
SSL-RL workshop at ICLR 2021

LEARNING STATE REPRESENTATIONS VIA TEMPORAL
CYCLE-CONSISTENCY CONSTRAINT IN MBRL

Changmin Yu1∗, Dong Li2, Hangyu Mao2, Jianye Hao2, Neil Burgess1

1UCL, London, United Kingdom
2Huawei Noah’s Ark Lab, Beijing, China
{changmin.yu.19; n.burgess}@ucl.ac.uk;
{lidong106; maohangyu; haojianye}@huawei.com

ABSTRACT

Representation learning is a popular approach for reinforcement learning (RL) tasks
with partially observable Markov decision processes. Existing works on learning
representations utilise the dynamics models in model-based RL to perform training
through model predictive reconstruction in a temporally forward fashion. However,
temporally backward state predictions also yield useful supervision signals as they
convey information about the future states given the action choices. We argue that
combining them with forward passes will facilitate stronger representation learning
and improve the sample efficiency of RL. Here we propose a general framework
for learning state representations for RL tasks, utilising both forward and backward
passes by imposing temporal cycle-consistency constraints, which can be integrated
with any model-based RL algorithms leveraging a latent dynamics model. We show
improved empirical performance in terms of sample-efficiency and convergence
score over several baselines on continuous control benchmarks.

1 INTRODUCTION

Forward path

Retracing paths

(a)

(b)
Figure 1: Demonstration of learn-
ing representation via retrac-
ing. (a): Retracing in naviga-
tion tasks yields detection of key
states (doors); (b): Retracing in
continuous control tasks helps with
identifying catastrophic states and
behaviour (graphical demonstra-
tion from the DeepMind Control
Suite (Tassa et al., 2018)).

Reinforcement learning (RL) in Partially Observable Markov
Decision Processes (POMDPs) is usually a non-trivial task due
to the curse of dimensionality and curse of history (Kaelbling
et al., 1998). Representation learning is a commonly adopted
approach for extracting abstract features that compactly char-
acterise the high-dimensional raw inputs, such that RL can
be performed more efficiently. Both model-free and mode-
based RL methods have been studied extensively for solving
the POMDPs. Here we focus on learning representations in
model-based RL.

In model-based RL, an environment model is typically approxi-
mated and combined with planning methods (Chua et al., 2018)
or learning methods (Hafner et al., 2020) in the latent space
to facilitate behaviour learning. In their seminal work, Ha
& Schmidhuber (2018) propose to learn world models given
trained encoders. The world model can be used either for learn-
ing behaviours or for real-time planning. More recently, a num-
ber of works propose joint training of the embedding function
and the latent dynamics model (Srinivas et al., 2018; Hafner
et al., 2019; Schrittwieser et al., 2020b; Lee et al., 2020a). Such
model learning is performed by minimising the deviation of the
imaginary predictive states from the real observations.

However, we argue that the aforementioned model learning
is inefficient in terms of the sample usage. More meaningful

∗Please send any enquiries to: changmin.yu.19@ucl.ac.uk

1

SSL-RL workshop at ICLR 2021

supervision can be obtained by employing the cycle-consistency constraint between the imaginary
state predictions in forward and backward temporal directions. The key intuition is that if the model
can translate the agent from state s0 to sT by following a trajectory, and the model also has the
capability to bring the agent back from sT to s′0 along a similar trajectory, where s0 and s′0 are
expected to be similar. Based on this intuition, backward imaginary predictions can be utilised to
facilitate model learning in a self-supervised manner. As a motivating example, consider a rat trying
to navigate towards a goal location represented by a cheese in a cluttered room shown in Figure 1a.
By imposing the temporal cycle-consistency constraint, multiple backwards imaginative paths can be
simulated. In order to retrace to the starting position, the rat needs to pass through two “doors” in
all paths. This allows the rat to identify key states (the doorways) that are essential for successful
navigation towards the goal.

Moreover, backward rollouts can pass information about the future states back to previous states.
This approximately resembles the smoothing operation in state-space models (Kalman, 1960; Sahani,
1999), which potentially supports more accurate inference over latent states.

We also expect that learning representation by retracing will improve the agent’s ability of avoiding
catastrophic actions in certain situations. Consider a toy example of continuous control in Figure 1b,
where no action will take the falling humanoid (right) back to its previous state (left), yielding large
discrepancy between the true and retraced states. The error will then be propagated back to inform
the agent to avoid the behaviours that lead to irrecoverable states.

Joining forward and backward inferences in the latent space is also supported by evidence from the
neuroscience community. Hippocampal “replay” has been suggested to play an essential role in
decision-making and model-based inferences (Mattar & Daw, 2018). Connections between the latent
state inference and forward and reversed hippocampal “replay” have been proposed and substantiated
by experimental evidence (Penny et al., 2013). Following this motivation, we thus expect the retrace
operation to play an essential role in learning representations for POMDP tasks.

The main contributions are summarised as follows.

• We introduce a self-supervised representation learning algorithm via imposing the cycle-
consistency constraint to facilitate model learning. To the best of our knowledge, this is the
first work that introduce cycle-consistency to learning a world model for RL.

• We instantiate our method utilising the Recurrent State-Space Model (RSSM (Hafner et al.,
2019)) as the world model, resulting in a new model-based RL agent termed as Cycle-
Consistent World Model (CCWM).

• We empirically show that CCWM outperforms the baseline algorithms, and is able to reach
the asymptotic performance of state-based model-free methods on a number of challenging
continuous control benchmarks.

2 RELATED WORKS

Representation learning in RL. Finding useful state representations that could aid reinforcement
learning has long been studied, from the introduction of manually constructed features such as tile
coding and Fourier basis in combination (Sutton & Barto, 2018), to the learned embedding vectors
using trained neural networks (Mnih et al., 2013; Schrittwieser et al., 2020a). Even under partial
observability, we can train an RL agent in the embedding space using a neural network encoder
without the requirements of an explicit model of the POMDP (Kaelbling et al., 1998). However, it
has been noted that naive joint training of RL with representation learning can be inefficient due to
the sparse and delayed reward structure of the MDP (Shelhamer et al., 2017). Many auxiliary tasks,
e.g. weakly-supervised classification and location recognition, have been proposed for resolving such
issue (Lee et al., 2020b; Mirowski et al., 2017; Oord et al., 2018). In the current work, we propose an
additional cycle-consistency constrained objective for learning the representations.

There exists two commonly adopted sources of supervisions for learning representations in RL
tasks, the reconstruction of observations (Gelada et al., 2019; Hafner et al., 2020; Lee et al., 2020a),
and self-supervised signals such as contrastive losses (Oord et al., 2018). Recently, Zhang et al.
(2020) and Agarwal et al. (2021) proposed to learn the embeddings using bisimulation metrics (Ferns
et al., 2011), which yields representations that are agnostic to task-irrelevant information, supporting

2

SSL-RL workshop at ICLR 2021

faster learning and stronger generalisation. Here we adopt a combination of the reconstruction and
bisimulation metrics supervision signals for model training.

Learning the dynamics model. In addition to learning state abstractions based solely on the
observations, it is also possible to learn the latent representation along with the dynamics model using
latent state-space models (LSSM (Murphy, 2012)). Ha & Schmidhuber (2018) introduced the world
model, for modelling the dynamics of the latent space based on the pre-trained state embeddings.
The world model leads to improved performance in POMDP tasks such as Atari games, as well as
generates reasonable predictions in the observable space through rollouts in the latent space. The
state representation can also be learnt jointly with the latent dynamics model. A number of works
proposed to treat the embedding function as part of the recognition model in a probabilistic graphical
model (Buesing et al., 2018; Lee et al., 2020a; Hafner et al., 2020). These methods treat the learning
of representations and latent dynamics model as a joint task, which can be trained via doing predictive
inference over the latent states given the observations and actions. The learned embeddings can
then be used as the inputs to the value function approximator in the downstream RL component for
learning the optimal policy. The learned latent dynamics model can be used for generating imaginary
trajectories through latent model-based rollouts for RL training, which improves the sample-efficiency
of learning. Our proposed approach is similar to this line of work since we also leverage latent
stochastic sequential modes for joint learning of the representations and the latent dynamics model,
and our method can be efficiently combined with downstream RL algorithm to learn the optimal
policy using model-based rollouts following a similar paradigm. However, we note a major difference
between our method and the existing approaches: all related works use predictive supervision in
a temporally forward fashion, whereas our method combines predictive supervision in both the
temporally forward and backward directions by imposing a temporal cycle-consistency constraint.

Cycle-Consistency. Cycle-consistency is a commonly adopted approach in computer vision and
natural language processing (Zhou et al., 2016; Zhu et al., 2017; Yang et al., 2017; Dwibedi et al.,
2019), where the fundamental idea is the validation of matches between cycling through multiple
samples. Here we adopt similar design principles for sequential decision-making tasks: rollouts in
a temporally forward direction alone yield under-constrained learning of the dynamics model of
the task. We propose to additionally incorporate backwards rollouts to perform model learning in a
self-supervised fashion. We do this by imposing the temporal cycle-consistency constraint (Dwibedi
et al., 2019): we introduce an auxiliary objective based on the bisimulation metric that ensures the
forward and backward temporal dynamics yield the same MDP structure.

3 LEARNING REPRESENTATION VIA RETRACING

We consider learning in a POMDP, which is represented by the tuple 〈S,O,A, r, T, E, γ〉, where
S,O,A are the state space, the observation space and the action space, respectively. r : S ×A → R
is the reward function, T : S × A × S → [0, 1] is the transition distribution between states,
E : S×A → [0, 1] is the conditional observation distribution, and γ ∈ (0, 1] is the discounting factor.
At each time step t, the agent receives an observation Ot ∈ O, and chooses its action according to its
policy at ∼ π(a|Ot) to interact with the environment. The goal is to learn the optimal policy that
maximises the expected return over all states defined as Eπ [

∑∞
τ=t γ

τ−trτ | s].
In the current work, instead of working directly with O, we wish to learn an embedding function
qψ : O → Z, along with a latent dynamics model, qψ : Z ×A → Z, such that model-based RL can
be performed efficiently in the learned latent space.

3.1 LEARNING REPRESENTATIONS VIA FORWARD PASSES

Existing works on learning the state representation of a latent dynamics model rely on proposing
a stochastic sequential model as the world model, which is trained by performing latent forward
rollouts such that the future environmental attributes such as observations or rewards are accurately
predicted (Lee et al., 2020a; Hafner et al., 2020). Specifically, we are interested in model-based RL

3

SSL-RL workshop at ICLR 2021

algorithms with a dynamics model defined in terms of the following components:

embedding function :qψ(Ot),

posterior distribution :p(zt+1|zt, at, Ot+1),

variational posterior distribution :qψ(zt+1|zt, at, Ot+1),

variational transition distribution :qψ(zt+1|zt, at),
generative distribution :pθ(Ot+1|zt+1),

(1)

where ψ and θ represent the parameters associated with the recognition and generative models,
respectively. Note that we use a variational approximation to the posterior distribution since the true
posterior p(zt+1|zt, at, Ot+1) is usually intractable in practice.

· · ·
ẑt ẑt+1 ẑt+2

· · ·

at at+1 at+2

Ot Ot+1 Ot+2

Õt Õt+1 Õt+2

z̃t z̃t+1 z̃t+2

ρ

āt+2

ρ

āt+1

z̄t+2z̄t+1z̄t

z̄t+2 = ẑt+2

Lbm

forward
pass

backward
pass

Figure 2: Probabilistic graphical models
of the model learning process in CCWM.
The forward pass (bounded by the orange
rectangle) and retrace phase for learning
the representations and latent dynamics
model via latent imaginations are shown.
Please refer to Section 3.2 for detailed
description.

At each time step t, the agent receives an observa-
tion Ot, which is then embedded into a latent fea-
ture vector zt = qψ(Ot). The feature vector is then
rolled out in a forward fashion given the action at,
yielding one-step prediction into the future as ẑt+1 ∼
qψ(z|z≤t, a≤t) following the variational transition dis-
tribution qψ(z′|z, a). The parameters of the recogni-
tion and generative models shown in Eq. 1 are jointly
learned by maximising the variational lower bound
(ELBO, (Wainwright & Jordan, 2008)), which takes the
general form as following:

LELBO =Eqψ [log pθ(Ot+1|ẑt+1)−
βDKL [qψ(zt+1|zt, at, Ot+1)||qψ(zt+1|zt, at)]],

(2)

where the expectation is taken with respect to the vari-
ational posterior distribution, qψ(zt+1|zt, at, Ot+1).
Note that it is also possible to generate predictions
over multiple steps into the future instead of one for
model learning, see, e.g. Lee et al. (2020a).

3.2 LEARNING
REPRESENTATIONS VIA RETRACING

The backward rollouts convey information of future
states given the actions taken back to the previous states,
similar to the smoothing operation in state-space mod-
els (Kalman, 1960). This potentially supports more
accurate inference of the latent states and stronger rep-
resentation learning. Moreover, the backward rollouts
provide additional supervision for training the dynamics model, which are expected to improve the
sample efficiency of learning. Here we introduce a general framework for learning representations for
the latent dynamics model which combines both forward and backward passes through latent imagi-
nation while constraining the temporal cycle-consistency between the forward and backward passes.
We refer to the proposed approach as Cycle-Consistent World Model (CCWM). The pseudocode for
CCWM is shown in Algorithm 1.

Consider the same dynamics model described in Section 3.1, we additionally define a reverse action
approximator, ρ : Z × Z → A, which takes in a tuple of latent states (z1, z2) and outputs an action ā
that approximates the action that leads the transition from z2 to z1. We assume the parameters of ρ
are learned jointly with the model learning in an end-to-end fashion.

Suppose the imagination horizon for predictive inference is k. For l = 1, . . . , L − k, the prior
estimates for the k-step predictions and posterior estimates given the ground-truth observations are
defined similarly as in the one-step case (corresponding to line 7 of Algorithm 1 and the forward

4

SSL-RL workshop at ICLR 2021

dynamics chain in Figure 2).

ẑl+1:l+k ∼ qψ(zl+1:l+k|zl, al:l+k−1) =

k∏
j=1

qψ(zl+j |ẑl+j−1, al+j−1),

z̃l+1:l+k ∼ qψ(zl+1:l+k|zl, al:l+k−1, Ol+1:l+k) =

k∏
j=1

qψ(zl+j |ẑl+j−1, al+j−1, Ol+j),

(3)

where the initial condition is taken to be ẑl = zl.

The retracing steps are similar to the one-step case, which can be computed via backwards imagination
using the same latent dynamics model given the predicted prior estimates from the forward passes.

z̄l+k−1:l ∼ qψ(zl+k−1:l|ẑl+k, z̃l:l+k, ρ(·, ·)) =

k∏
j=1

qψ(zl+k−j |z̄l+k−j+1, ρ(z̃l+k−j , z̃l+k−j+1)),

(4)

for l = 1, . . . , L − k, where the initial retraced state is taken to be z̄l+k = ẑl+k. The retracing
computation corresponds to Line 8 in Algorithm 1 and is demonstrated graphically in the reversed
dynamics chain in Figure 2.

Algorithm 1 Cycle-Consistency World Model
(CCWM)

1: Given: policy π̂(a|s), encoder qψ(O) and de-
coder qθ(O|z) (Eq. 1), reverse action approxi-
mator ρ(z, z′), imagination horizon k, running
average loss Lavg = 0, counter c = 0.

2: Input: Batch of N sampled trajectories of
length L, {Oi,ti:ti+L ,ai,ti:ti+L}Ni=1.

3: for n = 1 to N do
4: O = {On,tn+j}kj=1, a = {an,tn+j}k−1

j=0
5: Compute embedding vectors

z = {qψ(Oj)}kj=0 (which we only use the
first L− k for learning representation given
k-step imaginations).

6: for j = 1 to L− k do
7: Compute prior ẑj+1:j+k and posterior es-

timates z̃j+1:j+k using Eq. 3
8: Compute retraced states z̄j:j+k using

Eq. 4
9: Compute the latent model loss Lj using

Eq. 6.
10: Update Lavg ← c

c+1Lavg + 1
c+1Lj .

11: Increment counter, c← c+ 1.
12: end for
13: end for
14: Compute the gradient,∇ΘLavg.
15: Update the model parameters, Θ ← Θ +

α∇ΘLavg.

Model learning supervised by cycle-
consistency. We learn the representation
with the auxiliary task for satisfying the
temporal cycle-consistency of the dynamics
models, i.e., we wish to impose a constraint on
the similarity between the original (forward-
predicted) states and the retraced states in
addition to the ELBO loss (Eq. 2). We utilise
the bisimulation metrics as the loss function for
the auxiliary retrace consistency task (Zhang
et al., 2020).

Lbm(z, z′) =[||z − z′||1 −DKL[R̂(·|z)||R̂(·|z′)]−
γW2(P̂ (·|z, π̂(z)), P̂ (·|z′, π̂(z′)))]2,

(5)

where R̂(r|z) represents the approximated re-
ward model; P̂ (z′|z, π̂(z)) denotes the distribu-
tion over the predicted state z′, parameterised
by the latent transition dynamics model, given
the current state z and a sampled action (chosen
given the current action distribution, π̂(a|z));
and W2(·, ·) represents the 2-Wasserstein dis-
tance between probability distributions, which
has an analytical expression for Gaussian distri-
butions (Givens & Shortt, 1984). We choose the
bisimulation metric as the loss function based on
the expectation that the additional supervision
on the reward and transition distribution yields
the learned representation to be consistent with respect to the task MDP. Given the imposed temporal
cycle-consistency constraint, the task MDPs embedded in the resulting latent space will be identical
for both the temporally forward and backward transitions.This is an appropriate inductive bias in
many tasks such as navigation or continuous control (Figure 1). Hence, for each l = 1, . . . , k, the
overall objective for training the dynamics model via retracing given imagination over k-steps take
the following form (corresponding to line 9 in Algorithm 1).

L =

k∑
i=1

LELBO(Ol+i, z̃t+i; θ, ψ) + λLbm, (6)

5

SSL-RL workshop at ICLR 2021

where λ is a scalar controlling the strength we wish to impose the temporal cycle-consistency. The
dynamics model parameters Θ = {θ, ψ} are updated via following the gradients of the variational
objective in Eq. 6 with respect to Θ, which can be computed using reparameterisation trick followed
by backpropagation (Kingma & Welling, 2014; Rezende et al., 2014). Figure 2 demonstrates the
complete probabilistic graphical model for CCWM.

3.3 REINFORCEMENT LEARNING IN POMDPS

We aim to eventually utilise the learned representation and latent dynamics model for RL in POMDPs.
To implement this, we interlace the model learning and the policy learning as in Hafner et al. (2020).
For each iteration, we firstly update the models following the steps detailed in Algorithm 1, then
use the current transition and reward models to compute the value estimates for the latent states,
which can then be used in conjunction with downstream RL algorithms. Essentially CCWM can be
combined with any RL algorithms in a model-based setting.

4 EXPERIMENTAL STUDIES

We evaluate CCWM on a number of challenging image-based continuous control tasks from the
DeepMind Control Suite (Tassa et al., 2018), as shown in Figure 3a. The experimental studies
aim to empirically examine the following aspects of the proposed CCWM framework: a) whether
learning representation via retracing indeed aids model-based reinforcement learning in continuous
control tasks using solely image inputs; b) the interpretability of the proposed retracing operation;
c) the effects of different aspects of CCWM on training. The architecture and hyperparameters
configurations of the neural network implementation and training details can be found in Appendix A.
4.1 EXPERIMENT SETUP

We instantiate CCWM with the RSSM (Hafner et al., 2019) as the latent dynamics model, and A3C
as the downstream RL agent for behaviour learning (Mnih et al., 2016). We refer to the resulting
model-based agent as CCWM-A3C.

Despite introducing the framework of learning representations via retracing in its most general form
of multi-step forward and backward rollouts, we commit to one-step case in our implementation,
partially based on the empirical finding that multi-step rollouts have marginal improvements over
the one-step rollouts in many model-based planning algorithms (Hamrick et al., 2020). We discuss
additional motivations for sticking with the one-step case in the current implementation in Section 5.

To provide a comprehensive evaluation of the performance of the proposed method, we use 8
tasks from the DeepMind Control Suite (Tassa et al., 2018) as shown in Figure. 3a. We compare
CCWM-A3C with the following baselines.

Dreamer (Hafner et al., 2020): We implement Dreamer, which integrates the model-learning and
policy learning as approximately independent components for solving long-horizon decision-making
problems in POMDPs based on image inputs.

Model-Free Baselines: We additionally compare with the following model-free algorithms:
SAC (Haarnoja et al., 2018), D4PG (Barth-Maron et al., 2018), A3C (Mnih et al., 2016). Namely, we
implement the SAC algorithm using the state inputs and directly report the asymptotic performance
of the D4PG and A3C algorithms after 108 training steps given in Tassa et al. (2018). We only report
the final performance of the model-free algorithms instead of the training curve due to the difference
in training steps.

4.2 CONTINUOUS CONTROL EVALUATION

The performance of CCWM-A3C is shown in Figure 3b, with the comparison with the aforementioned
baseline algorithms. The proposed framework in combination with RSSM achieves similar final
convergence scores as the state-based model-free agents on 6 out of the 8 presented task environments.
Since we chose our implementation built upon Dreamer, the comparison with the baseline Dreamer
is essential. We observe that CCWM-A3C outperforms Dreamer on 5 of the selected tasks, and is
comparable to Dreamer on 2 of the remaining 3 tasks, in terms of both the sample efficiency and final
convergence performance. The only task that CCWM-A3C is weaker than Dreamer is the hopper
stand task. We briefly discuss our intuition and proposed solution for this failure in Section 4.4.

6

SSL-RL workshop at ICLR 2021

(a)

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn cheetah run

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

200

400

600

800

1000
finger spin

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250
hopper hop

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
hopper stand

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Training steps (1e6)

0

200

400

600

800

1000

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn quadruped run

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Training steps (1e6)

0

200

400

600

800

1000
reacher easy

0.0 0.2 0.4 0.6 0.8 1.0
Training steps (1e6)

0

100

200

300

400

500

600
walker run

0.0 0.2 0.4 0.6 0.8 1.0
Training steps (1e6)

0

200

400

600

800

1000
walker walk

CCWM-A3C Dreamer SAC (state) A3C (state) D4PG (pixels)

(b)

Figure 3: Evaluation of CCWM-A3C on DeepMind Control Suite. (a): Demonstration of selected
continuous control task environments, from left to right: hopper stand/run, walker run/walk, finger
spin, reacher easy, cheetah run, quadruped run. (b): Average evaluation returns (±1 s.d.) during
training (evaluated over 5 randomly chosen evaluation seeds) of CCWM-A3C and baseline agents.

The empirical results on the continuous control tasks conform with our hypothesis that utilising
backward passes in addition to forward passes provides additional supervision, which improves the
sample efficiency in RL task. Moreover, imposing the temporal cycle-consistency constraint yields
significant performance increases on the finger spin, hopper hop and walker run tasks, demonstrating
that retracing can help to learn stronger representation from pixel inputs for decision making.

4.3 INTERPRETABILITY OF RETRACING

One might ask that whether the addition of the retrace stage is truly helpful for learning representations,
i.e., whether the latent dynamics model and the reverse action approximator ρ can learn to generate
similar predictions during retracing as during forward passes. We examine this by checking whether,
after training, retracing yields qualitatively similar predictions over latent states as forward passes. We
demonstrate this via showing the low-dimensional embeddings of the retraced and the ground-truth
latent states (encoded given the observations) using tSNE visualisation (Van der Maaten & Hinton,
2008) in Figure 4.

20 10 0 10 20

20

10

0

10

20
true states

20 10 0 10 20
20

10

0

10

20
retraced states

0 100 200 300 400

(a)

6 5 4 3 2 1 0

2

4

6

8

0

1

2
34

5
6

7

8

9
10 11 12 13

14

15

16
17

18
19

2021
22

23

24

25
26

27 28 29 30

31

32
33343536

37
3839

40

41

42
43 44 45 46

47

48

49
505152

53
54

55

56

57
58 59 60

61
62

63
64

65
66

67
6869

70
71

72

73
74

true states

4 2 0 2 4

0

2

4

6

75

74
73 72

71
70
69

68
676665

6463

62

61
60 59 58 57 56 55

54

53

52
515049

48
47

46

45

44
43 42

41
40

39

38
37
36
35343332

31

30

2928
27

26
25 24

23

22

21
201918

1716
15

14

13
12 11 109

8 7

6

5

4
321

retraced states

0 10 20 30 40 50 60 70

(b)

Figure 4: Visualisation of similarity between the ground-truth states and retraced states using
tSNE. The two-dimensional embeddings for a 500-step trajectory (a) and a 76-step subtrajectory (b)
is shown. Color of the scatters indicates the temporal ordering of the states within the trajectories.

In Figure 4a we show the 2-dimensional tSNE embeddings of the true and retraced states over an
episode of 500 steps of the trained agent on the cheetah run task. We observe a similar dominant
ring structure in both embeddings, which is expected, since during running, the simulated cheetah
repeats its states periodically to resume running at a high speed. Such structure is correctly captured
by the retracing. During the early stage of the episode (darker dots), the android starts to accelerate

7

SSL-RL workshop at ICLR 2021

from stationarity and the states of the agent are periodic in nature but differs from the states when the
agent is running at full speed. The structures for the states in the early phase of the episode in the
embedding space for the true and retraced states have high qualitative similarity, again supporting the
idea that the agent has successfully learned the correct retracing actions and states upon training.

We take a closer look at the sampled trajectory, by examining a 76-step sub-trajectory from it
(Figure 4b, where the floating numbers indicate the timestep). We can see that the embedding of the
true and retraced states share the same circular structure, with most states densely distributed on both
sides of the ring and more loosely distributed on the paths connecting the two sides. The dynamics in
the forward temporal direction causing clock-wise transitions in both embeddings. These suggest
that our approach yields interpretable retrace actions.
4.4 EARLY TRUNCATIONS

0.0 0.2 0.4 0.6 0.8 1.0
steps (1e6)

0

200

400

600

800

1000

sc
or

e

walker walk

no truncation
truncation: 0.05
truncation: 0.1
truncation: 0.2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
steps (1e5)

0

200

400

600

800

1000
hopper stand

no truncation
Dreamer
truncation: 0.1
truncation: 0.15
truncation: 0.2

Figure 5: Early truncation on the performance of
CCWM-A3C. left: walker walk; right: hopper hop.

We observe from Figure 3b that our agent
behaves relatively poorly on the hopper stand
task. One possible interpretation is that in the
selected continuous control tasks, the simu-
lated androids generally fall a lot, especially
during the early stage of training. The re-
tracing operation poses the cycle consistency
constraint that the retraced states should be
similar to the original states, but consider the
situation shown in Figure 1b: no valid action
can take the agent back to its previous state.

This violates the assumption that the same MDP governs the forward and backward temporal dy-
namics hence might hinder the representation learning. In tasks such as hopper, where irrecoverable
failure states occur more often than in other tasks, the effect is more severe.

We propose a potential resolution for this issue, by truncating the sampled episodes such that non-
retraceable near-terminal states are left out for learning the representation via retracing.The effects of
early truncations on the performance is shown in Figure 5.

We generally observe that introduction of appropriate truncation indeed have positive effects on
learning, while either over- or under-truncation impedes the overall learning. We expect that the
improvement will be most significant during the early stage of training, when the agent has not learned
good behaviours and often stumbles into non-retraceable failure states. In the right panel of Figure 5,
we show training curves over the first 4×105 steps for CCWM with different truncation lengths in the
hopper stand task. Comparing to the original CCWM-A3C agent (Figure 3b), truncation consistently
yields faster acquisition of good policies. With appropriate truncation strength, the resulting agent
shows significant improvement in terms of sample efficiency comparing to the baseline Dreamer.

We suggest that truncation can act as a potential resolution for the issues caused by non-retraceable
failure. The truncation length is currently set as a fixed hyperparameter and requires careful tuning
for each task. Future work could look at the adaptive tuning of the truncation length.

5 DISCUSSION

We proposed CCWM, a novel representation learning approach that combines the forward and
backward latent rollouts based on the temporal cycle-consistency constraint for model learning. We
define a joint objective for model training, which integrates the predictive reconstruction loss based
on the ground-truth observation and the self-supervised loss that imposes temporal cycle-consistency
between the original and retraced states. CCWM is a general framework for model learning in model-
based RL, and can be combined with any stochastic sequential model as the latent dynamics model.
We empirically show that the model-based instantiation of the proposed approach, CCWM-A3C,
yields improved performance over state-of-the-art model-based and model-free methods on a number
of continuous control benchmarks, in terms of sample-efficiency and final convergence score. We
empirically investigated the interpretability and potential improvement schemes of CCWM.

We use point estimates from the distribution of the latent variable at the current timestep, instead
of the distribution itself, to derive the predictive inference, hence imaginary rollouts can only be
performed approximately, and the errors accumulate exponentially with the imagination horizon.
Structured VAE deals with probabilistic inferences using deep learning in graphical models (Johnson

8

SSL-RL workshop at ICLR 2021

et al., 2016), but is restricted to conjugate graphical model inferences. Future work could look at
neural message passing algorithms for doing predictive inferences in general graphical structures that
could support accurate multi-step inferences.

Although hippocampal replay is thought to play a role in learning the model for model-based decision-
making, few computational models have been proposed to account for the occurrence of forward and
backward replay (Mattar & Daw, 2018). Our model suggests the forward and reversed replay are
used interchangeably for learning representations that aid decision-making tasks; the forward replay
elicits predictions over future events and the reversed replay supports generalisable behaviours such
as identification of bottleneck states. One testable experimental prediction could look at the effect of
suppressing reversed hippocampal replay on the ability of within-domain generalisation.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,
Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software available
from tensorflow.org.

Rishabh Agarwal, Marlos C. Machado, P. S. Castro, and Marc G. Bellemare. Contrastive behavioral
similarity embeddings for generalization in reinforcement learning. 2021.

Gabriel Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, Dan Horgan, TB Dhruva, Alistair
Muldal, N. Heess, and T. Lillicrap. Distributed distributional deterministic policy gradients. ArXiv,
abs/1804.08617, 2018.

Lars Buesing, T. Weber, Sébastien Racanière, S. Eslami, Danilo Jimenez Rezende, David P. Reichert,
F. Viola, F. Besse, K. Gregor, Demis Hassabis, and Daan Wierstra. Learning and querying fast
generative models for reinforcement learning. ArXiv, abs/1802.03006, 2018.

K. Chua, R. Calandra, Rowan McAllister, and S. Levine. Deep reinforcement learning in a handful
of trials using probabilistic dynamics models. In NeurIPS, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore,
Brian Patton, Alex Alemi, Matt Hoffman, and Rif A Saurous. Tensorflow distributions. arXiv
preprint arXiv:1711.10604, 2017.

D. Dwibedi, Y. Aytar, J. Tompson, Pierre Sermanet, and Andrew Zisserman. Temporal cycle-
consistency learning. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1801–1810, 2019.

N. Ferns, P. Panangaden, and Doina Precup. Bisimulation metrics for continuous markov decision
processes. SIAM J. Comput., 40:1662–1714, 2011.

Carles Gelada, S. Kumar, J. Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp: Learning
continuous latent space models for representation learning. ArXiv, abs/1906.02736, 2019.

C. R. Givens and R. Shortt. A class of wasserstein metrics for probability distributions. Michigan
Mathematical Journal, 31:231–240, 1984.

David R Ha and J. Schmidhuber. World models. ArXiv, abs/1803.10122, 2018.

T. Haarnoja, Aurick Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In ICML, 2018.

9

https://www.tensorflow.org/

SSL-RL workshop at ICLR 2021

Danijar Hafner, T. Lillicrap, Ian S. Fischer, R. Villegas, David R Ha, H. Lee, and J. Davidson.
Learning latent dynamics for planning from pixels. ArXiv, abs/1811.04551, 2019.

Danijar Hafner, T. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. ArXiv, abs/1912.01603, 2020.

Jessica B Hamrick, Abram L Friesen, Feryal Behbahani, Arthur Guez, Fabio Viola, Sims Witherspoon,
Thomas Anthony, Lars Buesing, Petar Veličković, and Théophane Weber. On the role of planning
in model-based deep reinforcement learning. arXiv preprint arXiv:2011.04021, 2020.

Matthew J Johnson, David Duvenaud, Alexander B Wiltschko, Sandeep R Datta, and Ryan P Adams.
Composing graphical models with neural networks for structured representations and fast inference.
arXiv preprint arXiv:1603.06277, 2016.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic
domains. Artif. Intell., 101:99–134, 1998.

Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. 1960.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2014.

Alex X. Lee, Anusha Nagabandi, P. Abbeel, and S. Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. ArXiv, abs/1907.00953, 2020a.

L. Lee, Benjamin Eysenbach, R. Salakhutdinov, Shixiang Gu, and Chelsea Finn. Weakly-supervised
reinforcement learning for controllable behavior. ArXiv, abs/2004.02860, 2020b.

M. Mattar and N. Daw. Prioritized memory access explains planning and hippocampal replay. Nature
neuroscience, 21:1609 – 1617, 2018.

P. Mirowski, Razvan Pascanu, F. Viola, Hubert Soyer, Andy Ballard, Andrea Banino, Misha Denil,
R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and Raia Hadsell. Learning to navigate in
complex environments. ArXiv, abs/1611.03673, 2017.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, Ioannis Antonoglou, Daan Wierstra, and Martin A.
Riedmiller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013.

V. Mnih, Adrià Puigdomènech Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. ArXiv, abs/1602.01783,
2016.

Kevin P Murphy. Machine learning: a probabilistic perspective. 2012.

A. Oord, Y. Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. ArXiv,
abs/1807.03748, 2018.

Will D Penny, Peter Zeidman, and Neil Burgess. Forward and backward inference in spatial cognition.
PLoS Comput Biol, 9(12):e1003383, 2013.

Danilo Jimenez Rezende, S. Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In ICML, 2014.

Maneesh Sahani. Latent variable models for neural data analysis. California Institute of Technology
Pasadena, CA, 1999.

Julian Schrittwieser, Ioannis Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
Edward Lockhart, Demis Hassabis, T. Graepel, T. Lillicrap, and D. Silver. Mastering atari, go,
chess and shogi by planning with a learned model. Nature, 588 7839:604–609, 2020a.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020b.

10

SSL-RL workshop at ICLR 2021

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438,
2015.

Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. ArXiv, abs/1612.07307, 2017.

A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and Chelsea Finn. Universal planning networks. ArXiv,
abs/1804.00645, 2018.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Y. Tassa, Yotam Doron, Alistair Muldal, T. Erez, Y. Li, D. Casas, D. Budden, Abbas Abdolmaleki,
J. Merel, Andrew Lefrancq, T. Lillicrap, and Martin A. Riedmiller. Deepmind control suite. ArXiv,
abs/1801.00690, 2018.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference.
Found. Trends Mach. Learn., 1:1–305, 2008.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Improving neural machine translation with conditional
sequence generative adversarial nets. arXiv preprint arXiv:1703.04887, 2017.

Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pp.
2528–2535. IEEE, 2010.

A. Zhang, Rowan McAllister, R. Calandra, Yarin Gal, and S. Levine. Learning invariant representa-
tions for reinforcement learning without reconstruction. ArXiv, abs/2006.10742, 2020.

Tinghui Zhou, Philipp Krähenbühl, Mathieu Aubry, Qixing Huang, and Alexei A. Efros. Learning
dense correspondence via 3d-guided cycle consistency. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 117–126, 2016.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

11

SSL-RL workshop at ICLR 2021

A IMPLEMENTATION DETAILS

All stochastic variables in CCWM are assumed to be Gaussian. We implement the latent transition
dynamics model of CCWM using the RSSM Hafner et al. (2019), utilising a Gated Recurrent
Unit (GRU) as the core component (Chung et al., 2014) in addition to the MLP. The RSSM is
used for modelling the predictive inferences, qψ(zt+1|zt, at) and qψ(zt+1|zt, at, Ot+1), from Eq. 1.
The encoding function is given by a convolutional encoder that deterministically embeds the high-
dimensional observation into the latent space. The dimension of the latent space is set to equal 32,
there is low sensitivity of the performance with respect to the dimension of the latent embedding. The
generative function qψ(Ot|zt) is defined by an MLP followed by a deconvolution network (Zeiler
et al., 2010), outputting the means the Gaussian distributions for each pixel location of the decoded
observation (note that here we assume all pixel-level Gaussians have variance 1). The reward
distribution R̂(r|z) is modelled by an MLP, outputting a scalar mean Gaussian distribution (again,
assuming unit variance). The supervision of the model learning is based on the ELBO and the
bisimulation metric as described in Section 3.

In the downstream A3C implementation, we use a Gaussian distribution with means and variances
parameterised by an MLP for modelling the value estimates. The policy distribution is also modelled
by a Gaussian distribution, with means and variances parameterised by an MLP. We used distributed
actors for interacting with the environment for more efficiency collection of sampled episodes as
in (Mnih et al., 2016). The value function is optimised by maximising the probability of the “ground-
truth” values estimated by the lambda return (Sutton & Barto, 2018). The policy distribution is
updated using policy gradient estimated based generalised advantage estimation (Schulman et al.,
2015).

We use the Adam optimiser for updating the parameters for the model, value function, and policy
networks (Kingma & Ba, 2014).

The specific configurations for the neural network implementations is summarised in Table 1. Note
that the activation functions for all non-output layers are assumed to be ReLU activation function
unless otherwise stated.

All neural network implementation are carried out using TensorFlow (Abadi et al., 2015) and
TensorFlow Distributions (Dillon et al., 2017).

For the actual training, the batch size is chosen to be 64, and all sampled trajectories are taken to be
50 timesteps long. After everything 104 training steps, we evaluate the agent over 5 random seeds.
We adopt the same scheme for setting the action repeats equal to 2 across all tested environments as
in (Hafner et al., 2020). The parameter λ controlling the weights of the retrace auxiliary loss in Eq. 6
is set to 1.0. The discounting factor for the expected value function is set to 0.99.

We implemented the tSNE visualisation shown in Figure 4 by firstly applying principal component
analysis initialisation (taking first 50 principal components), followed by standard tSNE embedding.

The python implementation of the CCWM-A3C can be found in the supplementary materials.

B FURTHER DISCUSSION ON TRUNCATION

In Section 4.4, we introduced truncation as a general-purpose method for improving the performance
of CCWM in continuous control tasks. The complete ablation studies on the effects of the strength
of truncation on the remaining tasks in Figure 3a is shown in Figure 6. We observe that the 0.1
truncation generally yields higher performance than the basic CCWM-A3C agent.

The basic idea of truncation is to cut off the last proportions of the sampled episodes such that the
possible non-retraceable states in the episodes will not be involved in training to update the model
parameters. However, the current scheme for setting a fixed truncation proportion throughout the
training process seems cumbersome, and hinders learning when either under- or over-truncation
occurs. Specifically, in Figure 5, we showed that appropriate truncation significantly improves the
performance during the early stage of learning (first 4× 105 training steps) in the hopper stand task,
but is quickly surpassed by Dreamer after the early stage as shown in Figure 6. Despite the fact
that the truncation improves the overall performance comparing to the basic version of CCWM-A3C,

12

SSL-RL workshop at ICLR 2021

COMPONENT ATTRIBUTE VALUE

RSSM INTERNAL STATE DIMENSION 256
MLP LAYER 1 UNITS 256
MLP LAYER 2 UNITS 64

EMBEDDING FUNCTION CONV LAYER 1 NUMBER OF FILTERS 32
CONV LAYER 1 KERNEL SIZE 4

CONV LAYER 2 NUMBER OF FILTERS 64
CONV LAYER 2 KERNEL SIZE 4

CONV LAYER 3 NUMBER OF FILTERS 128
CONV LAYER 3 KERNEL SIZE 4

CONV LAYER 4 NUMBER OF FILTERS 256
CONV LAYER 4 KERNEL SIZE 4
FINAL OUTPUT OPERATION CONCATENATION

GENERATIVE MODEL MLP LAYER 1 NUMBER OF UNITS 1024
DECONVOLUTION LAYER 1 NUMBER OF FILTERS 128

DECONVOLUTION LAYER 1 KERNEL SIZE 5
DECONVOLUTION LAYER 2 NUMBER OF FILTERS 64

DECONVOLUTION LAYER 2 KERNEL SIZE 5
DECONVOLUTION LAYER 3 NUMBER OF FILTERS 32

DECONVOLUTION LAYER 3 KERNEL SIZE 6
DECONVOLUTION LAYER 4 NUMBER OF FILTERS 3

DECONVOLUTION LAYER 4 KERNEL SIZE 6

REWARD MODEL MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 1

VALUE MODEL MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 512
MLP LAYER 4 NUMBER OF UNITS 1

POLICY MODEL ALL FULLY CONNECTED LAYERS ACTIVATION ELU
MLP LAYER 1 NUMBER OF UNITS 512
MLP LAYER 2 NUMBER OF UNITS 512
MLP LAYER 3 NUMBER OF UNITS 512
MLP LAYER 4 NUMBER OF UNITS 512
MLP LAYER 5 NUMBER OF UNITS 2

ADAM OPTIMISER LEARNING RATE FOR MODEL LEARNING 6× 10−4

LEARNING RATE FOR VALUE MODEL 8× 10−5

LEARNING RATE FOR POLICY MODEL 8× 10−5

Table 1: Configurations for the neural network implementations of CCWM-A3C.

still, it is not comparable with the baseline Dreamer agent in terms of sample efficiency beyond
the early stage. We argue that this is due to the fact that the agent quickly learns the ability to
control at a relatively high level, which causes significant decrease in the frequency of falling of the
simulated hopper (note that this is shared between the hopper stand and hopper hop tasks). Hence
if we stick with a fixed truncation proportion, this will lead to the undesirable consequence that the
states containing information that guide the agent to achieve higher performance (in the hopper stand
task, this corresponds to the states where the torso is brought to a greater height, leading to higher
reward received) will not be used for training the model, hence such information will be embedded
into the learnt representation, hence causing slow acquisition of near-optimal behaviours. We leave
the study of the adaptive truncation strength for future work.

C ZERO-SHOT TRANSFER

Based on the motivation that learning with retracing will improve the generalisability of the agent
(Figure 1a), we evaluate the generalisability of our approach on the basis of zero-shot transfer tasks.

13

SSL-RL workshop at ICLR 2021

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn cheetah run

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.15
truncation 0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0

200

400

600

800

1000
finger spin

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.2
truncation 0.3

0.0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

400
hopper hop

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.15
truncation 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
hopper stand

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.15
truncation 0.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

100

200

300

400

500

600

700

800

Av
er

ag
e

ev
al

ua
tio

n
re

tu
rn quadruped run

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.15
truncation 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200
reacher easy

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.2
truncation 0.3

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

800
walker run

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.05
truncation 0.2

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000
walker walk

CCWM-A3C
Dreamer
truncation 0.1
truncation 0.05
truncation 0.2

Figure 6: Full ablation studies on the truncation strength. We show the effects of truncation
strengths on the performance in the dm-control tasks we used in Figure 3a. The training steps (on the
horizontal axis) is on the scale of 106.

CHANGED COMPONENTS OUR APPROACH DREAMER P-VALUE SIGNIFICANT?
(MEAN ±1 S.D.) (MEAN ±1 S.D.) (3 S.F.) (α = 0.01)

REWARD FUNCTION 630.40± 6.49 629.00± 47.01 5.22× 10−1 NO
REWARD FUNCTION + MASS 635.37± 40.12 597.43± 87.68 7.84× 10−2 NO
REWARD FUNCTION + FRICTION 643.58± 9.29 649.27± 3.96 9.76× 10−1 NO
REWARD FUNCTION + STIFFNESS 634.80± 10.92 646.07± 7.78 9.98× 10−1 NO
REWARD FUNCTION + MASS + FRICTION 628.07± 36.95 468.82± 94.73 7.27× 10−6 YES
REWARD FUNCTION + MASS + STIFFNESS + FRICTION 641.89± 28.67 562.58± 93.91 3.97× 10−3 YES

Table 2: Evaluation of trained CCWM-A3C and baseline Dreamer agents on the ability of zero-shot
transfer in cheetah run tasks with different configurations.

Specifically, we modify a number of basic configurations of the cheetah run task, such as the mass
of the agent, friction coefficients between the joints, reward function of task, etc. The details of the
changes can be found in the appendix. Judging from the learning curve of the cheetah run task in
Figure 3b, despite the increased sample efficiency of our approach during training, both our approach
and the baseline agent, Dreamer, converge at a similar value at 2 × 106 steps. We then evaluate
the trained agents directly on the updated cheetah run task without any further training to test their
abilities on zero-shot transfer. We show the mean evaluation scores (± 1 s.d.) of both agents over 15
random seeds, as well as the one-sided t-test statistics and significance of the difference between the
two sets of evaluations in Table 2.

It can be observed from the evaluation results that the overall performance on zero-shot transfer of
our approach is comparable with Dreamer on simpler transfer tasks, and significantly outperforms
Dreamer on more complicated tasks. Moreover, we see that the introduction of retracing improves the
stability of evaluations on zero-shot transfer tasks in general. These confirm our previous hypothesis
that retracing poses a positive effect on the generalisability (Figure 1a).

14

