

Recall that the RBF kernel is defined as

kRBF(x,y;h) := exp

(
−
∥x− y∥22

2h

)
, h > 0

where h is the bandwidth. It is common practice throughout the SVGD literature (Liu & Wang,
2016) to set the bandwidth to hmed := med2/ log(n) where med is the median pairwise distance
between particles (xi)

n
i=1. In Section 5, we set k1 = kRBF(·, ·;hmed) with a stronger repulsive

kernel k2 = f(d)k1, choosing f(d) to be either
√
d or log(d).

In this appendix, we extend experiments in Sections 5.1 and 5.2 with additional results where the
bandwidth of the RBF kernel scales with the dimension. In particular, with h1 and h2 the bandwidths
of k1 and k2 respectively, we set h1 = hmed and h2 = f(d)hmed. Intuitively, a larger bandwidth
on the repulsive kernel will ensure a slower decay of ∇xkRBF(x,y) as ∥x− y∥2 increases. This
would increase the magnitude of the repulsive force, ∥R( · ; k2, µ)∥∞, thereby enabling more distant
particles to still repel each other.

We also provide additional results for the BNN experiment in 5.2 with other forms of the repulsive
kernel. These include the inverse multi-quadratic (IMQ) kernel kIMQ (Gorham & Mackey, 2017)

kIMQ(x,y;h, c, β) :=

(
c2 +

∥x− y∥22
2h

)β
h > 0, c > 0, β < 0,

the Laplace kernel kLap (Sriperumbudur et al., 2010)

kLap(x,y;h) := exp

(
−
∥x− y∥2

h

)
h > 0,

and the inverse log kernel kIL (Chen et al., 2018)

kIL(x,y;h) :=
(
h−2 + ln

(
1 + ∥x− y∥22

))−1

h > 0.

In experiments using the IMQ kernel, we set c = 1 and β ∈ {−0.5,−1}.
Following D’Angelo et al. (2021), we also define a functional RBF kernel kRBF(f) as follows. Let
P denote the number of features, let M denote the number of records in the training dataset, let
F ≤ M denote the number of records to be used in the functional kernel evaluation, and recall that
d is the number of weights in the BNN. Let B : XP × X d → R denote the neural network where

17



Under review as a conference paper at ICLR 2024

we use Bx(u) = B(u,x) to denote the evaluation of the network with weights x on the data point
u. From the training dataset, choose a subset of data points u1, . . . ,uF ∈ XP and define

kRBF(f)(x,y;h) :=
1

F

F∑
i=1

kRBF (Bx(ui), By(ui);h) .

The intuition behind choosing this as a repulsive kernel for the BNN experiment is that is should
repel particles that correspond to network weights that generate similar outputs. Our implementation
uses F = min(30,M) and randomly selects F records from the training dataset at each iteration.
The bandwidth is chosen using the median heuristic, but with the network outputs instead. That is,
let med(f) denote the median pairwise distance between (Bxi(u1), . . . , Bxi(uF ))

n
i=1, where this

distance is in RF , and define hmed(f) := med(f)
2
/ log(n).

Since kRBF decays exponentially with respect to the weights and kRBF(f) decays exponentially with
respect to the network outputs, one must decay faster than the other, at least outside some compact
set of the weight space X d. Therefore, Remark 2 ensures that either H1 ⊆ H2 or H2 ⊆ H1 will
hold, and the conditions of Theorem 4.2 are satisfied.

D.1 VARIANCE COLLAPSE IN THE PROPORTIONAL LIMIT

The results of this experiment in Section 5.2 used 1000 iterations of h-SVGD on a sequence of
multivariate normal (MVN) distributions with dimensions ranging from d = 5, . . . , d = 200. Let
pd,µd and Σd denote the density, mean vector, and covariance matrix of the d-dimensional MVN.
We choose the means and covariances such that the marginal moments in lower dimensions are equal
across each pd. That is, (µd)i = (µd′)i and (Σd)ij = (Σd′)ij for all 1 ≤ i, j ≤ d < d′. Following
(Ba et al., 2021), the number of particles N is chosen such that d/N approaches a proportional limit
γ. We present results in three schemes, γ < 1, γ = 1 and γ > 1. Each configuration is averaged
over 10 runs, each with a different set of initial particles independently drawn from a standard
multivariate normal distribution.

Comparing Figure 4 to Figure 1 shows that bandwidth scaling is not as effective as weight scaling at
mitigating variance collapse. Logarithmic bandwidth scaling in the γ < 1 scheme is the exception,
with noticeable overestimation of the variance. In all cases, bandwidth scaling provided poorer
mean estimates than vanilla SVGD, suggesting weight scaling to be a more suitable choice in the
proportional limit.

D.2 BAYESIAN NEURAL NETWORK

The results presented in Section 5.2 follow the settings of (Liu & Wang, 2016). In particular, we use
normal priors for the network weights and a Gamma prior for the inverse covariances. There is one
hidden layer with 50 units for most datasets, Protein and Year being the exceptions with 100 units
each. The datasets are randomly partitioned into 90% for training and 10% for testing with results
averaged over 20 trials, Protein and Year being the exceptions with 5 trials and 1 trial respectively.
The number of particles in each case is 20, the activation function is RELU(x) = max(0, x), the
number of iterations is 2000, and the mini-batch size is 100 for all datasets except for Year, which
uses a mini-batch size of 1000.

The repulsive kernels in Section 5.2 were chosen to be k2 = log(d) · k1 and k2 =
√
d · k1 with

k1 = kRBF(·, ·;hmed). This demonstrated a consistent improvement in the DAMV and comparable
results on the test RMSE and LL metrics.

On the other hand, choosing bandwidths h1 = hmed and h2 =
√
d · hmed can lead to minor im-

provements in test LL scores on most datasets when compared to vanilla SVGD at the expense of
no real improvement in the DAMV.

We include results for repulsive kernels from families other than RBF, namely kIMQ, kLap and
kIL, to demonstrate that the h-SVGD update will still lead to comparable results. Results with a
functional RBF kernel, kRBF(f) have also been included.

Figure 5 summarises the results of the experiments described above, and the values are reported in
Tables 1-10. This figure demonstrates that for a variety of repulsive kernels, h-SVGD yields RMSE
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(a) DAMV (γ = 2) (b) DAMV (γ = 1) (c) DAMV (γ = 0.2)

(d) DASME (γ = 2) (e) DASME (γ = 1) (f) DASME (γ = 0.2)

Figure 4: DAMV and DASME of MVN distributions in the proportional limit with bandwidth scal-
ing.

and LL metrics comparable to vanilla SVGD, and that certain repulsive kernels can improve the
DAMV in high dimensions.

Table 1: Average DAMV and test performance (RMSE and LL) with standard errors on the Boston
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.067 ± 0.003 2.968 ± 0.051 -2.656 ± 0.019
log(d) · kRBF(·, ·;hmed) 0.098 ± 0.008 3.015 ± 0.069 -2.669 ± 0.022√

d · kRBF(·, ·;hmed) 0.247 ± 0.021 3.160 ± 0.092 -2.722 ± 0.034
kRBF(·, ·; log(d) · hmed) 0.073 ± 0.003 2.992 ± 0.055 -2.667 ± 0.023
kRBF(·, ·;

√
d · hmed) 0.064 ± 0.003 2.984 ± 0.071 -2.658 ± 0.030

kIMQ(·, ·;hmed, 1, 0.5) 0.059 ± 0.003 2.958 ± 0.045 -2.651 ± 0.018
kIMQ(·, ·;hmed, 1, 1) 0.058 ± 0.003 2.979 ± 0.060 -2.660 ± 0.026

kIL(·, ·;hmed) 0.062 ± 0.005 2.959 ± 0.055 -2.651 ± 0.017
kLap(·, ·;hmed) 0.064 ± 0.003 2.984 ± 0.071 -2.658 ± 0.031

kRBF(f)(·, ·;hmed(f)) 0.060 ± 0.004 2.959 ± 0.031 -2.650 ± 0.018
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(a) DAMV

(b) Test RMSE

(c) Test LL

Figure 5: DAMV, RMSE and LL metrics with standard errors for several different repulsive kernels.
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Table 2: Average DAMV and test performance (RMSE and LL) with standard errors on the Concrete
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.106 ± 0.002 6.237 ± 0.056 -3.232 ± 0.011
log(d) · kRBF(·, ·;hmed) 0.122 ± 0.004 6.197 ± 0.067 -3.225 ± 0.012√

d · kRBF(·, ·;hmed) 0.182 ± 0.006 6.257 ± 0.046 -3.232 ± 0.008
kRBF(·, ·; log(d) · hmed) 0.108 ± 0.003 6.224 ± 0.060 -3.230 ± 0.010
kRBF(·, ·;

√
d · hmed) 0.105 ± 0.004 6.241 ± 0.054 -3.231 ± 0.009

kIMQ(·, ·;hmed, 1, 0.5) 0.101 ± 0.002 6.239 ± 0.055 -3.232 ± 0.011
kIMQ(·, ·;hmed, 1, 1) 0.100 ± 0.003 6.251 ± 0.044 -3.234 ± 0.008

kIL(·, ·;hmed) 0.104 ± 0.003 6.206 ± 0.066 -3.227 ± 0.012
kLap(·, ·;hmed) 0.105 ± 0.004 6.242 ± 0.054 -3.232 ± 0.009

kRBF(f)(·, ·;hmed(f)) 0.104 ± 0.004 6.225 ± 0.052 -3.229 ± 0.009

Table 3: Average DAMV and test performance (RMSE and LL) with standard errors on the Energy
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.090 ± 0.006 1.706 ± 0.043 -1.896 ± 0.034
log(d) · kRBF(·, ·;hmed) 0.130 ± 0.009 1.749 ± 0.051 -1.924 ± 0.042√

d · kRBF(·, ·;hmed) 0.279 ± 0.032 1.866 ± 0.041 -1.986 ± 0.030
kRBF(·, ·; log(d) · hmed) 0.098 ± 0.005 1.718 ± 0.045 -1.904 ± 0.039
kRBF(·, ·;

√
d · hmed) 0.088 ± 0.004 1.718 ± 0.038 -1.914 ± 0.039

kIMQ(·, ·;hmed, 1, 0.5) 0.077 ± 0.005 1.690 ± 0.042 -1.887 ± 0.036
kIMQ(·, ·;hmed, 1, 1) 0.076 ± 0.005 1.674 ± 0.033 -1.881 ± 0.036

kIL(·, ·;hmed) 0.081 ± 0.005 1.696 ± 0.054 -1.897 ± 0.043
kLap(·, ·;hmed) 0.088 ± 0.004 1.719 ± 0.039 -1.915 ± 0.040

kRBF(f)(·, ·;hmed(f)) 0.081 ± 0.005 1.691 ± 0.032 -1.894 ± 0.030

Table 4: Average DAMV and test performance (RMSE and LL) with standard errors on the Kin8nm
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.110 ± 0.002 0.120 ± 0.001 0.699 ± 0.011
log(d) · kRBF(·, ·;hmed) 0.113 ± 0.002 0.120 ± 0.001 0.702 ± 0.007√

d · kRBF(·, ·;hmed) 0.118 ± 0.002 0.121 ± 0.001 0.698 ± 0.010
kRBF(·, ·; log(d) · hmed) 0.110 ± 0.002 0.121 ± 0.001 0.697 ± 0.010
kRBF(·, ·;

√
d · hmed) 0.110 ± 0.003 0.120 ± 0.001 0.703 ± 0.010

kIMQ(·, ·;hmed, 1, 0.5) 0.110 ± 0.002 0.120 ± 0.001 0.699 ± 0.011
kIMQ(·, ·;hmed, 1, 1) 0.110 ± 0.002 0.120 ± 0.001 0.700 ± 0.010

kIL(·, ·;hmed) 0.111 ± 0.002 0.120 ± 0.001 0.702 ± 0.007
kLap(·, ·;hmed) 0.110 ± 0.003 0.120 ± 0.001 0.703 ± 0.010

kRBF(f)(·, ·;hmed(f)) 0.109 ± 0.002 0.121 ± 0.001 0.698 ± 0.007
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Table 5: Average DAMV and test performance (RMSE and LL) with standard errors on the Naval
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.059 ± 0.004 0.006 ± 0.000 3.654 ± 0.006
log(d) · kRBF(·, ·;hmed) 0.086 ± 0.021 0.006 ± 0.000 3.648 ± 0.006√

d · kRBF(·, ·;hmed) 0.207 ± 0.021 0.006 ± 0.000 3.648 ± 0.005
kRBF(·, ·; log(d) · hmed) 0.084 ± 0.017 0.006 ± 0.000 3.657 ± 0.006
kRBF(·, ·;

√
d · hmed) 0.076 ± 0.013 0.006 ± 0.000 3.660 ± 0.008

kIMQ(·, ·;hmed, 1, 0.5) 0.057 ± 0.001 0.006 ± 0.000 3.651 ± 0.006
kIMQ(·, ·;hmed, 1, 1) 0.057 ± 0.001 0.006 ± 0.000 3.651 ± 0.005

kIL(·, ·;hmed) 0.058 ± 0.004 0.006 ± 0.000 3.653 ± 0.005
kLap(·, ·;hmed) 0.072 ± 0.012 0.006 ± 0.000 3.659 ± 0.008

kRBF(f)(·, ·;hmed(f)) 0.056 ± 0.001 0.006 ± 0.000 3.654 ± 0.007

Table 6: Average DAMV and test performance (RMSE and LL) with standard errors on the Com-
bined dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.135 ± 0.003 4.266 ± 0.004 -2.873 ± 0.001
log(d) · kRBF(·, ·;hmed) 0.137 ± 0.002 4.266 ± 0.004 -2.873 ± 0.001√

d · kRBF(·, ·;hmed) 0.152 ± 0.004 4.264 ± 0.003 -2.872 ± 0.001
kRBF(·, ·; log(d) · hmed) 0.135 ± 0.003 4.265 ± 0.005 -2.873 ± 0.002
kRBF(·, ·;

√
d · hmed) 0.132 ± 0.004 4.266 ± 0.005 -2.873 ± 0.001

kIMQ(·, ·;hmed, 1, 0.5) 0.133 ± 0.003 4.266 ± 0.004 -2.873 ± 0.001
kIMQ(·, ·;hmed, 1, 1) 0.132 ± 0.004 4.265 ± 0.003 -2.873 ± 0.001

kIL(·, ·;hmed) 0.132 ± 0.002 4.266 ± 0.004 -2.873 ± 0.001
kLap(·, ·;hmed) 0.132 ± 0.004 4.266 ± 0.005 -2.873 ± 0.001

kRBF(f)(·, ·;hmed(f)) 0.133 ± 0.003 4.269 ± 0.004 -2.874 ± 0.001

Table 7: Average DAMV and test performance (RMSE and LL) with standard errors on the Protein
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.085 ± 0.001 4.784 ± 0.004 -2.986 ± 0.001
log(d) · kRBF(·, ·;hmed) 0.087 ± 0.001 4.785 ± 0.004 -2.986 ± 0.001√

d · kRBF(·, ·;hmed) 0.088 ± 0.001 4.785 ± 0.006 -2.986 ± 0.001
kRBF(·, ·; log(d) · hmed) 0.087 ± 0.001 4.783 ± 0.003 -2.986 ± 0.001
kRBF(·, ·;

√
d · hmed) 0.086 ± 0.001 4.781 ± 0.002 -2.985 ± 0.001

kIMQ(·, ·;hmed, 1, 0.5) 0.085 ± 0.001 4.784 ± 0.004 -2.986 ± 0.001
kIMQ(·, ·;hmed, 1, 1) 0.087 ± 0.001 4.785 ± 0.006 -2.986 ± 0.001

kIL(·, ·;hmed) 0.086 ± 0.001 4.785 ± 0.004 -2.986 ± 0.001
kLap(·, ·;hmed) 0.086 ± 0.001 4.781 ± 0.002 -2.985 ± 0.001

kRBF(f)(·, ·;hmed(f)) 0.086 ± 0.001 4.782 ± 0.004 -2.985 ± 0.001
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Table 8: Average DAMV and test performance (RMSE and LL) with standard errors on the Wine
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.081 ± 0.002 0.701 ± 0.002 -1.082 ± 0.004
log(d) · kRBF(·, ·;hmed) 0.091 ± 0.002 0.702 ± 0.002 -1.084 ± 0.004√

d · kRBF(·, ·;hmed) 0.125 ± 0.003 0.702 ± 0.001 -1.082 ± 0.003
kRBF(·, ·; log(d) · hmed) 0.083 ± 0.002 0.702 ± 0.002 -1.083 ± 0.003
kRBF(·, ·;

√
d · hmed) 0.080 ± 0.002 0.701 ± 0.002 -1.082 ± 0.004

kIMQ(·, ·;hmed, 1, 0.5) 0.078 ± 0.002 0.701 ± 0.002 -1.082 ± 0.004
kIMQ(·, ·;hmed, 1, 1) 0.078 ± 0.002 0.701 ± 0.002 -1.082 ± 0.004

kIL(·, ·;hmed) 0.081 ± 0.002 0.702 ± 0.002 -1.084 ± 0.003
kLap(·, ·;hmed) 0.080 ± 0.002 0.701 ± 0.002 -1.081 ± 0.004

kRBF(f)(·, ·;hmed(f)) 0.080 ± 0.002 0.701 ± 0.002 -1.081 ± 0.004

Table 9: Average DAMV and test performance (RMSE and LL) with standard errors on the Yacht
dataset with k1 = kRBF(·, ·;hmed).

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.077 ± 0.010 0.785 ± 0.040 -1.430 ± 0.036
log(d) · kRBF(·, ·;hmed) 0.190 ± 0.020 0.899 ± 0.042 -1.541 ± 0.043√

d · kRBF(·, ·;hmed) 0.481 ± 0.071 1.140 ± 0.064 -1.706 ± 0.048
kRBF(·, ·; log(d) · hmed) 0.120 ± 0.012 0.812 ± 0.039 -1.471 ± 0.046
kRBF(·, ·;

√
d · hmed) 0.088 ± 0.009 0.761 ± 0.030 -1.418 ± 0.035

kIMQ(·, ·;hmed, 1, 0.5) 0.049 ± 0.005 0.758 ± 0.042 -1.405 ± 0.033
kIMQ(·, ·;hmed, 1, 1) 0.051 ± 0.005 0.752 ± 0.047 -1.394 ± 0.034

kIL(·, ·;hmed) 0.068 ± 0.007 0.771 ± 0.026 -1.425 ± 0.031
kLap(·, ·;hmed) 0.083 ± 0.008 0.765 ± 0.026 -1.429 ± 0.033

kRBF(f)(·, ·;hmed(f)) 0.062 ± 0.009 0.761 ± 0.062 -1.407 ± 0.052

Table 10: Average DAMV and test performance (RMSE and LL) on the Year dataset with k1 =
kRBF(·, ·;hmed). No standard errors are included because there was only one trial run once for each
kernel.

k2 DAMV Test RMSE Test LL
kRBF(·, ·;hmed) (SVGD) 0.011 ± NA 8.847 ± NA -3.599 ± NA
log(d) · kRBF(·, ·;hmed) 0.011 ± NA 8.846 ± NA -3.599 ± NA√

d · kRBF(·, ·;hmed) 0.011 ± NA 8.847 ± NA -3.599 ± NA
kRBF(·, ·; log(d) · hmed) 0.011 ± NA 8.847 ± NA -3.599 ± NA
kRBF(·, ·;

√
d · hmed) 0.011 ± NA 8.847 ± NA -3.599 ± NA

kIMQ(·, ·;hmed, 1, 0.5) 0.011 ± NA 8.847 ± NA -3.599 ± NA
kIMQ(·, ·;hmed, 1, 1) 0.011 ± NA 8.847 ± NA -3.599 ± NA

kIL(·, ·;hmed) 0.011 ± NA 8.846 ± NA -3.599 ± NA
kLap(·, ·;hmed) 0.011 ± NA 8.846 ± NA -3.599 ± NA

kRBF(f)(·, ·;hmed(f)) 0.011 ± NA 8.846 ± NA -3.599 ± NA

23


	Introduction
	Previous work
	Contributions and outline

	Background
	Notation
	Reproducing Kernel Hilbert Spaces
	Stein Variational Gradient Descent (SVGD)

	Hybrid Kernel Stein Variational Gradient Descent (h-SVGD)
	Theoretical Properties of h-SVGD
	Definitions and Assumptions
	Update Direction and h-KSD
	Large Time Asymptotics
	Large Particle Limit
	Continuous Time Limit and Gradient Flow
	Mean Field PDE
	Finite Particles Regime

	Experiments
	Variance Collapse in the Proportional Limit
	Bayesian Neural Network

	Conclusion
	Proofs
	Auxiliary Results
	Discussion on the h-KSD
	Experiments
	Variance Collapse in the Proportional Limit
	Bayesian Neural Network


