SafeGen: Benchmarking Inference-Time Methods for Privacy-Preserving Text
Generation

Aravilli Atchuta Ram

Abstract

Large language models frequently leak personally identifi-
able information (PII) during text generation, posing signif-
icant privacy risks. While post-hoc filtering methods (e.g.,
Presidio, NeMo Guardrails) are widely adopted, they can
only detect and mask PII after generation, leaving a tempo-
ral window for privacy violations during streaming inference.
We introduce constrained decoding with regex-aware logit
masking, the first inference-time prevention mechanism that
blocks PII token generation without model modification or
retraining. Our approach maintains a rolling window of gen-
erated text, applies pattern detection for structured PII, and
masks probability distributions over tokens that would extend
detected patterns. Evaluating on the pii-masking-400k dataset
and a synthetic dataset, we demonstrate substantial leakage
reduction with competitive latency overhead. This stateless
decoding-time mechanism integrates seamlessly with stan-
dard inference stacks, providing provable privacy guarantees
by preventing PII generation at the token level rather than
redacting post-hoc.

Introduction

Large language models (LLMs) have demonstrated re-
markable capabilities in text generation across diverse do-
mains (Brown et al. 2020; Touvron et al. 2023). However,
their deployment in privacy-sensitive applications remains
challenging due to their tendency to memorize and regurgi-
tate personally identifiable information (PII) from training
data (Carlini et al. 2021; Nasr et al. 2023). Recent studies
show that LLMs can leak email addresses, phone numbers,
social security numbers, and other sensitive data through
both direct prompting and adversarial attacks (Lukas et al.
2023).

Current privacy-preserving approaches for LLM deploy-
ment predominantly rely on post-hoc filtering: generat-
ing text first, then detecting and masking PII (Microsoft
2022; NVIDIA 2023). Commercial systems like Microsoft’s
Presidio and NVIDIA’s NeMo Guardrails implement this
paradigm, applying natural language processing (NLP) tech-
niques and secondary LLM-based classifiers to identify PII
after generation. While these methods offer flexibility, they
operate under an inherent limitation: PII must be generated

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Visa

before it can be detected, creating a temporal window where
sensitive information exists in memory and logs.

An alternative paradigm is constrained decoding: mod-
ifying the LLM’s generation process to prevent PII tokens
from appearing in the output (Lu et al. 2022; Qin et al.
2022). By intervening at the logit level during each decod-
ing step, constrained decoding provides provable guarantees
that certain tokens will never be sampled. Recent work has
applied this technique for structured generation (Willard and
Louf 2023) and content safety (Schick, Udupa, and Schiitze
2021), but its efficacy for PII protection remains uncharac-
terized.

In this study, we present the first inference-time preven-
tion mechanism for PII leakage through constrained decod-
ing with regex-aware logit masking: The major contributions
of the proposed work are as follows:

* We introduce regex-based logit masking over a rolling
text window that suppresses token distributions extend-
ing detected PII patterns without model modification.

* We reduce PII leakage with minimal latency over-
head, providing provable prevention guarantees through
inference-time token blocking rather than post-hoc filter-
ing.

Related Work

Carlini et al. (2021) demonstrated that GPT-2 (Radford et al.
2019) memorizes and reproduces training data verbatim, in-
cluding PII. Subsequent studies extended these findings to
larger models (Nasr et al. 2023) and showed that member-
ship inference attacks can determine whether specific indi-
viduals’ data was in the training set (Shokri et al. 2017). For
LLMs, Cui et al. (2025) showed that prompt-based attacks
can extract PII with high success rates, while Lukas et al.
(2023) found that fine-tuning exacerbates memorization.
Microsoft’s Presidio (Microsoft 2022) uses named entity
recognition (NER) with spaCy (Honnibal et al. 2023) mod-
els and regex patterns to detect 50+ PII types after text gener-
ation. NVIDIA’s NeMo Guardrails (NVIDIA 2023) employs
secondary LLM classifiers (e.g., Llama Guard) to identify
policy violations, including privacy breaches. While flexi-
ble, these methods cannot prevent PII generation—only de-
tect it post-facto. Recent audits found that post-hoc classi-
fiers miss substantial PII in adversarial settings (Palo Alto



Networks 2025).

Constrained decoding modifies token sampling to en-
force structural or content constraints. Lu et al. (2022) in-
troduced lexical constraints for controlled generation, while
subsequent work applied this to toxicity reduction (Schick,
Udupa, and Schiitze 2021) and factual consistency (Qin et al.
2022). However, constrained decoding for PII protection re-
mains unexplored.

Methodology
Threat Model

We consider an adversary with black-box query access to a
deployed LLM who constructs prompts to extract PII mem-
orized during training. The adversary has knowledge of the
model architecture and training corpus distribution but not
specific training examples, can issue repeated queries with
crafted prompts following known attack patterns (true-prefix
completions, contextual rewrites, record-format queries),
and seeks to extract exact PII values including email ad-
dresses, Social Security Numbers, credit card numbers, and
IP addresses. Our defense mechanism prevents generation
of token sequences matching structured PII patterns, priori-
tizing privacy protection over completeness by occasionally
refusing generation of legitimate sequences that match PII
formats.

Constrained Decoding with Regex-Aware Logit
Masking

Core Mechanism. Standard autoregressive decoding sam-
ples token x; from the distribution P(x; | X<;) computed
via softmax over logits z;. Our approach inserts a logits
processor that inspects the recently generated context and
masks logit values for tokens that would extend detected
PII patterns. Formally, when a risky pattern is detected in
the context window, we set the logits of continuation tokens
to —oo before applying softmax, thereby zeroing their sam-
pling probabilities.

Extended Pattern Detection. At each step ¢, we decode
the last n = 40 tokens into a rolling window w and apply
regex matching for five structured PII categories: Contact &
Network (Email TLDs, IPv4 octets, Phone numbers, Post-
codes); Financial (Credit Cards, IBANs); Government IDs
(SSNs, Passports); and Personal Identifiers (Usernames,
Date of Birth).

For each pattern class, we maintain pre-computed sets
of token IDs to mask. The masking operation uses
torch.Tensor.index_fill_ with value —oo, ensur-
ing zero probability mass after softmax normalization. Al-
gorithm 1 provides the complete procedure. Refer Section
for the rationale behind the choice of n and w.

Speculative Constrained Decoding

We extend speculative decoding (Leviathan, Kalman, and
Matias 2023) to support privacy constraints without degrad-
ing acceptance rates. Standard speculative decoding relies
on the alignment between the draft distribution P, and the

Algorithm 1: Regex-Aware Logit Processor

1: Input: token sequence x ., logit vector s; € RV

2: Output: masked logits s}

3: tail + decode(x¢—40:1)[—160 :] {Extract rolling win-
dow}

4: s} s8¢

5: {Case 1: Alphanumeric Identifiers (e.g., Email) }

6: if tail matches @ [A-Za-z0-9._%\-]1*$ then

7. s}[TLD_token_ids] <— —oo

8: end if

9: {Case 2: Long Numeric Sequences (CC, SSN,
Phone)}

10: if tail matches \d[-\s1?){8,}s or

\d{3}[-\s12\d{2}[-\s]17?$ then

11:  s}[digit_token_ids] < —oco

12: end if

13: {Case 3: Structured Codes (IPv4, Postcodes)}

14: if tail matches (\d{1,3}\.){3}$ or \b\d{5}-s
then

15:  s}[digit_token_ids] - —oco

16: end if

17: return s

target distribution P,. We implement constraint applica-
tion, where the regex-aware logit processor (Algorithm 1)
is injected into both the proposal and verification loops:

1. Constrained Proposal: The draft model M, gener-
ates v = 4 candidate tokens autoregressively. At each
draft step, the logit processor inspects the local con-
text window and masks PII continuations. This ensures
that all proposed candidates Z; 1, . .., T4y are privacy-
compliant by construction.

2. Constrained Verification: The target model M; com-
putes logits for the candidate sequence in parallel. The
same masking operation is applied to M,;’s logits before
the standard speculative acceptance criterion (e.g., rejec-
tion sampling) is evaluated.

Experimental Results

We evaluate our method on two distinct datasets to mea-
sure both robustness against active attacks and utility in
real-world redaction tasks: a synthetic dataset generat-
ing using Faker (Faker 2023), and the pii-masking-400k
dataset (Ai4Privacy 2024). Detailed compositions, attack
taxonomies, and prompt formulations for both datasets are
provided in Appendix A.

We evaluate three model families with diverse tokeniza-
tion schemes:

¢ Gemma-1.1-7B/2B-it (Gemma Team 2024) (Sentence-
Piece, 256k vocab)

e Llama-3.2-3B/1B-Instruct (Meta AI 2024) (Tiktoken
BPE, 128k vocab)

* SmolLM2-1.7B/360M-Instruct (Hugging Face 2024)
(GPT-2 BPE, 49k vocab)

Each model is tested under four generation strategies:



* Baseline: greedy decoding.

¢ Presidio: post-hoc NER filtering.

* Constrained Decoding: regex-aware logit masking (Al-
gorithm 1).

* Speculative Constrained: draft model generates candi-
dates; target verifies under constraints.

We measure leak rate (fraction of ground-truth PII re-
produced verbatim) and end-to-end latency averaged across
all samples. All experiments were conducted on a NVIDIA
A100 GPU.

Tables 1 and 2 report results on the adversarial syn-
thetic dataset. Tables 3 and 4 present performance on the
pii-masking—-400k dataset.

Model B P C S

Gemma-1.1-7B 2.0 2.0 2.0 8.0
SmolLM2-1.7B 37.4 4.6 16.7 31.1
Llama-3.2-3B 4.6 1.1 3.7 17.0

Table 1: PII leak rates (%). Columns: B=Baseline,
P=Presidio, C=Constrained, S=Speculative.

Model B P C S

Gemma-1.1-7B 1030 1054 1000 5243
SmolLM2-1.7B 1944 1979 1949 13433
Llama-3.2-3B 1845 1868 1641 6516

Table 2: Inference latency (ms).

Model B P C S

Gemma-1.1-7B 04 0.0 04 140
SmolLM2-1.7B 0.05 0.01 0.06 0.41
Llama-3.2-3B 32 14 25 115

Table 3: PII leak rates (%)

Discussion

In Algorithm 1, we selected n = 40 recent tokens and a char-
acter window of w = 160 to align with average subword
lengths. This configuration enables the efficient capture of
partial PII, such as email prefixes and SSN segments. These
hyperparameters balance pattern lookahead with memory
overhead, although they require tuning based on specific de-
ployment resource constraints.

Comparing the two evaluation sets reveals distinct model
behaviors, as Dataset 1 tests adversarial extraction while
Dataset 2 assesses instruction adherence.

A critical anomaly appears with SmolLM2-1.7B on this
same dataset.The model exhibits very low PII leakage un-
der all the methods, an outcome we attribute to generation
collapse: the model frequently yields empty or incoherent
responses when prompted with the complex privacy instruc-
tion.

Model B P C S

Gemma-1.1-7B 3053 3077 2760 11983
SmolLM2-1.7B 3764 3797 3243 30371
Llama-3.2-3B 4298 4330 4223 42545

Table 4: Inference latency (ms)

Conclusion

We proposed constrained decoding with regex-aware logit
masking for inference-time PII prevention in large language
models. Our stateless method maintains a rolling context
window to detect structured PII patterns (emails, SSNs, IPs,
credit cards) and masks token probabilities to block sensi-
tive continuations without retraining or architectural mod-
ifications. Unlike post-hoc filtering, our approach provides
provable prevention guarantees by blocking PII generation
during autoregressive sampling.

Limitations include coverage restricted to regex-
detectable structured PII and vulnerability to adversarial
obfuscation where attackers replace critical characters
(e.g., substituting @ with [AT] in email addresses to
evade pattern matching). Future work includes integrating
learned entity recognizers for free-text PII and validation on
real-world datasets beyond synthetic benchmarks.

References
Ai4Privacy. 2024. PII Masking 400k Dataset.

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877—
1901.

Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-
Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlings-
son, U.; et al. 2021. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), 2633-2650.

Cui, Y.; Zhang, W.; Chen, X.; and Liu, Y. 2025. VortexPIA:
Vortex-based privacy-preserving inference attacks on large
language models. arXiv preprint arXiv:2501.00001.

Faker. 2023. Faker: A Python package for generating fake
data. https://github.com/joke2k/faker.

Gemma Team. 2024. Gemma: Open models based
on Gemini research and technology. arXiv preprint
arXiv:2403.08295.

Honnibal, M.; Montani, I.; Van Landeghem, S.; and Boyd,
A. 2023. spaCy: Industrial-Strength Natural Language Pro-
cessing in Python. https://spacy.io. Software.

Hugging Face. 2024. SmolLM2: A family of com-
pact language models for on-device applications. https:
/Mhuggingface.co/collections/HuggingFaceTB/smollm?2.

Leviathan, Y.; Kalman, M.; and Matias, Y. 2023. Fast in-

ference from transformers via speculative decoding. arXiv
preprint arXiv:2211.17192.



Lu, X.; West, P.; Zellers, R.; Le Bras, R.; Bhagavatula, C.;
and Choi, Y. 2022. NeuroLogic A*esque decoding: Con-
strained text generation with lookahead heuristics. In Pro-
ceedings of the 2022 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, 780-799.

Lukas, N.; Salem, A.; Sim, R.; Taha, S.; Pawelczyk, M.;
Mehrabi, N.; et al. 2023. Analyzing leakage of personally
identifiable information in language models. In 2023 IEEE
Symposium on Security and Privacy (SP), 346-363. IEEE.

Meta Al 2024. Llama 3.2: Revolutionizing edge
Al and vision with open, customizable models.
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-
edge-mobile-devices/.

Microsoft. 2022. Presidio: Data protection and de-
identification SDK. https://github.com/microsoft/presidio.
Nasr, M.; Carlini, N.; Hayase, J.; Jagielski, M.; Cooper,
A. E; Ippolito, D.; Choquette-Choo, C. A.; Wallace, E.;
Tramer, F.; and Lee, K. 2023. Scalable extraction of training
data from (production) language models. In Proceedings of
the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 12345-12367.

NVIDIA. 2023. NeMo Guardrails: A toolkit for controllable
and safe LLM applications with programmable rails. https:
//github.com/NVIDIA/NeMo-Guardrails.

Palo Alto Networks. 2025. Guardrails for Al: A framework
for building safe and reliable Al applications. https://www.
paloaltonetworks.com/ai-security.

Qin, L.; Welleck, S.; Khashabi, D.; and Choi, Y. 2022. Cold
decoding: Energy-based constrained text generation with
langevin dynamics. Advances in Neural Information Pro-
cessing Systems, 35: 9538-9551.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, I.; et al. 2019. Language models are unsupervised
multitask learners. OpenAl blog, 1(8): 9.

Schick, T.; Udupa, S.; and Schiitze, H. 2021. Self-diagnosis
and self-debiasing: A proposal for reducing corpus-based
bias in NLP. In Transactions of the Association for Com-
putational Linguistics, volume 9, 1408—1424.

Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning
models. In 2017 IEEE symposium on security and privacy
(SP), 3-18. IEEE.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Willard, B. T.; and Louf, R. 2023. Efficient guided gen-
eration for large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Lan-
guage Processing, 4567-4580.



Appendix A
Dataset Details
Synthetic Dataset.

We used the Faker library to generate realistic PII across
13 categories:

¢ Personal identifiers: name, username, date of birth.

e Contact information: email, company email, phone
number, address, postal code.

* Government IDs: social security number, passport num-
ber.

¢ Financial information: credit card, bank account.
¢ Network identifiers: IPv4 address.

The 100 adversarial prompts were stratified across three
attack families:

* True-prefix attacks: Provide partial identifiers to elicit
completion (e.g., “Complete this email: john.doe@”).

* Contextual rewrites: Reformulate sentences containing
sensitive values to test semantic reproduction.

¢ Record-format queries: Request structured data repro-
duction (e.g., “Generate a JSON entry with Name and
SSN”™).

pii-masking-400k Dataset

We sampled 50 distinct inputs from the validation split of the
aidprivacy/pii-masking—-400k dataset. To evalu-
ate active redaction capabilities, we wrapped each sample
in the following system prompt:

“You are a privacy-conscious assistant. Rewrite the fol-
lowing text, replacing any personal information with
[REDACTED].”

This task tests the model’s ability to identify and redact enti-
ties such as names, addresses, and IDs within complex, natu-
ralistic text structures (e.g., medical notes, customer service
transcripts) that often evade simple pattern matching.

Speculative Decoding Configuration

For the Speculative Constrained Decoding experiments, we
paired each large target model (LLM) with a smaller, com-
patible draft model (SLM) that shares the same tokenizer.
Table 5 details the specific models used

Target Model (LLM) Draft Model (SLM)

SmolLM2-1.7B-Instruct SmolLM2-360M-Instruct
Llama-3.2-3B-Instruct Llama-3.2-1B-Instruct
gemma-1.1-7b-it gemma-1.1-2b-it

Table 5: Target and Draft model pairs used for Speculative
Constrained Decoding.



