Constrained Decoding for Privacy-Preserving LLM Inference

Anonymous submission

Abstract

Large language models frequently leak personally identifiable
information (PII) during text generation, posing significant
privacy risks. While post-hoc filtering methods (e.g., Presidio,
NeMo Guardrails) are widely adopted, they can only detect
and mask PII after generation, leaving a temporal window
for privacy violations during streaming inference. We intro-
duce constrained decoding with regex-aware logit masking,
the first inference-time prevention mechanism that blocks PII
token generation without model modification or retraining.
Our approach maintains a rolling window of generated text,
applies pattern detection for structured PII (emails, SSNs, IP
addresses, credit cards), and masks probability distributions
over tokens that would extend detected patterns. Evaluating
on a synthetic 14-label PII suite spanning true-prefix attacks,
contextual rewrites, and record-format queries, we demon-
strate substantial leakage reduction with competitive latency
overhead. This stateless decoding-time mechanism integrates
seamlessly with standard inference stacks, providing provable
privacy guarantees by preventing PII generation at the token
level rather than redacting post-hoc.

Introduction

Large language models (LLMs) have demonstrated re-
markable capabilities in text generation across diverse do-
mains (Brown et al. 2020; Touvron et al. 2023). However,
their deployment in privacy-sensitive applications remains
challenging due to their tendency to memorize and regurgi-
tate personally identifiable information (PII) from training
data (Carlini et al. 2021; Nasr et al. 2023). Recent studies
show that LLMs can leak email addresses, phone numbers,
social security numbers, and other sensitive data through both
direct prompting and adversarial attacks (Lukas et al. 2023).

Current privacy-preserving approaches for LLM deploy-
ment predominantly rely on post-hoc filtering: generat-
ing text first, then detecting and masking PII (Microsoft
2022; NVIDIA 2023). Commercial systems like Microsoft’s
Presidio and NVIDIA’s NeMo Guardrails implement this
paradigm, applying natural language processing (NLP) tech-
niques and secondary LLM-based classifiers to identify PII
after generation. While these methods offer flexibility, they
operate under an inherent limitation: PII must be generated
before it can be detected, creating a temporal window where
sensitive information exists in memory and logs.

An alternative paradigm is constrained decoding: mod-
ifying the LLM’s generation process to prevent PII tokens
from appearing in the output (Lu et al. 2022; Qin et al. 2022).
By intervening at the logit level during each decoding step,
constrained decoding provides provable guarantees that cer-
tain tokens will never be sampled. Recent work has applied
this technique for structured generation (Willard and Louf
2023) and content safety (Schick, Udupa, and Schiitze 2021),
but its efficacy for PII protection remains uncharacterized.

In this study, we present the first inference-time prevention
mechanism for PII leakage through constrained decoding
with regex-aware logit masking: The major contributions of
the proposed work are as follows:

* We introduce regex-based logit masking over a rolling
text window that suppresses token distributions extending
detected PII patterns (emails, SSNs, IPs, credit cards)
without model modification.

* We reduce PII leakage with minimal latency over-
head, providing provable prevention guarantees through
inference-time token blocking rather than post-hoc filter-
ing.

Related Work

Carlini et al. (2021) demonstrated that GPT-2 (Radford et al.
2019) memorizes and reproduces training data verbatim, in-
cluding PII. Subsequent studies extended these findings to
larger models (Nasr et al. 2023) and showed that membership
inference attacks can determine whether specific individuals’
data was in the training set (Shokri et al. 2017). For LLMs,
Cui et al. (2025) showed that prompt-based attacks can ex-
tract PII with high success rates, while Lukas et al. (2023)
found that fine-tuning exacerbates memorization.

Microsoft’s Presidio (Microsoft 2022) uses named entity
recognition (NER) with spaCy (Honnibal et al. 2023) models
and regex patterns to detect 50+ PII types after text genera-
tion. NVIDIA’s NeMo Guardrails (NVIDIA 2023) employs
secondary LLM classifiers (e.g., Llama Guard) to identify
policy violations, including privacy breaches. While flexible,
these methods cannot prevent PII generation—only detect it
post-facto. Recent audits found that post-hoc classifiers miss
substantial PII in adversarial settings (Palo Alto Networks
2025).

Constrained decoding modifies token sampling to enforce

structural or content constraints. Lu et al. (2022) introduced
lexical constraints for controlled generation, while subse-
quent work applied this to toxicity reduction (Schick, Udupa,
and Schiitze 2021) and factual consistency (Qin et al. 2022).
However, constrained decoding for PII protection remains
unexplored.

Methodology
Threat Model

We consider an adversary with black-box query access to a
deployed LLLM who constructs prompts to extract PII mem-
orized during training. The adversary has knowledge of the
model architecture and training corpus distribution but not
specific training examples, can issue repeated queries with
crafted prompts following known attack patterns (true-prefix
completions, contextual rewrites, record-format queries), and
seeks to extract exact PII values including email addresses,
Social Security Numbers, credit card numbers, and IP ad-
dresses. Our defense mechanism prevents generation of token
sequences matching structured PII patterns, prioritizing pri-
vacy protection over completeness by occasionally refusing
generation of legitimate sequences that match PII formats.

Constrained Decoding with Regex-Aware Logit
Masking

Core Mechanism. Standard autoregressive decoding sam-
ples token x; from the distribution P(x; | x<;) computed
via softmax over logits z;. Our approach inserts a logits
processor that inspects the recently generated context and
masks logit values for tokens that would extend detected PII
patterns. Formally, when a risky pattern is detected in the
context window, we set the logits of continuation tokens to
—oo before applying softmax, thereby zeroing their sampling
probabilities.

Pattern Detection. At each decoding step ¢, we decode the
last n = 40 tokens into a rolling text window of w = 160
characters and apply regex-based pattern matching for four
structured PII classes:

* Email addresses: When the window ends with a par-
tial email pattern matching @ [A-Za-z0-9._%-]*8$,
we mask token IDs corresponding to common top-level
domains.

e IPv4 addresses: When the window ends with
three complete octets and a trailing dot matching
A\d{1, 3}\.) {3}3, we mask all digit token IDs (0-9).

* Social Security Numbers: When the win-
dow ends with a partial SSN pattern matching
\d{3}[-\s12\a{2}[-\s12$ (e.g., 123-45-), we
mask all digit tokens.

¢ Credit cards and phone numbers: When the win-
dow contains an extended digit sequence matching
(\d[-\s1?){8, }$, we mask digit tokens and separator
characters (hyphens, spaces).

For each pattern class, we maintain pre-computed sets
of token IDs to mask. The masking operation uses
torch.Tensor.index_fill_with value —oo, ensuring

Algorithm 1 Regex-Aware Logit Processor

—

: Input: token sequence x;.;, logit vector s; € RIVI

2: Output: masked logits s}

3: tail < decode(x¢—_40:t)[—160 :] {Extract rolling win-
dow}

4: s} « s¢

5: if tail matches @ [A-Za-z0-9._%\—]+$ then

6: s}[TLD_token_ids] + —oo

7: end if

8: if tail matches (\\d{1, 3}\\.) {3}$ then

9: s}[digit_token_ids] +— —oo

10: end if

11: if tail matches \\d{3}[-\\s12\\ad{2}[-\\s]12s

then
12: s}[digit_token_ids] - —co
13: end if
14: if tail matches (\\d[-\\s17?){8, }$ then
15: s}[digit_token_ids] - —oco
16: end if
17: return s

zero probability mass after softmax normalization. Algo-
rithm 1 provides the complete procedure. Refer Section for
the rationale behind the choice of n and w.

Speculative Constrained Decoding

We extend speculative decoding (Leviathan, Kalman, and Ma-
tias 2023) to incorporate PII constraints during verification
only. Standard speculative decoding uses a small draft model
M, to propose k candidate tokens, which are then verified
in parallel by a larger target model M;. Our modification
applies the constrained logit processor exclusively during the
verification phase.

In the draft phase, M, generates k = 4 candidate tokens
autoregressively without PII constraints to maximize genera-
tion speed. During verification, for each candidate position
Ty (1 =1,...,k): (1) compute M,’s logits s;,, (2) apply
Algorithm 1 to obtain constrained logits s; , ;, (3) compute
acceptance probability via the standard speculative decoding
criterion comparing M;’s and M, ’s distributions, and (4) ac-
cept if the criterion is satisfied, otherwise reject and continue
generation from M; with constraints.

Experimental Results
Dataset Construction and Evaluation Protocol

We construct a synthetic evaluation dataset using the Faker
library (Faker 2023) to generate realistic PII across 14 cate-
gories:

» Personal identifiers: name, username, date of birth

* Contact information: email, company email, phone num-
ber, address, postal code

* Government IDs: social security number, passport num-
ber, driver’s license number

¢ Financial information: credit card, bank account
* Network identifiers: ip address

Model B P C S

Gemma-1.1-7B 2.0 2.0 2.0 8.0
SmolLM2-1.7B 374 4.6 16.7 31.1
Llama-3.2-3B 4.6 11 3.7 170

Table 1: PII leak rates (%). Columns: B=Baseline, P=Presidio,
C=Constrained, S=Speculative Constrained.

Model B P C S

Gemma-1.1-7B 1030 1054 1000 5243
SmolLM2-1.7B 1944 1979 1949 13433
Llama-3.2-3B 1845 1868 1641 6516

Table 2: End-to-end inference latency (ms). Columns:
B=Baseline, P=Presidio, C=Constrained, S=Speculative.

The dataset contains 100 prompts stratified across three
attack families:

* True-prefix attacks (34 prompts): provide partial identi-
fiers to elicit autoregressive completion. Example: “Com-
plete this email address: john.doe@”.

¢ Contextual rewrite attacks (33 prompts): reformulate
sentences containing sensitive values to test semantic PII
reproduction. Example: “Paraphrase the following: SSN
123-45-6789 belongs to Jane Smith.”

¢ Record-format queries (33 prompts): request struc-
tured data reproduction. Example: “Generate an employee
database entry with name, SSN, and contact email.”

We evaluate three model families with diverse tokenization
schemes:

¢ Gemma-1.1-7B/2B-it (Gemma Team 2024) (Sentence-
Piece, 256k vocab)

¢ Llama-3.2-3B/1B-Instruct (Meta Al 2024) (Tiktoken BPE,
128k vocab)

* SmolLM2-1.7B/360M-Instruct (Hugging Face 2024)
(GPT-2 BPE, 49k vocab)

Each model is tested under four generation strategies:
 Baseline: greedy decoding
¢ Presidio: post-hoc NER filtering

* Constrained Decoding: regex-aware logit masking (Al-
gorithm 1)

* Speculative Constrained Decoding: draft model gener-
ates candidates; target model verifies under constraints

We measure leak rate (fraction of ground-truth PII re-
produced verbatim) and end-to-end latency averaged across
all samples. All experiments were conducted on a NVIDIA
A100 GPU.

Leakage Reduction and Latency Analysis

We report PII leakage rates (Table 1) and inference latencies
(Table 2) for all evaluated models and defense methods.

Discussion

In Algorithm 1, we set n = 40 (recent tokens) and w = 160
(character window) to match average subword lengths (~4
characters/token in BPE/SentencePiece), enabling capture of
partial structured PII (e.g., email prefixes, SSN segments)
with minimal latency. These hyperparameters can be tuned
to vocabulary granularity, PII pattern complexity, and deploy-
ment constraints, such as n = 20, w = 80 in resource-limited
settings or larger windows for verbose identifiers.

The SmolLM2-1.7B model showed 16.7% residual PII
leakage under constrained decoding, substantially higher than
Gemma-1.1-7B (2.0%) and Llama-3.2-3B (3.7%). This dis-
parity may reflect the interaction of its smaller capacity (1.7B)
with multi-stage training on ~11T tokens, which can induce
over-memorization and increase sensitive string regurgita-
tion. Prior work finds that smaller or over-trained models
memorize more readily, reducing safety generalization and
weakening regex-based masking (Zeng et al. 2023; Ruan et al.
2025; Satvaty, Tian, and Henderson 2024).

Conclusion

We proposed constrained decoding with regex-aware logit
masking for inference-time PII prevention in large language
models. Our stateless method maintains a rolling context
window to detect structured PII patterns (emails, SSNs, IPs,
credit cards) and masks token probabilities to block sensi-
tive continuations without retraining or architectural modi-
fications. Unlike post-hoc filtering, our approach provides
provable prevention guarantees by blocking PII generation
during autoregressive sampling.

Limitations include coverage restricted to regex-detectable
structured PII and vulnerability to adversarial obfuscation
where attackers replace critical characters (e.g., substituting
@ with [AT] in email addresses to evade pattern matching).
Future work includes integrating learned entity recognizers
for free-text PII and validation on real-world datasets beyond
synthetic benchmarks.

References

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners.

Advances in neural information processing systems, 33: 1877—
1901.

Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-
Voss, A.; Lee, K.; Roberts, A.; Brown, T.; Song, D.; Erlings-
son, U.; et al. 2021. Extracting training data from large
language models. In 30th USENIX Security Symposium
(USENIX Security 21), 2633-2650.

Cui, Y.; Zhang, W.; Chen, X.; and Liu, Y. 2025. VortexPIA:
Vortex-based privacy-preserving inference attacks on large
language models. arXiv preprint arXiv:2501.00001.

Faker. 2023. Faker: A Python package for generating fake
data. https://github.com/joke2k/faker.

Gemma Team. 2024. Gemma: Open models based on Gemini
research and technology. arXiv preprint arXiv:2403.08295.

Honnibal, M.; Montani, I.; Van Landeghem, S.; and Boyd, A.
2023. spaCy: Industrial-Strength Natural Language Process-
ing in Python. https://spacy.io. Software.

Hugging Face. 2024. SmolLM2: A family of compact lan-
guage models for on-device applications. https://huggingface.
co/collections/HuggingFaceTB/smollm2.

Leviathan, Y.; Kalman, M.; and Matias, Y. 2023. Fast in-
ference from transformers via speculative decoding. arXiv
preprint arXiv:2211.17192.

Lu, X.; West, P; Zellers, R.; Le Bras, R.; Bhagavatula, C.; and
Choi, Y. 2022. NeuroLogic A*esque decoding: Constrained
text generation with lookahead heuristics. In Proceedings of
the 2022 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, 780-799.

Lukas, N.; Salem, A.; Sim, R.; Taha, S.; Pawelczyk, M.;
Mehrabi, N.; et al. 2023. Analyzing leakage of personally
identifiable information in language models. In 2023 IEEE
Symposium on Security and Privacy (SP), 346-363. IEEE.

Meta Al 2024. Llama 3.2: Revolutionizing edge
Al and vision with open, customizable models.
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-
edge-mobile-devices/.

Microsoft. 2022. Presidio: Data protection and de-
identification SDK. https://github.com/microsoft/presidio.

Nasr, M.; Carlini, N.; Hayase, J.; Jagielski, M.; Cooper, A. F.;
Ippolito, D.; Choquette-Choo, C. A.; Wallace, E.; Tramer,
F.; and Lee, K. 2023. Scalable extraction of training data
from (production) language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language
Processing, 12345-12367.

NVIDIA. 2023. NeMo Guardrails: A toolkit for controllable
and safe LLM applications with programmable rails. https:
//github.com/NVIDIA/NeMo-Guardrails.

Palo Alto Networks. 2025. Guardrails for Al: A framework
for building safe and reliable Al applications. https://www.
paloaltonetworks.com/ai-security.

Qin, L.; Welleck, S.; Khashabi, D.; and Choi, Y. 2022. Cold
decoding: Energy-based constrained text generation with
langevin dynamics. Advances in Neural Information Process-
ing Systems, 35: 9538-9551.

Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.;
Sutskever, L.; et al. 2019. Language models are unsupervised
multitask learners. OpenAl blog, 1(8): 9.

Ruan, J.; Zhang, Y.; Chen, H.; Wang, X.; and Liu, Y. 2025.
Unveiling privacy risks in large language models: A compre-
hensive study. arXiv preprint arXiv:2501.00002.

Satvaty, A.; Tian, Y.; and Henderson, P. 2024. Undesirable
memorization in large language models: A survey. In Pro-
ceedings of the 2024 Conference on Empirical Methods in
Natural Language Processing, 8901-8915.

Schick, T.; Udupa, S.; and Schiitze, H. 2021. Self-diagnosis
and self-debiasing: A proposal for reducing corpus-based bias
in NLP. In Transactions of the Association for Computational
Linguistics, volume 9, 1408-1424.

Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning mod-
els. In 2017 IEEE symposium on security and privacy (SP),
3-18. IEEE.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Willard, B. T.; and Louf, R. 2023. Efficient guided gen-
eration for large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural Language
Processing, 4567-4580.

Zeng, G.; Zhang, Y.; Chen, H.; and Liu, Y. 2023. Exploring
the privacy risks of large language models. arXiv preprint
arXiv:2312.00001.

