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ABSTRACT

Diffusion-based generative modeling has been achieving state-of-the-art results
on various generation tasks. Most diffusion models, however, are limited to a
single-generation modeling. Can we generalize diffusion models with the ability
of multi-modal generative training for more generalizable modeling? In this paper,
we propose a principled way to define a diffusion model by constructing a unified
multi-modal diffusion model in a common diffusion space. We define the forward
diffusion process to be driven by an information aggregation from multiple types
of task-data, e.g., images for a generation task and labels for a classification task.
In the reverse process, we enforce information sharing by parameterizing a shared
backbone denoising network with additional modality-specific decoder heads. Such
a structure can simultaneously learn to generate different types of multi-modal data
with a multi-task loss, which is derived from a new multi-modal variational lower
bound that generalizes the standard diffusion model. We propose several multi-
modal generation settings to verify our framework, including image transition,
masked-image training, joint image-label and joint image-representation generative
modeling. Extensive experimental results on ImageNet indicate the effectiveness
of our framework for various multi-modal generative modeling, which we believe
is an important research direction worthy of more future explorations.

1 INTRODUCTION

The field of artificial intelligence (AI) has witnessed significant advancements in generative modeling,
leading to remarkable progresses such as DALL-E (Ramesh et al., 2022) and GPT-4 (OpenAI, 2023).
The generative AI paradigm enables the learning of transitions from simple to complex distributions,
such as from a standard Gaussian distribution to a high-dimensional image distribution. Compared to
discriminative learning, generative mechanisms can arguably prioritize the overall structures of the
data, offering better data fitting and potential robustness to data noise. However, while real-world
applications often involve data of multiple types (multi-modal), including images, video, text, and
labels, most existing generative models primarily focus on generating a single data type or modality.
Notably, the diffusion model (Sohl-Dickstein et al., 2015; Ho et al., 2020), a state-of-the-art generative
model, has been independently developed for generating image, text, audio, and label data (Dhariwal
& Nichol, 2021; Li et al., 2022b; Liu et al., 2023; Han et al., 2022). Can we design a principled way
to enable joint modeling and generating multi-modal data within the diffusion-model framework?

Furthermore, leveraging multi-modal information through learning from multiple tasks and data
sources has proven to be highly effective to learn generalized representations. Prominent examples
include the ALBEF and BLIP models, which jointly learns from multi-modal data to match image
and text (Li et al., 2021; 2022a; 2023), and the BERT model, which benefits from multi-task training
such as masked token prediction and consecutive sentence prediction (Devlin et al., 2019b). Can we
adopt a similar setting to leverage multi-modal data and losses into the diffusion-model framework,
so as to better integrate shared information among tasks for better generative modeling?

In this paper, we present our initial endeavor towards this goal by introducing the multi-modal diffu-
sion model with multi-task learning, referred to as MT-Diffusion. MT-Diffusion enables simultaneous
modeling and generation of multi-modal data with a unified diffusion model. By multi-task, we
emphasize that MT-Diffusion is designed to 1) simultaneously generate multi-modal data (potentially
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Figure 1: Illustration of the proposed MT-Diffusion on two modalities. The diffusion process is
defined in a shared diffusion space for all modality data, which are transformed from the modality-
specific encoders. The forward nosing process includes a forward aggregation step that integrates
information from multi-modal data, and the reverse denosing component transforms the diffusion
space back to the task-specific data spaces with learnable decoders through a multi-task loss.

heterogeneous such as images and labels) within a unified model; and 2) seamlessly integrate multi-
task learning losses into the diffusion framework in a principled manner, supported by theoretical
foundations. Our multi-task setting is versatile and applicable to numerous practical scenarios. It
is worth noting that, as an initial investigation to multi-modal diffusion models, we only focus on
two modalities to demonstrate the promise of the research direction, while leaving training with
more modalities as interesting future work. Particularly, we construct several practical multi-task
generative learning scenarios in experiments to demonstrate the effectiveness of our framework:

• Image transition: We consider jointly modeling multi-modal data, such as images and the
corresponding semantic segmentation masks, by learning to generate both in the reverse
process within our MT-Diffusion framework. We design this task as a synthetic experiment
to qualitatively demonstrate the ability of our model on small-scaled datasets.

• Masked-image training*: Motivated from the previous success on masked-language pre-
training such as BERT (Devlin et al., 2019a) in language modeling, we propose to combine
a pure generation task with a masked-image generation task for generative training. We
demonstrate on the ImageNet dataset that our model can be more efficient in training a
generative model, and can converge to a point comparable to (if not better than) the heavily
tuned single-task diffusion model in terms of generative image quality. Furthermore, it can
simultaneously obtain for free a great image-restoration ability for masked image recovery.

• Joint image-label generation: We jointly model images and the corresponding labels by
learning to generate both with our MT-Diffusion. We demonstrate on the ImageNet dataset
that one can achieve better classification accuracy compared to pure supervised training.

• Joint image-representation generation: We also investigate simultaneously learning to
generate images and representations (e.g., CLIP representations (Radford et al., 2021)) with
MT-Diffusion. As this is a larger-scale setting based on stable diffusion, we only provide
qualitative results to demonstrate the ability of our model to generate high-quality images
from text, while leaving more detailed investigations as interesting future work.

Our solution for these multi-modal generation problems is a novel generalization of the standard
diffusion model, designed to handle data from multiple modalities through both innovative algorithm
and architecture designs in the diffusion forward and reverse processes. Our general idea is illustrated
in Figure 1. In the forward process, multi-modal/multi-task data are first aggregated through some
well-designed mechanisms (details in Section 2.2.2) so that the aggregated information can be
conveniently applied to the forward noising operation of a diffusion model. To deal with potentially
heterogeneous data, an effective encoder architecture design is proposed to encode multi-modal
data into a shared diffusion space. In the reverse process, we propose to extend the original U-
Net architecture† in diffusion models to simultaneously reconstruct the multi-modal data from
different tasks. To this end, modality-specific decoder heads are designed to be attached to the U-Net
architecture to decode the diffusion latent code back to multi-modal data spaces. The forward and
reverse processes are then integrated within the diffusion mechanism, leading to a loss derived from a
new multi-task evidence lower bound (ELBO), as a multi-task loss. Extensive experiments on the
aforementioned problems are conducted to verify the effectiveness of our framework, demonstrating
that our model can achieve simultaneous generation without hurting individual task performance, a
promising generalization of the standard diffusion model for multi-modal generative learning.

*The recent DiffMAE (Wei et al., 2023) is fundamentally different from ours. It is a standard conditional
diffusion model to denoise the pre-masked region; ours models both image and mask generation.

†The default U-Net architecture is adopted, though the Transformer (Peebles & Xie, 2022) can also be used.
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2 MULTI-MODAL DIFFUSION MODELS

2.1 PRELIMINARIES ON DENIOSING DIFFUSION PROBABILITY MODELS (DDPM)

DDPM is a probability generative model that consists of a forward noising process and a reverse
denoising process operated on a diffusion space. The forward process gradually adds Gaussian
noise into the data, which ultimately become standard Gaussian samples; and the reverse process
parameterizes a neural network model to reverse the forward process. Specifically, given a data
sample x from the data distribution, the forward process from time t − 1 to time t is defined as
q(zt | zt−1) = N (zt;

√
1− βt zt−1, βt I), where zt represents a noisy version of the original data

sample z0 at time t; {βt} is an increasing sequence converging to 1 (making xt converge to a
standard Gaussian sample). A reverse process is modeled by a neural network (we consider a U-Net
for image data) parameterized by θ as pθ(zt−1 | zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). Considering
all time steps t = 1, · · · , T , the forward and reverse processes define two joint distributions over the
same set of random variables {z0, · · · , zT }. By variational principle, a loss corresponding to the
evidence lower bound (ELBO) can be derived to optimize the parameterized generative model θ, as
L = Eq(z0,··· ,zT )

[
− log p(zT )−

∑
t≥1 log

pθ(zt−1 | zt)
q(zt | zt−1)

]
.

2.2 MULTI-MODAL DIFFUSION MODELS

We propose the MT-Diffusion model to jointly model multi-modal data with multi-task learning by
generalizing the DDPM framework. We assume each task is associated with one data modality (the
data can be the same for different tasks). For example, an unconditional image-generation task is
associated with image data, and an image classification task with image-label paired data. Suppose
there are N modalities, where modality i is associated with task data from space Xi. Let xi denote
one data sample from the i-th modality space, and let X ≜ {x1, · · · ,xN} be the union data from the
N modalities. We note that our setting is quite general in the sense that the data spaces {Xi} can be
heterogeneous, e.g., the image space versus the image-label space as from our previous example.

To deal with potential heterogeneity of modality-data spaces, we propose to define MT-Diffusion
in a shared latent space, called diffusion space and denoted as Z. To this end, we propose to apply
a mapping to project each of the original modality-data space onto the shared diffusion space. We
define the mapping with an encoder Ei for task i, i.e., Ei : Xi → Z, as illustrated in Figure 1. For
simplicity, we consider non-parametric or fixed-parameter encoders. The specified encoder designs
are detailed in Section 2.2.4. In the following, we first formally define the proposed MT-Diffusion by
specifying the forward and reverse processes, as well as deriving the corresponding variaitonal lower
bound, by extending the DDPM framework to handle multiple data sources and multi-task losses.

2.2.1 FORWARD-REVERSE PROCESSES AND THE VARIATIONAL LOWER BOUND

⋯⋯ ⋯⋯
𝑧! 𝑧"#$ 𝑧" 𝑧%

⋯⋯ ⋯⋯
𝑧! 𝑧"#$ 𝑧" 𝑧%

𝑿 𝑿

Forward Reverse 

Modality data 

Figure 2: The forward (left) and reverse (right) processes of the
proposed MT-Diffusion by jointly modeling a set of task data.

In our design, the forward and re-
verse processes will be responsible
for integrating multi-modal data
information and multi-task losses
within the DDPM framework, re-
spectively. This is implemented
by first defining joint distributions
over data modalities and the dif-
fusion latent variables in both for-
ward and reverse processes. Specif-
ically, in the forward process, the noising transition from time t − 1 to time t is defined to be
conditioned on the modality data. To this end, we propose to define a joint distribution at time t over
the data X = {x1, · · · ,xN} and the diffusion latent variable zt, conditioned on information from
time t− 1, to endow the following decomposed form‡:

q(zt,X | zt−1) = q(zt | zt−1,x1, · · · ,xN )

N∏
i=1

qi(xi) , (1)

where q(zt | zt−1,x1, · · · ,xN ) represents the transition distribution of zt from time t − 1 to time
t, and {qi(xi)} denotes prior distributions of the modality data that we assume to be mutually
independent for simplicity. We denote this process as forward aggregation, and the specific probability
distributions will be defined in the next section. Furthermore, the reverse process is defined by simply

‡We assume modality data are time-independent, although it is also feasible to introduce time dependency.
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reversing the forward distributions, resulting in a joint distribution pθ(zt−1,X | zt) at time t, where
θ represents the reverse model parameter. Specifically, starting by sampling zT from p(zT ), we
propose to decompose the reverse transition at time t into the following conditional distributions:
pθ(zt−1,X | zt) = pθ(zt−1 | zt)

∏N
i=1 pθ(xi | zt). The random variable dependency and the general

forward-reverse processes are illustrated in Figure 2. Before specifying these distributions, we first
derive an objective by matching the joint distributions of the forward and reverse processes. This
results in a multi-task ELBO for the proposed MT-Diffusion, based on which a final loss can be
defined in Section 2.2.5.
Theorem 1. The negative ELBO of MT-Diffusion endows: L = Eq [L0 + L1 + L2 + L3], where

L0 ≜ KL (q(zT | z0,X)∥p(zT )) , L1 ≜
∑
t>1

KL (q(zt−1 | z0, zt,X)∥pθ(zt−1 | zt)) , (2)

L2 ≜
∑
t≥1

N∑
i=1

KL (qi(xi)∥pθ(xi | zt)) , L3 ≜ log pθ(z0 | z1) .

Remark 1. We can see that the prior multi-modal data distributions are within the loss term L2. If
only a single generation task is considered, the sub-loss L2 will disappeared, reducing to the standard
DDPM loss. Our multi-modal diffusion objective defines the posterior of the transition probability
q(zt−1 | zt,X) by conditioning on all modality data (in L1), and additionally, as formulated in L2,
parameterizes the reverse process to regularize the predicted modality-data distribution pθ(xi | zt−1)
so that it matches the prior modality data distribution qi(xi).

2.2.2 FORWARD AGGREGATION

The forward aggregation mainly deals with the posterior transition probability q(zt−1 | z0, zt,X) in
L1 of equation 2. To derive an explicit form, we start by specifying the forward transition probability
q(zt | zt−1,X), which can consequently induce the marginal distribution q(zt | z0,X) as well as
the posterior transition probability. To integrate different task information, we define the forward
transition distribution as a Gaussian distribution by aggregating the task information into the mean
parameter. Specifically, we define

q(zt | zt−1,X) = N

(
zt;
√

α′
t

zt−1 +
∑N

i=1 w
(i)
t Ei(xi)

N + 1
, (1− α′

t

N + 1
) I

)
, (3)

where w
(i)
t denotes the weight for the i-th modality representation at time t, and {α′

t} are weights
to scale the mean and covariance of the Gaussian transition similar to DDPM. By a change of
notation αt ≜ α′

t/(N + 1), the transition distribution can be re-written as q(zt | zt−1,X) =
N
(
zt;

√
αt(zt−1 +wtE(x)), (1− αt) I)

)
, which we will use in the following derivations and imple-

mentation. With these transition distributions, multi-task information can be seamlessly incorporated
into the diffusion process, which can effectively translate to the reverse process with a parametric
model to be defined in Section 2.2.3. Now we can derive the marginal and posterior transition distri-
butions, which turn out to also endow simple forms of Gaussian distributions, stated in Theorem 2.
Theorem 2. Given the transition distribution equation 3, the marginal transition distribution follows

q(zt | z0,X) = N

(
zt;

√
ᾱt z0 +

N∑
i=1

α̃
(i)
t Ei(xi), (1− ᾱt) I

)
, (4)

where ᾱt ≜
∏t

i=1 αi, and α̃
(i)
t is recursively defined as α̃(i)

t =
√
αt

(
w

(i)
t + α̃

(i)
t−1

)
with α̃

(i)
0 ≜ 0.

Furthermore, the posterior transition follows q(zt−1 | z0, zt,X) = N
(
zt−1; µ̃t(zt,X), β̃t I

)
, where

µ̃t(zt,X) =

√
αt(1− ᾱt−1) zt +(1− αt)

√
ᾱt−1 z0 +

∑N
i=1

(
(1−αt)α̃

(i)
t√

αt
− (1− ᾱt)wt

)
Ei(xi)

1− ᾱt

=
1√
αt

(
zt −

1− αt√
1− ᾱt

ϵ

)
−

N∑
i=1

w
(i)
t Ei(xi) , and β̃t =

(1− αt)(1− ᾱt−1)

1− ᾱt
. (5)

Remark 2. The posterior transition distribution equation 5 shares a similar form as that in DDPM,
with an extra term of

∑N
i=1 w

(i)
t Ei(xi) representing information aggregated from all tasks (thus

aggregation). Note the aggregation is defined in the forward process, enabling a closed-form posterior
but without losing too much modeling expressiveness compared to other complex aggregations.
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Figure 3: Training pipeline and encoder-decoder design choices. ①②③ indicate three possible choices
for the encoder E(·); gray shaped boxes indicate stop gradients; and black dash lines mean possible
connections to the encoder and decoder. “Aggregate” is implemented through equation 4.

2.2.3 REVERSE PARAMETRIZATION

Based on the ELBO in Theorem 1, the reverse model is responsible for defining two sets of dis-
tributions: pθ(zt−1 | zt) and pθ(xi | zt). The first distribution is similar to that in DDPM, and the
second one is induced from decoding the diffusion latent code back to modality-data spaces. To
leverage these distributions within a unified architecture for task information sharing, we propose
to parameterized the reverse model with a shared backbone network followed by N extra modality
heads, each corresponding to one modality. The basic structure is illustrated in Figure 1. Specifically,
for pθ(zt−1 | zt), we follow DDPM to define it as Gaussian distributions with mean and covariance
denoted as µθ(zt,X) and σ2

t I, respectively. Consequently, the KL-divergence in L1 of equation 2
reduces to matching the mean of the two Gaussians with a proper weighting scheme depending
on t. Based on the form of the mean of q(zt−1 | z0, zt,X) in equation 5, instead of parameteriz-
ing the mean of pθ(zt−1 | zt), we follow DDPM to parameterize the U-Net to predict the intrinsic
noise in zt (denoted as ϵ). Specifically, the parametrized U-Net model ϵθ(zt, t) is formulated as:
ϵθ(zt, t) = ϵθ(

√
ᾱt z0 +α̃t X+

√
1− ᾱtϵ, t) ≈ ϵ.

For the decoding distributions pθ(xi | zt)’s in the L2 term of equation 2, the distribution forms are
modality specific. We consider the following two cases in our experiments:

• When modality data are represented as probability vectors, e.g., labels in the classification
task, we define pθ(xi | zt) as a discrete distribution, parameterized by the output of the
modality head. Consequently, the KL-term in L2 is equivalent to the cross-entropy loss.

• When modality data are in the form of continuous values, we define pθ(xi | zt) as a Gaussian
distribution with the mean parameterized by the output of the modality head. In this case,
the KL-divergence in L2 reduces to the MSE loss, similar to the case for pθ(zt−1 | zt).

It is worth noting that different from pθ(zt−1 | zt), the variables xi and zt in pθ(xi | zt) can be in
different feature spaces. Thus, a decoder Di(·) in the form of one modality head specified above
is applied to project the latent code zt back to the modality-data space, based on which a proper
pθ(xi | zt) is defined, as illustrated in Figure 1. Specifically, the decoding process can be written as:

At time t : zt
Diffusion−−−−−→
denoising

ct ≜ U-Net(zt, t;θ)
Task i−−−−→

decoding
x̃i ≜ Di(ct;θ) ≈ xi ,

where we use “U-Net” to denote the output from one particular component of the U-Net, serving
as the input to the decoder head (see Section 2.2.4 for more details). In other words, the reverse
parameterized model consists of two parts: ϵθ(zt,x, t) and Di(zt, t;θ). Detailed structure designs to
integrate the decoders (together with the encoder E(·) in the forward process) into the shared U-Net
backbone is discussed in the next section.

2.2.4 ENCODER-DECODER DESIGNS

The encoders aim to map different task-data onto the diffusion space, and the decoders project the
diffusion latent code from the shared U-Net backbone back to the task-data spaces. As the encoders
are associated with the forward process, we propose to avoid introducing extra trainable parameters
in the encoders for simplicity. Furthermore, we propose to introduce trainable parameters to the
decoders as they are parts of the parameterized reverse model. There are many possible design
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choices for the encoders and decoders. Our guideline is to choose architectures to reuse existing
components or some pretrained models as best as possible. Based on this principle, we recommend
the following designs, with the detailed training pipeline and architectures illustrated in Figure 3.

Encoder Design We consider three scenarios, indicated by ①②③ in Figure 3: 1) A modality-data
space is the same as the diffusion space, e.g., both image spaces. In this case, we can define the
encoder as a simple mapping such as the identity mapping ① in Figure 3; 2) A modality-data space
is inhomogeneous with the diffusion space, e.g., a label space vs. an image space. In this case, we
propose to use either a pretrained generator (② in Figure 3) or the shared U-Net backbone (③ in
Figure 3) to transfer modality-data information to the diffusion space. Particularly, for choice ③, we
use the cross attention mechanism in the U-Net architecture to map modality-data information to the
diffusion space.

Decoder Design The decoders are modality and task specific. They accept outputs from one of
the U-Net blocks (indicated by black-dash-line connections in Figure 3) and learn to generate the
original modality data. For example, in a classification task, the decoder is designed as a classifier
that outputs a class label, associated with a cross-entropy loss.

2.2.5 TRAINING AND INFERENCE

Training We propose a simple training loss for our MT-Diffusion, based on the ELBO equation 2
and the specific forward and reverse parameterization described above. In the ELBO, L0 is inde-
pendent of the model parameter θ, thus it can be omitted in training. By substituting the specific
distributions into the ELBO and adopting the simple loss idea in DDPM (Ho et al., 2020) that ignores
the weights for different timesteps, the ELBO equation 2 reduces to the following training loss for
the proposed MT-Diffusion:

L ≜ L̃mse + λ
∑
t≥1

N∑
i=1

KL (qi(xi)∥pθ(xi | zt)) , where zt ∼ q(zt | z0,X) , (6)

and L̃mse ≜ Eq

[∑
t>1 ∥ϵθ(zt, t)− ϵ∥2 + log pθ(z0 | z1)

]
has the same form as the simple loss in

DDPM; λ is the weight scalar (we set it to 0.1 in our experiments). In particular, the KL terms above
can endow closed forms depending on the modality-specific qi(xi). For example, in a classification
task with xi representing labels, both qi(xi) and pθ(xi | zt) are defined as discrete distributions,
making the KL divergence equivalent to the cross entropy. We apply stochastic optimization for
model learning. At each iteration, a random timestep t is first sampled. Then the corresponding zt is
sampled from the forward process with task information aggregation. We then feed zt to the reverse
model to predict the forward noise and the modality data. Finally, gradient descent is applied to
update the model parameter based on the loss equation 6.

Inference A distinction of our model is its ability to simultaneously generating multi-modal data.
We propose a generic inference procedure that can achieve both unconditional generation (with
initially all missing modality data X) or conditional generation (with initially parts of X known).
The basic idea is to estimate the potentially missing modality data from the corresponding heads of
the reverse model outputs. The specific algorithm is summarized in Algorithm 1 in Appendix C.

3 RELATED WORK

Diffusion-based Models Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2021) have been state-of-the-art generative models on a variety of applications including image
syntheses (Dhariwal & Nichol, 2021), text-to-image generation (Ramesh et al., 2021; Saharia et al.,
2022; Yu et al., 2022; Rombach et al., 2022), audio generation (Kong et al., 2021; Liu et al., 2023),
video generation (Ho et al., 2022; Harvey et al., 2022; Singer et al., 2023) and text generation (Austin
et al., 2021; Li et al., 2022b; He et al., 2022; Gong et al., 2023), etc. All these models, however, only
focus on a single generation task, in contrast to our multi-task generation.

Manipulating Diffusion Latent Spaces There have been significant efforts to manipulating latent
spaces of pretrained diffusion models for a variety of downstream tasks, including text-driven
image editing, inpainting, completion and etc (Gal et al., 2022; Ruiz et al., 2022b; Cohen et al.,
2022; Kawar et al., 2022; Meng et al., 2021b; Bau et al., 2021; Avrahami et al., 2022b;a; Bar-Tal
et al., 2022; Lugmayr et al., 2022). There are also related works to learning a more discriminative
latent space (Zhang et al., 2022; Preechakul et al., 2022) or manipulate a latent space for better
representations (Kwon et al., 2023). These methods, however, are task-driven and do not provide
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Figure 4: Random samples on the night2day (top, unconditional generation) and cityscape (bottom,
conditional generation) datasets. The 3 pictures in each block of the cityscape dataset (bottom) corre-
spond to the conditional image (source), the ground-truth and the inferred target image, respectively.

Figure 5: Randomly generated examples of MT-Diffusion with masked-image training. First row:
image restoration from random masks; images in each block: original, masked and restored images.
Second row: image restoration from half masking; each block contains two restored images to
illustrate generation variance. Third row: image generation from scratch with complete masks.

theoretical foundation on the working principles; while all the tasks considered in the literature can
be accomplished with our MT-Diffusion framework by incorporating the corresponding task data.

Our model is also related to guided diffusion, which is discussed in details in Appendix D.

4 EXPERIMENTS

As a first work on multi-modal diffusion models, we focus on evaluating our MT-Diffusion on the
4 multi-task learning settings mentioned in the Introduction, while leaving other more complicated
settings such as incorporating more tasks into training as interesting future work. We describe
detailed hyperparameter settings, the four tasks and encoder-decoder designs in Appendix E. In the
four experiments, MT-Diffusion for image translation and joint image-representation generative
modeling are mostly for illustration purposes. Thus, the results are mostly qualitative, e.g., Figure 4
demonstrates some visualizations of image-translate. More details are deferred to Appendix E.

4.1 MT-DIFFUSION FOR MASKED-IMAGE TRAINING

Table 1: LPIPS score for masked image recovery. “Mask-m”
means masking an image with m patches.

Model Mask-5 Mask-10 Mask-15 Mask-20

Clean-Masked 0.311 0.414 0.461 0.491

SDEdit- Meng et al. (2022) 0.400 0.466 0.497 0.513

MT-Diffusion 0.035 0.068 0.099 0.133

Task description and encoder-
decoder design We propose
the masked-image training, a
new training strategy we de-
sign to improve image genera-
tion with MT-Diffusion. The task
is motivated from the masked-
language pretraining paradigm in
NLP models such as BERT (Devlin et al., 2019a), which achieves significant success with multi-task
training. Specifically, in addition to the standard image generation task that generates images from
noise, we define an additional task, called a random inpainting task, which learns to recover from
randomly masked images. Consequently, the forward process is defined to start from a clean-masked
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IS↑ FID↓ sFID↓ Precision↑ Recall↑
ADM (un-cond) 15.64 23.22 16.53 0.57 0.60

ADM (class cond) 22.69 16.35 17.49 0.59 0.62

Generation with Masked-Image Training (Section 4.1)

MT-Diffusion-U 23.77 26.00 25.22 0.57 0.55
MT-Diffusion-X 34.53 9.85 15.78 0.68 0.64

Generation with Joint Image-Label Modeling (Section 4.2)

MT-Diffusion-M 15.66 33.92 21.63 0.54 0.55
MT-Diffusion-M∗ 26.31 13.48 16.64 0.66 0.61

MT-Diffusion-E 11.86 41.00 22.37 0.48 0.45
MT-Diffusion-E∗ 24.78 11.28 16.08 0.74 0.56

Table 2: Training efficiency comparisons on ImageNet-64.

Figure 6: Classification accuracies vs.
supervised finetuning iterations on the Im-
ageNet validation data.

image pair, and gradually add noise to the pair in the forward process. To create the masked images,
we randomly sample m ∼ Uniform(0 · · · 10) patches of size 16 × 16 from the original image and
mask them out with zero pixel-values. These patches are placed randomly so they might overlap
with each other. We adopt two choices for the noise prediction network ϵθ(·): the first only considers
(zt, t) as input, denoted as MT-Diffusion-U; the other takes (zt,X, t), denoted as MT-Diffusion-X.
The former is more specifically designed for unconditional generation, whereas the latter is more
suitable for constrained image restoration, a task we defined as inpainting a randomly masked image
while keeping the unmasked region unchanged. Note current state-of-the-art diffusion models do
not directly deal with this problem. Existing work for image editing and inpainting such as SDEdit
(Meng et al., 2021a) and Dreambooth (Ruiz et al., 2022a) do not explicitly enforce unmask region
consistency, thus their inpainting results can change the unmasked region. By considering simultane-
ously generating the clean-masked image pairs with MT-Diffusion, our model can maximally learn
to maintain the consistency of the unmasked regions. Similar to the image-transition experiment,
we use the identity map as the encoder, and replicate the output block of the original U-Net as the
additional masked-image decoder, which consists of a normalization layer and a convolution layer.

Table 3: Generated image comparisons on ImageNet-128.
The subscript ”g” means classifier guidance; the super-
script ”*” on ADM indicates results from the released
checkpoint; ADM without “*” is the one continued train-
ing on the released checkpoint. MT-Diffusion represents
the MT-Diffusion-X version; superscript “f” indicating
continued finetuning on single-task image generation; and
the superscript ”*” indicates results from the constrained
image restoration task with 10% random masking (not
directly comparable with the other settings).

IS↑ FID↓ sFID↓ Precision↑ Recall↑
ADM∗ 79.95 8.46 4.92 0.67 0.66

ADM∗
g 151.10 3.56 4.63 0.79 0.57

ADM 74.04 9.62 5.61 0.66 0.64

ADMg 140.89 4.27 5.58 0.79 0.55

MT-Diffusion 78.26 8.42 5.89 0.67 0.65
MT-Diffusiong 81.06 8.06 5.83 0.68 0.65

MT-Diffusionf 84.22 7.01 5.99 0.69 0.64
MT-Diffusionfg 171.65 3.51 5.73 0.83 0.53

MT-Diffusion∗ 135.35 2.15 3.86 0.72 0.68
MT-Diffusion∗g 138.21 2.02 3.84 0.73 0.69

Results We implement our method
based on the guided diffusion codebase
(dif) on ImageNet (Deng et al., 2009).
We first demonstrate that our framework
can help to improve the training effi-
ciency for image generation. To this
end, we compare our and the ADM
models (Dhariwal & Nichol, 2021) be-
fore convergence at 1M iteration at im-
age resolution 32. For a fair compari-
son, all models are trained from scratch
with exactly the same hyperparameters
(thus the numbers are not directly com-
parable to the reported values). We
adopt the same evaluation metrics as
the ADM under 5K samples. Quanti-
tative results are shown in Table 2. Note
MT-Diffusion-U is designed to gener-
ate images from complete random noise
while MT-Diffusion-X needs a condi-
tional masked input, which we simply
define as a complete mask (all zeros) for
this purpose. It is observed both the two
variants significantly outperform the unconditioned ADM, indicating the training efficiency and
modeling effectiveness of multi-task generative learning via masked-image training. In addition,
MT-Diffusion-X is found to perform better than MT-Diffusion-U. We hypothesize this is because the
conditional masked-image information makes the training of the model easier and more effective.

In addition to pure image generation, one unique property of MT-Diffusion-X is its ability to
simultaneously perform constrained image restoration. To this end, we randomly mask out some
testing images with m = {5, 10, 15, 20} patches and learn to restore the masked patches. We expect
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MT-Diffusion-X to restore masked images without changing unmasked regions. Some example
results are illustrated in Figure 5, which clearly demonstrate the strong ability of MT-Diffusion-X
for constrained image restoration as well as generation from scratch. For quantitative evaluation, we
adopt the LPIPS score (Zhang et al., 2018) that measures the semantic similarity of the original the
restored images, and compare our method with one simple baseline from Meng et al. (2022), denoted
as SDEdit-. The results are shown in Table 1, where the row of “Clean-Masked” denotes the LPIPS
scores of clean-masked image pairs that we include for reference. It is clear that MT-Diffusion-X
obtains scores closed to zero, indicating the closed similarity between restored images and original
images. SDEdit-, on the other hand, obtains very high LPIPS scores, which are even higher than the
Clean-Masked baseline. This is expected since SDEdit- is not specifically designed for such a task.

Finally, to demonstrate the ability of our model to generate high-quality images at convergence, we
compare our method with ADM for pure image generation, under a resolution of 128. We train our
MT-Diffusion-X from scratch. We evaluate the ADM with two versions: the released checkpoint and
a continued trained version from the checkpoint with the same hyperparameters as our model, for
a more fair comparison. The results are shown in Table 3 evaluated on 50K samples. Our method
achieves comparable performance than ADM (if not better on some metrics such as the IS), while
being able to perform more tasks such as the constrained image restoration demonstrated above. It is
also noted that the continue-trained version of ADM (started from the released checkpoint) is slightly
worse than the released checkpoint, indicating the latter might have been tuned for best performance,
and thus it is more fair to compare our methods with the continue-trained version of ADM.

4.2 MT-DIFFUSION FOR JOINT IMAGE-LABEL GENERATION MODELING

Task description and encoder-decoder design This is a more heterogeneous case as labels and
images are in different spaces. We follow our design principle to use the diffusion U-Net as the
encoder for labels via cross attention in the U-Net. The label decoder is an additional head from
some layer of the U-Net. We consider two designs: 1) Add one additional MLP layer out of the
middle block of the UNet to map the diffusion latent space onto the label space. This introduces
minimal extra parameters into the original reverse model but might enforce some discriminative
information not helpful for pure image generation. We denote this variant as MT-Diffusion-M. 2)
Add a pre-defined classifier at the end of the U-Net output. Since the U-Net output can be used to
reconstruct the original image, this structure essentially makes the learning of image generation and
classification in a sequential manner. In the experiments, we use the classifier provided in the guided
diffusion codebase (dif) as the label decoder. We denote this variant as MT-Diffusion-E.
Results We adopt the same experiment setting as the previous section. In addition to measuring
the generated image quality, we also measure the classification performance using the classifier
in MT-Diffusion-E. We find that for such a heterogeneous setting, continuing finetuning both the
generator and classifier with single generation and classification tasks, respectively, can significantly
improve single-task performance. Consequently, we adopt similar idea of classifier-free guidance
to simultaneously learn a pure-generation model along with the multi-task training with the shared
U-Net. We denote the finetuned models as MT-Diffusion-M∗ and MT-Diffusion-E∗. The results are
reported in Table 2. It is observed that MT-Diffusion-M performs better than MT-Diffusion-E, which
slightly under-perform the single-task ADM. This is expected and indicates that learning to generate
heterogeneous data can trade off single-task performance. We also believe the performance gap is
partly due to the un-tuned sub-optimal hyperparameter setting. With single-task finetuning, we can
see that both variants outperform ADM in all metrics. To continue finetuning the classifier, we use
the training and evaluation script from the codebase (dif), and compare with the pretrained classifier
in classifier-guidance ADM (dif). We continue finetuing the classifier from the released checkpoint
as a baseline. Top-1 and top-5 accuracies are plotted in Figure 6. It is observed that our classifier
consistently outperforms the baseline, although the gap turns smaller with increasing finetuning steps.

5 CONCLUSION

We propose the multi-modal diffusion model with multi-task training, a generalization of the standard
diffusion model for multi-modal generation. Our model is general and flexible, which can incorporate
potentially heterogeneous modality information into a unified diffusion model, compared to training
on a single-task setting. We define several multi-task generative problems and test them on our
proposed MT-Diffusion. Extensive experiments are performed to verify the effectiveness of our
proposed framework. Interesting future works include improving the framework by better network-
architectures designs and applying the method to more diverse multi-modal and multi-task settings.
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A ELBO OF THE PROPOSED MULTI-TASK DIFFUSION MODEL: THEOREM 1

We give detailed derivations of our multi-task diffusion ELBO in the following:

L = Eq

− log p(zT )− T

N∑
i=1

log
1

q(xi)
−
∑
t≥1

log
pθ(zt−1 | zt)

∏N
i=1 pθ(xi | zt)

q(zt | zt−1,X)


= Eq

[
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− log
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 ,

where we use the fact that

q(zt | zt−1,x) = q(zt | zt−1,x, z0) =
q(zt−1 | zt, z0,x)q(zt | z0,x)

q(zt−1 | z0,x)
in the second equality.

B CALCULATING THE POSTERIOR DISTRIBUTIONS: THEOREM 2

In our derivation, we will frequently use the following well-known property of Gaussian random
variables.

In the following, we first present a Lemma on calculating the posterior distribution of Gaussian
random variables, based on which we derive the posterior distribution of our forward process.
Lemma 3. Let ϵ1 ∼ N (µ1, σ

2
1 I), ϵ2 ∼ N (µ2, σ

2
2 I). Then, for ∀a ≥ 0, b ≥ 0, the random variable

ϵ ≜ aϵ1 + bϵ2 follows:

ϵ ∼ N
(
aµ1 + bµ2, (a

2σ2
1 + b2σ2

2) I
)
.
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(1)
t E(X), where we define E(X) ≜
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w
(i)
t

w
(1)
t

Ei(xi). This is equivalent to the form of

considering only one extra task with modality-data embedding E(X), e.g., it suffices to only consider
two tasks in the proof. Consequently, in the following, we give the derivations of the forward posterior
distribution with one additional task, in which case we will drop the task index i in x. Generalizing
to N task is straightforward. To derive the marginal distribution q(zt | z0,x), let ϵt ∼ N (ϵ; 0, I) for
∀t. For the forward process, we have

zt =
√
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where we apply Lemma 3 in the third equation to consolidate the two random Gaussian variables
ϵt−1 and ϵt into ϵ.

Let x̄t ≜
∏t

i=1 αi, α̃t =
∑t

i=1

∏t
j=i αj , and define α̃0 = 0. We have

α̃t =
√
αt (wt + α̃t−1) , and

q(zt | z0,x) = N
(
zt;

√
ᾱt z0 +α̃tE(x), (1− ᾱt) I

)
. (7)

As a special case, if we define the forward transition distribution by letting wt = 1, we will have:

α̃t =
√
αt (1 + α̃t−1) . (8)

Lemma 4 (Murphy (2022)). Define the following distributions for the prior and likelihood:

p(x) = N
(
x;µ,Λ−1

)
, p(y |x) = N
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)
.
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. Then the posterior follows:
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.

In our case in equation 7, we have µ ≜
√
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From the marginal distribution q(zt | z0,x), we have
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Substituting equation 10 into equation 9, we have
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Thus, similar to the standard DDPM, we can parameterize the backward denoising process with a
neural network to predict the added noise ϵ, except that in our case, the neural network ϵθ would take
(zt,x, t) as the input, i.e.,

ϵθ(zt,x, t) = ϵθ(
√
ᾱt z0 +α̃t x+

√
1− ᾱtϵ,x, t) ≈ ϵ .

17



Published as a conference paper at ICLR 2024

C INFERENCE

The inference algorithm is shown in Algorithm 1. If not explictly stated, the number be timesteps is
set to T = 1000.

Algorithm 1 MT-Diffusion Inference

1: zT ∼ N (0, I)
2: if Modality data xi (∀i) not initially available then
3: Randomly initialize modality data xi

4: end if
5: for t = T, · · · , 1 do
6: ϵ ∼ N (0, I) if t > 1, else ϵ = 0
7: ei = E(xi), ∀i ▷ Get modality data encoding
8: ϵθ(zt, t), X̃ = U-Net(zt, t) ▷ Get estimated noise and predicted modality data
9: if xi (∀i) not initially available then

10: Update xi from the new X̃,∀i
11: end if
12: zt−1 = 1√

αt

(
zt − 1−αt√

1−ᾱt
ϵθ(zt,x, t)

)
−
∑N

i=1 w
(i)
t ei +β̃tϵ ▷ Update diffusion latent

13: end for
14: return z0,X

D RELATED WORKS

Connections to Classifier and Classifier-Free Guidance Guided diffusion models aim to leverage
prior knowledge from various guidance information for better controllable generation. For example,
the classifier guidance method uses the gradient of a pretrained classifier to perturb the reverse process
to generate from a class-conditional distribution (Dhariwal & Nichol, 2021). The classifier-free
guidance simultaneously learns a guidance model using the same generation network of the diffusion
model (Ho & Salimans, 2022). The works that try to utilize external data such as the retrieval-
augmented based methods (Blattmann et al., 2022; Long et al., 2022) can also be considered as a
special type of guidance. Although the final formulation has some connections with our method (see
Appendix D), guided diffusion models essentially only handle a single generation task. Our method,
on the other hand, can model multiple tasks within a unified diffusion model.

Our MT-Diffusion formulation endows an closed connection with the classifier guidance and classifier-
free guidance mechanisms. Specifically, from equation 5, if one defines the encoder E(·) as the
gradient from a pretrained classifier, the posterior mean recovers the one for classifier guidance.
By contrast, if one defines the encoder with the reverse U-Net, the posterior mean calculation in
equation 5 recovers the classifier-free guidance mechanism. However, an important difference is the
forward process, where our framework is designed to aggregate information from different encoders
for multi-task learning, whereas both classifer guidance and classifer-free guidance do not. Overall,
our method constitutes a broader framework that can be applied to different scenarios, including
image transition, masked-image pretraining, joint image-label and image-representation generation
investigated in the experiments.

Multi-Task Learning Multi-Task Learning (MTL) is a paradigm in machine learning that involves
training a model to perform multiple tasks simultaneously, with the idea that knowledge gained
from one task can help improve the performance on other related tasks. Recent development has
mainly focused on multi-task learning for predictive models instead of generative models. Apart
from investigating theory in multi-task learning (Wang et al., 2021; Tiomoko et al., 2021; Tripuraneni
et al., 2020; Wu et al., 2020), many existing works explore different techniques to boost model
performance with multi-task learning, including but not limited to architecture designs (Heuer et al.,
2021; Ruder et al., 2017; Ye & Xu, 2023; Sharma et al., 2023; Chen et al., 2022), optimization
algorithms (Senushkin et al., 2023; Fernando et al., 2023; Jiang et al., 2023; Phan et al., 2022) and
task relationship learning (Hu et al., 2022; Ilharco et al., 2022). Recent research interest has also be
expanded to applying multi-task learning in generative models (Bao et al., 2022; Liu et al., 2018).
However, the generative models are limited to more traditional models such as VAE and GAN. And
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there is limited work on studying multi-task learning for diffusion models. Our work represents one
of the first works on integrating multi-modal generation with multi-task learning in a diffusion model,
aiming to further improve generative performance and expand the scope of state-of-the-art diffusion
models.

More Recent Development on Diffusion Models There is some recent effort trying to develop
multi-task diffusion models. For example, the Versatile Diffusion (Xu et al., 2022) The Versatile
diffusion focuses on developing new neural architectures that make different tasks interact with each
other within the single-task diffusion framework. This is different from our work in that ours not only
introduces a novel neural architecture but also generalizes the single-task diffusion in terms of the
loss function. We believe the Versatile diffusion architecture can be incorporated into our framework
for more flexible modeling.

Previous efforts have also focused on efficient training of diffusion models, e.g., P2-Weighting (Choi
et al., 2022), Min-SNR (Hang et al., 2023), ANT Go et al. (2023), and Task Routing (Park et al., 2023).
Our model is orthogonal to these works with no technical overlap. Consequently, we believe there
is room to incorporate these techniques into our framework for further improvement, an interesting
future direction to be explored.

E DETAILED EXPERIMENTAL SETTINGS AND EXTRA RESULTS

In addition to evaluating on some other datasets that will be described in the specific tasks, we mainly
rely on the ImageNet-1K dataset (Deng et al., 2009) with resolutions of 64 × 64 and 128 × 128,
where we adopt the pre-defined training and validation splits. All experiments are conducted on
a A100 GPU server consists of 8 GPUs, with a batchsize of 64, if not explicitly specified. When
evaluating generation quality, we follow and adopt the popular Inception Score (IS), FID score, sFID
score, Precision and Recall metrics (dif), calculated on 10K or 50K samples, where the former is
for computational efficiency and latter for comparing with existing results. We note that due to our
different hyperparameter settings (specified in the Appendix), some of our results are not directly
comparable to some reported results in previous works. For fair comparisons, we rerun some of
the baselines on our settings that are consistent with our method. One additional hyperparameter of
our model is the task weights in equation 3, which we set to w

(i)
t = t/(1000− t) to mitigate some

potentially negative influence from some heterogeneous tasks on the generated image quality when t
is small. We follow most of the parameter settings as in the codebases.

The training procedure is summarized in Algorithm 2.

Algorithm 2 MT-Diffusion Training
1: repeat
2: z0 ∼ q(z0), X ∼ q(X) ▷ Sample z0 and modality data X
3: t ∼ Scheduler(1, · · · , T )
4: {ei} = E(X) ▷ Get modality data encoding
5: ϵ ∼ N(0, I)
6: zt ∼ q(zt | z0,X) ▷ Forward aggregation via equation 4
7: ei = E(xi), ∀i ▷ Get modality data encoding
8: ϵθ(zt, t), X̃ = U-Net(zt, t) ▷ Noise and modality data prediction via the reverse model
9: Take gradient descent step based on the loss equation 6

10: until Converged

E.1 EXPERIMENT SETTINGS FOR IMAGE TRANSLATION WITH MT-DIFFUSION

For the Cityscape dataset, the modality data corresponds to the semantic segmentation maps; and
for the night2day dataset, the modality data corresponds to images of day time. We adopt the latent
diffusion codebase from ldm, and use the provided checkpoints of the VQ-VAE encoder-decoder
(kl-f8.pt). We use the VQ-VAE encoder as the encoder for modality data; and construct an additional
output head by duplicate the original output block of the U-Net structure as the decoder to generate
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the modality data, which consists of a normalization layer, a SiLU layer, and a convolution layer. We
use the default hyper-parameters for training the models for the two datasets, summarized as:

• Attention resolutions: (32, 16, 9)
• Diffusion steps: 1000
• Learn sigma: False
• Noise schedule: Linear
• #channels: 320
• #heads: 8
• #res blocks: 2
• Resblock updown: False
• Use scale shift norm: False
• Learning rate: 1.0e-4
• Batch size: 32

Table 4: Classification performance on Cityscape dataset.

Model Per-pixel acc. Per-class acc. Class IOU

CycleGAN Zhu et al. (2017) 0.58 0.22 0.16

pix2pix Isola et al. (2017) 0.85 0.40 0.32

InternImage-H Wang et al. (2022) - - 0.86

Single-task diffusion 0.72 0.54 0.32

MT-Diffusion 0.95 0.85 0.70

Task description and
encoder-decoder design
This is a more modality-
homologous setting. We
adopt two standard datasets,
the Cityscale dataset for
semantic-labels to photo
translation (Cordts et al.,
2016) and the night2day
dataset for night-to-day
photo translation (Laffont et al., 2014). We adopt the public codebase of latent diffusion model
(LDM) (ldm). For the translation problem, the task data (original and translated images) are in the
same data space, thus we do not need to explicitly define separate encoders Ei(·) for the modality
data. Instead, we use the same pretrained image encoder in LDM to map all images to the diffusion
latent space. We add another head at the end of the U-Net as the decoder for target translated images.

Results We perform image translation by generating target images conditioned on source images
based on Algorithm 1. Some example generated image are illustrated in Figure 4. For quantitative
evaluation, we follow Zhu et al. (2017) to measure the performance in terms of per-pixel accuracy,
per-class accuracy and class IOU, and compare it with exiting methods (Zhu et al., 2017; Isola et al.,
2017; Wang et al., 2022). The results are shown in Table 4. It is cleared that our model obtains the
best accuracy compared to the baselines, except for the state-of-the-art InternImage-H model, which
is a much larger image foundation model pretrained on web-scaled data, thus it is not comparable.
We also calculate the IS and FID scores on the night2day dataset. Note prior work did not typically
calculate these scores. We obtain an FID score of 37.93 and an IS of 3.94, and the IS score is even
slightly better than that of the ground-truth data (3.65). As a comparison, the FID and IS scores with
a single-task diffusion are 40.73 and 3.84, respectively.

E.2 MT-DIFFUSION FOR MASKED-IMAGE TRAINING

In this task, the modality data is a randomly masked version of the original images. To create a
randomly masked image, we random sample a coordinate (x, y) that is within the image, then we
masked out a patch (x : min(x+ 16, 64)), y : min(y + 16, 64) by setting the corresponding pixel
values to zeros. We repeat this process for m to control the ratio of masked regions. We adopt the
latent diffusion codebase from dif. We simply define the encoder as the identity map, and define the
decoder for the masked images by replicating the output block of the original U-Net, similar to the
above Image Translation experiment. We adopt the default hyper-parameters for training the models,
if not specified below.

• Diffusion steps: 1000
• Rescale learned sigmas: False
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Figure 7: Random samples from scratch with MT-Diffusion by masked-image training on ImageNet-
128×128.

• Rescale timesteps: False

• Noise schedule: cosine

• #channels: 192

• #res blocks: 3

• Learning rate: 7.0e-5

• Batch size: 80

More random samples from scratch and image restoration results from both random masking and
half masking are illustrated in Figure 7, 8, 9 and 10.
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E.3 MT-DIFFUSION FOR JOINT IMAGE-LABEL GENERATION MODELING

In this task, the modality data are discrete labels. We use the original U-Net as the encoder, which
tasks a noisy image, a label and a timestep as input. For simplicity, we set the noisy image and the
timestep to be zeros, although we believe better results can be obtained by jointly encoding with such
information. For decoders, we proposes two options, one go out of the middle block of the U-Net
and the other go out of the output block, as described in the main text. For the one from the middle
block, we simply add one fully connected layer to define the decoder; and for the one from the output
block, we adopt the pre-defined classifier from the codebase dif as the decoder. We adopt the default
hyper-parameters for training the models, if not specified below. First, for MT-Diffusion-M:

• Diffusion steps: 1000
• Rescale learned sigmas: False
• Rescale timesteps: False
• Noise schedule: cosine
• #channels: 192
• #res blocks: 3
• Learning rate: 7.0e-5
• Batch size: 75

The setting for MT-Diffusion-E is the same as MT-Diffusion-M, except with some extra hyper-
parameters for the pre-difined classifier:

• Classifier_attention_resolutions: ( 32,16,8)
• Classifier_depth: 4
• Classifier_pool: attention
• Classifier_resblock_updown: True
• Classifier_use_scale_shift_norm: True

E.4 MT-DIFFUSION FOR JOINT IMAGE-REPRESENTATION GENERATION MODELING

Task description and encoder-decoder design Finally, we apply MT-Diffusion for joint image-
representation generation. The setting is similar to the image-label generation setting in Section 4.2,
by replacing the label data with image representation from the CLIP model Radford et al. (2021).
Similarly, we use the original U-Net as the encoder for image representations via the cross-attention
mechanism. For the decoder, we append a two-layer MLP to the output of the middle block of the
U-Net, which is expected to output image representations. The MLP project the tensor from middle
block to dimension of 1024, followed by a ReLU layer, and finally another layer output tensor of
1024. For MT-Diffusion for Joint Image-Representation:

• Diffusion steps: 1000
• Learning rate: 1.0e-5
• Batch size: 2048

Results We conduct large-scale experiments based on the pretrained stable diffusion model Rom-
bach et al. (2022)§, by continuing finetuning the model on the LAION dataset Schuhmann et al.
(2022) with our MT-Diffusion. We adopt the default hyperparameter setting as that in the codebase.
Due to the large-scale nature, it is challenging to make fair quantitative comparisons with related
methods. Thus, we only show some generated examples from our method, and leave more extensive
comparisons as future work. Some randomly generated examples are shown in Figure 11 and 12,
demonstrating impressive generated quality results.

We also provide a visulized comparison between our MT-diffusion with the stable diffusion baseline
in Figure 13 and 14. From the generated images, it appears that our method can understand the
semantic meaning of the images and generate better looking images.

§https://huggingface.co/stabilityai/stable-diffusion-2
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E.5 DISCUSSION

Computation Efficiency Our multi-modal setting only adds small modality heads to decode back
to the modality space. In our two-modality setting, the additional computational overhead is minimal,
amounting to approximately 10% more training time per iteration than a pure single-task diffusion
model. Importantly, our model remains significantly more efficient than training two individual
diffusion models for the two modalities separately in terms of both time and storage efficiency.

Extra Experiments During the rebuttal, we try to design new experiments to demonstrate 1) our
model is better than a pure condition model on two modalities; 2) negative transfer phenomenon in
our model.

For 1), we compare our model with a pure condition model that learns to recover images from random
masked images. We run the experiments on the small CIFAR-10 dataset. We observe that our model
can converge faster than the pure conditional baseline, while both converge to comparable final results
in terms of both IS and FID scores. However, we would like to emphasize that our model not only can
do conditional generation, but also joint generation for multiple modals. Thus, our model represents
a more flexible generative model framework.

For 2), we plan to test our model on more tasks and modallities. Specifically, we plan to train
our model on 5 tasks to simultaneously learning to generate original images„ masked images,
corresponding captions, random captions, and class labels. After spending significant efforts in
implementation, we find it takes too much work to finish the experiment. In addition, we are in lack
of GPU resources. Thus, unfortunately, we have to postpone this large-scale experiment. However,
we wish to point out that our current results actually have the implications that more similar tasks tend
to have more positive transfers. For example, comparing the following two settings indicated in Table
2: 1) simultaneously generating images and the corresponding masked images; 2) simultaneously
generating images and the corresponding labels. The former two tasks are considered closer as
they are in the same data space. And from Table 2, we can clearly see that the former setting
(Generation with Masked-Image Training (Section 4.1)) outperforms the latter one (Generation with
Joint Image-Label Modeling (Section 4.2)), indicating there are more positive transfers in the former
setting.
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Figure 8: Random samples from scratch with MT-Diffusion by masked-image training on ImageNet-
64×64.
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Figure 9: Random samples for image restoration from random masking on ImageNet-64×64. In each
block, the three images are original image, masked image and restored image, respectively.
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Figure 10: Random samples for image restoration from half masking on ImageNet-64×64. In each
block, the first image is the masked image, the rest three are different restored imaegs.
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Smiling sloth wearing a leather jacket, a 
cowboy hat and a kilt.

Young badger delicately sniffing a yellow 
rose, richly textured oil painting.

A bird's- eye view of a mountain with tall 
trees and a clean-water lake.

A car is driving down a curvy road with 
flowers blooming on the road sides.

A church with beautiful landscape A dragon wearing a karate suit

A laptop screen showing a bunch of 
photographs.

A home built in a huge Soap bubble, windows, doors, 
porches, awnings, middle of SPACE, cyberpunk lights.

A dream of a distant galaxy, by caspar david
friedrich, matte painting trending on artstation

A lone tree standing tall against a starry 
night sky.

A painting of a squirrel eating a burger. A photo of llama wearing sunglasses standing on the 
deck of a spaceship with the Earth in the background.

Figure 11: Random samples for text-to-image generation finetuned on stable diffusion v2.
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A beautiful photograph of a girl with Switzerland 
landscape in the background with trees.

A developer working in an office, 
photo, detailed image A hedgehog using a calculator. A night sky filled with stars above a 

turbulent sea with giant waves.

A photo of an astronaut riding a horse in the forest. 
There is a river in front of them with water lilies. A red colored dog. A rustic cabin sits on the edge of a giant lake. 

Wildflowers dot the meadow around the cabin and lake. A squirrel driving a toy car.

A rustic wooden coffee table adorned with 
scented candles and many books

A small chair sits in front of a table on the wooden 
floor. There is a bookshelf nearby the window.

A sunset over a mountain range, vector image. A watercolor painting of a chair that looks like an 
octopus.

A street sign that reads “Amazon”. An epic painting of Gandalf the Black summoning 
thunder and lightning in the mountain.

An extremely angry bird. An illustration of a slightly conscious 
neural network.

An image of an animal half mouse half octopus. An impressionist oil painting of a Canadian man 
riding a moose through a forest of maple trees

An oil painting of a latent space. City center public park, modern landscape architectural design for 
industrialpunk, water in the middle, dramatic lighting and composition

Close-up portrait of a smiling businesswoman holding 
a cell phone, oil painting in the style of Rembrandt

Dense woodland landscape. Dali painting buffalo jumping over Niagara Falls. Racoon reading a book in a library photo close 
shot.

Figure 12: Random samples for text-to-image generation finetuned on stable diffusion v2.
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Transparent glass apple decorated with magical mul4colored 
flowers inside A street sign that reads “Amazon”

A beautiful photograph of a girl with Switzerland landscape 
in the background with trees

A brid's- eye view of a mountain with tall trees and a clean-
water lake

A church with beautiful landscapeA dragon wearing a karate suit

A red colored dogA small chair sits in front of a table on the wooden floor. 
There is a bookshelf nearby the window

MT-Diffusion Stable DiffusionMT-DiffusionStable Diffusion

Figure 13: Visual comparisons between our MT-diffusion (left) and the stable diffusion baseline
(right).
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A squirrel driving a toy car An extremely angry bird

An impressionist oil painting of a Canadian man riding a 
moose through a forest of maple treesAn image of an animal half mouse half octopus

Smiling sloth wearing a leather jacket, a cowboy hat and a 
kiltAn oil painting of a latent space

A watercolor painting of a chair that looks like an octopus An illustration of a slightly conscious neural network

MT-Diffusion Stable DiffusionStable Diffusion MT-Diffusion

Figure 14: Visual comparisons between our MT-diffusion (left) and the stable diffusion baseline
(right).
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