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Abstract

With the growing popularity of Transformer (Vaswani et al.l 2017 and State Space
Models (SSMs), hybrid designs like Jamba (Lieber et al., [2024)) and Recurrent-
Gemma (Botev et al., [2024) have gained significant attention for their abilities
to integrate the long-context processing strengths of Transformers with the low-
memory demands of SSMs. However, most hybrid models require extensive
pre-training, making them inaccessible to researchers with limited resources who
want to experiment with different model architectures. To address this challenge,
we introduce E-Tamba, a novel method for constructing hybrid models through
only fine-tuning pre-trained Transformer and SSM models. Using layer-wise
importance analysis, E-Tamba-1.1B replaces the non-critical upper Transformer
layers of Pythia-1.4B (Biderman et al.l[2023) with key layers from Mamba-1.4B
(Gu and Dao} [2023). Following only 0.9B tokens of fine-tuning, E-Tamba-1.1B
delivers excellent results in perplexity scores and various NLP downstream tasks.
Additionally, it achieves a 3X reduction in inference memory compared to the
baseline Pythia-1.4B, while offering superior long-context retrieval capabilities
over Mamba-1.4B[1]

1 Introduction

In recent years, Transformer-based Large Language Models (LLMs) have achieved significant
breakthroughs, particularly as their scale has expanded significantly (Bender et al.l 2021)). However,
this growth has come with substantial resource costs, especially regarding memory. Due to the nature
of the attention mechanism, Transformers are known for their linear inference and quadratic training
costs, which place heavy demands on hardware.

Conversely, State Space Models (SSMs), such as Mamba, have emerged as promising alternatives due
to their linear training and constant inference costs. While more efficient, SSMs come with trade-offs.
Recent research has highlighted Mamba’s limitations in long-context copying and retrieval tasks
(Jelassi et al., 2024), likely due to its fixed-size hidden state. As a result, there is increasing interest in
hybrid models that integrate the strengths of both approaches: the superior long-context capabilities
of Transformers and the memory efficiency of Mamba. However, the development of powerful hybrid
models typically requires extensive pre-training on massive datasets (De et al.|[2024), making them
inaccessible for researchers with limited resources who wish to experiment with different hybrid
model architectures.

To make such hybrid models accessible to the broader research community, we introduce E-Tamba,
a novel approach that achieves Transformer-Mamba hybrid architecture based only on fine-tuning.
E-Tambea is built through a series of key steps. First, we perform a layer-wise importance analysis,
identifying non-critical Transformer layers and critical Mamba layers by measuring the tokens’
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average hidden state distance between different layers. Layers with larger distances from other layers
are deemed more important. We then replace the non-critical Transformer layers with the more
efficient Mamba layers. Finally, we conduct full-parameter fine-tuning on the merged model using
the regular cross-entropy loss.

Through this fine-tuning process, E-Tamba-1.1B, based on Pythia-1.4B and Mamba-1.4B, demon-
strates outstanding language modeling capabilities. E-Tamba-1.1B outperforms Pythia-1.4B by 38%
and Mamba-1.4B by 33% in terms of perplexity. Moreover, E-Tamba-1.1B matches Pythia-1.4B’s
performance on various NLP downstream tasks while exhibiting nearly 2X the long-context retrieval
ability of Mamba-1.4B. Finally, system performance analysis shows that E-Tamba reduces inference
memory usage by 3X compared to the Transformer-based Pythia-1.4B.

In summary, our contributions are as follows:

* We introduce a novel layer importance analysis and transplantation method, enabling the
creation of Transformer-Mamba hybrid models through fine-tuning alone.

* We present E-Tamba-1.1B, a hybrid model based on Pythia-1.4B and Mamba-1.4B, which
delivers exceptional downstream NLP and system performance, offering a middle-ground
model solution between Transformer and Mamba.

2 Related Work

Transformer-SSM hybrid models have gained significant attention in recent research. Jamba (Lieber
et al.,|2024) introduces a pre-trained hybrid model that vertically stacks Jamba layers, interleaving
attention and Mamba layers in a 1:7 ratio. Zamba (Glorioso et al.,2024) offers a novel architecture
that employs a global shared self-attention layer to optimize memory efficiency. Similarly, Griffin (De
et al.,[2024) proposes an innovative attention and gated linear recurrent block, achieving comparable
performance of Llama-2 (Touvron et al.,[2023) but requires fewer training tokens.

In contrast, the strategy of replacing specific model layers with layers from other models remains
under-explored. BERT-of-Theseus (Xu et al.,2020) introduces a distilled version of BERT (Devlin,
2018)), in which every two BERT layers are replaced with a reinitialized BERT layer. During training,
a Bernoulli random variable determines the forward path between the original layers and the new one.
Sajjad et al.|(2023) finds that up to 40% of BERT layers can be removed while retaining 98% of the
original performance. For decoder-only models,|Gromov et al.|(2024)) demonstrates that the upper
Transformer layers contribute minimally to overall performance and can be pruned, with the model
compensating for their removal by fine-tuning.

3 Methodologies

In this section, we first present our analysis of which layers in Transformer and SSM models are
critical. We then explain how these insights inform the architecture design of E-Tamba-1.1B. Finally,
we describe the efficient layer transplantation and fine-tuning process to train this hybrid model.
Throughout the paper, we refer to layers as the stacked components of modern deep learning models.
For instance, Pythia-1.4B contains 24 layers (Biderman et al., |2023)), while Mamba-1.4B has 48
layers (Gu and Dao, 2023).

3.1 Layers Importance Analysis

We evaluate the significance of a model’s different layers using the layers’ pairwise distance method
inspired by |Gromov et al.| (2024). However, we introduce a crucial improvement to the original
algorithm: instead of calculating the distance between two layers based solely on the hidden state
difference of the final token in a sequence, we compute the average distance across the hidden states
of all tokens. This enhancement is significant because the first few tokens in a sequence typically
establish the context and often exhibit higher perplexities than the later ones. Thus, we hypothesize
that incorporating all tokens offers a more comprehensive measure of a layer’s importance in a
language model.
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To measure the distance between layer [ and layer [ +n (the n™ layer after layer ), we use the formula
presented in Equation[T] Specifically,  represents the hidden state of a sequence across different
model layers, m denotes the number of the tokens in the sequence, and 7 refers to the 7" token
currently being iterated over in the sentence. For example, acg{) . x¥+") represents the dot product
between the hidden states of the 7" token in the layer I’s input and layer [ + n’s input. At a high
level, layers with greater distances from later layers are considered more important as they induce
more substantial changes to the hidden states of the tokens.
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Figure 1: Pythia-1.4B Figure 2: Mamba-1.4B Figure 3: E-Tamba Architecture

As illustrated in Figures [T] and 2] each block on the graph, with an x-axis coordinate [ and y-
axis coordinate n, represents the average token hidden state distance between the inputs of layer
I and the inputs of layer [ + n (the n'™ layer following [) using the formula outlined in Equation
[Tl Generally, darker blocks indicate larger distances between the respective layer pairs, signifying
greater importance of the earlier layer in the pair. The experiment uses a subset of the C4 validation
dataset (en/c4-validation.00000-0f-00008) with an input sequence length of 1024.

Specifically, by examining the x-coordinates and analyzing the layers above them, we observe that the
lower 0 — 11" Pythia-1.4B layers exhibit darker colors, indicating greater importance. Additionally,
the final layer of Pythia-1.4B stands out, as evidenced by the leftward diagonal pattern in the figure.
In contrast, Mamba’s layers display more complex dynamics, with specific groups of layers showing
heightened importance. This is reflected by the interleaving darker color pattern along the x-axis. In
particular, layers 3 — 14", 14 — 25", 25 — 36%, and 36 — 47" exhibit this interleaving pattern. These
patterns indicate four potential groups of Mamba layers that could be prioritized when replacing
non-critical Transformer layers with important Mamba layers.

3.2 Layers Transplantation & Fine-tuning

In summary, we identify the 0 — 11" and the final Transformer layer of Pythia-1.4B as critical, while
the intermediate layers are deemed as non-crucial and can be replaced by lightweight Mamba layers.
For Mamba, we select four key groups of layers: 3 — 14%, 14 — 25" 25 — 36", and 36 — 47",
which can substitute for the non-critical Transformer layers. The resulting merged E-Tamba-1.1B
architecture is shown in Figure 3]

To determine the best-performing group of Mamba layers, we conduct extensive experiments to
evaluate their respective effectiveness in replacing the non-essential Transformer layers. Specifically,
we test the performance of each of the four candidate Mamba layer groups in scenarios where they
replace the previously identified non-critical 12 — 22" Pythia-1.4B layers. We also explore two
additional conditions: one where an untrained (reinitialized) group of 12 Mamba layers is used, and
another where no Mamba layers at all (only pruning intermediate Pythia layers). For each scenario,
we conduct exploratory full-parameter language modeling fine-tuning, using validation perplexity
score as the metrics for comparison. The exploratory training uses a subset of C4 training subset
(en/c4-train.00000-0f-01024) with a sequence length of 1024.



Table 1: Layer Transplantation Ablation Studies

Mamba Layers  C4-val (ppl)

None (deleted) 31.42
Non-pre-trained  29.39

3-14th 29.21
14-25th 29.28
25-36th 28.68
36-47th 31.42

Table 2: E-Tamba’s end-to-end performance

Model C4-val (ppl) Lambada (acc) Winogrande (acc) Memory (MiB)
Pythia-1.4B 19.87 61.7 57.2 9114
Mamba-1.4B 18.83 64.9 61.5 3100
E-Tamba-1.1B  12.48 60.6 56.5 3082

As shown in Table the configuration using Mamba 25 — 36" layers outperforms other candidate
groups. Therefore, we finalize E-Tamba’s final architecture with 0 — 11" Pythia-1.4B layers, followed
by 25 — 36" Mamba layers, and conclude with the final Pythia-1.4B layer. Using this architecture,
we fine-tune E-Tamba-1.1B on three subsets of C4’s train split (en/c4-train.00000-0f-01024,
en/c4-train.00001-0f-01024, en/c4-train.00002-0f-01024]), with a total of 0.9B to-
kens. The fine-tuning details are available in Appendix [A]

4 Experiments

The experiments section is organized as follows: First, we present the end-to-end performance of
the fine-tuned E-Tamba-1.1B, assessing both perplexity and various NLP evaluation benchmarks.
Next, we highlight E-Tamba-1.1B’s advantages in GPU inference memory usage. Finally, we explore
how E-Tamba-1.1B addresses Mamba’s limitations in long-context retrieval tasks. Throughout the
experiments, we have excluded comparisons with other hybrid architectures, such as Zamba (Glorioso
et al.,|2024) and RecurrentGemma (Botev et al.|[2024), due to the lack of comparably sized models at
the time of writing.

4.1 Language Modeling Capabilities

We begin by evaluating the language modeling capabilities of E-Tamba-1.1B on a subset of the C4
validation split (en/c4-validation.00000-0f-00008). As shown in Table[2] with a test sequence
length of 1024, E-Tamba-1.1B achieves significantly lower perplexity scores than both baseline
models, despite having the fewest parameters. These findings suggest that fine-tuning pre-trained
Transformer and SSM models offers a promising approach for building robust hybrid architecture.
Notably, we did not fine-tune Pythia-1.4B and Mamba-1.4B on C4, as fine-tuning only serves as a
"healing process" for E-Tamba-1.1B due to the markedly different hidden state distributions arising
from merging pre-trained Transformer and Mamba layers.

4.2 Downstream Tasks

In addition to the language modeling capabilities, we further assess E-Tamba-1.1B on two widely
used downstream NLP tasks to evaluate its broader performance. Specifically, we use the Lambada
(Paperno et al.,[2016) and WinoGrande (Sakaguchi et al.,[2021)) benchmarks to measure E-Tamba-
1.1B’s commonsense reasoning abilities. For Lambada, we reference the performance of Pythia-1.4B
and Mamba-1.4B reported by |Gu and Dao| (2023). For WinoGrande, we reproduce these two models’
results on the winogrande_x1 dataset for consistency.

As shown in Table [2| although E-Tamba-1.1B does not achieve the top performance due to its
smallest parameter count, it delivers competitive results on both challenging NLP benchmarks.
Notably, E-Tamba-1.1B’s performance closely matches that of Pythia-1.4B across both tasks. With



this downstream task performance validation and considering its significant memory efficiency,
E-Tamba-1.1B emerges as a strong alternative to traditional Transformer architectures.

4.3 Inference Memory

To recap, a key objective of hybrid models is to integrate the memory efficiency of Mamba with
Transformer models, which have historically been constrained by the attention mechanism’s memory
demands. To evaluate this, we measure GPU memory usage during long-context inference with a
batch size of 1 and a sequence length of 4096. As shown in Table[2] E-Tamba-1.1B achieves nearly
3X memory savings compared to Transformer models. Even with fewer parameters, these substantial
memory savings highlight E-Tamba’s potential as a balanced solution between Transformer and SSM
architectures in memory-limited situations.

4.4 Long-Context Performance

In addition to memory efficiency, another key objective of hybrid models like E-Tamba is to leverage
the Transformer’s strength in handling long-context retrieval tasks, an area where Mamba has been
shown to under-perform (Jelassi et al.,[2024)). To evaluate this, we assess the models’ performance on
two tasks: long-context copying and phone book retrieval.
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Figure 4: Copying Task Figure 5: Phonebook Retrieval Task

For the copying task, the input consists of a sequence of tokens repeated twice, followed by the first
token from the sequence. We evaluate the models’ ability to copy across various input sequence
lengths, considering the task successful only when the copied sequence exactly matches the input.
For the phone book retrieval task, we manually generate a test dataset of <name, number> pairs,
formatted as <Jack, 123-456-7890>. The input consists of the entire phone book concatenated
with a randomly selected name, and performance is evaluated across different phone book sizes. A
test is deemed successful when the retrieved phone number exactly matches the ground truth. For
both copying and phonebook experiments, the final results are averaged over 30 test cases.

As shown in Figures ] and [5] E-Tamba-1.1B exhibits significant performance improvements over
the Mamba model on both long-context tasks. While Mamba can maintain strong performance with
short sequences, its accuracy declines sharply with longer inputs, likely due to its fixed-size hidden
state. In contrast, E-Tamba-1.1B continues to perform well on long inputs, despite performing worse
than Pythia-1.4B because of fewer parameters. This highlights the effectiveness of E-Tamba in
overcoming Mamba’s limitations in long-context tasks.

5 Conclusion

In this paper, we introduce E-Tamba, a novel approach to creating a Transformer-Mamba hybrid
through layer transplantation and fine-tuning. With only 0.9B tokens of fine-tuning, E-Tamba-1.1B
achieves competitive language modeling perplexities and various downstream NLP task perfor-
mances. The E-Tamba-1.1B model itself becomes a strong middle-ground solution to combine
the Transformer’s long context and Mamba’s memory-saving abilities. Although the experiments
are limited to Pythia-1.4B and Mamba-1.4B, the E-Tamba approach of detecting critical layers in



Transformer and SSM models and merging them through full-parameter fine-tuning is also proved as
a promising direction for building resource-efficient hybrid models. We hope this work will inspire
future exploration in Transformer-SSM hybrid models.
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A Fine-tuning Hyperparameters

We fine-tune E-Tamba-1.1B on the below hyperparameters with a single NVIDIA A100 GPU. Due
to the limited computational resources, we only perform a search over learning rate in a range over
[1e-3, 1e-4, 1e-5] and choose 1e-4 in the end.

Table 3: Hyperparameter Settings

Hyperparameter Value
Learning Rate le-4
Learning Rate Scheduler constant
Optimizer AdamW
Training Batch Size 12
Gradient Accumulation Steps 6
Warm-up Ratio 0.03
Max Grad Norm 3
Epochs 1
Precision bf16
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