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Abstract
We introduce an optimization-based reconstruc-
tion attack capable of completely or near-
completely reconstructing a dataset utilized for
training a random forest. Notably, our ap-
proach relies solely on information readily
available in commonly used libraries such as
scikit-learn. To achieve this, we formu-
late the reconstruction problem as a combinatorial
problem under a maximum likelihood objective.
We demonstrate that this problem is NP-hard,
though solvable at scale using constraint program-
ming – an approach rooted in constraint propaga-
tion and solution-domain reduction. Through an
extensive computational investigation, we demon-
strate that random forests trained without boot-
strap aggregation but with feature randomization
are susceptible to a complete reconstruction. This
holds true even with a small number of trees. Even
with bootstrap aggregation, the majority of the
data can also be reconstructed. These findings un-
derscore a critical vulnerability inherent in widely
adopted ensemble methods, warranting attention
and mitigation. Although the potential for such
reconstruction attacks has been discussed in pri-
vacy research, our study provides clear empirical
evidence of their practicability.

1. Introduction
Machine learning (ML) techniques are increasingly used
on sensitive data, such as medical records for kidney ex-
change (Aziz et al., 2021), criminal records (Angwin et al.,
2016) or credit history. As this raises significant ethical
and societal challenges, the use of such private data is di-
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rectly regulated by several legal texts, such as the recent
European Union General Data Protection Regulation* or
the forthcoming AI Act**. Privacy has attracted significant
attention during the last decades (Liu et al., 2021a) in order
to protect sensitive or personal information about individual
users while still being able to extract useful patterns from
data. Moreover, privacy risks may further be exacerbated
by the consideration of other ethical desiderata, e.g., when
releasing a trained ML model for the sake of transparency.

In this work, we specifically study such privacy concerns
in the white-box setting in which a trained random forest
(RF) is publicly released. More precisely, we attempt to
reconstruct the entire dataset used to train the RF by only us-
ing information available by default in widespread libraries
such as scikit-learn (Pedregosa et al., 2011), namely
the structure of the trees within the forest and the class
cardinalities provided within each node.

While reconstruction attacks have been previously stud-
ied (Dwork et al., 2017), to the best of our knowledge, no
work could consistently reconstruct an entire dataset from a
trained RF. While some information can be extracted from
single trees regarding the number of examples with specific
combinations of features, the path taken by each individual
example in each tree is unknown. Consequently, it is chal-
lenging to combine the information provided by different
trees to effectively narrow down the potential datasets. To
achieve this goal, we formalize the maximum-likelihood
dataset reconstruction problem and formulate it as a unified
Constraint Programming (CP) model over the forest. With
this, we can leverage the solution capabilities of modern CP
algorithms based on constraint propagation, solution domain
reduction, exploration, and backtracking. In an extensive
computational campaign, we show that our methodology
achieves nearly flawless recovery for RFs trained without
bootstrap aggregation but with feature randomization. Even
in cases where bootstrap aggregation is employed, our ap-
proach successfully recovers the majority of the data. In
summary, the main contributions of this study are:

• A formalization of the maximum-likelihood dataset
reconstruction problem for random forests

• A proof of NP-hardness for this problem. This is, how-

*https://gdpr-info.eu/
**https://artificialintelligenceact.eu/
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ever, a limited safeguard since the relentless progress of
generalist combinatorial optimization algorithms (i.e.,
based on CP or mixed-integer programming) permits
solving many NP-hard problems at scale nowadays.

• The proposal of a CP formulation amenable to an effi-
cient solution using state-of-the-art algorithms.

• Extensive computational experiments demonstrating
how even a reasonably small number of trees reveal
the quasi-totality of the datasets on standard appli-
cations. Our source code is openly accessible at
https://github.com/vidalt/DRAFT in the
form of a user-friendly Python module named DRAFT
(Dataset Reconstruction Attack From Trained ensem-
bles), under a MIT license.

2. Technical Background

Supervised Machine Learning (ML). Let {xk; ck}Nk=1

be a training set in which each example k is characterized
by a vector xk ∈ {0, 1}M of M binary attributes and a
class ck ∈ C. We let zkc be a one-hot encoding of the
classes, which is 1 if ck = c, and 0 otherwise. Moreover, in
some situations, several binary features are used to one-hot
encode a single original numerical or categorical attribute.
In such case, precisely one of these binary features is 1, and
the others are 0. We let vects be the list of the different
groups (if any) of binary attributes one-hot encoding the
same original feature.

Random Forests (RFs). The training dataset is used to
build a random forest T in which each tree t ∈ T is made
of a set of internal nodes VI

t and a set of leaves VL
t . Each

internal node v ∈ VI
t corresponds to a binary condition over

the value of a given attribute. If the condition is satisfied, the
example being classified descends towards the left child l(v)
of the node, otherwise it descends towards its right child
r(v). Once the example reaches a leaf v ∈ VL

t (terminal
node), it is classified according to the class associated with
this leaf. Such class corresponds to the majority class among
the training examples captured by the leaf. To compute it
(and eventually assign class probabilities), each leaf contains
the per-class number of training examples it captures. In
popular ML libraries such as scikit-learn, such counts
are also provided in the internal nodes, as shown in Figure 1.
Then, for every node v ∈ VI

t

⋃
VL
t , let ntvc denote the

number of training examples of class c that went through v.

Training RFs. To encourage diversity between the dif-
ferent trees within an RF, several randomization mecha-
nisms are used during training. For instance, when building
each individual tree, only a random subset of the M fea-
tures is considered to determine the best split at each node.
Note that this mechanism is used in all our experiments,
although we do not explicitly leverage it. Bootstrap aggrega-

tion (bagging) is another popular and successful mechanism
in RF training (Zhou, 2012). It consists in building |T |
separate training sets, one for each tree, by performing ran-
dom sampling with replacement from the original training
set {xk; ck}Nk=1. In consequence, not all examples of the
original dataset are used for training each tree, while some
appear multiple times. Algorithmic implementations for
learning RFs are available within popular libraries such as
scikit-learn. While bagging is not mandatory, it is
often used by default, as it lowers variance and enhances
generalization. Finally, some support or size constraints are
often set when training each tree. In particular, it is possible
to set a maximum depth constraint ensuring that each tree
has depth at most dmax.
In our framework, we leverage both the structure of the trees
within the forest and the counts provided within each node
to conduct a dataset reconstruction attack. We additionally
take advantage of the theoretical probability distributions
of the number of occurrences of each example within each
tree’s training set.

Constraint Programming (CP). CP is a generic approach
to finding feasible or optimal solutions to a wide variety of
problems, including NP-hard ones. The basic principle is
to define a set of decision variables – each allowed to take
values within a given (discrete) domain – and constraints
that express relationships between variables. Optionally, an
objective function may be provided to be maximized or min-
imized. The types of allowed constraints depend on which
specific CP solver is used, but linear and logical/implication
constraints are typical examples.
CP solvers then combine several techniques (constraint prop-
agation, backtracking, local search) to efficiently explore
the search space and find a feasible/optimal solution. An
overview of fundamental ideas/techniques in CP can be
found in Rossi et al. (2008). While solving CP models is
theoretically NP-hard, state-of-the-art solvers can handle
very large-scale problems in practice, and the performance
of state-of-the-art solvers has dramatically increased.

3. Related Works
ML methods often exploit private data during training.
Consequently, it is crucial to ensure that their outputs –
which may be released directly or accessed through a ded-
icated API – do not leak information regarding their in-
puts (Dinur & Nissim, 2003). Inference attacks against ML
models (Rigaki & Garcia, 2020) precisely aim at exploiting
the output of a learning algorithm to infer information re-
garding the training dataset. Different attacks can be distin-
guished, depending on their specific objective. For instance,
membership inference attacks aim to infer whether an exam-
ple was part of a model’s training data or not (Shokri et al.,
2017; Carlini et al., 2022). In this work, we are interested
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Class 0: 2 examples
Class 1: 0 example

Class 0: 0 example
Class 1: 1 example

f2 <= 0.5
Class 0: 2 examples
Class 1: 1 example

Class 0: 0 example
Class 1: 1 example

f3 <= 0.5
Class 0: 2 examples
Class 1: 2 examples

(a) Tree t1 (trained without using attribute f1)

Class 0: 1 example
Class 1: 0 example

Class 0: 0 example
Class 1: 1 example

Class 0: 1 example
Class 1: 0 example

f1 <= 0.5
Class 0: 1 example
Class 1: 1 example

f4 <= 0.5
Class 0: 2 examples
Class 1: 1 example

Class 0: 0 example
Class 1: 1 example

f2 <= 0.5
Class 0: 2 examples
Class 1: 2 examples

(b) Tree t2 (trained without using attribute f3)

Figure 1: Example decision trees trained using scikit-learn on a small dataset (Table 1).

in dataset reconstruction attacks, which aim at reconstruct-
ing (entirely or partially) a model’s training dataset (Dwork
et al., 2017). The considered attack model is as follows. We
specifically target RF models, and consider the white-box
setup, in which the adversary has complete knowledge of
the model’s parameters instead of a black-box API access
to it (Cristofaro, 2020). He also knows the domains of the
different attributes involved in the data. Importantly, he does
not intervene during the training process, but rather gets the
trained model afterwards.

RECONSTRUCTION ATTACK. Given a trained RF, find a
reconstructed version of its training set – a value for each
feature of each example – that is feasible and likely w.r.t. the
training process. Ideally, the reconstructed dataset should
closely match the actual training data {xk; ck}Nk=1.

Reconstruction attacks are one of the most ambitious in-
ference attacks against ML models, as they directly aim to
recover entire parts of the training data. However, instead
of attempting to reconstruct the whole training set, most
reconstruction attacks only target retrieving part of it. For
instance, the first reconstruction attacks (originally proposed
against database access mechanisms) only aimed at retriev-
ing one private binary attribute for all the database examples
- assuming all other attributes were publicly known (Dinur
& Nissim, 2003; Dwork et al., 2007; 2017). Some other
studies only target reconstructing part of one particular ex-
ample, given some public information about it (Fredrikson
et al., 2014; 2015). Other approaches require additional
knowledge, such as intermediate gradients computed during
collaborative (Phong et al., 2017) or online (Salem et al.,
2020) learning, stationary points reached by gradient de-
scent algorithms (Haim et al., 2022) or information regard-
ing the model’s fairness (Hu & Lan, 2020; Aalmoes et al.,
2022; Hamman et al., 2022; Ferry et al., 2023).

The most closely related works are those of Gambs et al.
(2012) and Ferry et al. (2024). More precisely, Gambs

Table 1: Example binary dataset with N = 4 and M = 4.

f1 f2 f3 f4 c

0 0 0 1 0
1 0 0 0 0
0 1 0 0 1
1 0 1 1 1

et al. (2012) showed that the structure of a single trained
decision tree can be leveraged to build a probabilistic dataset
encoding the whole set of reconstructions of the training
data that are compatible with the provided tree’s structure.
This approach was later generalized in Ferry et al. (2024) to
consider other simple interpretable models. Compared to
previous studies, one of the key challenges addressed by our
approach is to combine the information provided by several
trees to achieve a feasible and accurate reconstruction. This
is especially difficult since the number of occurrences (due
to bagging) and the path taken by each individual example in
each tree is unknown. Consequently, we specifically design
our method to handle the random selection of examples
within each tree and formulate a maximum log-likelihood
objective to guide the search.

4. Illustrative Example
We first give an intuition of the reconstruction problem on
a small dataset (Table 1) with 4 examples described by 4
binary attributes fi∈{1..4} and a binary class c. Figure 1
provides two decision trees trained on this dataset. Tree
t1 was trained without using f1, while tree t2 was trained
without using f3 (though this information is unknown to
the reconstruction algorithm). For presentation simplicity,
bagging is not used here, and therefore each training ex-
ample is used a single time in each tree. By following the
paths from the root to each leaf within t1 (Figure 1a), one
can set the value of some attributes within the reconstructed
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dataset by leveraging the performed splits and the per-node
cardinalities. For instance, following the leftmost path, we
can observe that the two examples belonging to class 0 have
value 0 for both f3 and f2. Such information permits to fix
some attributes’ values directly. Similarly, according to t2,
there exists exactly one example of class 1 with value 0 for
f2, and another one with value 1.

The main issue with such ad-hoc reasoning is that, except
in some obvious cases (i.e., when all examples of a certain
class respect a given splitting condition), splits will permit
quantifying how many examples respect a certain condition
without telling which are these examples. Therefore, the
biggest challenge of dataset reconstruction is to individually
link the examples between the different trees and find a com-
patible dataset that respects all the cardinality constraints.
This challenge is exacerbated by the bagging process, as in
this case, the cardinalities within the trees’ nodes may count
some examples several times (and ignore some others).

5. NP-Hardness Result
In this section, we formally define the dataset reconstruction
problem (DRP) and show its NP-completeness. Part of the
input data for (DRP) has already been defined before: the
set of classes C, the number N of examples, the number M
of binary attributes, and the forest T , where each t ∈ T is
a binary tree. Also, for each class c ∈ C, tree t ∈ T and
each v ∈ VI

t ∪ VL
t , we are given an amount ntvc ∈ Z+ of

examples of class c that are classified in node v of tree t.

In addition, we are given as input:

• for every v ∈ VI
t , an attribute fv ∈ {1..M}.

• a set B of integer values, that represent how many times
a sample may appear in a tree

We assume that the data satisfies the following properties:

• For each class c ∈ C, tree t ∈ T and each v ∈ VI
t , we

have that ntvc = ntl(v)c + ntr(v)c.
• For each tree t ∈ T , we have

∑
v∈VL

t

∑
c∈C

ntvc = N .

For each tree t ∈ T , we let Φ+
v ⊆ {1..M} denote the

set of indices of the boolean attributes that must be TRUE
for an example to fall into node v ∈ VL

t ∪ VI
t . Similarly,

Φ−
v ⊆ {1..M} is the set of indices of the boolean attributes

that must be FALSE for an example to fall into v (hence
Φ+

v ∩Φ−
v = ∅). Both represent the splits that are found along

the path from the root node of tree t ∈ T to v. Formally,
if v is the root node of the tree, then Φ+

v = Φ−
v = ∅. For

every v ∈ VI
t , we can define such sets for its children as

Φ+
l(v) = Φ+

v and Φ−
l(v) = Φ−

v ∪ {fv} ; Φ+
r(v) = Φ+

v ∪ {fv}
and Φ−

r(v) = Φ−
v

The goal of (DRP) is to find N vectors x1, .., xN ∈ {0, 1}M ,

respective classifications z1, .., zN ∈ C and node incidences
ytvk ∈ Z+,∀t ∈ T , v ∈ VL

t , k ∈ {1..N} such that:

•
∑

v∈VL
t

ytvk ∈ B, ∀t ∈ T , k ∈ {1..N}

•
∑

k∈{1,...,N}:zk=c

ytvk = ntvc, ∀t ∈ T , v ∈ VL
t

• For all k ∈ {1..N}, t ∈ T , v ∈ VL
t , if ytvk > 0, then

(xk)i = 0 for all i ∈ Φ−
v and (xk)i = 1 for all i ∈ Φ+

v .

We note that the last constraint implies that for every t ∈ T
and k ∈ {1..N}, at most one variable in the set {ytvk : v ∈
VL
t } is nonzero. This is due to the fact that, from the way

Φ+
v and Φ−

v are constructed, all other leaves v′ ∈ VL
t \ {v}

must have at least one attribute i ∈ Φ+
v ∪ Φ−

v switching its
required TRUE/FALSE value in v′.

Note that if we set B = {1}, we impose that each exam-
ple must appear exactly once in every tree, which corre-
sponds to the situation when no bagging is used. If we set
B = {0, . . . , N}, we get that each example can appear any
number of times in a tree, which corresponds to the situation
when bagging is used.

Theorem 5.1. The decision version of (DRP) is NP-
complete.

Proof. First, a YES certificate of (DRP) is any solution
(x, z, y). One can verify if it is feasible in polynomial time,
so the decision version of (DRP ) ∈ NP .

Next, consider an instance of the NP-complete problem
3-SAT, given by a set L = {1, . . . , |L|} of clauses with
three literals each. Each literal is either a variable or its
complement, and there are V possible variables. We con-
struct an instance of (DRP) with |C| = 1, by specifying the
forest T and nlvc values. We let B = {1}. By assumption
on the data, we only need to specify nlvc for v ∈ VL

t . Also,
recall that the left branch of v ∈ VI

t corresponds to setting
fv to zero, and the right branch sets it to 1. The idea is to
construct a perfect binary tree for each l ∈ L. This way, the
fixed attributes Φ+

v and Φ−
v of each leaf v of tree l will rep-

resent one of each possible assignment of the three literals
of l to 0 or 1.

Out of the eight possible leaves of tree l, seven satisfy the
corresponding clause, and one does not. We set nlvc = 1
for the leaves that satisfy clause l and nlvc = 0 otherwise.
The goal of our construction is to force the DRP solver to
generate an example whose attribute values lead it towards
one of the leaves with nlvc = 1 in each tree, i.e., a 3-SAT
solution, whenever such a solution exists. To achieve this,
we include six additional “dummy” examples for each tree
to reach the remaining alternatives with nlvc = 1. Therefore,
our constructed instance has N = 6|L|+ 1 examples.
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We rely on M = V + |L| binary attributes. The first V
attributes will represent the 0/1 assignment of values to
literals. The remaining |L| attributes will determine whether
one example is used or not in the leaves corresponding to
the perfect binary tree of that clause. With that, we add to
each tree l = 1, . . . , |L|, a root node where we branch on
feature V + l. The right branch of the tree will contain the
perfect binary tree described above. The left branch is a
single leaf node with nlvc = 6|L| − 6, designed to absorb
all dummy examples not destined toward that tree.

We finally construct one extra auxiliary tree. All its left
branches end up in leaves. Each node on the right branch
at depth d (including the root node) branches on attribute
V +d+1. The left leaf at depth 1 has nlvc = 6|L|−6. The
left leaf at depth 2 has nlvc = 6. All other left leaves have
nlvc = 0. The rightmost leaf has nlvc = 1. With this, the
rightmost leaf imposes that a single example reaches one
leaf of every perfect tree (the desired 3-SAT solution). The
other nodes of the tree just count the extra examples.

Appendix A proves that (DRP) is feasible if and only if the 3-
SAT instance is a YES instance. It also contains illustrative
examples for the construction.

The optimization version of the problem is to search for the
solution that has the largest likelihood, called the maximum
likelihood dataset reconstruction problem (MLDRP). This
problem is NP-hard since even reconstructing one feasi-
ble solution is NP-complete. The maximum likelihood
objective function will be formally introduced in the next
section.

6. Constraint Programming Approach
As seen in Section 4, an inspection of the different trees
gives sets of restrictions over feature values that concern a
known number of examples of each class. However, it does
not tell which example specifically satisfies which condition.
Testing feasible combinations by inspection would require
extensive trial and error, leading to an intractable process.
Instead, we propose to formulate this search problem as
a constraint programming (CP) model, permitting the use
of efficient out-of-the-shelf solvers for such models. The
model we design covers the most general case where bag-
ging is used to train the forest, and includes discretization
strategies specifically designed to help the solution process.
Note that, while we focus on CP, Mixed-Integer Linear Pro-
gramming (MILP) could also be employed instead. How-
ever, having conducted experiments with both techniques,
and as demonstrated in Appendix B, CP generally achieved
better performance and permitted to handle bagging much
more effectively.

For our mathematical formulation, we define three sets of

decision variables. The first one assigns training examples
to a corresponding class. The second assigns the training
examples to the trees’ leaves, and the third connects the
attributes’ values to the splits leading to their assigned leaf.

• ∀k ∈ {1..N},∀c ∈ C: zkc is 1 if training example k is
considered as part of class c, else 0.

• ∀t ∈ T ,∀v ∈ VL
t ,∀k ∈ {1..N},∀c ∈ C: ytvkc ∈ Z+

is the number of times training example k is classified
by leaf v within tree t as class c.

• ∀k ∈ {1..N},∀i ∈ {1..M}: xki ∈ {0; 1} is the value
of feature i for example k in the reconstruction.

To define the objective function, we will assume that a train-
ing example appears at most 7 times in any tree, since higher
values are very unlikely. Indeed, bootstrap sampling con-
sists of sampling with replacement N examples from a set
of N original examples. At each iteration of the bootstrap
sampling process, each example has a probability of 1

N of
being selected. The probability of an example being selected
more than B times can then be computed as:

1−
B−1∑
b=0

((
1

N

)b

·
(
N − 1

N

)N−b

·
(
N

b

))
.

If N = 100 as in our experiments, the probability of an
example appearing more than 7 times in a bootstrap sampled
training set is roughly 10−5. This value remains similar for
larger values of N (e.g., around 10−5 for N = 1010).

With this, we define B := {0, . . . , 7}. Note that if no feasi-
ble solution is found using this default value, increasing it
and solving the model again is possible. We now define a
binary variable to capture how many times an example is
used:

• ∀t ∈ T ,∀k ∈ {1..N},∀b ∈ B: qtkb is 1 if training
example k is used b times in tree t and 0 otherwise

The constraints of our model are as follows.

One-hot encoding:

• ∀k ∈ {1..N},∀w ∈ vects :
∑
i∈w

xki = 1

Each example is assigned to exactly one class:

• ∀k ∈ {1..N} :
∑
c∈C

zkc = 1

If an example is not assigned a given class, it cannot be used
as that class in any tree:
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• ∀k ∈ {1..N},∀c ∈ C :

if zkc = 0 then
∑

t∈T ,v∈VL
t

ytvkc = 0

Each leaf must capture exactly the defined number of exam-
ples from each class:

• ∀t ∈ T ,∀v ∈ VL
t ,∀c ∈ C : ntvc =

∑
k∈{1..N}

ytvkc

If an example is captured by a leaf, the associated conditions
must be enforced on its features:

• ∀t ∈ T ,∀k ∈ {1..N},∀v ∈ VL
t :

if
∑
c∈C

ytvkc ≥ 1 then

( ∧
i∈Φ+

v

xki = 1

)
∧( ∧

i∈Φ−
v

xki = 0

)

The number of times a sample is used in a tree is consistent:

• ∀t ∈ T ,∀b ∈ B,∀k ∈ {1..N} :∑
v∈VL

t ,c∈C
ytvkc = b ⇐⇒ qtkb = 1

We implemented this model using the OR-Tools CP-SAT
solver (Perron & Didier), which requires extra variables and
constraints to be introduced to model some of the above
conditions. These details are presented in Appendix C.

Maximum log-likelihood objective. Since the above
model could have many possible solutions when using bag-
ging, we orient the search towards the solutions (datasets)
that are the most likely. For a given tree t, let pb be the
probability that a sample k is chosen exactly b times to train
that tree. By defining pqtkb = pb if qtkb = 1 and pqtkb = 1
otherwise, we can calculate the probability that the sam-
ples were chosen for the tree according to the qtkb variables
as
∏

k∈{1..N}
∏

b∈B pqtkb. Therefore, considering the whole
RF, the probability of a given solution is:∏

t∈T

∏
k∈{1..N}

∏
b∈B

pqtkb.

Maximizing this probability is equivalent to maximizing its
logarithm; in other words, maximizing:∑
t∈T

∑
k∈{1..N}

∑
b∈B

log (pqtkb) =
∑
t∈T

∑
k∈{1..N}

∑
b∈B

log (pb) qtkb.

Model simplifications when bagging is deactivated. RFs
can be trained using random subsets of features for each split
but considering all the examples in each tree. In such situ-
ations without bagging, the CP model can be significantly
simplified. Variables ytvkc will become binary and sum up
to 1 for each tree t ∈ T and each example k ∈ {1..N},
since each example will be used exactly once in each tree.
Also, we know in advance how many examples are of each
class c ∈ C. Therefore, to match that data, we may fix
the variables zkc in advance. Finally, qtkb are always fixed
since every example is used exactly once in each tree. Thus,
the objective function becomes constant, and the problem
reduces to the search for a feasible solution.

Reconstructing non-binary attributes. To streamline
the presentation of the methodology and evaluation metric,
we provided our model for the particular case of binary
attributes. However, extending it to handle other types of
attributes is possible with minimal changes, as detailed in
Appendix D and implemented within our publicly available
repository. In a nutshell, categorical attributes are typically
one-hot encoded for tree ensembles and directly handled
by our formulation. Ordinal features can be modeled as
integer variables and only require a slight generalization
of the constraints connecting the attributes’ values to the
assignment of the examples to the leaves. Finally, numerical
attributes can also be reconstructed: although they take
values in a continuous space, the number of splits within the
forest is finite, and so is the number of different intervals
in which they can lie. Leveraging this observation, we can
use ordinal features to model such possible intervals in the
reconstruction.

7. Experimental Study
Through extensive experimental analyses, we aim to eval-
uate the effectiveness and accuracy of the proposed recon-
struction attack, named DRAFT (Dataset Reconstruction
Attack From Trained ensembles). We first detail the experi-
mental setup before discussing the results.

7.1. Experimental Setup

Datasets. We rely on three popular datasets for binary clas-
sification in our experiments. We discretize each dataset’s
numerical attributes and one-hot encode the categorical
ones. To keep a reasonably small number of features, we
remove some attributes with the smallest support*. First, the
COMPAS dataset (analyzed by Angwin et al. 2016) gathers
records about criminal offenders in the Broward County of
Florida collected from 2013 and 2014, with the task being

*Our binarized versions of these datasets are available in the
supplementary material and will be available on our online reposi-
tory upon publication.
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recidivism prediction. Our preprocessed version includes
7,206 examples described by 15 binary attributes. Second,
the UCI Adult Income dataset (Dua & Graff, 2017) contains
data regarding the 1994 U.S. census to predict whether a
person earns more than $50K/year. After preprocessing,
our dataset includes 48,842 examples and 20 binary fea-
tures. Finally, we use the Default of Credit Card Client
dataset (Yeh & hui Lien, 2009), to predict whether a person
will default in payment (the next time they use their credit
card). Our preprocessed version includes 29,986 examples
and 22 binary attributes.

Reconstruction error evaluation. To assess the attack’s
success, we first compute the Manhattan distance between
each reconstructed and original example. The resulting dis-
tance matrix then instantiates a minimum weight matching
in bipartite graphs, also known as linear sum assignment
problem, which we solve using the Scipy (Virtanen et al.,
2020) Python library. Once the datasets are aligned, we
then measure the proportion of binary attributes that differ
between both.

Random reconstruction baseline. As mentioned in Sec-
tion 3, reconstruction attacks rarely target reconstructing an
entire training set, and none of them apply to our setup (i.e.,
leveraging an RF to rebuild its complete training set). We
then consider a baseline adversary with the same knowledge
as ours (in particular, the number of examples N , the differ-
ent attributes M including their one-hot encoding vects) ex-
cept for the RF itself. The adversary then randomly guesses
each attribute of each example, remaining consistent with
the one-hot encoding information. The reconstruction error
is finally assessed, as described in the previous paragraph.
We average such computation over 100 random runs and re-
port the average value. By comparing this baseline with the
performances of our approach, one can then quantify how
much additional information can be extracted from the RF.

Target RFs. To train our target models (i.e., the RFs
from which we attempt to reconstruct the training data),
we use the popular implementation provided by the
scikit-learn library. For each dataset, we learn RFs
with varying parameters. More precisely, we use a number
of trees |T | ∈ {1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
with maximum depth dmax ∈ {None, 2, 3, 4, 5, 10} (where
None stands for no maximum depth constraint). For each
experiment, we randomly sample 100 examples from the en-
tire dataset to form a training set, and use the remaining ones
as a test set to verify to what extent the models generalize.
We repeat the experiment five times using different seeds
for the random sampling, and report the average results and
their standard deviation across the five runs.

Dataset reconstruction. The proposed CP models de-
scribed in Section 6 are solved using the OR-Tools CP-
SAT solver (Perron & Didier) (v9). Each model resolution
is limited to a maximum of five hours of CPU time using
16 threads with up to 6 GB of RAM for each thread. Note,
however, that while the CP models handling bagging often
reached this time limit, they usually were able to find fea-
sible solutions in a much shorter time. All experiments are
run on a computing cluster over a set of homogeneous nodes
using Intel Platinum 8260 Cascade Lake @ 2.4GHz CPU.

All the material (source code and data sets) needed to repro-
duce our experiments is accessible at https://github.
com/vidalt/DRAFT under a MIT license.

7.2. Results

The results of our experiments are reported in Figure 2 for
all three datasets, with or without the use of bagging to
train the target RFs. More precisely, we plot the average
reconstruction error as a function of the number of trees |T |,
for several values of the trees’ maximum depth dmax. We
observe several trends that are consistent across all three
datasets. In all cases, as expected, increasing the trees’
depth or the number of trees in the forest decreases the re-
construction error as it provides more information regarding
the training data. When bagging is not used to train the
RFs, the reconstruction error reaches 0 in all cases for the
deepest forests (recall that the default parameters of the
scikit-learn library is no maximum depth constraint).
This is not the case when using bagging. In such cases, the
reconstruction error reaches a threshold and stops improving
even for larger forests. In Appendix E, we further investigate
the effect of bagging on protecting the training data against
reconstruction attacks and conduct additional experiments.
Our main finding is that this performance drop precisely
comes from the difficulty of guessing how many times each
example went through each tree: bagging intrinsically pro-
vides a form of protection regarding the training data. This
is consistent with theoretical results stating that bagging
provides (weak) differential privacy guarantees (Liu et al.,
2021b).

We report in Tables 2 and 3 (respectively for a fixed number
of trees |T | = 100 and no fixed maximum depth, both corre-
sponding to scikit-learn’s default values) the average
run times for the reconstruction model without bagging,
along with the number of times (#Runs) the solver was
unable to find a feasible solution before timeout. When
bagging is used, most runs attain the time limit and return
a solution but cannot prove optimality. Run times in this
context are not informative, so we only report the number
of times the solver did not find any feasible solution before
the time limit. Note that the few runs that did not produce a
feasible solution are excluded from Figure 2. We observe
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(a) COMPAS dataset, bagging not used
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(b) COMPAS dataset, bagging used

0 20 40 60 80 100
#trees

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
co

ns
tru

ct
io

n 
Er

ro
r

(c) UCI Adult Income dataset, bagging not used
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(d) UCI Adult Income dataset, bagging used
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(e) Default of Credit Card Client dataset, bagging not used
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(f) Default of Credit Card Client dataset, bagging used

Max. Depth 2
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Max. Depth 4
Max. Depth 5

Max. Depth 10
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Random Baseline

Figure 2: Average reconstruction error as a function of the number of trees |T | within the target forest T , for different
maximum depth values dmax and for the random baseline.

from Table 2 that the formulation without bagging efficiently
handles the problems that are under-constrained (shallow
trees) or over-constrained (deep trees). Intermediate cases
seem to require more computational effort, and in a few
cases, the solver did not find a feasible solution. When us-
ing bagging, the size of the models seems to matter the most,
as the solver only failed to find feasible solutions with the
deepest forests. The same observation holds from Table 3,
as the only runs for which the solver did not find a feasible

solution are those with the largest numbers of trees. When
not using bagging, the solution times scale approximately
linearly with the number of trees. We report in Appendix F
additional experiments regarding our method’s scalability
with respect to the number of training examples N . The
results demonstrate its ability to reconstruct considerably
larger datasets, with the reconstruction error remaining very
small. Furthermore, while the size of the CP model’s search
space increases exponentially with the number of recon-
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Table 2: Average run time and number of runs for which the
solver did not come up with a feasible solution (#Runs), for
a fixed number of trees |T | = 100 (default value).

Max.
Depth

No Bagging Bagging
Avg. T (s) #Runs #Runs

C
O

M
PA

S

2 9.5 0 0
3 36.5 0 0
4 45.7 0 0
5 70.0 0 0
10 110.9 0 0

None 100.8 0 0

A
du

lt

2 20.2 0 0
3 81.5 0 0
4 1943.5 0 0
5 1290.7 0 0
10 346.4 0 1/5

None 196.3 0 1/5

D
ef

au
lt

C
re

di
t 2 35.5 0 0

3 300.8 1/5 0
4 6040.0 2/5 0
5 1358.5 0 0
10 382.8 0 0

None 165.0 0 4/5

structed training examples N , in practice, reconstruction
time increases polynomially (approximately quadratic or
sub-quadratic) with N .

As discussed in Section 3, most works in the reconstruc-
tion attacks literature only target reconstructing part of the
dataset attributes (generally, a single one), assuming the
others are publicly known. In Appendix G, we perform
complementary experiments on such partial reconstruction.
The results show that our approach successfully leverages
knowledge of part of the dataset attributes, which results in
lower error rates for the other ones.

8. Discussion and Conclusions
This study has shown that the structure of a trained RF can
be exploited to reconstruct most (if not all) of its training
data. It introduced a new paradigm of attack, leveraging
mathematical programming tools to encode the structure of
an RF and relying on a general-purpose CP solver to find
the most likely reconstructions of the training data. Due to
the high redundancy of RFs built using off-the-shelf ML
libraries with their default parameters, the resulting problem
is often strongly constrained, resulting in a high reconstruc-
tion rate. While theoretical NP-completeness theorems
indicate that such an attack may not be computationally
tractable at scale, the tremendous progress in CP/MILP
solvers has made it practical to solve larger and larger prob-
lems over time. Therefore, it may just be a question of time
until data breaches happen for large datasets.

Table 3: Average run time and number of runs for which the
solver did not come up with a feasible solution (#Runs), for
no maximum depth constraint (default value).

|T | No Bagging Bagging
Avg. T (s) #Runs #Runs

C
O

M
PA

S

1 0.7 0 0
10 8.4 0 0
30 39.8 0 0
50 53.0 0 0
80 89.7 0 0

100 100.8 0 0

A
du

lt

1 0.8 0 0
10 74.2 0 0
30 84.9 0 0
50 85.1 0 0
80 119.9 0 0

100 196.3 0 1/5

D
ef

au
lt

C
re

di
t 1 0.9 0 0

10 129.7 0 0
30 47.7 0 0
50 66.2 0 2/5
80 161.3 0 4/5

100 165.0 0 4/5

The fact that the proposed framework is based on mathe-
matical programming techniques opens the door to many
promising research perspectives. The approach could be
tested on various types of attributes (numerical, categori-
cal) without the need for feature binarization. Performance
improvements could also be achieved through different prob-
lem reformulations or additional valid inequalities. Notably,
one could leverage the information gain criterion used to
select the splits while building the decision tree to eliminate
combinations of attributes’ values leading to different splits.

Our framework can also be used as a building block for
other types of inference attacks, such as membership in-
ference or property inference. Furthermore, we consid-
ered canonical RFs trained without privacy-preserving tech-
niques, representing most of what popular libraries do by
default. Investigating the effectiveness of common privacy-
preserving mechanisms, such as the widely used differen-
tial privacy (Dwork et al., 2014), would bring additional
insights. Though this may lead to difficult models, the pro-
posed CP (or MILP) formulations could be extended to
infer the noise added by the protection mechanisms on the
released per-node counts (Fletcher & Islam, 2019; Dinur
& Nissim, 2003). On the same line, adapting the formula-
tion to work without the knowledge of the per-leaf per-class
counts (hence only supposing that each leaf contains at least
one example from the predicted class), or considering other
gray-box setups, are interesting directions. Finally, another
interesting direction is to apply the proposed methodology
to other types of ensembles and ML models.
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Impact Statement
ML models are commonly trained using large amounts of
data, often including personal or private information. The
flourishing literature on inference attacks against ML mod-
els showed that models might jeopardize their training data
even when accessed in a black-box manner (i.e., through a
prediction API). Furthermore, transparency requirements
encourage practitioners to either provide additional explana-
tions for their model’s decisions or to entirely release such
models, potentially opening up to new attacks.

In this study, we have demonstrated that the structure of
a trained RF can be leveraged to reconstruct most (if not
all) of its training data. Importantly, our proposed method
only leverages the information provided by popular libraries
such as scikit-learn. While NP-harness theorems and
scalability issues limit the current applicability of our ap-
proach, our results already demonstrate its effectiveness on
datasets of practical significance. These findings underscore
a critical vulnerability inherent to widely adopted ensemble
methods, warranting attention and mitigation. The methods
and experiments developed in this study have two main im-
plications: (i) raising awareness against the privacy vulnera-
bilities of ensemble methods and (ii) providing promising
research paths to stress test privacy-preserving mechanisms,
aiming to protect such models before releasing them.
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A. Proof of NP-Hardness (Theorem 5.1)
The description of the construction of the instance of (DRP) can be found in the main text. We start by providing an example
to clarify the construction.

Consider the following 3-SAT instance with |L| = 3 clauses and V = 4 variables:

(u1 ∨ ū2 ∨ ū3) ∧ (u1 ∨ u2 ∨ u4) ∧ (ū2 ∨ ū3 ∨ ū4) (1)

Figure 3 shows the constructed (DRP) instance arising from it.
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Figure 3: Example of (DRP) instance originating from (1). The left branches correspond to setting the feature to 0. The
right ones set the feature to 1. The numbers below are the nlvc values.

Theorem 5.1 follows from Claims A.1 and A.2.

Claim A.1. If the 3-SAT instance is a YES instance, then (DRP) is feasible.

Proof. Suppose that there is an assignment of values to the V variables of 3-SAT so that all clauses L are satisfied.

Then for each clause l ∈ L, pick the leaf v of the perfect binary subtree that corresponds to the assignment of variables
in 3-SAT. We set ylv(6|L|+1) = 1 and ylv′(6|L|+1) = 0 for all v′ ∈ VL

l , v′ ̸= v. We set the first V attributes of x6|L|+1 to
match the assignment of the V variables that satisfy 3-SAT. We set the attributes V + 1, . . . , V + |L| to 1.

For the remaining examples, we set the attributes V + l of examples 6(l − 1) + 1, . . . , 6l to 1, and all other attributes in
V + 1, . . . , V + |L| to 0. This is done for all l = 1, . . . , |L|. In addition, we set the remaining attributes to match one of the
leaves that have nlvc = 1 but don’t correspond to the assignment of variables in 3-SAT and set the corresponding ylvk to 1.

This can be easily checked to be feasible for (DRP).

For example, in Figure 3, if the 3-SAT assignment is u1 = TRUE, u2 = u3 = u4 = FALSE, then we would have the solution
to (DRP) shown in Table 4.

13
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f1 f2 f3 f4 f5 f6 f7
x1 0 0 0 1 1 0 0
x2 0 0 1 1 1 0 0
x3 0 1 0 1 1 0 0
x4 1 0 1 1 1 0 0
x5 1 1 0 1 1 0 0
x6 1 1 1 1 1 0 0
x7 0 0 1 1 0 1 0
x8 0 1 1 0 0 1 0
x9 0 1 1 1 0 1 0
x10 1 0 1 1 0 1 0
x11 1 1 1 0 0 1 0
x12 1 1 1 1 0 1 0
x13 1 0 0 1 0 0 1
x14 1 0 1 0 0 0 1
x15 1 0 1 1 0 0 1
x16 1 1 0 0 0 0 1
x17 1 1 0 1 0 0 1
x18 1 1 1 0 0 0 1
x19 1 0 0 0 1 1 1

Table 4: Solution to (DRP) constructed from 3-SAT solution. The entries in bold are arbitrary. The italicized entries encode
the solution of the corresponding 3-SAT problem.

Claim A.2. If (DRP) is feasible then the 3-SAT instance is a YES instance.

Proof. If (DRP) is feasible, then there exists one example which has features V + 1, . . . , V + |L| equal to 1. This comes
from the rightmost node of the auxiliary tree.

Without loss of generality, assume that such example is x6|L|+1 (e.g., x19 in Table 4).

Then in each of the trees l ∈ L, x6|L|+1 must have gone to the right branch at the root. In this case, we know that x6|L|+1

must fall into one of the leaves of the perfect binary tree that corresponds to a truth assignment that makes the clause l
satisfied.

A solution to 3-SAT can then be constructed by looking at the first V components of x6|L|+1.

B. Mixed-Integer Linear Programming Formulation
We show how the reconstruction problem can be alternatively formulated as a Mixed-Integer Linear Program (MILP),
permitting the use of alternative solution algorithms. In a MILP, all variables can be continuous or integers, but all constraints
and the (optional) objective function must be linear in the decision variables. This restriction is not imposed in Constraint
Programming (CP). Consequently, we must linearize some of the expressions required to model our reconstruction problem
using additional variables. We describe the MILP formulation for the scenario where bagging is not used to train the target
random forests, before performing some empirical evaluation of its performance.

B.1. Model Formulation (Without Bagging)

We present here a MILP model for the DRP. Our MILP model for reconstructing the training set of a given random forest
extends the OCEAN framework (Parmentier & Vidal, 2021), which was proposed to generate optimal counterfactual
explanations for tree ensembles. In a nutshell, OCEAN leverages MILP to encode the structure of the trees within the forest,
and aims at finding an example as close as possible from a query example xk but with a different classification. Rather than
determining the attributes’ vector of a single example (the generated counterfactual), we aim to reconstruct the features’
vector of all the N training examples simultaneously.

14
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We now introduce some additional notation. For each tree t ∈ T , we define Dt as the set of all the depths reached in t, and
∀d ∈ Dt, VI

td is the set of internal nodes at depth d in t. As mentioned in Section 6, without bagging, one can fix in advance
the set of decisions zkc (i.e., if an example k is from class c). Let Zc = {k ∈ {1..N} : zkc = 1} be the set of indices of
examples belonging to class c, and VI

ti be the set of nodes within tree t splitting on feature i. W.l.o.g., we assume that the
indices in Zc are consecutive.

We first define decision variables that will model the path of each example through each tree:

• ∀t ∈ T ,∀d ∈ Dt,∀k ∈ {1..N} : λtdk ∈ {0, 1} takes value 1 if example k takes the left path at depth d of the tree t,
and 0 otherwise. The value is free if the path doesn’t go this deep.

• ∀t ∈ T ,∀v ∈ VI
t

⋃
VL
t ,∀k ∈ {1..N}: ytvk ∈ [0; 1] takes value 1 if example k reaches node v of the tree t, 0 otherwise

(note that the integrality is forced by the previous variables)

• ∀k ∈ {1..N},∀i ∈ {1..M}: xki ∈ {0; 1} is the value of feature i for example k in the reconstruction

First, the following constraints correspond to the one-hot encoding of the features:∑
i∈w

xki = 1 ∀k ∈ {1..N},∀w ∈ vects

We then use the following constraints to model the flow of the examples through the trees:

yt1k = 1 ∀t ∈ T ,∀k ∈ {1..N} (2)

ytvk = ytl(v)k + ytr(v)k ∀t ∈ T ,∀v ∈ VI
t ,∀k ∈ {1..N} (3)∑

v∈VI
td

ytl(v)k ≤ λtdk ∀t ∈ T ,∀d ∈ Dt,∀k ∈ {1..N} (4)

∑
v∈VI

td

ytr(v)k ≤ 1− λtdk ∀t ∈ T ,∀d ∈ Dt,∀k ∈ {1..N} (5)

In a nutshell, because we consider the case without the use of bagging, each example has one associated unit of flow at the
root of each tree. This flow is encoded by continuous variables (which are easier to handle for the solver than integer/binary
ones). All the flow is then directed through the tree, by going either left or right at each split node, until it reaches a leaf.

We then link these flows to the values taken by the features of the examples through the following constraints:

xki ≤ 1− ytl(v)k ∀k ∈ {1..N},∀i ∈ {1..M},∀t ∈ T ,∀v ∈ VI
ti (6)

ytr(v)k ≤ xki ∀k ∈ {1..N},∀i ∈ {1..M},∀t ∈ T ,∀v ∈ VI
ti (7)

Finally, we connect these flows to the support of each node within the trees (recall that because we consider the case without
bagging, zkc is a prefixed constant, and hence the computation is linear in the decision variables ytvk):

ntvc =
∑

k∈{1..N}

ytvkzkc, ∀t ∈ T ,∀v ∈ VI
t

⋃
VL
t ,∀c ∈ C (8)

Note that we additionally use the following constraints for symmetry breaking in each class:∑
i∈{1..M}

2i−1xki ≤
∑

i∈{1..M}

2i−1x(k+1)i ∀c ∈ C,∀k ∈ Zc \ {ℓc} (9)

where ℓc is the last index in Zc.

In the next subsection, we empirically evaluate our proposed MILP model and compare it to the CP formulation introduced
in the main paper. Note that extending the proposed MILP to handle bootstrap sampling is possible, but the number of
required variables increases prohibitively in order to preserve linearity, limiting the scalability of the approach.
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(a) CP model
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(b) MILP model
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Figure 4: Average reconstruction error as a function of the number of trees |T | within the attacked forest T , for different
maximum depth values dmax and for the random baseline. For the experiments on the COMPAS dataset, not using bagging,
we report the results obtained using either the CP model (Section 6) or the MILP one (Section B.1).

B.2. Empirical Evaluation

We run the reconstruction experiments on the COMPAS dataset without bagging as described in Section 7.1, using our
MILP formulation, and compare the results with those obtained using our CP model (which are reported in Section 7.2).
The MILP models are solved using the Gurobi solver (Gurobi Optimization, LLC, 2023) through its Python binding†, all
the other experimental parameters remaining unchanged.

The results are reported in Figure 4, and their run times are compared in Table 5. Note that the results for the CP model
are those presented in Figure 2a, repeated here to ease comparison. Comparing the different curves (which correspond
to different maximum depth constraints) between Figures 4a and 4b, we see that both approaches successfully solve the
dataset reconstruction problem on COMPAS without the use of bagging to train the target random forests. Intuitively, the
two feasibility models encode the same information, and define the same set of feasible reconstructions. Because they use
different techniques to represent and explore it, they may end up with different reconstructions, but there is no a priori
reason for one to outperform the other systematically, and as observed in our experiments, their reconstruction performances
are generally similar.

Nevertheless, Table 5 highlights significant solution-time differences between the CP and MILP approaches. The solution
times of both approaches are of the same order of magnitude for shallow trees. However, as the depth of the trees grows, the
solution time increases more quickly with the MILP than with the CP model. For instance, on average, the MILP formulation
requires over three times more CPU time than the CP one when no maximum depth constraint is set. More importantly,
the solution times are considerably less stable when using the MILP, resulting in larger maximum run times. In the most
extreme case, the MILP exceeds 75 minutes, contrasting sharply with the CP model’s consistently modest durations, never
surpassing three minutes. As discussed in the previous subsection, the MILP is also less prone to be extended to the setup
where bagging is used to train the target random forests. These observations led us to rely on the CP model in the main
paper.

C. Implementation Details for the CP Model
As mentioned in Section 6, in order to implement the CP model using the OR-Tools CP-SAT solver, some other variables
and constraints are needed due to the specificities of the solution software. We discuss these technical aspects in this
appendix.

First, CP-SAT only allows implication constraints with a literal being the cause of the implication. Therefore, we had to rely

†https://pypi.org/project/gurobipy/
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Table 5: Reconstruction times for the experiments on the COMPAS dataset, without the use of bagging to train the target
random forests. For both the CP and the MILP models, we consider all the measured runtimes (i.e., for the 5 seeds and the
12 different numbers of trees within the forests) for a given maximum depth constraint. We report their average value, along
with the standard deviation, the minimum time and the maximum one.

Max. Depth Method Reconstruction Times (s)

Avg Std Min Max

2 CP 4.7 3.8 0.1 17.0

MILP 5.4 6.1 0.1 31.2

3 CP 14.1 12.9 0.1 48.4

MILP 10.3 21.9 0.2 162.5

4 CP 25.2 18.9 0.2 58.9

MILP 24.7 52.6 0.2 302.7

5 CP 34.3 23.4 0.3 85.8

MILP 26.4 60.4 0.3 418.6

10 CP 53.7 39.2 0.5 160.6

MILP 77.6 312.7 2.6 2471.2

None CP 49.7 35.5 0.6 142.0

MILP 188.3 791.2 3.3 4521.8

on auxiliary binary variables:

• For all t ∈ T , v ∈ VL
t , k ∈ {1..N}: wtvk is 1 if example k is classified by leaf v of tree t; 0 otherwise.

Second, the relationship between the qtkb and ytvkc also cannot be enforced directly. It can only be done via another set of
auxiliary variables:

• ηtk ∈ Z+ represents the number of times example k is used in tree t

To model the relationship between w and y, we add the constraints:

• if wtvk = 0 then ytvkc = 0, ∀t ∈ T , v ∈ VL
t , k ∈ {1..N}, c ∈ C

• if wtvk = 1 then
∑
c∈C

ytvkc ≥ 1, ∀t ∈ T , v ∈ VL
t , k ∈ {1..N}

These are explicitly added in CP-SAT using the OnlyEnforceIf function that allows a linear constraint only to be
enforced if a boolean variable is TRUE.

With these variables, the constraints that were presented before as

if
∑
c∈C

ytvkc ≥ 1 then

 ∧
i∈Φ+

v

xki = 1

 ∧

 ∧
i∈Φ−

v

xki = 0


will now be implemented as:

• ∀t ∈ T ,∀k ∈ {1..N},∀v ∈ VL
t : if wtvk = 1 then

( ∧
i∈Φ+

v

xki = 1

)
∧

( ∧
i∈Φ−

v

xki = 0

)
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These also can be explicitly added in CP-SAT using the OnlyEnforceIf function.

To model the correct relationship between ytvkc and ηtk variables, we add the constraints:

• For all k ∈ {1..N}, t ∈ T : ηtk =
∑
c∈C

∑
v∈VL

t

ytvkc

Now, the constraints ∑
v∈VL

t ,c∈C

ytvkc = b ⇐⇒ qtkb = 1

can be implemented in CP-SAT using the constraints

• For all t ∈ T , k ∈ {1..N}: AddMapDomain(ηtk, [qtkb]b∈B)

These constraints receive the integer variable ηtk and the vector of binary variables [qtkb]b∈B and enforce that ηtk = b if and
only if qtkb = 1.

D. Extending the CP Model to Handle Non-Binary Attributes
The Constraint Programming (CP) model presented in Section 6 is able to reconstruct binary attributes. While we focused
on this case to streamline the presentation of the methodology and evaluation metrics, our framework can be extended to
handle other types of attributes, as explained in this appendix section.

Discrete attributes take values in a finite domain. If these values can be ordered, the attribute is coined as ordinal, and if
they can not (i.e., if they represent categories), it is called categorical. These two types of discrete attributes can be handled
by DRAFT as detailed hereafter.

Categorical Attributes. Because the different possible values of a categorical attribute can not be ordered, it wouldn’t
make sense to verify whether they are greater or smaller than a given split value, even if the different categories can be
represented using different integer values. Indeed, such attributes must usually be one-hot encoded (i.e., with one separate
binary attribute for each possible category, all the created binary attributes summing up to one) and are hence directly and
efficiently handled using the formulation described in Section 6.

Ordinal Attributes. Ordinal attributes can be used directly in tree ensembles (without one-hot encoding) since an order
relation permits defining meaningful splits. They can be handled naturally using DRAFT. More precisely, using the CP
formulation provided in Section 6, the reconstruction variables {xki}k∈{1..N} associated to each ordinal attribute i must
be declared as integers (which are directly supported in Constraint Programming). Furthermore, the constraint enforcing
the conditions associated to a branch leading to a leaf v if an example k is assigned to that leaf in tree t must be slightly
generalized. We now define Φ+

v as the set of attribute-value tuples (i, a) such that attribute i must be greater than a for an
example to fall into leaf v. Similarly, Φ−

v is now the set of attribute-value tuples (i, a) such that attribute i must be smaller
or equal to a for an example to fall into v. Note that this slight generalization also encompasses the binary attribute case,
where the split value a is usually fixed to 0.5. The generalized constraint then becomes:

∀t ∈ T ,∀k ∈ {1..N},∀v ∈ VL
t : if

∑
c∈C

ytvkc ≥ 1 then

 ∧
(i,a)∈Φ+

v

xki > a

 ∧

 ∧
(i,a)∈Φ−

v

xki ≤ a


All the other variables and constraints remaining unchanged, the model provided in Section 6 can effectively be used to
reconstruct discrete (categorical or ordinal) features.

Contrary to discrete attributes, numerical ones take values in a continuous space. If the underlying mathematical program-
ming framework can encode continuous variables (which is, for instance, the case of Mixed-Integer Linear Programming),
then numerical attributes can be handled just like ordinal ones, using the methodology described in the previous paragraph.
This is not the case in Constraint Programming, but numerical attributes can still be reconstructed effectively, as discussed
hereafter.
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Numerical Attributes. While numerical attributes take values in a continuous space, the number of nodes within a
decision tree (hence within a random forest) is finite, and so the number of split values regarding any specific attribute is
also finite. Then, the number of possible values or intervals for a given reconstructed numerical attribute is also discrete.
Indeed, the knowledge acquired from a random forest can indicate that an example’s numerical attribute lies within a given
interval (between two split values), but in the general case, it does not indicate which particular value within this interval it
should take. We leverage such discretization to reconstruct numerical attributes as follows:

1. We parse all the trees in the forest and build the ordered list of all the different split values regarding each numerical
feature i:

Ai = sorted
({

a : (i, a) ∈ (Φ+
v ∪ Φ−

v )t∈T ,v∈VL
t

})
2. We concatenate this ordered list of split values to the (possibly infinite) lower and upper bounds on the domain of

attribute i:
Ii = {lower bound(i)} ∪ Ai ∪ {upper bound(i)}

Intuitively, Ii defines the possible intervals for attribute i given the splits within the forest.

3. To build the reconstruction model, we encode each numerical feature i as an ordinal (integer) one i′, taking values
in {1..(|Ai| + 1)}. The value of ordinal attribute i′ in the reconstruction performed by the CP model (variables
{xki′}k∈{1..N}) will then be used to retrieve the interval in which numerical feature i lies. Note that the first |Ai|
values correspond to the different split values for attribute i while the (|Ai|+ 1) one encodes the situation where i is
strictly greater than its largest split value. Note that since the constraints associated to the splits are either “strictly
greater than” or “smaller or equal to”, it is not possible to forbid the smallest split value, and so we do not need to
insert an additional value before it.

4. For each split-value tuple (i, a) associated to numerical feature i in (Φ+
v ∪Φ−

v ), we create for the corresponding integer
feature i′ a split-value tuple (i′, a′) such that a′ is the index of a in the ordered list Ai. Using such split-value tuple,
attribute i′ can then be handled just like other ordinal features, as aforementioned.

5. Once the reconstruction is done, we have to connect the value of i′ to that of the actual (continuous) numerical feature
i. If for k ∈ {1..N}, xki′ = a′ ∈ {1..(|Ai|+ 1)} in the reconstruction performed by the CP model, we set the value
of the corresponding reconstructed (continuous) attribute to the mean between the a′ − 1 and a′ split values (i.e., to
Ii[a

′]+Ii[a
′+1]

2 - the difference in indices comes from the fact that Ii starts with an additional element, corresponding to
the attribute’s lower bound). Note that if the lower and (or) upper bounds of i are infinite, we can choose any arbitrary
value compatible with the splits’ information.

E. The Impact of Bagging on Data Protection
Our results (reported in Section 7) show that if bagging is not used, then all of the data can be recovered with just a few trees
in the RF. However, with bagging, the CP model from Section 6 can recover around 90-95% of the data, even with many
trees. In this appendix, we present experiments designed to understand why we could not recover 100% of the data with
bagging.

One of the complicating aspects of bagging is that the knowledge of how many times a sample has been classified within a
given leaf v of a given tree t is lost. With this in mind, we posed the following question:

• Considering the CP model from Section 6, if we know in advance the values of ytvkc (that is, how many times sample k
is classified within a given leaf v of tree t as part of class c) how much reduction can be observed in the reconstruction
error?

Note that, if the values of ytvkc are given, then the values of zkc and qtkb can be deducted. So the only remaining issue is to
determine the xki values and the only constraints that need to be enforced on those are the one-hot encoding constraints and
the leaf-consistency constraints:

• ∀t ∈ T ,∀k ∈ {1..N},∀v ∈ VL
t : if

∑
c∈C

ytvkc ≥ 1 then

( ∧
i∈Φ+

v

xki = 1

)
∧

( ∧
i∈Φ−

v

xki = 0

)
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Let ϕy
tk :=

{
v ∈ VL

t :
∑
c∈C

ytvkc ≥ 1

}
be the (possibly empty) set of leaves of tree t for which example k has been used.

While the leaf-consistency constraints fix all attributes i in Φ+
v ∪ Φ−

v for v ∈ ϕy
tk, any feature that does not appear in any

such sets (call them free attributes) can be arbitrarily set without changing the likelihood of the solution. And so, the fact
that a free attribute is guessed correctly can be attributed to luck and should not be seen as a positive aspect of the CP model.

Formally, the fixed attributes for example k ∈ {1..N} are

Fk :=
⋃
t∈T

⋃
v∈ϕy

tk

(
Φ+

v ∪ Φ−
v

)
and the free attributes are F̄k := {1..M} \ Fk.

Let {xk; ck}Nk=1 be the training set which was used to train the random forest (and which we are trying to recover). With
this we define xy

k as follows:

xy
ki :=


1, if i ∈ Fk ∩ Φ+

v for some t ∈ T , v ∈ ϕy
tk

0, if i ∈ Fk ∩ Φ−
v for some t ∈ T , v ∈ ϕy

tk

1− xki, otherwise

xy
k can be thought of as the solution that is consistent with the y variables on all fixed attributes and incorrectly guesses the

values of all free attributes, so the worst possible solution that is consistent with y.

Our benchmark experiment can now be described as follows:

• Run the CP model of Section 6 with xki = xki and zkck = 1 for all k ∈ {1..N}, i ∈ {1..M}.

• Obtain from the solution of such model the values of the ytvkc variables, for all t ∈ T , v ∈ VL
t , k ∈ {1..N}, c ∈ C.

• Output the set of solutions {xy
k}Nk=1.

Intuitively, we get the best possible guess for the ytvkc variables by solving the maximum likelihood problem when the
training set is given. Subsequently, we get the worst possible solution that is consistent with that guess. It is worth noting
that the knowledge of the training set is used in an advantageous way only to obtain the best possible guess for the ytvkc
variables.

The results of the benchmark experiments for the three considered datasets are shown in Figures 5b, 5d and 5f. The results
without bagging are also repeated in Figures 5a, 5c and 5e (from Figures 2a, 2c and 2e) for reference and easy comparison.

The results show that, if one can correctly guess the ytvkc variables, one can get much closer to recovering 100% of the data,
as in the situation without bagging. Accordingly, the key difficulty in recovering the data is guessing which examples were
used in each tree. This corroborates the fact that bagging can help prevent data reconstruction. It also answers the question
posed at the beginning of this section. Note that bagging was theoretically shown to intrinsically provide some differential
privacy guarantees (Liu et al., 2021b), which is consistent with our findings.

It is also interesting to note that the number of trees needed to recover the data without bagging seems to be lower than in
the benchmark runs, except for very shallow trees. This makes sense since, without bagging, every tree t provides some
information about every example k via the sets ϕy

tk, while this is not true with bagging.

One can observe another surprising trend when comparing the curves corresponding to shallow trees (e.g., maximum depth
of 2). Indeed, without bagging, the reconstruction error decreases until a certain value and remains more or less constant,
even when increasing the number of trees further. This does not happen in the benchmark runs, and even with very shallow
trees, the reconstruction error (which in this experiment is the worst we can expect) converges close to 0. In fact, a large
number of trees trained with bagging seems to provide more information (with the knowledge of the values of ytvkc) than
the same number of trees trained without bagging. An explanation for this behavior could lie in the trees’ intrinsic diversity
and in the fact that each of them contains more information about some training samples, namely those that appeared several
times in their training data.
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(a) COMPAS dataset, bagging not used
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(b) COMPAS dataset, benchmark runs
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(c) UCI Adult Income dataset, bagging not used
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(d) UCI Adult Income dataset, benchmark runs
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(e) Default of Credit Card Client dataset, bagging not used
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(f) Default of Credit Card Client dataset, benchmark runs
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Figure 5: Comparison of the benchmark results (using bagging, worst possible reconstruction error using our set of
constraints if the number of occurrences of each example within each tree are known) with the “no-bagging” ones

F. Additional Experiments on Scalability
This appendix section aims to investigate how our reconstruction attack performs in terms of both reconstruction error and
time when the size N of the reconstructed training set varies. We additionally investigate whether or not generalization error
affects our reconstruction process. To this end, we re-run our experiments without the use of bagging, for the three datasets
and scikit-learn’s default configuration (i.e., with a fixed number of trees |T | = 100 and no fixed maximum depth).
The setup is as described in Section 7.1, but we vary the size of the sub-sampled training set between 25 and 1,500 examples
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and set the reconstruction time limit to 6 hours. The results are provided within Tables 6, 7, and 8 for the three datasets.
More precisely, we report for each training set size, the performances (train and test accuracy) of the trained random forests
(averaged over the 5 different random samplings), the reconstruction error, as well as the minimum, maximum, average,
and standard deviation of the reconstruction times. As can be seen in the tables, for the UCI Adult Income (respectively,
the Default of Credit Card Client) dataset, we report no result for N > 750 (respectively, for N > 500). This is due to a
technical limitation in the solver we use in our experiments. More precisely, the Python wrapper of OR-Tools is limited in
the amount of data it can send to its C++ core. This means that large CP models (above 2GB) can not be solved using this
wrapper‡.

Scalability. We observe in Tables 6, 7, and 8 that the reconstruction error remains very small (0 or very close to 0) for
all the considered values of N , i.e., the success of our attack is not affected by the size of the reconstructed training set.
However, reconstruction time consistently increases with N . This can be explained by the fact that reconstructing more
training examples requires exploring a considerably larger search space. Indeed, increasing N leads to a linear increase
in the number of {xki}k∈{1..N}, i∈{1..M} and {ytvk}t∈T , v∈VL

t , k∈{1..N} variables, but to an exponential increase of the
number of possible solutions of the constraint programming model (i.e., search space size). Fortunately, the solution process
of the CP solver, using domain reduction and other strategies, does not require examining all the solutions. Empirically,
the growth of reconstruction time as a function of N is not exponential but polynomial —approximately quadratic on the
considered datasets according to a power-law regression. Another interesting side effect is that larger training sets often
lead to deeper trees: while small datasets can be separated using shallow trees, larger ones often require more splits to be
performed. This leads to an increase in the number of {ytvk}t∈T , v∈VL

t , k∈{1..N} variables, again increasing the size of
the search space. However, this also provides more information regarding the values of the attributes of the reconstructed
examples, partly explaining why the reconstruction error remains small, even if the number of possible reconstructions
increases significantly.

Generalization Error. Another interesting observation is that the generalization error does not affect our reconstruction
approach. This was expected: what matters for reconstruction is the information provided by the forest regarding the training
data (i.e., the number of samples passing through each branch fulfilling certain split conditions). Even a badly performing
random forest can lead to accurate reconstructions if it encodes enough diverse information regarding its training data within
the trees (regardless of unseen test data). This was already visible in all our experiments, where no correlation could be
drawn between a random forest’s generalization error and the success of our reconstruction attack. More precisely, we
investigated for a possible correlation between the reconstruction error and the generalization error (or train error or test
error), but none of these analyses led to any visible trend. Finally, as it stands, having good or bad generalization capabilities
does not appear to be a prerequisite for the success of our reconstruction approach.

G. Additional Experiments on Partial Reconstruction
In this appendix section, we perform complementary experiments on partial dataset reconstruction. More precisely, we
consider the scenario where part of the training set attributes are known (for each training example). This scenario
corresponds to the case where some of the attributes are publicly known, and the adversary’s objective is only to retrieve the
unknown (private) ones. As discussed in Section 3, this setup corresponds to most of the reconstruction attacks found in
the literature, where many works only attempt to reconstruct a single private attribute with knowledge of all the remaining
ones (Dinur & Nissim, 2003; Dwork et al., 2017).

For each of the three datasets considered in our experiments (introduced in Section 7.1), we vary the number of known
attributes between 0 and M − 1. The former case corresponds to the setup studied in Section 7 (in which the adversary
reconstructs the whole dataset), while in the latter case, only one attribute is unknown. Between these two situations, our
objective is also to characterize whether the knowledge of a number of attributes helps reconstruct the others, and to what
extent. Note that because binary attributes that are a one-hot encoding of the same original feature are not independent from
each other, knowledge of one of them can fix the value of the others, which could bias the reconstruction results. For this
reason, we consider each set of binary attributes that one-hot encode the same original feature as a single one. Then, the
COMPAS dataset has 7 such original features, the UCI Adult Income dataset has 14, and the Default of Credit Card Client
dataset has 16. For each M ′ ∈ {0..M −

∑
w∈vects (|w| − 1)}, we randomly pick M ′ original attributes (i.e., either a binary

attribute or a group of binary attributes one-hot encoding the same feature) that we assume are known. For such known

‡This limitation is discussed on the solver’s repository: https://github.com/google/or-tools/issues/3861.
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#Examples N RF Accuracy Reconstruction error Reconstruction Time (s)
Train Test Avg Avg Std Min Max

25 0.896 0.559 0.0 5.8 1.1 4.1 7.4

50 0.860 0.556 0.0 30.5 5.8 26.6 42.0

100 0.800 0.582 0.0 84.1 12.0 65.8 99.1

200 0.770 0.617 0.0 260.9 28.6 231.2 300.2

300 0.759 0.629 0.0 467.9 80.2 386.1 621.9

400 0.741 0.632 0.0 699.9 52.5 602.3 754.1

500 0.734 0.639 0.0 1071.9 197.0 883.9 1448.7

750 0.725 0.643 0.0 2219.4 428.4 1711.9 2818.9

1000 0.714 0.642 0.0 3678.8 231.0 3300.8 4005.0

1500 0.704 0.650 0.0 7362.2 1097.0 6485.9 9519.5

Table 6: Experiments (non-bagging case) on the reconstruction method’s scalability, COMPAS dataset. Applying a simple
power law regression, we observe that running times are in Θ(N1.7).

#Examples N RF Accuracy Reconstruction error Reconstruction Time (s)

Train Test Avg Avg Std Min Max

25 0.952 0.709 0.0 9.1 2.9 6.2 14.6

50 0.964 0.748 0.0 37.0 4.4 29.2 42.8

100 0.964 0.770 0.0 188.2 58.0 117.4 278.3

200 0.949 0.767 0.0 631.7 110.8 513.2 838.6

300 0.935 0.771 0.1 4860.4 2457.7 1430.2 7695.8

400 0.925 0.778 0.1 6119.3 2365.6 2304.4 8054.8

500 0.913 0.779 0.1 6523.6 1558.4 4695.4 8429.2

750 0.905 0.780 0.0 13911.5 5146.7 8764.9 19058.2

Table 7: Experiments (non-bagging case) on the reconstruction method’s scalability, UCI Adult Income dataset. Applying a
simple power law regression, we observe that running times are in Θ(N1.4).

#Examples N RF Accuracy Reconstruction error Reconstruction Time (s)

Train Test Avg Avg Std Min Max

25 0.968 0.733 0.0 6.7 1.5 4.0 8.1

50 0.976 0.723 0.0 42.1 3.5 37.8 47.3

100 0.972 0.740 0.0 148.3 16.6 127.6 169.4

200 0.965 0.751 0.0 905.6 528.1 584.1 1958.1

300 0.957 0.763 0.0 2369.8 1167.5 1316.7 4524.4

400 0.952 0.760 0.0 2733.2 581.5 2065.6 3706.5

500 0.947 0.765 0.0 6119.9 1880.1 3902.8 8671.4

Table 8: Experiments (non-bagging case) on the reconstruction method’s scalability, Default of Credit Card Client dataset.
Applying a simple power law regression, we observe that running times are in Θ(N2.4).
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attributes, their values for all the training set examples are fixed in the CP model introduced in Section 6. In other words, for
each known attribute i, we assign the corresponding variables xki (∀k ∈ {1..N}) to their true value. The solver’s task is
then to find the value of the other attributes only.

To evaluate the proposed reconstruction, we first perform the examples’ matching (with the actual training set) as described
in Section 7.1, using all the attributes. Then, the resulting reconstruction error is measured only on the unknown attributes.
Note that performing the matching only using the unknown attributes would (artificially) result in lower reconstruction error
rates, but would not make sense, as it would only evaluate whether the correct values for the unknown features are found (and
not whether they are assigned to the correct example as indicated by the known attributes). For these experiments, we focus
on scikit-learn’s default configuration (i.e., |T | = 100 trees and no maximum depth constraint). Moreover, we restrict
our attention to the general case where bagging is used, as the (simpler) case without bagging is already successfully handled
even without knowledge of any attribute. The experimental parameters are as described in Section 7.1, and in particular,
each run is averaged over five different random seeds. Finally, as already observed in Section 7, in a few experiments, the
solver does not find any feasible reconstruction within the given time frame. Thus, we removed the experiments for which
less than three runs were completed. This occurs in two cases, i.e., on the Default of Credit Card Client dataset, when the
number of fixed attributes is at most 2.

The reconstruction error (measured on the unknown attributes as aforementioned) is reported in Figure 6 for all three
datasets. The results consistently show that knowledge of some attributes helps reconstructing the others. Moreover, the
more attributes are known, the lower the error on the remaining (unknown) ones. This suggests that considering the scenarios
commonly used in the reconstruction literature only improves the results of our attack, as it successfully leverages knowledge
of part of the dataset attributes.

It is worth noting that we also performed partial reconstruction experiments (not reported here) in which part of the training
set examples (rather than attributes) are known by the attacker. Interestingly, we observed a different trend as knowledge
of some examples did not really improve the reconstruction error for the others. A possible explanation for that (related
to our findings of Section E) lies in the Differential Privacy (DP) protection intrinsically offered by bagging (Liu et al.,
2021b). Indeed, DP ensures that the trained forest does not depend too strongly on any single example, hence protecting
each individual row within the training set. On the contrary, it does not directly protect the training set columns.
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(a) COMPAS dataset
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(b) UCI Adult Income dataset
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(c) Default of Credit Card Client dataset

Figure 6: Results of reconstruction experiments with knowledge of some of the attributes. We report the reconstruction
error (for the unknown attributes) as a function of the number of known attributes in the forest’s training set. For these
experiments, all forests are learnt using scikit-learn’s default configuration (i.e., |T | = 100 and no maximum depth
constraint). Reconstruction errors are averaged over 5 different random seeds and we also report the standard deviation.
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