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Abstract

Tables are often created with hierarchies, but001
existing works on table reasoning mainly fo-002
cus on flat tables and neglect hierarchical ta-003
bles. Hierarchical tables challenge table rea-004
soning by complex hierarchical indexing, as005
well as implicit relationships of calculation006
and semantics. We present a new dataset,007
HiTab, to study question answering (QA) and008
natural language generation (NLG) over hi-009
erarchical tables. HiTab is a cross-domain010
dataset constructed from a wealth of statistical011
reports and Wikipedia pages, and has unique012
characteristics: (1) nearly all tables are hierar-013
chical, and (2) questions are not proposed by014
annotators from scratch, but are revised from015
real and meaningful sentences authored by an-016
alysts. (3) to reveal complex numerical reason-017
ing in analyses, we provide fine-grained anno-018
tations of quantity and entity alignment. Ex-019
periment results show that HiTab presents a020
strong challenge for existing baselines and a021
valuable benchmark for future research. Tar-022
geting hierarchical structure, we devise an ef-023
fective hierarchy-aware logical form for sym-024
bolic reasoning over tables. Furthermore, we025
leverage entity and quantity alignment to ex-026
plore partially supervised training in QA and027
conditional generation in NLG, and largely re-028
duce spurious predictions in QA and meaning-029
less descriptions in NLG.030

1 Introduction031

In recent years, there are a flurry of works on rea-032

soning over semi-structured tables, e.g., answering033

questions over tables (Yu et al., 2018; Pasupat and034

Liang, 2015) and generating fluent and faithful text035

from tables (Lebret et al., 2016; Parikh et al., 2020).036

But they mainly focus on simple flat tables and ne-037

glect complex tables, e.g., hierarchical tables. A038

table is regarded as hierarchical if its header ex-039

hibits a multi-level structure (Lim and Ng, 1999;040

1https://www.nsf.gov/statistics/2019/nsf19319/

• Teaching assistantships were most commonly reported as the 
primary mechanism of support for master's students (11%).

Figure 1: A hierarchical table and accompanied de-
scriptions in a National Science Foundation report.1

Chen and Cafarella, 2014; Wang et al., 2020). Hi- 041

erarchical tables are widely used, especially in data 042

products, statistical reports, and research papers in 043

government, finance, and science-related domains. 044

Hierarchical tables challenge QA and NLG due 045

to: (1) Hierarchical indexing. Hierarchical head- 046

ers, such as D2:G3 and A4:A25 in Figure 1, are 047

informative and intuitive for readers, but make cell 048

selection much more compositional than flat tables, 049

requiring multi-level and bi-dimensional indexing. 050

For example, to select the cell E5 (“66.6”), one 051

needs to specify two top header cells, “Master’s” 052

and “Percent”, and two left header cells, “All full- 053

time” and “Self-support”. (2) Implicit calculation 054

relationships among quantities. In hierarchical 055

tables, it is common to insert aggregated rows and 056

columns without explicit indications, e.g., total 057

(columns B,D,F and rows 4,6,7,20) and proportion 058

(columns C,E,G, which challenge precise numeri- 059

cal inference. (3) Implicit semantic relationships 060

among entities. There are various cross-row, cross- 061

column, and cross-level entity relationships, but 062

lack explicit indications, e.g., “source” and “mecha- 063
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nism” in A2 describe A6:A19 and A20:A25 respec-064

tively, and D2 (“Master’s”) and F2 (“Doctoral”)065

can be jointly described by a virtual entity, “De-066

gree”. How to identify semantic relationships and067

link entities correctly is also a challenge.068

In this paper, we aim to build a dataset for hier-069

archical table QA and NLG. But without sufficient070

data analysts, it’s hard to ensure questions and de-071

scriptions are meaningful and diverse (Gururangan072

et al., 2018; Poliak et al., 2018). Fortunately, large073

amounts of statistical reports are public from a vari-074

ety of organizations (StatCan; NSF; Census; CDC;075

BLS; IMF), containing rich hierarchical tables and076

textual descriptions. Take Statistics Canada (Stat-077

Can) for example, it consists of 6, 039 reports in078

27 domains authored by over 1,000 professions.079

Importantly, since both tables and sentences are080

authored by domain experts, sentences are natural081

and reflective of real understandings of tables.082

To this end, we propose a new dataset, HiTab,083

for QA and NLG on hierarchical tables. (1) All sen-084

tence descriptions of hierarchical tables are care-085

fully extracted and revised by human annotators.086

(2) It shows that annotations of fine-grained and087

lexical-level entity linking significantly help table088

QA (Lei et al., 2020; Shi et al., 2020), motivat-089

ing us to align entities in text with table cells.090

In addition to entity, we believe aligning quanti-091

ties (Ibrahim et al., 2019), especially composite092

quantities (computed by multiple cells), is also im-093

portant for table reasoning, so we annotate under-094

lying numerical relationships between quantities in095

text and table cells, as Table 1 shows. (3) Since real096

sentences in statistical reports are natural, diverse,097

and reflective of real understandings of tables, we098

devise a process to construct QA pairs based on099

existing sentence descriptions instead of asking an-100

notators to propose questions from scratch.101

HiTab presents a strong challenge to state-of-the-102

art baselines. For the QA task, MAPO (Liang et103

al., 2018) only achieves 29.2% accuracy due to the104

ineffectiveness of the logical form customized for105

flat tables. To leverage the hierarchy for table rea-106

soning, we devise a hierarchy-aware logical form107

for table QA, which shows high effectiveness. We108

propose partially supervised training given anno-109

tations of linked mentions and formulas, which110

helps models to largely reduce spurious predictions111

and achieve 45.1% accuracy. For the NLG task,112

models also have difficulties in understanding deep113

hierarchies and generate complex analytical texts.114

We explore controllable generation (Parikh et al., 115

2020), showing that conditioning on both aligned 116

cells and calculation types helps models to generate 117

meaningful texts. 118

2 Dataset Construction and Analysis 119

We design an annotation process with six steps. To 120

well-handle the annotation complexity, we recruit 121

18 students or graduates (13 females and 5 males) 122

in computer science, finance, and English majors 123

from top universities, and provide them with com- 124

prehensive online training, documents, and QAs. 125

Labeling totally spends 2,400 working hours, and 126

ethical considerations can be found in Section 8. 127

2.1 Hierarchical Table Collection 128

We select two representative organizations, Statis- 129

tics Canada (StatCan) and National Science Foun- 130

dation (NSF), that are rich of statistical reports. 131

Different from (Census; CDC; BLS; IMF) that 132

only provide PDF reports where table hierarchies 133

are hard to extract precisely (Schreiber et al., 2017), 134

StaCan and NSF also provide HTML reports, in 135

which cell information such as text and formats can 136

be extracted in precise using HTML tags. 137

First, we crawl English HTML statistical reports 138

published in recent five years from StatCan (1, 083 139

reports in 27 well-categorized domains) and NSF 140

(208 reports from 11 organizations in science foun- 141

dation domain). We merge StatCan and NSF and 142

get a total of 28 domains. In addition, ToTTo con- 143

tains a small proportion (5.03%) of hierarchical 144

tables, so we include them to cover more domains 145

from Wikipedia. To keep the balance between sta- 146

tistical reports and Wikipedia pages, we only ran- 147

domly include 40% (1, 851) of tables in ToTTo. 148

Next, we transform HTML tables to spreadsheet 149

tables using a preprocessing script. Since spread- 150

sheet formula is easy to write, execute, and check, 151

the spreadsheet is naturally a great annotation tool 152

to align quantities and answer questions. To enable 153

correct formula execution, we normalize quantities 154

in data cells by excluding surrounding superscripts, 155

internal commas, etc. Super small or large tables 156

are filtered out (Appendix A.1 gives more details). 157

2.2 Sentence Extraction and Revision 158

In this step, annotators manually go through sta- 159

tistical reports and extract sentence descriptions 160

for each table. Sentences consisting of multiple 161

semantic-independent sub-sentences will be care- 162
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Table 1: Examples of the annotation process. All sentences describe the table in Figure 1.

fully split into multiple ones. Annotators are in-163

structed to eliminate redundancy and ambiguity164

in sentences through revisions including decontex-165

tualization and phrase deletion like (Parikh et al.,166

2020). Fortunately, most sentences in statistical167

reports are clean and fully supported by table data,168

so few revisions are needed to get high-quality text.169

2.3 Entity and Quantity Alignment170

In this phase, annotators are instructed to align men-171

tions in text with corresponding cells in tables. It172

has two parts, entity alignment and quantity align-173

ment, as shown in Table 1. For entity alignment, we174

record the mappings from entity mentions in text to175

corresponding cells. Single-cell quantity mentions176

can be linked similar with entity mentions, but com-177

posite quantity mentions are calculated from two or178

more cells through operators like max/sum/div/diff179

(Table 2). The spreadsheet formula is powerful180

and easy-to-use for tabular data calculation, so we181

use the formula to record the calculations process182

of composite quantities in text, e.g., ‘10 points183

higher’ (=G23-G24). Although quantities are often184

rounded in descriptions, we neglect rounding and185

refer to precise quantities in table cells.186

2.4 Converting Sentences to QA Pairs187

Existing QA datasets instruct annotators to propose188

questions from scratch, but it’s hard to guarantee189

the meaningfulness and diversity of proposed ques-190

tions. In HiTab, we simply revise declarative sen-191

tences to QA pairs. For each sentence, annotators192

need to identify a target key part to question about193

(according to the underlying logic), then convert194

Operators Formula template (ranges are placeholders)
opposite, percent =-A5, =B2%
kth-argmax/argmin =XLOOKUP(SMALL(D1:D3, k), D1:D3, A1:A3)
pair-argmax/argmin =IF(B1>B2, A1, A2)
sum, average =SUM(D2:D4), =AVERAGE(D2:D4)
max, count =MAX(D2:D4), =COUNT(D2:D4)
product, diff, div =D3*D4, =D3-D4, =D3/D4

Table 2: Example operators and formula templates.

it to the QA form. All questions are answered by 195

formulas that reflect the numerical inference pro- 196

cess. For example, the ‘XLOOKUP’ operator is 197

frequently used to retrieve the header cells of su- 198

perlatives, as shown in Table 1. To keep sentences 199

as natural as they are, we do not encourage unnec- 200

essary sentence modification during the conversion. 201

If an annotator finds multiple ways to question re- 202

garding a sentence, she only needs to choose one 203

way that best reflects the overall meaning. 204

2.5 Regular Inspections and the Final Review 205

We ask two most experienced annotators to perform 206

regular inspections and the final review. (1) In the 207

labeling process, they regularly sample annotations 208

(about 10%) from all annotators to give timely feed- 209

back on labeling issues. (2) Finally, they review 210

all annotations and fix labeling errors. Also, to 211

assist the final review, we write a script to automat- 212

ically identify spelling issues and formula issues. 213

To double check the labeling quality before the fi- 214

nal review, we study the agreement of annotators 215

by collecting and comparing annotations on a ran- 216

domly sampled 50 tables from two annotators. It 217

shows 0.89 and 0.82 for quantity and entity align- 218

ment in Fleiss Kappa respectively, which are re- 219

garded as “almost perfect agreement” (Landis and 220

Koch, 1977), and 64.5 in BLEU-4 after sentence 221

revision, which also indicates high agreement. 222

2.6 Hierarchy Extraction 223

We follow existing work (Lim and Ng, 1999; Chen 224

and Cafarella, 2014; Wang et al., 2020) and use the 225

tree structure to model hierarchical headers. Since 226

cell formats such as merging, indentation, and font 227

bold, are commonly used to present hierarchies, we 228

adapt heuristics in (Wang et al., 2020) to extract top 229

and left hierarchical trees, which has high accuracy. 230

We go through 100 randomly sampled tables in 231

HiTab, 94% of them are precisely extracted. Figure 232

7 in Appendix shows an illustration. 233
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Dataset Tables
Data source Fine-grained alignment QA and NLG tasks

Table
Question Real sentences

Entity Quantity QA NLG Questions
Words per

Sentences
or sentence revised per table question

WTQ (Pasupat and Liang, 2015) 2,108 Wikipedia Post-created - - - Yes - 22,033 10.0 -
WikiSQL (Zhong et al., 2017) 26,521 Wikipedia Post-created - - - Yes - 80,654 11.7 -
Spider (Yu et al., 2018) 1,020 College data,WikiSQL Post-created - - - Yes - 10,181 13.2 -
HybridQA (Chen et al., 2020b) 13,000 Wikipedia Post-created - - - Yes - 69,611 18.9 -
TAT-QA (Zhu et al., 2021) 2,757 Finantial reports (PDF) Post-created - - - Yes - 16,552 12.5 -
FINQA (Chen et al., 2021) 2,776 Finantial reports (PDF) Post-created - - - Yes - 8,281 16.6 -
DART (Nan et al., 2020) 5,623 WTQ,WikiSQL,... Post-created - - - - Yes - - 82,191
LogicNLG (Chen et al., 2020a) 7,392 Wikipedia Post-created - - - - Yes - - 37,015
ToTTo (Parikh et al., 2020) 83,141 Wikipedia Pre-existing 1.4 - - - Yes - - 120,000
NumericNLG (Suadaa et al., 2021) 1,300 Scientific papers (ACL) Pre-existing 3.8 - - - Yes - - 4,756
HiTab 3,597 Stat. reports, Wiki. Pre-existing 5.0 (reports) Yes Yes Yes Yes 10,686 16.5 10,686

Table 3: Dataset statistics and comparison.

Crime and justice 
20.9%

Health 
16.7%

NSF 
8.6%

Children
7.4%

Immigration 
6.4%

Labor
5.3%

Income
4.3%

Education
6.2%

Others
24.2%

Cell selection
by 2 dims 
24.9%

Arithmetic 
16.8%

Cell selection
by 3 dims 
17.6%

Cell selection
by >3 dims 
17.5%

Comparative 
13.8%

Superlative 
9.2%

Figure 2: Distribution of domains and operations in
StatCan and NSF. Cell selection by k dims means that
header cells in k levels are used in cell selection.

Figure 3: A meaningful but challenging case in HiTab.

2.7 Dataset Statistics and Comparison234

Table 3 shows a comprehensive comparison of re-235

lated datasets. HiTab is not among the largest ones,236

but (1) it is the first dataset to study table reasoning237

over hierarchical tables (accounting for 98.1% ta-238

bles in HiTab); (2) it is annotated with fine-grained239

entity and quantity alignment; (3) compared with240

TAT-QA, FinQA, and NumericNLG that are single-241

domain, HiTab is cross-domain; (4) the number242

of real descriptions per table (5.0) in statistical re-243

ports (HiTab) is much richer than 1.4 in Wikipedia244

(ToTTo) and 3.8 in scientific papers, contributing245

more analytical aspects per table.246

Figure 2 analyzes this dataset by domains and247

operations: domains are diverse, covering 28248

domains from statistical reports (fully listed in249

Appendix A.2) and other open domains from250

Wikipedia; a large proportion of questions involves251

complex cell selection and numerical operations.252

3 Hierarchical Table QA 253

Table QA is essential for table understanding, doc- 254

ument retrieval, ad-hoc search, etc. Hierarchical 255

tables are quite common in these scenarios like 256

in webpages and reports, while current Table QA 257

tasks and methods focus on simple flat tables. 258

Problem Statement Hierarchical Table QA is 259

defined as follows: given a hierarchical table t and 260

a question x in natural language, output answer y. 261

The question-answer pair should be fully supported 262

by the table. Our dataset D = {(xi, ti, yi)}, i ∈ 263

[1, N ] is a set of N question-table-answer triples. 264

Table QA is usually formulated as a semantic 265

parsing problem (Pasupat and Liang, 2015; Liang 266

et al., 2017), where a parser converts questions into 267

logical forms, and an executor executes it to pro- 268

duce the answer. However, existing logical forms 269

for Table QA (Pasupat and Liang, 2015; Liang et 270

al., 2017; Yin et al., 2020) are customized for flat 271

or database tables. The three challenges mentioned 272

in Section 1 make QA more difficult on hierar- 273

chical tables, i.e., hierarchical indexing, implicit 274

calculation and semantic relationships. 275

3.1 Hierarchy-aware Logical Forms 276

To this end, we propose a hierarchy-aware logical 277

form that exploits table hierarchies to mitigate these 278

challenges. Specifically, we define region as the 279

operating object, and propose two functions for 280

hierarchical region selection. 281

Definitions Given tree hierarchies of tables ex- 282

tracted in Section 2.6, we define header as a header 283

cell (e.g., A7(“Federal”) in Figure 1), and level as a 284

level in the left/top tree (e.g., A5,A6,A20 are on the 285

same level). Existing logical forms on tables treat 286

rows as operating objects and columns as attributes, 287

and thus can not perform arithmetic operations on 288

cells in the same row. However, a row in hierar- 289

chical tables is not necessarily a subject or record, 290

thus operations can be applied on cells in the same 291

row. Motivated by this, we define region as our 292

operating object, which is a data region in table 293
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indexed by both left and top headers (e.g., B6:C19294

is a rectangular region indexed by A6,B2). The295

logical form execution process is divided into two296

phases: region selection and region operation.297

Region Selection We design two functions298

(filter tree h) and (filter level l) to do region299

selection, where h is a header, l is a level. Func-300

tions can be stringed up: the subsequent function301

applies on the return region of the previous function.302

(filter tree h) selects a sub-tree region according303

to a header cell h: if h is a leaf header (e.g., A8), the304

selected region should be the row/column indexed305

by h (row 8); if h is a non-leaf header (e.g., A7),306

the selected region should be the rows/columns in-307

dexed by both h and its children headers (row 7-16).308

(filter level l) selects a sub-tree from the input309

tree according to a level l and return the sub-region310

indexed by headers on level l. These two functions311

mitigate aforementioned three challenges: (1) hier-312

archical indexing is achieved by applying these two313

functions sequentially; (2) with filter level , data314

with different calculation types (e.g., rows 4-5) will315

not be co-selected, thus not incorrectly operated316

together; (3) level-wise semantics can be captured317

by aggregating header cell semantics (e.g., embed-318

dings) on this level. Some logical form execution319

examples are shown in Appendix B.2.320

Region Operation Operators are applied on the321

selected region to produce the answer. We define322

19 operators, mostly following MAPO (Liang et323

al., 2018), and further include some operators (e.g.,324

difference rate) for hierarchical tables. Complete325

logical form functions are shown in Appendix B.1.326

3.2 Experimental Setup327

3.2.1 Baselines328

We present baselines in two branches. One is logi-329

cal form-based semantic parsing, and the other is330

end-to-end table parsing without logical forms.331

Neural Symbolic Machine (Liang et al., 2017) is332

a powerful semantic parsing framework consisting333

of a programmer to generate programs from NL334

and save intermediate results, and a computer to335

execute programs. We replace the LSTM encoder336

with BERT (Devlin et al., 2018), and implement337

a lisp interpreter for our logical forms as executor.338

Table is linearized by placing headers in level order,339

which is shown in detail in Figure 7.340

TaPas (Herzig et al., 2020) is a state-of-the-art end-341

to-end table parsing model without generating logi-342

cal forms. Its power to select cells and reason over343

tables is gained from its pretraining on millions of 344

tables. To fit TaPas input, we convert hierarchical 345

tables into flat ones following WTQ (Pasupat and 346

Liang, 2015). Specifically, we unmerge the cells 347

spanning many rows/columns on left/top headers 348

and duplicate the contents into unmerged cells. The 349

first top header row is specified as column names. 350

3.2.2 Weak Supervision 351

In weak supervision, the model is trained with QA 352

pairs, without golden logical forms. For NSM, we 353

compare three widely-studied learning paradigms. 354

MML (Dempster et al., 1977) maximizes 355

marginal likelihood of observed programs. REIN- 356

FORCE (Williams, 1992) maximizes the reward 357

of on-policy samples. MAPO (Liang et al., 2018) 358

learns from programs both inside and outside buffer 359

and samples efficiently by systematic exploration. 360

All methods require consistent programs for 361

learning or warm start. We randomly search 15000 362

programs per sample before training. The pruning 363

rules are shown in Appendix B.5. Finally, 6.12 364

consistent programs are found for each sample. 365

For TaPas, we use the pre-trained version and fol- 366

low its weak supervised training process on WTQ. 367

3.2.3 Partial Supervision 368

Given labeled entity links, quantity links, and cal- 369

culations (from the formula), we further explore to 370

guide training in a partially supervised way. These 371

three annotations indicate selected headers, region, 372

and operators in QA. For NSM, we exploit them to 373

prune spurious programs, i.e., incorrect programs 374

that accidentally produce correct answers, in two 375

ways. (1) When searching consistent programs, 376

besides producing correct answers, programs are 377

required to satisfy at least two constraints. In this 378

way, the average consistent programs reduces from 379

6.12 to 2.13 per sample. (2) When training, satis- 380

fying each condition will add 0.2 to the original 381

binary 0/1 reward. Sampled programs with reward 382

r ≥ 1.4 are added to the program buffer. 383

For TaPas, we additionally provide answer coor- 384

dinates and calculation types in training following 385

its WikiSQL setting. 386

3.2.4 Evaluation Metrics 387

We use Execution Accuracy (EA) as our metric 388

following (Pasupat and Liang, 2015), measuring 389

the percentage of samples with correct answers. 390

We also report Spurious Program Rate to study the 391

percentage that incorrect logical forms produce cor- 392
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Weak Supervision
Method Dev Test %Spurious
MAPO w. original logical form 31.9 29.2 -
TaPas w/o. logical form 39.7 38.9 -
MML w. h.a. logical form 38.9 36.7 22.7
REINFORCE w. h.a. logical form 42.7 38.4 39.3
MAPO w. h.a. logical form 43.5 40.7 19.0

Partial Supervision
TaPas w/o. logical form 41.2 40.1 -
MML w. h.a. logical form 45.4 45.1 10.3
REINFORCE w. h.a. logical form 44.0 39.7 23.9
MAPO w. h.a. logical form 44.8 44.3 10.7

Table 4: QA execution accuracy (EA) on dev/test and
spurious program rate of 150 samples on dev. h.a.
stands for hierarchy-aware.

rect answer. Since we do not have golden logical393

forms, we manually annotate logical forms for 150394

random samples in dev set for evaluation.395

3.2.5 Implementations396

We split 3, 597 tables into train (70%), dev (15%)397

and test (15%) with no overlap. We download398

pre-trained models from huggingface2. For NSM,399

we utilize ‘bert-base-uncased’, and fine-tune 20K400

steps on HiTab. Beam size is 5 for both training401

and inference. To test MAPO original logical form,402

we convert flatten tables as we do for TaPas. For403

TaPas, we adopt the PyTorch (Paszke et al., 2019)404

version in huggingface. We utilize ‘tapas-base’,405

and fine-tune 40 epochs on HiTab. All experiments406

are conducted on a server with four V100 GPUs.407

3.3 Results408

Table 4 summarizes our evaluation results.409

Weak Supervision First, MAPO with our410

hierarchy-aware logical form outperforms that us-411

ing its original logical form by a large margin412

11.5%, indicating the necessity of designing a log-413

ical form leveraging hierarchies. Second, MAPO414

achieves the best EA (40.7%) with the lowest spuri-415

ous rate (19%). But >50% questions are answered416

incorrectly, proving QA on HiTab is challenging.417

Third, though TaPas benefits from pretraining on418

tables, it performs worse than the best logical form-419

based method without table pretraining. Detailed420

level-wise results are shown in Appendix B.4.421

Partial Supervision From Table 4, we can con-422

clude the effectiveness of partial supervision in two423

aspects. First, it improves EA. The model learns424

how to deal with more cases given high-quality pro-425

grams. Second, it largely lowers %Spurious. The426

model learns to generate correct programs instead427

of some tricks. MML, whose performance highly428

2https://huggingface.co/transformers/

depends on the quality of searched programs, bene- 429

fits the most (36.7% to 45.1%), indicating partial 430

supervision improves the quality of consistent pro- 431

grams by pruning spurious ones. However, TaPas 432

does not gain much improvements from partial su- 433

pervision, which we will discuss in error analysis. 434

Error Analysis For TaPas, 98.7% of success 435

cases are cell selections, which means TaPas ben- 436

efits little from partial supervision. This may be 437

caused by: (1) TaPas does not support some com- 438

mon operators on hierarchical table like difference; 439

(2) the coarse-to-fine cell selection strategy first 440

selects columns then cells, but cells in different 441

columns may also aggregate in hierarchical tables. 442

For MAPO under partial supervision, we analyze 443

100 error cases. Error cases fall into four categories: 444

(1) entity missing (23%): the header to filter is not 445

mentioned in question, where a common case is 446

omitted Total; model failure, including (2) failing 447

to select correct regions (38%) and (3) failing to 448

generate correct operations (20%); (4) out of cov- 449

erage (19%): question types unsolvable with the 450

logical form, which is explained in Appendix B.1. 451

Spurious programs occur mostly in two patterns. 452

In cell selection, there may exist multiple data cells 453

with correct answers (e.g., G9,G16 in Figure 1), 454

while only one is golden. In superlatives, the model 455

can produce the target answer by operating on dif- 456

ferent regions (e.g., in both region B21:B25 and 457

B23:B25, B23 is the largest). 458

4 Hierarchical Table to Text 459

4.1 Problem Statement 460

Some works formulate table-to-text as a summa- 461

rization problem (Lebret et al., 2016; Wiseman 462

et al., 2017). However, since a full table often 463

contains quite rich information, there lack explicit 464

signals on what to generate and renders the task 465

unconstrained and the evaluation difficult. On the 466

other hand, some recent works propose control- 467

lable generation to enable more specific and logi- 468

cal generation: (1) LogicNLG generates a sentence 469

conditioned on a logical form guiding symbolic 470

operations over given cells, but writing correct log- 471

ical forms as conditions is challenging for common 472

users who are more experienced to write natural 473

language directly, thus restricting the application 474

to real scenario; (2) ToTTo generates a sentence 475

given a table as well as a set of highlighted cells. 476

In ToTTo’s formulation, the condition of cell se- 477

lection is much easier to specify than the logical 478
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form, but it neglects symbolic operations which are479

critical for generating some analytical sentences480

concerning numerical reasoning in HiTab.481

We place HiTab as a middle-ground of ToTTo482

and LogicNLG to make the task more controllable483

than ToTTo and closer to real application than Log-484

icNLG. In our setting, given a table, the model485

generates a sentence conditioned on a group of se-486

lected cells (similar to ToTTo) and operators (much487

easier to be specified than logical forms). Although488

we use two strong conditions to guide symbolic489

operations over cells, there still leaves a consider-490

able amount of content planning to be done by the491

model, such as retrieving contextual cells in a hier-492

archical table given selected cells, identifying how493

operators are applied on given cells, and composing494

sentences in a faithful and logical manner.495

We now define our task as: given a hierarchical496

table T , highlighted cells C, and specified opera-497

tors O, generating a faithful description S. The498

dataset H = (Ti, Si), i ∈ [1, N ] is a set of N499

table-description instances. Description Si is a sen-500

tence about a table Ti and involves a series of op-501

erations Oi = [Oi1, Oi2, . . . , Oin] on certain table502

cells Ci = [ci1, ci2, . . . , cim].503

4.2 Controlled Generation504

4.2.1 With Highlighted Cells505

An entity or quantity in text can be supported by506

table cells if it is directly stated in cell contents, or507

can be logically inferred by them. Different from508

only taking data cells as highlighted cells (Parikh et509

al., 2020), we also take header cells as highlighted510

cells, and it is usually the case for superlative ARG-511

type operations on a specific header level in hier-512

archical tables, e.g., “Teaching assistantships” is513

retrieved by ARGMAX in Figure 1. In our dataset,514

highlighted cells are extracted from annotations of515

the entity and quantity alignment.516

4.2.2 With Operators517

Highlighted cells can tell the target for text genera-518

tion, but is not sufficient, especially for analytical519

descriptions involving cell operations in HiTab. So520

we introduce to use operators as extra control. It521

contributes to text clarity and meaningfulness in522

two ways. 1) It clarifies the numerical reasoning523

intent on cells. For example, given the same set of524

data cells, applying SUM, AVERAGE, or COUNT525

conveys different meanings thus should yield dif-526

ferent texts. 2) Operation results on highlighted527

cells can be used as additional input sources. Ex- 528

isting seq2seq models are not powerful enough to 529

do arithmetic operations (Thawani et al., 2021), 530

e.g., adding up a group of numbers, and it greatly 531

limits their ability to generate correct numbers in 532

sentences. Explicitly pre-computing calculation 533

results is a promising alternative way to mitigate 534

this gap in seq2seq models. 535

4.2.3 Sub Table Selection and Serialization 536

Sub Table Selection Under controls of se- 537

lected cells and operators, we devise a heuristic 538

to retrieve all contextual cells as a sub table. (1) we 539

start with highlighted cells extracted from our en- 540

tity and quantity alignment, then use the extracted 541

table hierarchy to group the selected cells into the 542

top header, the left header, and the data region. (2) 543

based on the extracted table hierarchy, we use the 544

source set of top and left header cells to include 545

their indexed data cells, and we also use the source 546

set of data cells to include corresponding header 547

cells. (3) we leverage the table hierarchy to include 548

their parent header cells to construct a full set of 549

headers. In the end, we take the union of of them 550

as the result of sub table selection. 551

Serialization On each sub table, we do a row- 552

turn traversal on linked cells and concatenate their 553

cell strings using [SEP] tokens. Operator tokens 554

and calculation results are also concatenated with 555

the input sequence. We also experimented with 556

other serialization methods, such as header-data 557

pairing or template-based method, yet none re- 558

ported superiority over the simple concatenation. 559

Appendix C.1 gives an illustration. 560

4.3 Experiments 561

We conduct experiments by fine-tuning four state- 562

of-the-art text generation methods on HiTab. 563

Pointer Generator (See et al., 2017) A LSTM- 564

based seq2seq model with copy mechanism. While 565

originally designed for text summarization, it is 566

also used in data-to-text (Gehrmann et al., 2018). 567

BERT-to-BERT (Rothe et al., 2020) A trans- 568

former encoder-decoder model (Vaswani et al., 569

2017) initialized with BERT (Devlin et al., 2018). 570

BART (Lewis et al., 2019) A pre-trained denois- 571

ing autoencoder with standard Transformer-based 572

architecture and shows effectiveness in NLG. 573

T5 (Raffel et al., 2019) A transformer-based pre- 574

trained model. It converts all textual language prob- 575

lems into text-to-text and proves to be effective. 576

7



Model Cell Highlight Cell & Calculation

BLEU-4 PARENT BLEU-4 PARENT
Pointer-Generator 5.8 8.8 9.0 10.8
BERT-to-BERT 11.4 16.7 11.7 15.4
BART 17.9 28.0 23.8 31.4
T5 19.5 35.7 26.6 36.9

Table 5: Results of hierarchical-table-to-text.

4.3.1 Evaluation Metrics577

We use two automatic metrics, BLEU and PAR-578

ENT. BLEU (Papineni et al., 2002) is broadly used579

to evaluate text generation. PARENT (Dhingra et580

al., 2019) is proposed specifically for data-to-text581

evaluation that additionally aligns n-grams from the582

reference and generated texts to the source table.583

4.3.2 Experiment Setup584

Samples are split into train (70%), dev (15%), and585

test (15%) sets just the same as the QA task. The586

maximum length of input/output sequence is set to587

512/64. Implementation details of all baselines are588

given in Appendix C.2.589

4.3.3 Experiment Result and Analysis590

As shown in Table 5, first, from an overall point of591

view, both metrics are not scored high. This well592

proves the difficulty of HiTab. It could be caused593

by the hierarchical structure, as well as statements594

with logical and numerical complexity. Second, by595

comparing two controlled scenarios (cell highlights596

& both cell highlights and operators), we see that597

add operators to conditions greatly help models to598

generate descriptions with higher scores, showing599

the effectiveness of our augmented conditional gen-600

eration setting. Third, results on two controlled601

scenarios across baselines are quite consistent. Re-602

placing the traditional LSTM with transformers603

shows large increasing. Leveraging seq2seq-like604

pretraining yields a rise of +6.5 BLEU and +11.3605

PARENT. Lastly, between pretrained transformers,606

T5 reports higher scores over BART, probably for607

T5 is more extensively tuned during pre-training.608

Further, to study the generation difficulty con-609

cerning table hierarchy, we respectively evaluate610

samples at different hierarchical depths, i.e., table’s611

maximum depths in top and left header trees. In612

groups of 2, 3, 4+ depth, BLEU scores 31.7, 26.5,613

and 21.3; PARENT scores 40.9, 36.5, and 31.6.614

The reason could be that, as table headers grow615

deeper, data indexing is more compositional, so it’s616

harder for baselines to identify entity relationships617

and compose logical sentences.618

Method Test Acc.
MAPO w. partial supervision 32.6

BLEU PARENT
T5 w. cell & calculation 16.9 28.8

Table 6: Results of cross-domain evaluation.

5 Related Work 619

Table-to-Text Existing datasets are restricted in 620

flat tables or specific subjects (Liang et al., 2009; 621

Chen and Mooney, 2008; Wiseman et al., 2017; 622

Novikova et al., 2016; Banik et al., 2013; Lebret et 623

al., 2016; Moosavi et al., 2021). The most related 624

table-to-text dataset to HiTab is ToTTo (Parikh et 625

al., 2020), in which complex tables are also in- 626

cluded. There are two main differences between 627

HiTab and ToTTo: (1) in ToTTo, hierarchical tables 628

only account for a small proportion (5%), and there 629

are no indication and usage of table hierarchies. (2) 630

in addition to cell highlights, Hitab conditions on 631

operators that reflect symbolic operations on cells. 632

Table QA mainly focuses on DB tables (Wang 633

et al., 2015; Yu et al., 2018; Zhong et al., 2017) 634

and semi-structured flat tables (Pasupat and Liang, 635

2015; Sun et al., 2016). Recently, there are some 636

datasets on domain-specific table QA (Chen et al., 637

2021; Zhu et al., 2021) and jointly QA over tables 638

and texts (Chen et al., 2020b; Zhu et al., 2021), 639

but hierarchical tables still have not been studied in 640

depth. HiTab explores QA on hierarchical tables. 641

6 Discussion 642

HiTab also presents cross-domain and complicated- 643

calculation challenges. (1) To explore cross- 644

domain generalizability, we randomly split 645

train/dev/test by domains for three times and 646

present the average results of our best methods 647

in Table 6. We found decreases in all metrics in 648

QA and NLG. (2) Figure 3 shows a case that chal- 649

lenges existing methods: performing complicated 650

calculations needs to jointly consider quantity rela- 651

tionships, header semantics, and hierarchies. 652

7 Conclusion 653

We present a new dataset, HiTab, that simultane- 654

ously supports QA and NLG on hierarchical tables. 655

Importantly, we provide fine-grained annotations 656

on entity and quantity alignment. We introduce 657

baselines and conduct comprehensive experiments. 658

Results suggest that HiTab can serve as a challeng- 659

ing and valuable benchmark for future research. 660

8



8 Ethical Considerations661

This work presents HiTab, a free and open English662

dataset for the research community to study table663

question-answering and table-to-text over hierar-664

chical tables. Our dataset contains well-processed665

tables, annotations (QA pairs, target text, and bidi-666

rectionally mappings between entities and quan-667

tities in text and the corresponding cells in table),668

recognized table hierarchies, and source code. Data669

in HiTab are collected from two public organiza-670

tions, StatCan and NSF. Both of them allow sharing671

and redistribution of their public reports, so there672

is no privacy issue. We collect tables and accompa-673

nied descriptive sentences from StatCan and NSF.674

We also include hierarchical tables in Wikipedia.675

We recruit 18 students or graduates in computer676

science, finance, and English majors from top677

universities(13 females and 5 males). Each stu-678

dent is paid $7.8 per hour (above the average local679

payment of similar jobs), totally spending 2, 400680

hours. We finally get 3, 597 tables and 10, 686681

well-annotated sentences. The details for our data682

collection and characteristics are introduced in Sec-683

tion 2.684
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A More Details on Dataset921

A.1 Dataset Preprocessing922

We filter tables using these constraints: (1) num-923

ber of rows and columns are more than 2 and less924

than 64; (2) cell strings have no more than one925

non-ASCII character and 20 tokens; (3) hierarchies926

are successfully parsed via the method in 2.6. (4)927

hierarchies have no more than four levels. Finally,928

85% tables meet all constraints.929

A.2 Domain Distribution930

The full 29 domains of sample distribution in HiTab931

are shown in Figure 4.932

A.3 Annotation Interface933

The annotation interface looks like Figure 8. Since934

spreadsheet formula is easy to write, execute, and935

check, the spreadsheet is naturally a great annota-936

tion tool. Annotators can user the Excel formula937

conveniently for cell linking and calculation in en-938

tity alignment and answering questions.939

B Hierarchical Table QA940

B.1 Logical Form Function List941

We list our logical form functions in Table 9.942

Union selection is required for comparative and943

arithmetic operations. It is achieved by allowing944

variable number of headers in filter tree, where945

“variable” is one or two in practice.946

In our implementation, a function by default947

takes the selected region of last function as in-948

put region to prune search space. We use gram-949

mars to filter left headers before top headers, and950

a (filter level) is necessary after filtering one di-951

rection of tree even when only the leaf level is952

available. And we deactivate order relation func-953

tions (e.g., eq function) and the order argument k954

in argmax/argmin because there are few questions955

in these types and activating them will largely in-956

crease number of spurious programs when search-957

ing.958

The logical form coverage after deactivation959

is 78.3% in 300 iterations of random exploration.960

Some typical question types that can not be covered961

are: (1) scale conversion, e.g., 0.984 to 98.4%, (2)962

operating data indexed by different levels of head-963

ers, e.g., proportion of total, (3) complex composite964

operations, e.g., Figure 3.965

Question Logical Forms
Cell Selection (filter tree 2012)
Q: What is the GDP (filter tree china)

of China in 2012? (filter level LEFT 2)
(filter tree gdp)
(filter level TOP 1)

Superlative (filter tree 2012)
Q: Which country has (filter level LEFT 2)

the highest GDP in 2012? (filter tree gdp)
(filter level TOP 1)
(argmax 1)

Arithmetic (filter tree 2013)
Q: How much more is (filter tree u.s. china)

U.S. GDP higher than (filter level LEFT 2)
China in 2013? (filter tree gdp)

(filter level TOP 1)
(difference)

Table 7: Examples of our logical form. The table to be
questioned is in Fig. 7. LEFT 1 is a symbol for the first
level on the left.

B.2 Examples of Logical Form Execution 966

Take the table in Figure 7 as input table, we demon- 967

strate three types of questions with complete logical 968

forms in Table 7. 969

B.3 Table Linearization 970

We linearize the question and table according to 971

Figure 7. 972

The input is concatenation of question and ta- 973

ble. Table is linearized by putting headers in level 974

order. Each level is led by a [LEVEL] token to 975

gather current level embedding. The first [LEVEL] 976

token stands for level zero of left. Each header is 977

linearized as name | type. name is the tokenized 978

header string. type is the entity type parsed by Stan- 979

ford CoreNLP, which includes “string”, “number”, 980

“datetime” in our case. Headers with the same name 981

will gather token embeddings by mean pooling. 982

B.4 More Experiment Results 983

In Figure 5, we present level-wise accuracy of 984

HiTab QA with MAPO and our hierarchy-aware 985

logical form. The Level in table means sum of left 986

header levels and top header levels. The QA accu- 987

racy degrades when table level increases when table 988

structure becomes more complex, except for tables 989

level = 2, i.e., tables with no hierarchies. The 990

reason level = 2 performs comparatively worse is 991

that only 1.9% tables with hierarchies are seen in 992

HiTab, and thus number of training samples for 993

level = 2 is relatively small. 994
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Figure 4: Proportion of samples in different 29 domains.
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Figure 5: Level-wise QA accuracy and proportion of
samples with MAPO and hierarchy-aware logical form.

B.5 Pruning Rules in Searching995

We use trigger words and POS tags for some func-996

tions in random exploration, which is inspired by997

(Zhang et al., 2017; Liang et al., 2018). Functions998

are allowed to be selected only when triggers ap-999

pear in the question. Triggers are listed in Table 8.1000

C Hierarchical Table to Text1001

C.1 Illustration on controllable generation in1002

hierarchical table to text.1003

Please find the illustration shown in Figure 6.1004

Function Trigger Words
argmax JJR, JJS, RBR, RBS, top,
argmin first, bottom, and last.
max JJS, RBS
min
average average, mean
sum all, combine, total, sum
count how, many, total, number
difference difference, more, than,
difference rate change,compare, JJR
difference rate rev RBR.
proportion times, percent,
proportion rev percentage, fraction

Table 8: Trigger Words for Functions

C.2 Baseline Implementation Details 1005

We perform optimized tuning for baselines using 1006

the following settings. 1007

Pointer Generator (See et al., 2017) A LSTM- 1008

based seq2seq model with copy mechanism. The 1009

model uses two-layer bi-directional LSTMs for the 1010

encoder with 300-dim word embeddings and 300 1011

hidden units. We perform fine-tuning using batch 1012

size 2, learning rate 0.05, and beam size 5. 1013

BERT-to-BERT (Rothe et al., 2020) A trans- 1014

former encoder-decoder model (Vaswani et al., 1015

2017) where the encoder and decoder are both 1016

13



Target text: 
For doctoral students, the proportion of support from research 
assistantships is 10 points higher than that from teaching 
assistantships.

Highlighted cells:
From entity alignment: Doctoral, percent, research assistantships, 
teaching assistantships. From quantity alignment: 37.3, 27,7

Operators:
DIFF

Input sequence after sub table selection and serialization:
[SEP] source and mechanism [SEP] doctoral [SEP] percent [SEP] all 
mechanisms of support [SEP] research assistantships [SEP] 37.3 
[SEP] teaching assistantships [SEP] 27.7 [SEP] DIFF [SEP] 9.6

Figure 6: An illustration on controllable generation.

initialized with BERT (Devlin et al., 2018) by1017

loading the checkpoint named ‘bert-base-uncased’1018

provided by the huggingface/transformers repos-1019

itory. We perform fine-tuning using batch-size 21020

and learning rate 3e−5.1021

BART (Lewis et al., 2019) BART is a pre-1022

trained denoising autoencoder for seq2seq lan-1023

guage modeling. It uses standard Transformer-1024

based architecture and shows effectiveness in NLG.1025

We align model configuration with the BASE ver-1026

sion of BART, and use the model ‘facebook/bart-1027

base’ in huggingface/transformers. During fine-1028

tuning, we use a batch size of 8 and a learning rate1029

of 2e−4.1030

T5 (Raffel et al., 2019) T5 is also a transformer-1031

based pre-training LM. It trains extensively on text-1032

to-text tasks and scores high on generation tasks.1033

We use the pre-trained model ‘t5-base’ in hugging-1034

face/transformers. For fine-tuning, we set batch1035

size to 8 and learning rate to 2e−4.1036

We use a beam size of 5 to search decoded out-1037

puts (sequence lengths range from 8 to 60 tokens)1038
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Figure 7: An QA example table with hierarchy and its linearized input to the encoder. Each level in the hierarchical
header starts with a LEVEL token to learn a level representation. LEFT k means the kth level in the left tree. Each
header cell has a unique header cell representation.

Function Arguments Returns Description
(filter tree h) h: a header a region Select a region indexed by sub-tree of

the given header in the given region.
(filter level l) l: a level a region Select a region indexed by headers on

the given level in the given region.
(argmax k) k: a number a list of headers Find the header(s) with k-th largest/
(argmin k) smallest value in the region. [Input region

should have one row or one column of data]
(max l) l: a level a region Maximum/minimum/sum/average of the given
(min l) region, grouping by headers of the given level,
(sum l) i.e., data values aggregate according to their
(average l) header strings on the given level.
(count l) l: a level a number Count the number of headers on the given

level of given region.
(difference) a number Absolute difference, proportion and
(proportion) difference rate of given two elements
(proportion rev) a and b in region. rev means changing
(difference rate) order of operands. e.g., proportion applies
(difference rate rev) b/a and proportion rev applies a/b.

[Input region should have two data elements]
(greater than n) n: a number a list of headers Find the header(s) with data value(s) that have
(greater eq than n) certain order relation with the given number.
(less than n) [Input region should have one row or one
(less eq than n) column of data]
(eq n)
(not eq n)
(opposite) a number Take opposite value of data in a given region.

[Input region should have one data element]

Table 9: Function list of hierarchy-aware logical form
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Figure 8: Annotation interface in Excel.
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