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ABSTRACT

We propose the first loss function for approximate Nash equilibria of normal-form
games that is amenable to unbiased Monte Carlo estimation. This construction
allows us to deploy standard non-convex stochastic optimization techniques for
approximating Nash equilibria, resulting in novel algorithms with provable guaran-
tees. We complement our theoretical analysis with experiments demonstrating that
stochastic gradient descent can outperform previous state-of-the-art approaches.

1 INTRODUCTION

Nash equilibrium (NE) famously encodes stable behavioral outcomes in multi-agent systems and
is arguably the most influential solution concept in game theory. Formally speaking, if n players
independently choose n, possibly mixed, strategies (xk for k ∈ [n]) and their joint strategy (x =∏
k xk) constitutes a Nash equilibrium, then no player has any incentive to unilaterally deviate

from their strategy. This concept has sparked extensive research in various fields, ranging from
economics (Milgrom and Weber, 1982) to machine learning (Goodfellow et al., 2014), and has even
inspired behavioral theory generalizations such as quantal response equilibria (QREs) which allow
for more realistic models of boundedly rational agents (McKelvey and Palfrey, 1995).

Unfortunately, when considering Nash equilibria beyond the 2-player, zero-sum scenario, two
significant challenges arise. First, it becomes unclear how n independent players would collectively
identify a Nash equilibrium when multiple equilibria are possible, giving rise to the equilibrium
selection problem (Harsanyi et al., 1988). Secondly, even approximating a single Nash equilibrium is
known to be computationally intractable and specifically PPAD-complete (Daskalakis et al., 2009).
Combining both problems together, e.g., testing for the existence of equilibria with welfare greater
than some fixed threshold is NP-hard, and it is in fact even hard to approximate (Austrin et al., 2011).

From a machine learning practitioner’s perspective, such computational complexity results hardly give
pause for thought as collectively we have become all too familiar with the unreasonable effectiveness
of heuristics in circumventing such obstacles. Famously, non-convex optimization is NP-hard, even
if the goal is to compute a local minimizer (Murty and Kabadi, 1985), however, stochastic gradient
descent (SGD) and variants succeed in training billion parameter models (Brown et al., 2020).

Unfortunately, computational techniques for Nash equilibrium have so far not achieved anywhere near
the same level of success. In contrast, most modern NE solvers for n-player, m-action, general-sum,
normal-form games (NFGs) are practically restricted to a handful of players and/or actions per
player except in special cases, e.g., symmetric (Wiedenbeck and Brinkman, 2023) or mean-field
games (Pérolat et al., 2022). For example, when running the suite of all 7 applicable methods from the
hallmark gambit library (McKelvey et al., 2016) on a 4-player Blotto game, we find only brute-force
pure-NE enumeration is able to return any NE within a 1 hour time limit. Scaling solvers to large
games is difficult partially due to the fact that an NFG is represented by a tensor with an exponential
nmn entries; even reading this description into memory can be computationally prohibitive. More to
the point, any computational technique that presumes exact computation of the expectation of this
tensor sampled according to x similarly does not have any hope of scaling beyond small instances.

This inefficiency arguably lies at the core of the differential success between machine learning (ML)
optimization and equilibrium computation. For example, numerous techniques exist that reduce the
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problem of Nash computation to the minimization of the expectation of a random variable (Section 3).
Unfortunately, unlike the source of randomness in ML applications where batch learning suffices to
produce unbiased estimators, these techniques do not extend easily to game theory which incorporates
non-linear functions such as maximum and best-response. This raises our motivating goal:

Can we solve for Nash equilibria via unbiased stochastic optimization?

Our results. Following in the successful steps of the interplay between ML and stochastic optimiza-
tion, we reformulate the approximation of Nash equilibria in a normal-form game as a stochastic
non-convex optimization problem admitting unbiased Monte-Carlo estimation. This enables the use
of powerful solvers and advances in parallel computing to efficiently enumerate Nash equilibria for
n-player, general-sum games. Furthermore, this re-casting allows practitioners to incorporate other
desirable objectives into the problem such as “find an approximate Nash equilibrium with welfare
above ω” or “find an approximate Nash equilibrium nearest the current observed joint strategy”
resolving the equilibrium selection problem in an effectively ad-hoc and application tailored manner.
Concretely, we make the following contributions by producing:

• A loss Lτ (x) 1) whose global minima well approximate Nash equilibria in normal form games, 2)
admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.

• Efficient randomized algorithms for approximating Nash equilibria in a novel class of games.
The algorithms emerge by employing the family of X -armed bandit approaches to Lτ (x) and
connecting their global stochastic optimization guarantees to global approximate Nash guarantees.

• An empirical comparison of SGD against state-of-the-art baselines for approximating NEs in large
games. In some games, vanilla SGD actually improves upon previous state-of-the-art; in others,
SGD is slowed by saddle points, a familiar challenge in deep learning (Dauphin et al., 2014).

Overall, this perspective showcases a promising new route to approximating equilibria at scale in
practice. We conclude the paper with discussion for future work.

2 PRELIMINARIES

In an n-player, normal-form game, each player k ∈ {1, . . . , n} = [n] has a strategy set Ak =
{ak1, . . . , akmk

} consisting of mk pure strategies. These strategies can be naturally indexed, so we
redefine Ak = [mk] as an abuse of notation. Each player k also has a utility function, uk : A =∏
kAk → [0, 1], (equiv. “payoff tensor”) that maps joint actions to payoffs in the unit-interval.

We denote the average cardinality of the players’ action sets by m̄ = 1
n

∑
kmk and maximum by

m∗ = maxkmk. Player k may play a mixed strategy by sampling from a distribution over their pure
strategies. Let player k’s mixed strategy be represented by a vector xk ∈ ∆mk−1 where ∆mk−1 is the
(mk − 1)-dimensional probability simplex embedded in Rmk . Each function uk is then extended to
this domain so that uk(x) =

∑
a∈A uk(a)

∏
j xjaj where x = (x1, . . . , xn) and aj ∈ Aj denotes

player j’s component of the joint action a ∈ A. For convenience, let x−k denote all components of
x belonging to players other than player k.

The joint strategy x ∈
∏
k∆

mk−1 is a Nash equilibrium if and only if, for all k ∈ [n], uk(zk, x−k) ≤
uk(x) for all zk ∈ ∆mk−1, i.e., no player has any incentive to unilaterally deviate from x. Nash is
typically relaxed with ϵ-Nash, our focus: uk(zk, x−k) ≤ uk(x) + ϵ for all zk ∈ ∆mk−1.

As an abuse of notation, let the atomic action ak = ek also denote the mk-dimensional “one-
hot" vector with all zeros aside from a 1 at index ak; its use should be clear from the context.
We also introduce ∇kxk

as player k’s utility gradient. And for convenience, denote by Hk
kl =

Ex−kl
[uk(ak, al, x−kl)] the bimatrix game approximation (Janovskaja, 1968) between players k

and l with all other players marginalized out; x−kl denotes all strategies belonging to players
other than k and l and uk(ak, al, x−kl) separates out l’s strategy xl from the rest of the players
x−k. Similarly, denote by T kklq = Ex−klq

[uk(ak, al, aq, x−klq)] the 3-player tensor approximation
to the game. Note player k’s utility can now be written succinctly as uk(xk, x−k) = x⊤k∇kxk

=

x⊤k H
k
klxl = T kklqxkxlxq for any l, q where we use Einstein notation for tensor arithmetic. For

convenience, define diag(z) as the function that places a vector z on the diagonal of a square
matrix, and diag3 : z ∈ Rd → Rd×d×d as a 3-tensor of shape (d, d, d) where diag3(z)lll = zl.
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Loss Function Obstacle
Exploitabilty (ϵ) maxk ϵk(x) max of r.v.
Nikaido-Isoda (NI)

∑
k ϵk(x) max of r.v.

Fully-Diff. Exp
∑
k

∑
ak∈Ak

[max(0, uk(ak, x−k)− uk(x))]2 max of r.v.

Gradient-based NI NI w/ BRk ← aBRk = Π∆

(
xk + η∇xk

uk(x)
)

Π∆ of r.v.
Unconstrained Loss + Simplex Deviation Penalty sampling from xk ∈ Rmk

Table 1: Previous loss functions for NFGs and their obstacles to unbiased estimation. Note that
ϵk(x) = maxz uk(z, x−k)−uk(x) contains a max operator (see equivalent definition in equation (1)).

Following convention from differential geometry, let TvM be the tangent space of a manifoldM at v.
For the interior of the d-action simplex ∆d−1, the tangent space is the same at every point, so we drop
the v subscript, i.e., T∆d−1. We denote the projection of a vector z ∈ Rd onto this tangent space as
ΠT∆d−1(z) = [I − 1

d11
⊤]z and call ΠT∆d−1(∇kxk

) a projected-gradient. We drop d− 1 when the
dimensionality is clear from the context. Finally, let U(S) denote a discrete uniform distribution over
elements from set S.

3 RELATED WORK

Representing the problem of computing a Nash equilibrium as an optimization problem is not new. A
variety of loss functions and pseudo-distance functions have been proposed. Most of them measure
some function of how much each player can exploit the joint strategy by unilaterally deviating:

ϵk(x)
def
= uk(BRk, x−k)− uk(x) where BRk ∈ argmax

z
uk(z, x−k). (1)

As argued in the introduction, we believe it is important to be able to subsample payoff tensors of
normal-form games in order to scale to large instances. As Nash equilibria can consist of mixed
strategies, it is advantageous to be able to sample from an equilibrium to estimate its exploitability
ϵ. However none of these losses is amenable to unbiased estimation under sampled play. Each
of the functions currently explored in the literature is biased under sampled play either because 1)
a random variable appears as the argument of a complex, nonlinear (non-polynomial) function or
because 2) how to sample play is unclear. Exploitability, Nikaido-Isoda (NI) (Nikaidô and Isoda,
1955) (also known by NashConv (Lanctot et al., 2017) and ADI (Gemp et al., 2022)), as well as
fully-differentiable options (Shoham and Leyton-Brown, 2008, p. 106, Eqn 4.31) introduce bias
when a max over payoffs is estimated using samples from x. Gradient-based NI (Raghunathan
et al., 2019) requires projecting the result of a gradient-ascent step onto the simplex; for the same
reason as the max, this projection is prohibitive because it is a nonlinear operation which introduces
bias. Lastly, unconstrained optimization approaches (Shoham and Leyton-Brown, 2008, p. 106) that
instead penalize deviation from the simplex lose the ability to sample from strategies when each
iterate x is no longer a distribution (i.e., xk ̸∈ ∆mk−1). Table 1 summarizes these complications.

4 NASH EQUILIBRIUM AS STOCHASTIC OPTIMIZATION

We will now develop our proposed loss function which is amenable to unbiased estimation. Sub-
sections 4.1-4.4 provide a warm-up in which we assume an interior (fully-mixed) Nash equilibrium
exists. Subsection 4.5 then shows how to relax that assumption allowing us to approximate partially
mixed equilibria as well (including pure equilibria). Our key technical insight is to pay special
attention to the geometry of the simplex. To our knowledge, prior works have failed to recognize the
role of the tangent space T∆. Proofs are in the appendix.

4.1 STATIONARITY ON THE SIMPLEX INTERIOR

Lemma 1. Assuming player k’s utility, uk(xk, x−k), is concave in its own strategy xk, a strategy in
the interior of the simplex is a best response BRk if and only if it has zero projected-gradient1 norm.

1Not to be confused with the nonlinear (biased) projected gradient operator in (Hazan et al., 2017).
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In NFGs, each player’s utility is linear in xk, thereby satisfying the concavity condition of Lemma 1.

4.2 PROJECTED-GRADIENT NORM AS A LOSS

An equivalent description of a Nash equilibrium is a joint strategy x where every player’s strategy
is a best response to the equilibrium (i.e., xk = BRk so that ϵk(x) = 0). Lemma 1 states that any
interior best response has zero projected-gradient norm, which inspires the following loss function

L(x) =
∑
k

ηk||ΠT∆(∇kxk
)||2 (2)

where each ηk > 0 represents a scalar weight, or equivalently, a step size to be explained next.
Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approx-
imated by a single step of projected-gradient ascent with step size ηk: aBRk = xk + ηkΠT∆(∇kxk

).

This connection was already pointed out in prior work for unconstrained problems (Gemp et al., 2022;
Raghunathan et al., 2019), but this result is the first for strategies constrained to the simplex.

4.3 CONNECTION TO TRUE EXPLOITABILITY

In general, we can bound exploitability in terms of the projected-gradient norm as long as each
player’s utility is concave (this result extends to subgradients of non-smooth functions).
Lemma 2. The amount a player can gain by exploiting a joint strategy x is upper bounded by a
quantity proportional to the norm of the projected-gradient:

ϵk(x) ≤
√
2||ΠT∆(∇kxk

)||. (3)

This bound is not tight on the boundary of the simplex, which can be seen clearly by considering xk
to be part of a pure strategy equilibrium. In that case, this analysis assumes xk can be improved upon
by a projected-gradient ascent step (via the equivalence pointed out in Proposition 1). However, that
is false because the probability of a pure strategy cannot be increased beyond 1. We mention this to
provide further intuition for why our “warm-up” loss L(x) is only valid for interior equilibria.

Note that ||ΠT∆(∇kxk
)|| ≤ ||∇kxk

|| because ΠT∆ is a projection. Therefore, this improves the naive
bounds on exploitability and distance to best responses given using the “raw” gradient∇kxk

.
Lemma 3. The exploitability of a joint strategy x, is upper bounded by a function of L(x):

ϵ ≤
√

2n

mink ηk

√
L(x) def

= f(L). (4)

4.4 UNBIASED ESTIMATION

As discussed in Section 3, a primary obstacle to unbiased estimation of L(x) is the presence of
complex, nonlinear functions of random variables, with the projection of a point onto the simplex
being one such example (see Π∆ in Table 1). However, ΠT∆, the projection onto the tangent space
of the simplex, is linear! This is the insight that allows us to design an unbiased estimator (Lemma 5).

Our proposed loss requires computing the squared norm of the expected value of the projected-
gradient under the players’ mixed strategies, i.e., the l-th entry of player k’s gradient equals ∇kxkl

=

Ea−k∼x−k
uk(akl, a−k). By analogy, consider a random variable Y . In general, E[Y ]2 ̸= E[Y 2]. This

means that we cannot just sample projected-gradients and then compute their average norm to estimate
our loss. However, consider taking two independent samples from two corresponding identically
distributed, independent random variables Y (1) and Y (2). Then E[Y (1)]2 = E[Y (1)]E[Y (2)] =
E[Y (1)Y (2)] by properties of expected value over products of independent random variables. This is
a common technique to construct unbiased estimates of expectations over polynomial functions of
random variables. Proceeding in this way, define∇k(1)xk as a random, unbiased gradient estimate (see
Table 2). Let∇k(2)xk be independent and distributed identically to∇k(1)xk . Then Lemma 5 shows

L(x) = E[
∑
k

ηk(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1︸ ︷︷ ︸
projected-gradient 1

)⊤(∇̂k(2)xk
− 1

mk
(1⊤∇̂k(2)xk

)1︸ ︷︷ ︸
projected-gradient 2

)] (5)
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Exact Sample Others Sample All
Estimator of∇k(p)xk [uk(akl, x−k)]l [uk(akl, a−k ∼ x−k)]l mkuk(akl ∼ U(Ak), a−k ∼ x−k)el
∇̂k(p)xk Bounds [0, 1] [0, 1] [0,mk]

∇̂k(p)xk Query Cost
∏n
k=1mk mk 1

L̂ Bounds ±1/4
∑
k ηkmk ±1/4

∑
k ηkmk ±1/4

∑
k ηkm

3
k

L̂ Query Cost n
∏n
k=1mk 2nm̄ 2n

Table 2: Examples and Properties of Unbiased Estimators of Loss and Player Gradients (∇̂k(p)xk ).

where ∇̂k(p)xk is an unbiased estimator of player k’s gradient. This estimator can be constructed in
several ways. The most expensive, an exact estimator, is constructed by marginalizing player k’s
payoff tensor over all other players’ strategies. However, a cheaper estimate can be obtained at the
expense of higher variance by approximating this marginalization with a Monte Carlo (MC) estimate
of the expectation. Specifically, if we sample a single action for each of the remaining players, we
can construct an unbiased estimate of player k’s gradient by considering the payoff of each of its
actions against the sampled background strategy. Lastly, we can consider constructing an estimate of
player k’s gradient by sampling only a single action from player k to represent their entire gradient.
Each of these approaches is outlined in Table 2 along with the query complexity (Babichenko, 2016)
of computing the estimator and bounds on the values it can take (Lemma 9).

We can extend Lemma 3 to one that holds under T samples with probability 1− δ by applying, for

example, a Hoeffding bound: ϵ ≤ f
(
L̂(x) +O(

√
1
T ln(1/δ)

)
where L̂ is an MC estimate of L.

4.5 INTERIOR EQUILIBRIA

We discussed earlier that L(x) captures interior equilibria. But some games may only have partially
mixed equilibria, i.e., equilibria that lie on the boundary of the simplex. We show how to circumvent
this shortcoming by considering quantal response equilibria (QREs), specifically, logit equilibria. By
adding an entropy bonus to each player’s utility, we can

• guarantee all equilibria are interior,

• still obtain unbiased estimates of our loss,

• maintain an upper bound on the exploitability ϵ of any approximate Nash equilibrium in the
original game (i.e., the game without an entropy bonus).

Define uτk(x) = uk(x) + τS(xk) where Shannon entropy S(xk) = −
∑
l xkl ln(xkl) is 1-strongly

concave with respect to the 1-norm (Beck and Teboulle, 2003). It is known that Nash equilibria of
entropy-regularized games satisfy the conditions for logit equilibria (Leonardos et al., 2021), which
are solutions to the fixed point equation xk = softmax( 1τ∇

k
xk
). The softmax should make it

clear to the reader that all probabilities have positive mass at positive temperature.

Recall that in order to construct an unbiased estimate of our loss, we simply needed to construct
unbiased estimates of player gradients. The introduction of the entropy term to player k’s utility is
special in that it depends entirely on known quantities, i.e., the player’s own mixed strategy. We
can directly and deterministically compute τ dS

dxk
= −τ(ln(xk) + 1) and add this to our estimator of

∇k(p)xk : ∇̂kτ(p)xk = ∇̂k(p)xk + τ dS
dxk

. Consider our loss function refined from (2) with changes in blue:

Lτ (x) =
∑
k

ηk||ΠT∆(∇kτxk
)||2. (6)

As mentioned above, the utilities with entropy bonuses are still concave, therefore, a similar bound
to Lemma 2 applies. We use this to prove the QRE counterpart to Lemma 3 where ϵQRE is the
exploitability of an approximate equilibrium in a game with entropy bonuses.
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Figure 1: Effect of Sampled Play on a Biased Loss. The first row displays the expectation of the
upper bound guaranteed by our proposed loss Lτ with ηk = 1 for all k. The second row displays the
expectation of NashConv under sampled play, i.e.,

∑
k ϵk where ϵk = Ea−k∼x−k

[maxak u
τ
k(a)]−

Ea∼x[u
τ
k(a)]. To be consistent, we subtract the offset τ log(m2) from fτ (Lτ ) per Lemma 13, which

relates the exploitability at positive temperature to that at zero temperature. The resulting loss surface
clearly shows NashConv fails to recognize any interior Nash equilibrium due to its inherent bias.

Lemma 4. The entropy regularized exploitability, ϵQRE , of a joint strategy x, is upper bounded as:

ϵQRE ≤
√

2n

mink ηk

√
Lτ (x) def

= f(Lτ ). (7)

Lastly, we establish a connection between quantal response equilibria and Nash equilibria that allows
us to approximate Nash equilibria in the original game via minimizing our modified loss Lτ (x).
Lemma 13 (Lτ Scores Nash Equilibria). Let Lτ (x) be our proposed entropy regularized loss
function and x be an approximate QRE. Then it holds that

ϵ ≤ τ log
(∏

k

mk

)
+

√
2n

mink ηk

√
Lτ (x) def

= fτ (Lτ ). (8)

This upper bound is plotted as a heatmap for a familiar Chicken game in the top row of Figure 1. First,
notice how pure equilibria are not visible as minima for zero temperature, but appear for slightly
warmer temperatures. Secondly, notice that NashConv in the bottom row is unable to capture the
interior Nash equilibrium because of its high bias under sampled play. In contrast, our proposed loss
Lτ is guaranteed to capture all equilibria at low temperature τ .

5 ANALYSIS

In the preceding section we established a loss function that upper bounds the exploitability of an
approximate equilibrium. In addition, the zeros of this loss function have a one-to-one correspondence
with quantal response equilibria (which approximate Nash equilibria at low temperature).

Here, we derive properties that suggest it is “easy” to optimize. While this function is generally
non-convex and may suffer from a proliferation of saddle points (Figure 2), it is Lipschitz continuous
(over the relevant subset of the interior) and bounded. These are two commonly made assumptions in
the literature on non-convex optimization, which we leverage in Section 6. In addition, we can derive
its gradient, its Hessian, and characterize its behavior around global minima.

Lemma 14. The gradient of Lτ (x) with respect to player l’s strategy xl is

∇xl
Lτ (x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (9)

where Bll = −τ [I − 1
ml

11⊤]diag
(

1
xl

)
and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.
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Figure 2: Analysis of Loss Landscape. We reapply the analysis of (Dauphin et al., 2014), originally
designed to understand the success of SGD in deep learning, to “slices” of several popular extensive
form games. To construct a slice (or meta-game), we randomly sample 6 deterministic policies
and then consider the corresponding n-player, 6-action normal-form game at τ = 0.1 (with payoffs
normalized to [0, 1]). The index of a critical point xc (∇xLτ (xc) = 0) indicates the fraction of
negative eigenvalues in the Hessian of Lτ at xc; α = 0 indicates a local minimum, 1 a maximum,
else a saddle point. We see a positive correlation between exploitability (y-axis), projected-gradient
norm (x-axis), and α (color) indicating a lower prevalence of local minima at high exploitability.

Lemma 16. The Hessian of Lτ (x) can be written

Hess(Lτ ) = 2
[
B̃⊤B̃ + TΠT∆(∇̃τ )

]
(10)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the
3-player approximation to the game, T klqk) so that T llll = τdiag3

(
1
x2
l

)
.

At an NE, the latter term disappears because ΠT∆(∇kτxk
) = 0 for all k (Lemma 1). If X was Rnm̄,

then we could simply check if B̃ is full-rank to determine if Hess ≻ 0, i.e., if Lτ is locally strongly-
convex. However, X is a simplex product, and we only care about curvature in directions toward
which we can update our strategy profile x. Toward that end, define M to be the n(m̄+ 1)× nm̄
matrix that stacks B̃ on top of a repeated identity matrix that encodes orthogonality to the simplex:

M(x) =



−τ√η1ΠT∆(
1
x1
)
√
η1ΠT∆(H

1
12) . . .

√
η1ΠT∆(H

1
1n)

...
...

...
...√

ηnΠT∆(H
n
n1) . . .

√
ηnΠT∆(H

n
n,n−1) −τ√ηnΠT∆(

1
xn

)

1⊤
1 0 . . . 0
...

...
...

...
0 . . . 0 1⊤

n


(11)

where ΠT∆(z ∈ Ra×b) = [Ia − 1
a1a1

⊤
a ]z subtracts the mean from each column of z and 1

xk
is

shorthand for diag
(

1
xk

)
. If M(x)z = 0 for a nonzero vector z ∈ Rnm̄, this implies there exists a z

that 1) is orthogonal to the ones vectors of each simplex (i.e., is a valid equilibrium update direction)
and 2) achieves zero curvature in the direction z, i.e., z⊤(B̃⊤B̃)z = z⊤(Hess)z = 0, and so Hess
is not positive definite. Conversely, if M(x) is of rank nm̄ for a quantal response equilibrium x, then
the Hessian of Lτ at x in the tangent space of the simplex product (X =

∏
k Xk) is positive definite.

In this case, we call x polymatrix-isolated: polymatrix because we only require information of the
local polymatrix approximation of the game (i.e., the Hk

kl matrices) to construct M and isolated
because it implies x is not connected to any other equilibria.
Definition 1 (Polymatrix-Isolated Equilibrium). A Nash equilibrium x∗ is polymatrix-isolated iff x∗

is isolated according to its local polymatrix game approximation.

By analyzing the rank of M , we can confirm that many classical matrix games including Rock-
Paper-Scissors, Chicken, Matching Pennies, and Shapley’s game all induce strongly convex Lτ ’s at
zero temperature (i.e., they have unique mixed Nash equilibria). In contrast, a game like Prisoner’s
Dilemma has a unique pure strategy that will not be captured by our loss at zero temperature.

6 ALGORITHMS

We have formally transformed the approximation of Nash equilibria in NFGs into a stochastic
optimization problem. To our knowledge, this is the first such formulation that allows one-shot
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Figure 3: Comparison of SGD on Lτ=0 against baselines on four games evaluated in (Gemp et al.,
2022). The number of samples used to estimate each update iteration (i.e., minibatch size) is indicated
by s. From left to right: 2-player, 3-action, nonsymmetric; 6-player, 5-action, nonsymmetric; 4-player,
66-action, symmetric; 3-player, 286-action, symmetric. SGD struggles at saddle points in Blotto.

unbiased Monte-Carlo estimation which is critical to introduce the use of powerful algorithms capable
of solving high dimensional optimization problems. We explore two off-the-shelf approaches.

6.1 STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent is the workhorse of high-dimensional stochastic optimization. It is
guaranteed to converge to stationary points (Cutkosky et al., 2023), however, it may converge to
local, rather than global minima. It also enjoys implicit gradient regularization (Barrett and Dherin,
2020), seeking “flat” minima and performs approximate Bayesian inference (Mandt et al., 2017).
Despite the lack of global convergence guarantee, we find it performs well empirically in games
previously examined by the literature: modified Shapley’s (Ostrovski and van Strien, 2014), GAMUT
D7 (Nudelman et al., 2004), Blotto (Arad and Rubinstein, 2012). Figure 3 shows SGD is competitive
with scalable techniques to approximating NEs: FTRL (Shalev-Shwartz and Singer, 2006; Shalev-
Shwartz et al., 2012), Regret Matching (Hart and Mas-Colell, 2000), ADIDAS/yQREauto (Gemp
et al., 2022). Shapley’s game induces a strongly convex L (see Section 5) leading to SGD’s strong
performance. Blotto reaches low, but nonzero ϵ, demonstrating the challenges of saddle points.

6.2 HIGH PROBABILITY, GLOBAL POLYNOMIAL CONVERGENCE RATES VIA BANDITS

We explore one other algorithmic approach to non-convex optimization based on minimizing regret,
which enjoys finite time global convergence rates. X -armed bandits (Bubeck et al., 2011) system-
atically explore the space of solutions by refining a mesh over the joint strategy space, trading off
exploration versus exploitation of promising regions. Several approaches exist (Bartlett et al., 2019;
Valko et al., 2013) with open source implementations, e.g., (Li et al., 2023). Applying X -armed
bandits to our Lτ can be thought of as a stochastic generalization of the exclusion method and other
bandit approaches for Nash equilibria (Berg and Sandholm, 2017; Zhou et al., 2017).

Equipped with these techniques, we establish a high probability polynomial-time global convergence
rate to Nash equilibria in n-player, general-sum games given all QREs(τ ) are polymatrix-isolated.
The quality of this approximation improves as τ → 0, at the same time increasing the constant on the
convergence rate via the Lipschitz constant

√
L̂ defined below. For clarity, we assume users provide

a temperature in the form τ = 1
ln(1/p) with p ∈ (0, 1) which ensures all equilibria have probability

mass greater than p
m∗ for all actions (Lemma 11). Lower p corresponds with lower temperature.

Theorem 4 (BLiN PAC Rate). Assume ηk = η = 2/L̂, τ = 1
ln(1/p) , and a previously pulled arm is

returned uniformly at random (i.e., t ∼ U([T ])). Then for any w > 0

ϵt ≤ w
[ 1

ln(1/p)
log

(∏
k

mk

)
+ 2(1 + (4c2Cz)

1/3)
√
2nL̂

( lnT
T

) 1
2(dz+2)

]
(12)

with probability (1 − w−1)(1 − 2T−2) where m∗ = maxkmk, 2|Lτ | ≤ c ≤ 1
4

(
ln(m∗)
ln(1/p) + 2

)
(Corollary 1), L̂ =

(
ln(m∗)
ln(1/p) +2

)(
m∗2

p ln(1/p) + nm̄
)

(Corollary 2), the zooming dimension dz = 1
2nm̄,

and the zooming constant Cz = |X ∗|−1( 14r
2
ησ−∞)−nm̄ (Corollary 30).

The convergence rate for BLiN (Feng et al., 2022) depends on bounds on the exploitability in terms
of the loss (Lemma 13), bounds on estimates of the loss (Corollary 1), Lipschitz bounds on the
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Figure 4: Bandit-based (BLiN) Nash solver applied to an artificial 7-player, symmetric, 2-action
game. We search for a symmetric equilibrium, which is represented succinctly as the probability of
selecting action 1. The plot shows the true exploitability ϵ of all symmetric strategies in black and
indicates there exist potentially 5 NEs (the dips in the curve). Upper bounds on our unregularized
loss L capture 4 of these equilibria, missing only the pure NE on the right. By considering our
regularized loss, Lτ , we are able to capture this pure NE (see zoomed inset). The bandit algorithm
selects strategies to evaluate, using 10 Monte-Carlo samples for each evaluation (arm pull) of Lτ .
These samples are displayed as vertical bars above with the height of the vertical bar representing
additional arm pulls. The best arms throughout search are denoted by green circles (darker indicates
later in the search). The boxed numbers near equilibria display the welfare of the strategy profile.

infinity norm of the gradient (Corollary 2), and the number of distinct strategies (nm̄ =
∑
kmk).

This result further depends on the near-optimality or zooming-dimension dz and zooming constant
Cz which quantify the number of near optimal states. In particular, we assume L(s(z)) is locally
(σ−∞)-strongly convex with respect to || · ||∞ about each global optimum within a ball of radius
rη. Here, s : [0, 1]n(m̄−1) →

∏
i∆

mi−1 is any function that maps from the unit hypercube to a
product of simplices; we analyze two such maps in Appendix B.1. Next, we present an additional
convergence rate result using an alternative X -bandit approach, StoSOO (Valko et al., 2013).
Theorem 5 (StoSOO Rate). Corollary 1 of Valko et al. (2013) implies that with probability (1 −
w−1)(1− δ) for any w > 0, a uniformly randomly drawn arm (i.e., t ∼ U([T ])) achieves

ϵt ≤ w
[ 1

ln(1/p)
log

(∏
k

mk

)
+
√
nL̂

√√√√ξ1

√
logb(Tk/δ)

2 logb(e)k
+ ξ2b

− 1
dC

√
T/k

]
(13)

where d = n(m̄−1), ξ1 = (2+22/d), ξ2 = 1
4db

2(1+2/d), k = T logb(T )
−3, b is the branching factor

for partitioning cells, and the near-optimality constant C = |X ∗|−1
√
2πd

(
b2d2

5r2ησ−2

)d/2
(Lemma 36).

Here we assume L(s(z)) is locally (σ−2)-strongly convex with respect to || · ||2 about each global
optimum within a ball of radius rη. Theorem 5 implies a Õ(T−1/4) global convergence rate
(Proposition 2), however this is achieved only after an exponential number of burn-in iterations.

7 CONCLUSION

In this work, we proposed a stochastic loss for approximate Nash equilibria in normal-form games.
An unbiased loss estimator of Nash equilibria is the “key” to the stochastic optimization “door”
which holds a wealth of research innovations uncovered over several decades. Thus, it allows the
development of new algorithmic techniques for computing equilibria. We consider bandit and vanilla
SGD methods in this work, but these are only two of the many options now at our disposal (e.g,
adaptive methods (Antonakopoulos et al., 2022), Gaussian processes (Calandriello et al., 2022),
evolutionary algorithms (Hansen et al., 2003), etc.). Such approaches as well as generalizations of
these techniques to extensive-form, imperfect-information games are promising directions for future
work. Similarly to how deep learning research first balked at and then marched on to train neural
networks via NP-hard non-convex optimization, we hope computational game theory can march
ahead to make useful equilibrium predictions of large multiplayer systems.
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A LOSS WITH ITS PROPERTIES AND DERIVATIVES

In this section, we construct our loss function and derive many of its properties and derivatives (e.g.,
gradient and hessian) useful for analyzing and executing optimization algorithms.

A.1 LOSS: CONNECTION TO EXPLOITABILITY, UNBIASED ESTIMATION, AND UPPER BOUNDS

A.1.1 KKT CONDITIONS IMPLY FIXED POINT SUFFICIENCY

Consider the following constrained optimization problem:

max
x∈Rd

f(x) (14a)

s.t. gi(x) ≤ 0 ∀i (14b)
hj(x) = 0 ∀j (14c)

where f is concave and gi and hj represent inequality and equality constraints respectively. If gi
and hi are affine functions, then any maximizer x∗ of f must satisfy the following necessary and
sufficient KKT conditions (Ghojogh et al., 2021; Boyd and Vandenberghe, 2004):

• Stationarity: 0 ∈ ∂f(x∗)−
∑
j λj∂hj(x

∗)−
∑
i µi∂gi(x

∗)

• Primal feasibility: hj(x∗) = 0 for all j and gi(x∗) ≤ 0 for all i

• Dual feasibility: µi ≥ 0 for all i

• Complementary slackness: µigi(x∗) = 0 for all i.

Lemma 1. Assuming player k’s utility, uk(xk, x−k), is concave in its own strategy xk, a strategy in
the interior of the simplex is a best response BRk if and only if it has zero projected-gradient2 norm:

BRk ∈
(
int∆ ∩ argmax

z
uk(z, x−k)− uk(xk, x−k

))
⇐⇒ (BRk ∈ int∆) ∧ (||ΠT∆[∇kBRk

]|| = 0).

Proof. Consider the problem of formally computing ϵk(x) = maxz∈int∆ uk(z, x−k)−uk(xk, x−k):

max
z∈Rd

uk(z, x−k)− uk(xk, x−k) (15a)

s.t.− zk ≤ 0 ∀k (15b)

1−
∑
k

zk = 0. (15c)

Note that the objective is linear (concave) in z and the constraints are affine, therefore the KKT
conditions are necessary and sufficient for optimality. Recall that we assume that the solution z∗
lies in the interior of the simplex, i.e., z∗k > 0 for each k. Also, let ek be a onehot vector, i.e., a
zeros vector except with a 1 at index k. Mapping the KKT conditions onto this problem yields the
following:

• Stationarity: 0 ∈ ∂uk(z∗, x−k) + λ1+
∑
k µkek

• Primal feasibility:
∑
k z

∗
k = 1 for all k

• Dual feasibility: µi ≥ 0 for all k

• Complementary slackness: −µkz∗k = 0 for all k.

For any point z∗ ∈ int∆, primal feasibility will be satisfied. Given our assumption that z∗k > 0,
by complementary slackness and dual feasibility, each µk must be identically zero. This implies

2Not to be confused with the nonlinear (i.e., introduces bias) projected gradient operator introduced in (Hazan
et al., 2017).
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the stationarity condition can be simplified to 0 ∈ ∂uk(z
∗, x−k) + λ1. Rearranging terms (and

repurposing λ) we find that for any z∗, there exists a λ such that

λ1 ∈ ∂uk(z∗, x−k). (16)

Equivalently, ∂uk(z∗, x−k) ∝ 1 at z∗ ∈ int∆. Any vector proportional to the ones vector has zero
projected-gradient norm, completing the claim: [I − 1

mk
11⊤](λ1) = λ(1− mk

mk
1) = 0.

A.1.2 NORM OF PROJECTED-GRADIENT AND EQUIVALENCE TO NFG EXPLOITABILITY WITH
APPROXIMATE BEST RESPONSES

Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approx-
imated by a single step of projected-gradient ascent with step size ηk: aBRk = xk + ηkΠT∆(∇kxk

).

Proof. Define an approximate best response as the result of a player adjusting their strategy via a
projected-gradient ascent step, i.e., aBRk = xk + ηkΠT∆(∇kxk

) for player k.

In a normal form game, player k’s utility at this new strategy is

uk(aBRk, x−k) = (∇kxk
)⊤(xk + ηkΠT∆(∇kxk

)) = uk(x) + ηk(∇kxk
)⊤ΠT∆(∇kxk

). (17)

Therefore, the amount player k gains by playing aBR is

ϵ̂k(x) = uk(aBRk, x−k)− uk(x) (18a)

= ηk(∇kxk
)⊤ΠT∆(∇kxk

) (18b)

= ηk
(
∇kxk
− 1

mk
(1⊤∇kxk

)1
)⊤

ΠT∆(∇kxk
) (18c)

= ηk||ΠT∆(∇kxk
)||2 (18d)

where the third equality follows from the fact that the projected-gradient, ΠT∆(∇kxk
), is orthogonal

to the ones vector.

A.1.3 CONNECTION TO TRUE EXPLOITABILITY

Lemma 2. The amount a player can gain by deviating is upper bounded by a quantity proportional
to the norm of the projected-gradient:

ϵk(x) ≤
√
2||ΠT∆(∇kxk

)||. (19)

Proof. Let z be any point on the simplex. Then by concavity of uk with respect to z,

uk(z, x−k)− uk(x) ≤ (∇kxk
)⊤(z − xk) (20a)

= (∇kxk
)⊤(z − xk)−

1

mk
(1⊤∇kxk

)

1−1=0︷ ︸︸ ︷
1⊤(z − xk) (20b)

= (ΠT∆(∇kxk
))⊤ (z − xk)︸ ︷︷ ︸

Diam(∆)≤
√
2

(20c)

≤
√
2||ΠT∆(∇kxk

)||. (Cauchy-Schwarz) (20d)

Continuing, we can prove a bound on ϵ in terms of the projected-gradient loss:

Lemma 3. The exploitability, ϵ, of a joint strategy x, is upper bounded as a function of our proposed
loss:

ϵ ≤
√

2n

mink ηk

√
L(x). (21)
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Proof.

ϵ = max
k

max
z

uk(z, x−k)− uk(x) (22a)

≤
∑
k

max
z

uk(z, x−k)− uk(x) (22b)

≤
∑
k

√
2||ΠT∆(∇kxk

)||2 (Lemma 2) (22c)

=
√
2
∣∣∣∣∣∣||ΠT∆(∇1

x1
)||2, . . . , ||ΠT∆(∇nxn

)||2
∣∣∣∣∣∣
1

(22d)

≤
√
2n

∣∣∣∣∣∣||ΠT∆(∇1
x1
)||2, . . . , ||ΠT∆(∇nxn

)||2
∣∣∣∣∣∣
2

(22e)

=
√
2n

√∑
k

||ΠT∆(∇kxk
)||22 (22f)

=
√
2n

√∑
k

( 1

ηk

)
ηk||ΠT∆(∇kxk

)||22 (22g)

≤
√

2n

mink ηk

√∑
k

ηk||ΠT∆(∇kxk
)||22 (22h)

=

√
2n

mink ηk

√
L(x). (22i)

Lemma 4. The entropy regularized exploitability, ϵQRE , of a joint strategy x, is upper bounded as a
function of our proposed loss:

ϵQRE ≤
√

2n

mink ηk

√
Lτ (x). (23)

Proof. Recall that uτk(xk, x−k) is also concave with respect to xk. Then

ϵQRE = max
k

max
z

uτk(z, x−k)− uτk(x) (24a)

≤
∑
k

max
z

uτk(z, x−k)− uτk(x) (24b)

≤
∑
k

√
2||ΠT∆(∇kτxk

)||2 (Lemma 2) (24c)

=
√
2
∣∣∣∣∣∣||ΠT∆(∇1τ

x1
)||2, . . . , ||ΠT∆(∇nτxn

)||2
∣∣∣∣∣∣
1

(24d)

≤
√
2n

∣∣∣∣∣∣||ΠT∆(∇1τ
x1
)||2, . . . , ||ΠT∆(∇nτxn

)||2
∣∣∣∣∣∣
2

(24e)

=
√
2n

√∑
k

||ΠT∆(∇kτxk
)||22 (24f)

≤
√
2n

√∑
k

( 1

ηk

)
ηk||ΠT∆(∇kτxk

)||22 (24g)

≤
√

2n

mink ηk

√∑
k

ηk||ΠT∆(∇kτxk
)||22 (24h)

=

√
2n

mink ηk

√
Lτ (x). (24i)
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A.1.4 UNBIASED ESTIMATION

Lemma 5. An unbiased estimate of L(x) can be obtained by drawing two samples (pure strategies)
from each players’ mixed strategy and observing payoffs.

Proof. Define ∇̂k(1)xk as a random, unbiased gradient estimate (see Table 2). Let ∇̂k(2)xk be independent
and distributed identically to ∇̂k(1)xk . Then,

Ea(1)∼x,a(2)∼x[
∑
k

ηk(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1︸ ︷︷ ︸
projected-gradient 1

)⊤(∇̂k(2)xk
− 1

mk
(1⊤∇̂k(2)xk

)1︸ ︷︷ ︸
projected-gradient 2

)] (25a)

=
∑
k

ηkEa(1)∼x,a(2)∼x[(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1)⊤(∇̂k(2)xk
− 1

mk
(1⊤∇̂k(2)xk

)1)] (25b)

=
∑
k

ηkEa(1)∼x[(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1)]⊤Ea(2)∼x[(∇̂k(2)xk
− 1

mk
(1⊤∇̂k(2)xk

)1)] (25c)

=
∑
k

ηk(∇kxk
− 1

mk
(1⊤∇kxk

)1)⊤(∇kxk
− 1

mk
(1⊤∇kxk

)1) (25d)

=
∑
k

ηk||ΠT∆(∇kxk
)||2 (25e)

= L(x) (25f)

where the first equality follows from linearity of expectation, the second from independence of
random variables, and the third from Ea(p)∼x[∇̂

k(p)
xk ] = ∇kxk

, i.e., ∇̂k(p)xk is an unbiased estimator of
player k’s gradient. Therefore, equation (25a) comprises an unbiased estimate of L(x) proving the
claim.

Lemma 6. The loss formed as the sum of the squared norms of the projected-gradients, Lτ , can be
decomposed into three terms as follows:

Lτ (x) =
∑
k

ηkx
⊤
q B

⊤
kqBkqxq︸ ︷︷ ︸

(A)

+2
∑
k

ηkE
⊤
k Bkqxq︸ ︷︷ ︸

(B)

+
∑
k

ηkE
⊤
k Ek︸ ︷︷ ︸

(C)

(26)

where q is any player other than k.

Proof. Let Sτ = −τ
∑
l xkl ln(xkl) so that ∂Sτ

∂xk
= −τ(ln(xk) + 1). Note that ΠT∆[

∂Sτ

∂xk
] =

−τΠT∆[ln(xk)].

Lτ (x) =
∑
k

ηk(ΠT∆(∇kτxk
))⊤ΠT∆(∇kτxk

) (27a)

=
∑
k

ηk[H
k
kqxq +

∂Sτ

∂xk
]⊤[I − 1

mk
11⊤][I − 1

mk
11⊤][Hk

kqxq +
∂Sτ

∂xk
] (27b)

=
∑
k

ηk

(
x⊤q [H

k
kq]

⊤[I − 1

mk
11⊤]2[Hk

kq]xq + 2[
∂Sτ

∂xk
]⊤[I − 1

mk
11⊤]2[Hk

kqxq] (27c)

+ [
∂Sτ

∂xk
]⊤[I − 1

mk
11⊤]2[

∂Sτ

∂xk
]
)

(27d)

=
∑
k

ηkx
⊤
q B

⊤
kqBkqxq︸ ︷︷ ︸

(A)

+2
∑
k

ηkE
⊤
k Bkqxq︸ ︷︷ ︸

(B)

+
∑
k

ηkE
⊤
k Ek︸ ︷︷ ︸

(C)

(27e)

where Bkq = [I − 1
mk

11⊤]Hk
kq and Ek = [I − 1

mk
11⊤][∂S

τ

∂xk
] = −τ [I − 1

mk
11⊤] ln(xk).
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A.1.5 BOUND ON LOSS

By Proposition 1, Equation (18d), we can also rewrite this loss as a weighted sum of 2-norms,
L(x) =

∑
k ηk||∇kxk

− µk||22 where µk = 1
mk

(1⊤∇kxk
) ∈ [0, 1] for brevity. This will allow us to

more easily analyze our loss.

Lemma 7. Assume payoffs are bounded in [0, 1], then setting ηk ≤ 4
nmk

or ηk ≤ 4
nm̄ or

∑
k ηk ≤

4
m̄

ensures 0 ≤ L(x) ≤ 1 for all x ∈ X .

Proof.

0 ≤ L(x) =
∑
k

ηk||∇kxk
− µk||22 (28a)

=
∑
k

ηkmk

[ 1

mk

∑
l

(∇kxkl
− µk)2

]
(28b)

=
∑
k

ηkmkV ar[∇kxk
] (28c)

≤ 1

4

∑
k

ηkmk (28d)

≤ 1

4
(max

k
ηk)

(∑
k

mk

)
(28e)

=
1

4
(max

k
ηk)nm̄ ≤ 1 (28f)

=⇒ (max
k

ηk) ≤
4

nm̄
(28g)

where the first inequality follows from Popoviciu’s inequality (Popoviciu, 1935): the variance of a
bounded random variable X is upper bounded by V ar[X] ≤ 1

4 (maxX −minX)2.

Next, we establish the following useful lemmas.

Lemma 8. The matrix I − 1
mk

11⊤ is a projection matrix and therefore idempotent. It is also
symmetric, which implies it is its own square root.

Proof.

[I − 1

mk
11⊤]⊤[I − 1

mk
11⊤] = I − 2

mk
11⊤ +

1

m2
k

1(1⊤1)1⊤ (29a)

= I − 2

mk
11⊤ +

1

mk
11⊤ (29b)

= [I − 1

mk
11⊤]. (29c)

Lemma 9. The product A[Im − 1
m1m1⊤

m]pB for any integer p > 0 has entries whose absolute
value is bounded by m

4 (Amax−Amin)(Bmax−Bmin) where Amin, Amax, Bmin, Bmax represent the
minima and maxima of the matrices respectively.

Proof. The matrix [I − 1
m11⊤] is idempotent (Lemma 8) so we can rewrite the product for any p as

A[I − 1

m
11⊤][I − 1

m
11⊤]B. (30)

The matrix [I − 1
m11⊤] has the property that it removes the mean from every row of a matrix when

right multiplied against it, i.e., A[I − 1
m11⊤] removes the means from the rows of A. Similarly, left

multiplying it removes the means from the columns. Let Ã and B̃ represent these mean-centered
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results respectively. The absolute value of the ijth entry in the resulting product can then be
recognized as ∣∣∣∑

k

ÃikB̃kj

∣∣∣ = ∣∣∣∑
k

(
Aik −

1

m

∑
k′

Aik′
)(
Bkj −

1

m

∑
k′

Bk′j

)∣∣∣ (31a)

= |m · Corr(Ai,·, B·,j) · σAi,·σB·,j | (31b)

≤ mσAi,·σB·,j . (31c)

By Popoviciu’s inequality (Popoviciu, 1935), we know the variance of a bounded random variable
X is upper bounded by V ar[X] ≤ 1

4 (maxX −minX)2. Hence its standard deviation is bounded by
Std[X] ≤ 1

2 (maxX −minX). Plugging these bounds for A and B into equation (31c) completes
the claim.

Lemma 10. Assume payoffs are bounded in [0, 1], then

|Lτ (x)| ≤ 1

4

(
max
k

ηk
)
nm̄

(
τ ln

( 1

xmin

)
+ 1

)2
(32)

for any x such that xkl ≥ xmin ∀k, l.

Proof. First note that for payoffs in [0, 1], the entries in

ΠT∆(∇kτxk
) = ΠT∆

(
∇kxk
− τ(ln(xk) + 1)

)
= ΠT∆(∇kxk

− τ ln(xk)) (33)

are bounded within [0, τ ln( 1
xmin

)+1] with a range of τ ln( 1
xmin

)+1. Then starting from the definition
of Lτ and applying Lemma 9, we find

|Lτ (x)| =
∣∣∣∑
k

ηk||ΠT∆(∇kτxk
)||2

∣∣∣ (34a)

≤ 1

4

∑
k

ηkmk

(
τ ln

( 1

xmin

)
+ 1

)2
(34b)

≤ 1

4

(
τ ln

( 1

xmin

)
+ 1

)2(
max
k

ηk
)∑

k

mk (34c)

=
1

4

(
max
k

ηk
)
nm̄

(
τ ln

( 1

xmin

)
+ 1

)2
. (34d)

A.2 QRES APPROXIMATE NES AT LOW TEMPERATURE

Lemma 11. Setting τ = ln(1/p)−1 with p ∈ (0, 1) and payoffs in [0, 1] ensures that any QRE
contains probabilities greater than p

maxk mk
.

Proof. Letm∗ = maxkmk and∇kxk
be player k’s gradient. Recall that a QRE(τ ), specifically a logit

equilibrium, satisfies the fixed point equation xk = softmax(
∇k

xk

τ ) for all k. Then the probability
for any action in a QRE strategy profile, x, is lower bounded as

xkl ≥ min
k

min
l
{xkl} ≥ min

x′|x′ is QRE
min
k

min
l
{x′kl} (35a)

= min
∇k

xk

min
k

min
l

[
softmax

(∇kxk

τ

)]
l

(35b)

=
e0

(m∗ − 1)e
1
τ + e0

(35c)

def
= xmin (35d)

where equation (35c) follows from minimizing the numerator and maximizing the denominator of the
softmax formula subject to the payoff constraints.
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Rearranging terms, we find

e
1
τ =

1

m∗ − 1

( 1

xmin
− 1

)
=⇒ τ =

1

ln
(

1
m∗−1

(
1

xmin
− 1

)) . (36)

Let p ∈ (0, 1) such that xmin = p
maxk mk

= p
m∗ , then

τ =
1

ln
(

1
m∗−1

(
1

xmin
− 1

)) (37a)

=
1

ln
(

1
m∗−1

(
m∗

p − 1
)) (37b)

=
1

ln
(
m∗−p
m∗−1

1
p

) (37c)

≤ 1

ln( 1p )
. (37d)

This implies if we set τ = ln(1/p)−1, then we are guaranteed that all QREs contain probabilities
greater than xmin = p

maxk mk
.

Corollary 1. Assume payoffs are bounded in [0, 1] and τ = ln(1/p)−1, then

|Lτ (x)| ≤ 1

4
(max

k
ηk)nm̄

( ln(m∗)

ln(1/p)
+ 2

)2

. (38)

Proof. Starting with Lemma 10 and applying Lemma 11 , we find

|Lτ (x)| ≤ 1

4
(max

k
ηk)nm̄

(
τ ln

( 1

xmin

)
+ 1

)2
(39a)

=
1

4
(max

k
ηk)nm̄

( 1

ln(1/p)
ln

(m∗

p

)
+ 1

)2

(39b)

=
1

4
(max

k
ηk)nm̄

( 1

ln(1/p)

(
ln(m∗) + ln(1/p)

)
+ 1

)2

(39c)

=
1

4
(max

k
ηk)nm̄

( ln(m∗)

ln(1/p)
+ 2

)2

. (39d)

Lemma 12 (Low Temperature Approximate QREs are Approximate Nash Equilibria). Let ∇kτxk
be

player k’s entropy regularized gradient and x be an approximate QRE. Then it holds that

uk(BRk, x−k)− uk(x) ≤ τ log(mk) +
√
2||ΠT∆(∇kτxk

)||. (40)

Proof. Beginning with the definition of exploitability, we find

uk(BRk, x−k)− uk(x) =
(
uk(BRk, x−k) + τS(BRk)− τS(BRk)

)
(41a)

−
(
uk(x) + τS(xk)− τS(xk)

)
= uτk(BRk, x−k)− uτk(x) + τ

(
S(xk)− S(BRk)

)
(41b)

≤ max
z∈∆mk−1

uτk(z, x−k)− uτk(x) + τ max
z′∈∆mk−1

S(z′) (41c)

≤
√
2||ΠT∆(∇kτxk

)||+ τ max
z′∈∆mk−1

S(z′) (41d)

≤
√
2||ΠT∆(∇kτxk

)||+ τ log(mk) (41e)

where the second equality follows from the definition of player k’s entropy regularized utility uτk , the
first inequality from nonnegativity of entropy S, the second inequality from concavity of uτk with
respect to its first argument (Lemma 2), and the last from the maximum possible value of Shannon
entropy over distributions on mk actions.
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Lemma 13 (Lτ Scores Nash Equilibria). Let Lτ (x) be our proposed entropy regularized loss
function and x be an approximate QRE. Then it holds that

ϵ ≤ τ log
(∏

k

mk

)
+

√
2n

mink ηk

√
Lτ (x). (42)

Proof. Beginning with the definition of exploitability and applying Lemma 12, we find

ϵ = max
k

uk(BRk, x−k)− uk(x) (recall each ϵk ≥ 0) (43a)

≤
∑
k

uk(BRk, x−k)− uk(x) (43b)

≤
∑
k

[
τ log(mk) +

√
2||ΠT∆(∇kτxk

)||
]

(43c)

= τ
∑
k

log(mk) +
∑
k

√
2||ΠT∆(∇kτxk

)|| (43d)

≤ τ log
(∏

k

mk

)
+

√
2n

mink ηk

√
Lτ (x). (43e)

where the last inequality follows from the same steps (24c)-(24i) outlined in Lemma 4, which
established the relationship between L(x) and ϵ.

A.3 GRADIENT OF LOSS

Lemma 14. The gradient of Lτ (x) with respect to player l’s strategy xl is

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (44)

where Bll = −τ [I − 1
ml

11⊤]diag
(

1
xl

)
and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.

Proof. Recall from Lemma 6 that the loss can be decomposed as Lτ (x) = (A) + (B) + (C).

Then

Dxl
[(A)] = Dxl

[
∑
k

ηkx
⊤
q B

⊤
kqBkqxq] = 2

∑
k ̸=l

ηkB
⊤
klBklxl (45)

where q ̸= k and Bkq = [I − 1
mk

11⊤][Hk
kq] does not depend on xk.

Also, letting Bll = −τ [I − 1
ml

11⊤]diag
(

1
xl

)
,

Dxl
[(B)] = Dxl

[−2τ
∑
k

ηk ln(xk)
⊤Bkqxq] (46a)

= −2τ
[
ηlDxl

[ln(xl)
⊤Blqxq] +

∑
k ̸=l

ηkDxl
[ln(xk)

⊤Bklxl]
]

(46b)

= −2τ
[
ηldiag

( 1

xl

)
Blqxq +

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
(46c)

= −2τ
[
ηl

(
[I − 1

ml
11⊤]diag

( 1

xl

))⊤
ΠT∆(∇l) +

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
(46d)

= 2
[
ηlB

⊤
llΠT∆(∇l)− τ

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
. (46e)
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And

Dxl
[(C)] = Dxl

[
∑
k

ηkτ
2 ln(xk)

⊤[I − 1

mk
11⊤] ln(xk)] (47a)

= 2τ2
[
ηldiag

( 1

xl

)
[I − 1

ml
11⊤] ln(xl)

]
(47b)

= −2τηl
(
[I − 1

ml
11⊤]diag

( 1

xl

))⊤
ΠT∆(−τ ln(xl)) (47c)

= 2ηlB
⊤
llΠT∆(−τ ln(xl)). (47d)

Putting these together, we find

∇xl
L(x) = 2

∑
k ̸=l

ηkB
⊤
kl(Bklxl − τ ln(xk)) + 2ηlB

⊤
ll

[
ΠT∆(∇l) + ΠT∆(−τ ln(xl))

]
(48a)

= 2ηlB
⊤
llΠT∆(∇kτxk

) + 2
∑
k ̸=l

ηkB
⊤
klΠT∆(∇kτxk

) (48b)

= 2
∑
k

ηkB
⊤
klΠT∆(∇kτxk

). (48c)

A.3.1 UNBIASED ESTIMATION

In order to construct an unbiased estimate for eachBkl, we will need to form an independent unbiased
estimate of Hk

kl. Recall that Hk
kl is simply the expected bimatrix game between players k and l when

all other players sample their actions according to their current strategies.

A.4 BOUND ON GRADIENT / LIPSCHITZ PROPERTY

Lemma 15. Assume payoffs are upper bounded by 1, then the infinity norm of the gradient is bounded
as

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)

(
τ ln

( 1

xmin

)
+ 1

)[
τm∗

( 1

xmin
− 1

)
+ nm̄

]
. (49)

Proof. Recall from Lemma 14 that the gradient of L(x) with respect to player l’s strategy xl is

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (50)

where Bll = −τ [I − 1
ml

11⊤]diag
(

1
xl

)
and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.

As noted before in the derivation of Lemma 10, for payoffs in [0, 1], the entries in ∇kτxk
= ∇kxk

−
τ ln(xk) are bounded within [0, τ ln( 1

xmin
) + 1] with a range τ ln( 1

xmin
) + 1. Similarly, the entries in

−τdiag
(

1
xl

)
are bounded within [−τ 1

xmin
,−τ ] with a range of τ( 1

xmin
− 1).
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The infinity norm of the gradient can then be bounded as

||∇xLτ (x)||∞ = max
l
||∇xl

L(x)||∞ (51a)

= max
l
||2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

)||∞ (51b)

≤ 2
∑
k

ηkmax
l
||B⊤

klΠT∆(∇kτxk
)||∞ (51c)

≤ 1

2

∑
k ̸=l∗

ηkmk

(
τ ln

( 1

xmin

)
+ 1

)
+

1

2
ηl∗ml∗τ

( 1

xmin
− 1

)(
τ ln

( 1

xmin

)
+ 1

)
(51d)

=
1

2

(
τ ln

( 1

xmin

)
+ 1

)[
ηl∗ml∗τ

( 1

xmin
− 1

)
+

∑
k ̸=l∗

ηkmk

]
(51e)

≤ 1

2
(max

k
ηk)

(
τ ln

( 1

xmin

)
+ 1

)[
τml∗

( 1

xmin
− 1

)
+

∑
k ̸=l∗

mk

]
(51f)

≤ 1

2
(max

k
ηk)

(
τ ln

( 1

xmin

)
+ 1

)[
τm∗

( 1

xmin
− 1

)
+ nm̄

]
(51g)

where the second inequality follows from Lemma 9.

Corollary 2. If τ is set according to Lemma 11 as τ = ln(1/p)−1 and payoffs are in [0, 1], then the
infinity norm of the gradient is bounded as

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)

[ ln(m∗)

ln(1/p)
+ 2

][ m∗2

p ln(1/p)
+ nm̄

]
=

1

2
(max

k
ηk)L̂ (52)

where m∗ = maxkmk and L̂ is defined implicitly for convenience in other derivations.

Proof. Starting with Lemma 15 and applying Lemma 11 (i.e., τ = ln(1/p)−1 and xmin = p
m∗ with

payoffs in [0, 1] and where m∗ = maxkmk), we find

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)

(
τ ln

( 1

xmin

)
+ 1

)[
τm∗( 1

xmin
− 1

)
+ nm̄

]
(53a)

=
1

2
(max

k
ηk)

[ ln(m∗/p)

ln(1/p)
+ 1

][ m∗

ln(1/p)

(m∗

p
− 1

)
+ nm̄

]
(53b)

≤ 1

2
(max

k
ηk)

[ ln(m∗)

ln(1/p)
+ 2

][ m∗2

p ln(1/p)
+ nm̄

]
. (53c)

As p→ 0+, the norm of the gradient blows up because the gradient of Shannon entropy blows up
for small probabilities. As p → 1, the norm of the gradient blows up because we require infinite
temperature τ to guarantee all QREs are nearly uniform; recall τ is the regularization coefficient on
the entropy bonus terms which means our modified utilities blow up for large τ .

A.5 HESSIAN OF LOSS

We will now derive the Hessian of our loss. This will be useful in establishing properties about global
minima that enable the application of tailored minimization algorithms. Let Dz[f(z)] denote the
differential operator applied to (possibly multivalued) function f with respect to z. For example,
Dxq

[Hk
lk] = Dxq

[xqT
k
qlk] = T kqlk where T kqlk is player k’s payoff tensor according to the three-way

approximation between players k, l, and q to the game at x.
Lemma 16. The Hessian of Lτ (x) can be written

Hess(Lτ ) = 2B̃⊤B̃ + TΠT∆(∇̃τ ) (54)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the
3-player tensor approximation to the game, T klqk) so that T llll = τdiag3

(
1
x2
l

)
and otherwise 0.
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Proof. Recall the gradient of our proposed loss:

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (55)

where Bll = −τ [I − 1
ml

11⊤]diag
(

1
xl

)
and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.

Consider the following Jacobians, which will play an auxiliary role in our derivation of the Hessian:

Dl[Bll] = τ [I − 1

ml
11⊤]diag3

( 1

x2l

)
(56a)

Dq[Bll] = 0 (56b)
Dl[Bkl] = 0 (56c)

Dq[Bkl] = [I − 1

mk
11⊤]T kklq (56d)

Dk[ΠT∆(∇kτxk
)] = [I − 1

mk
11⊤]Dk[∇kτxk

] (56e)

= [I − 1

mk
11⊤]Dk[∇kxk

− τ ln(xk)] (56f)

= [I − 1

mk
11⊤][−τdiag

( 1

xk

)
] (56g)

= Bkk (56h)

Dl[ΠT∆(∇kτxk
)] = [I − 1

mk
11⊤]Dl[∇kτxk

] (56i)

= [I − 1

mk
11⊤]Dl[∇kxk

− τ ln(xk)] (56j)

= [I − 1

mk
11⊤][Hk

kl] (56k)

= Bkl. (56l)

We can derive the diagonal blocks of the Hessian as

Dll[L(x)] = Dl[∇xl
L(x)] (57a)

= 2Dl[
∑
k

ηkB
⊤
klΠT∆(∇kτxk

)] (57b)

= 2
[
ηlDl

[
B⊤
llΠT∆(∇lτxl

)
]
+
∑
k ̸=l

ηkDl

[
B⊤
klΠT∆(∇kτxk

)
]]

(57c)

= 2
[
ηl
[
Dl[Bll]

⊤ΠT∆(∇lτxl
) +B⊤

llDl[ΠT∆(∇lτxl
)]
]

(57d)

+
∑
k ̸=l

ηk
[
����Dl[Bkl]

⊤ΠT∆(∇kτxk
) +B⊤

klDl[ΠT∆(∇kτxk
)]
]]

(57e)

= 2
[
ηl
[
τdiag3

( 1

x2l

)
[I − 1

ml
11⊤]ΠT∆(∇lτxl

) +B⊤
llBll

]
+
∑
k ̸=l

ηkB
⊤
klBkl

]
(57f)

= 2
[
τηldiag

(
[
1

x2l
]⊙ΠT∆(∇lτxl

)
)
+

∑
k

ηkB
⊤
klBkl

]
(57g)
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and the off-diagonal blocks as

Dlq[L(x)] = Dq[∇xl
L(x)] (58a)

= 2Dq[
∑
k

ηkB
⊤
klΠT∆(∇kτxk

)] (58b)

= 2
[
ηlDq

[
B⊤
llΠT∆(∇lτxl

)
]
+

∑
k ̸=l

ηkDq

[
B⊤
klΠT∆(∇kτxk

)
]]

(58c)

= 2
[
ηl
[
����Dq[Bll]

⊤ΠT∆(∇lτxl
) +B⊤

llDq[ΠT∆(∇lτxl
)]
]

(58d)

+
∑
k ̸=l

ηk
[
Dq[Bkl]

⊤ΠT∆(∇kτxk
) +B⊤

klDq[ΠT∆(∇kτxk
)]
]]

(58e)

= 2
[
ηlB

⊤
llBlq +

∑
k ̸=l

ηk
[
T klqk[I −

1

mk
11⊤]ΠT∆(∇kτxk

) +B⊤
klBkq

]]
(58f)

= 2
[∑

k

ηkB
⊤
klBkq +

∑
k ̸=l

ηkT
k
lqkΠT∆(∇kτxk

)
]
. (58g)

Therefore, the Hessian can be written concisely as

2
[
B̃⊤B̃ + TΠT∆(∇̃τ )

]
(59)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the
3-player tensor approximation to the game, T klqk) so that T llll = τdiag3

(
1
x2
l

)
and otherwise 0.
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B GLOBAL CONVERGENCE GUARANTEES

In this section, we analyze the application of optimization techniques such as bandit algorithms and
gradient descent to our loss function.

B.1 MAPS FROM HYPERCUBE TO SIMPLEX PRODUCT

In this subsection, we derive properties of a map s from the unit-hypercube to the simplex product.
This map is necessary to to adapt our proposed loss Lτ to the commonly assumed setting in the
X -armed bandit literature (Bubeck et al., 2011) where the feasible set is a hypercube. We derive
relevant properties of two such maps: the softmax and a mapping that interprets dimensions of the
hypercube as angles on a unit-sphere that are then ℓ1-normalized.

Lemma 17. Let f(x) = −L(s(x)). Then ||∇f(x)||∞ ≤ ||J(s(x))⊤||∞||∇L(s(x))||∞.

Proof.

||∇f(x)||∞ = ||J(s(x))⊤∇L(s(x))||∞ ≤ ||J(s(x))⊤||∞||∇L(s(x))||∞. (60)

Lemma 18. The∞-norm of the Jacobian-transpose of a transformation s(x) applied elementwise
to a product space is bounded by the∞-norm of the Jacobian-transpose of a single transformation
from that product space, i.e., ||J(s(x))⊤||∞ ≤ maxxi∈Xi

||J(s(xi))⊤||∞ for any i.

Proof. Let x ∈ X =
∏n
i=1 Xi, Z =

∏n
i=1Zi and S : X → Z = [s(x1); · · · ; s(xn)]⊤ where ;

denotes column-wise stacking, xi ∈ Xi. Also, Xi = Xj and Zi = Zjfor all i and j. Then the
Jacobian of S(x) is

J(S(x))⊤ =


J(s(x1))

⊤ 0 . . . 0
0 J(s(x2))

⊤ . . . 0

0 0
. . . 0

0 0 . . . J(s(xn))
⊤

 . (61)

The∞-norm of this matrix is the max 1-norm of any row. This matrix is diagonal, therefore, the
∞-norm of each elementwise Jacobian-transpose represents the max 1-norm of the rows spanned
by its block. Given that the domains, ranges, and transformations s for all blocks are the same,
their∞-norms are also the same. The max∞ over the blocks is then equal to the∞-norm of any
individual J(s(xi))⊤.

B.1.1 HESSIAN OF BANDIT REWARD FUNCTION

Lemma 19. Let s(x) be a function that maps the unit hypercube to the simplex product (mixed
strategy space). Then the objective function f(x) = −L(s(x)). The Hessian of−f(x) at an optimum

x∗ in direction ∆ is ∆x⊤[Ds(x)⊤HL(x)Ds(x)]
∣∣∣
x∗
∆x where HL is the Hessian of L and Ds(x) is

the Jacobian of s(x).

Proof.

(D2(L ◦ s)(x∗))(∆x,∆x) = ∆x⊤
[∑

i

=0 at x=x∗︷ ︸︸ ︷
∂iL(s(x))D2hi(x)

]∣∣∣
x∗
∆x (62a)

+∆x⊤[Ds(x)⊤HL(x)Ds(x)]
∣∣∣
x∗
∆x

= ∆x⊤[Ds(x)⊤HL(x)Ds(x)]
∣∣∣
x∗
∆x. (62b)
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Lemma 20. Let s(x) : X →
∏
k∆

mk−1 be an injective function, i.e., x ̸= y =⇒ s(x) ̸= s(y).
Also let J = J(s(x)) be the Jacobian of s with respect to x and ∆x be a nonzero vector in the
tangent space of X . Then

J∆x ̸= 0. (63)

Proof. Recall that the ijth entry of the Jacobian represents ∂si
∂xj

so that the ith entry of J∆x is

[J∆x]i =
∑
j

∂si
∂xj

∆xj = dsi. (64)

Assume J∆x = 0. This would imply a change in x ∈ X results in no change in s (ds = 0),
contradicting the fact that s is injective. Therefore, we must conclude the claim that J∆x ̸= 0.

Lemma 21. Let J = J(s(x)) be the Jacobian of any composition of transformations s = st ◦ . . . s1
where st(z) = [zi/

∑
j zj ]i. Then J∆x lies in the tangent space of the simplex.

Proof. We aim to show 1⊤J∆x = 0 for any ∆x and x. By chain rule, the Jacobian of s is
J = J(s) =

∏t′=1
t′=t J(s

′
t). Therefore, 1⊤J∆x = 1⊤(

∏t′=1
t′=t J(s

′
t))∆x. Consider the first product:

1⊤J(st) = 0 (65)

by Lemma 24. Therefore 1⊤J∆x = 1⊤J(st)(
∏t′=1
t′=t−1 J(s

′
t))∆x = 0⊤(

∏t′=1
t′=t−1 J(s

′
t))∆x = 0.

This implies J∆x is orthogonal to 1 for any x ∈ X and ∆x, therefore J∆x lies in the tangent space
of the simplex for any x ∈ X and ∆x.

B.1.2 SOFTMAX MAP

Let s : [0, 1]d−1 → ∆d−1 ∈ Rd be the softmax function. See (Gao and Pavel, 2017) for an
analysis of many of its properties and in the context of game theory. Note that s maps a (d − 1)
dimensional variable to a d dimensional distribution. This can be practically handled by always
appending a 0 to the (d−1)-dimensional input prior to applying the standard softmax. We perform
our analysis below in terms of the standard softmax, but note the norms we derive apply to our
modified (invertible) softmax.

Standard:

s(x) =
1∑d

j=1 e
xj

[
ex1 , . . . exd

]
. (66)

Modified:

s(x) =
1

1 +
∑d−1
j=1 e

xj

[
ex1 , . . . exd−1 , 1

]
. (67)

Lemma 22. Let J be the Jacobian of the softmax operator. Then ||J ||∞ ≤ 2 and ||J⊤||∞ ≤ 2.

Proof. Let Si represent the ith entry of S = softmax(z) for any z ∈ Rm. Then the 1-norm of row
i is upper bounded as

DjSi = Si(δij − Sj) (68a)

=⇒
∑
j

|DjSi| =
∑
j

|Si(δij − Sj)| (68b)

≤
∑
j

|δijSi|+ |SiSj | (68c)

= Si +
∑
j

SiSj (68d)

= Si + Si
∑
j

Sj (68e)

= 2Si (68f)
≤ 2 ∀i. (68g)
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Also, the 1-norm of column j is upper bounded similarly as

(69a)∑
i

|DjSi| =
∑
i

|Si(δij − Sj)| (69b)

≤
∑
i

|δijSi|+ |SiSj | (69c)

= Sj +
∑
i

SiSj (69d)

= Si + Sj
∑
i

Si (69e)

= 2Sj (69f)
≤ 2 ∀j. (69g)

The∞-norm of a matrix is the maximum 1-norm of any row. Therefore, ||J ||∞ and ||J⊤||∞ are both
upper bounded by 2.

Corollary 3. Let J be the Jacobian of the softmax operator. Then ||J ||2 ≤ 2 and ||J⊤||2 ≤ 2.

Proof. The Gershgorin circle theorem states that every eigenvalue of J lies within one of the discs
centered at the diagonal of J with radius equal to the 1-norm of the row (excluding the diagonal
term). The Jacobian of the softmax operator contains only nonnegative diagonal terms, therefore,
the 1-norm of any entire row also represents the maximum magnitude of any eigenvalue allowed by
any Gershgorin disc. In addition, J is symmetric and therefore, the magnitude of its eigenvalues are
equivalent to its singular values. Therefore by Lemma 22, ||J ||2 ≤ 2.

B.1.3 SPHERICAL MAP

For spherical coordinates, let s(x) = n(l(c(x))) where c(x) = π/2x, l(ψ) maps angles to the unit
sphere, and n(z) = [zi/

∑
j zj ]i.

Definition 2. Define l(ψ) as the transformation to the unit-sphere using spherical coordinates:

l1(ψ) = cos(ψ1) (70a)
l2(ψ) = sin(ψ1) cos(ψ2) (70b)
l3(ψ) = sin(ψ1) sin(ψ2) cos(ψ3) (70c)

... =
... (70d)

lm−1(ψ) = sin(ψ1) sin(ψ2) . . . cos(ψm−1) (70e)
lm(ψ) = sin(ψ1) sin(ψ2) . . . sin(ψm−1). (70f)

Lemma 23. Let J be the Jacobian of the transformation to the unit-sphere using spherical coordinates,
i.e. z = l(ψ) where ||l||2 = 1 and ψi ∈ [0, π2 ] represents an angle for each i. Then ||J ||F ≤

√
m.

Proof. The Jacobian of the transformation is

J(l) =


− sin(ψ1) 0 · · · 0

cos(ψ1) cos(ψ2) − sin(ψ1) sin(ψ2) · · · 0
...

...
. . .

...
cos(ψ1) sin(ψ2) . . . cos(ψm−1) · · · · · · − sin(ψ1) . . . sin(ψm−2) sin(ψm−1)
cos(ψ1) sin(ψ2) . . . sin(ψm−1) · · · · · · sin(ψ1) . . . sin(ψm−2) cos(ψm−1)


(71)
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and it square is

J(l) =


t1 0 · · · 0

cos(ψ1)
2 cos(ψ2)

2 sin(ψ1)
2t2 · · · 0

...
...

. . .
...

cos(ψ1)
2 sin(ψ2)

2 . . . cos(ψm−1)
2 · · · · · · sin(ψ1)

2 . . . sin(ψm−2)
2tm−1

cos(ψ1)
2 sin(ψ2)

2 . . . sin(ψm−1)
2 · · · · · · sin(ψ1)

2 . . . sin(ψm−2)
2tm


(72)

where

δim = 1 if i = m, 0 else (73a)

ti = δim cos2(ψi−1) + (1− δim) sin2(ψi) ≤ 1. (73b)

To compute the Frobenius norm, we will need the sum of the squares of all entries. We will consider
the sum of each row individually using the following auxiliary variable Ri,k≤i where

∑
j J

2
ij = Ri,1

and apply a recursive inequality.

(74a)

Ri,k≤i =

i−1∑
k′=k

cos2(ψk′)
[ i−1∏
l=k,l ̸=k′

sin2(ψl)
]
cos2(ψi) + ti

i−1∏
l=k

sin2(ψl) (74b)

= cos2(ψk)
[ i−1∏
l=k+1

sin2(ψl)
]
cos2(ψi)︸ ︷︷ ︸

≤1

(74c)

+ sin2(ψk)

i−1∑
k′=k+1

cos2(ψk′)
[ i−1∏
l=k+1,l ̸=k′

sin2(ψl)
]
cos2(ψi) (74d)

+ sin2(ψk)ti

i−1∏
l=k+1

sin2(ψl) (74e)

≤ cos2(ψk) (74f)

+ sin2(ψk)
( i−1∑
k′=k+1

cos2(ψk′)
[ i−1∏
l=k+1,l ̸=k′

sin2(ψl)
]
cos2(ψi) + ti

i−1∏
l=k+1

sin2(ψl)
)

(74g)

= cos2(ψk) + sin2(ψk)Ri,k+1. (74h)

Note then that Ri,k+1 ≤ 1 =⇒ Ri,k ≤ 1. We know Ri,i = ti ≤ 1, therefore, Ri,1 ≤ 1 by applying
the inequality recursively. Finally,

∑
j J

2
ij = Ri,1 ≤ 1 implies the claim ||J ||2F =

∑
iRi,1 ≤ m.

Lemma 24. Let J be the Jacobian of n(z) = z/Z where Z =
∑
k zk. Then 1⊤J = 0⊤.

Proof. The ijth entry of the Jacobian of n(z) is

J(n)ij =
1

Z2
(−zi + δijZ). (75)

Therefore [1⊤J ]j =
∑
i J(n)ij =

1
Z2 (−Z + Z) = 0 where z is a point on the unit-sphere in the

positive orthant.

B.2 NEAR OPTIMALITY & ZOOMING DIMENSION

In this subsection, we derive bounds on the near-optimality dimension and zooming dimension of
the associated bandit optimization problems we use to derive global convergence guarantees to Nash
equilibria. This is written in terms of maximizing a function f rather than minimizing a loss to better
match the bandit literature (Bubeck et al., 2011; Valko et al., 2013; Feng et al., 2022).
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Assumption 1. Locally around each interior x∗ ∈ X ∗, −f(x) is lower bounded by −f(x∗) +
σ−||x− x∗||αhi . In other words, for all f(x) ≥ f(x∗)− η:

f(x∗)− f(x) ≥ σ−||x− x∗||αhi (76)

where we have left the precise norm unspecified for generality. Let ℓ(x, x∗) = σ+||x− x∗||αlo .

Definition 3. Xϵ
def
= {x ∈ X | ∃x∗ ∈ X ∗ s.t. f(x) ≥ f(x∗)− ϵ}

Definition 4. X lowerϵ
def
= {x ∈ X | ∃x∗ ∈ X ∗ s.t. f(x∗)− σ−||x− x∗||αhi ≥ f(x∗)− ϵ}

Corollary 4. Xϵ ⊆ X lowerϵ .

Proof. By Assumption 1, f(x∗)− σ−||x− x∗||αhi ≥ f(x). Therefore, any x ∈ X that satisfies the
requirement for an element of Xϵ, f(x) ≥ f(x∗)− ϵ, will also satisfy the requirement for an element
of X lowerϵ .

Definition 5 (ψ-near Optimality Dimension). The ψ-near optimality dimension is the smallest d′ > 0
such that there exists C > 0 such that for any ϵ > 0, the maximum number of disjoint ℓ-balls of
radius ψϵ and center in Xϵ is less than Cϵ−d

′
.

Definition 6 (Zooming Dimension). The zooming dimension is the smallest dz > 0 such that there
exists Cz > 0 such that for any r > 0, the maximum number of disjoint ℓ-balls of radius r

2 and center
in X16r is less than Czr−dz .

Corollary 5 (Zooming Dimension from ψ-near Optimality Dimension). The zooming dimension
of f : x ∈ [0, 1]d → [−1, 1] under ℓ(x, y) = σ+||x − y||αlo is dz = d(αhi−αlo

αloαhi
) with constant

Cz = 16−d
′
C with ψ = 1

32 (ψ is needed to compute C).

Proof. Mapping the definition of ψ-near optimality onto zooming dimension, we find ψϵ = r/2 and
ϵ = 16r. Then we can infer ψ = 1/32; this is used to compute C (see Theorem 1). Rewriting the
bound from ψ-near optimality in terms of r, we find

Nϵ = N16r ≤ C(16r)−d
′
= C16−d

′
r−d

′
= Czr

−dz (77)

where N16r denotes the number of ℓ-balls of radius r/2 with center in X16r, dz = d′, Cz =

C16−d
′
= C16−dz . Therefore, this translation only effects the constant Cz , not the zooming

dimension.

Lemma 25 (Nϵ≤η ≤ Cϵ≤ηϵ
−d′). The maximum number of disjoint ℓ-balls with radius ψϵ and

center in Xϵ≤η, Nϵ≤η, is upper bounded by Cϵ≤ηϵ−d
′

where Cϵ≤η = |X ∗|
(

σ+

ψσ
αlo/αhi
−

)d/αlo

and

d′ = d(αhi−αlo

αloαhi
).

Proof. The number of disjoint ℓ-balls of radius ψϵ and center in Xϵ≤η can be upper bounded as
follows.

Rewrite X lowerϵ by rearranging terms as

X lowerϵ = {x ∈ X |∃x∗ ∈ X ∗ s.t. ||x− x∗|| ≤
( ϵ

σ−

)1/αhi def
= rϵ} (78)

and recall that from Corollary 4 that Xϵ ⊆ X lowerϵ . Furthermore, an ℓ-ball of radius ψϵ implies

ℓ(x, y) = σ+||x− y||αlo ≤ ψϵ =⇒ ||x− y|| ≤
(ψϵ
σ+

)1/αlo def
= rℓ. (79)
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The number of disjoint ℓ-balls that can pack into a set Xϵ, Nϵ≤η , is upper bounded by the ratio of the
volumes of the two sets:

Nϵ≤η ≤
V ol(Xϵ)
V ol(Bℓ)

(80a)

≤ V ol(X lowerϵ )

V ol(Bℓ)
(80b)

=
|X ∗|Sdrdϵ
Sdrdℓ

(80c)

≤
|X ∗|

(
ϵ
σ−

)d/αhi

(
ψϵ
σ+

)d/αlo
(80d)

= |X ∗|
(σ1/αlo

+ ψ−1/αlo

σ
1/αhi

−

)d
ϵd(1/αhi−1/αlo) (80e)

= |X ∗|
( σ+

ψσ
αlo/αhi

−

)d/αlo

ϵ
−d(αhi−αlo

αloαhi
) (80f)

= Cϵ≤ηϵ
−d′ (80g)

where Cϵ≤η = |X ∗|
(

σ+

ψσ
αlo/αhi
−

)d/αlo

, d′ = d(αhi−αlo

αloαhi
), |X ∗| is the number of distinct global

optima, and Sd is the volume constant for a d-sphere under the given norm || · ||.

Recall, these results apply when f(x) ≥ f(x∗)−η, i.e., when ϵ ≤ η. Otherwise, we can upper bound
the number of ℓ-balls by considering the entire set X which has volume 1. First, we will bound the
constant associated with the volume of a d-sphere.
Lemma 26 (Nϵ≥η ≤ Cϵ≥η). The maximum number of disjoint ℓ-balls with radius ψϵ and center

in Xϵ≥η, Nϵ≥η, is upper bounded by Cϵ≥η where Cϵ≥η = S−1
d

(
σ+

ψη

)d/αlo

and Sd is the volume
constant for a d-sphere under a given norm.

Proof. We can upper bound the number of ℓ-balls needed to pack the entire space by considering the
smallest possible radius ψη:

Nϵ≥η ≤
V ol(X )
V ol(Bℓ)

(81a)

=
1

Sdrdℓ
(81b)

≤ 1

Sd

(
ψη
σ+

)d/αlo
(81c)

= S−1
d

(σ+
ψη

)d/αlo

(81d)

= Cϵ≥η (81e)

where rl was defined in equation (79).

Theorem 1. The ψ-near optimality dimension of f : x ∈ [0, 1]d → [−1, 1] under ℓ is d′ =
d(αhi−αlo

αloαhi
) with constant

C = max
{
1, S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

(82)

where Sd is the volume constant for a d-sphere under the same norm as ℓ.
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Proof. First, let us define rη =
(
η
σ−

)1/αhi

as in equation (78) which implies η = σ−r
αhi
η . Then

apply Lemmas 25 (Nϵ≤η ≤ Cϵ≤ηϵ−d
′
) and 26 (Nϵ≥η ≤ Cϵ≥η) which bound the number of ℓ-balls

required to pack Xϵ when ϵ is less than and greater than η respectively:

Cϵ≤η = |X ∗|
( σ+

ψσ
αlo/αhi

−

)d/αlo

(83)

d′ = d(
αhi − αlo
αloαhi

) (84)

and

Cϵ≥η = S−1
d

(σ+
ψη

)d/αlo

(85a)

= |X ∗|−1S−1
d η−d/αloσ

d/αhi

− |X ∗|
( σ+

ψσ
αlo/αhi

−

)d/αlo

(85b)

= |X ∗|−1S−1
d η−d/αloσ

d/αhi

− Cϵ≤η (85c)

= |X ∗|−1S−1
d r−dαhi/αlo

η σ
−d/αlo

− σ
d/αhi

− Cϵ≤η (85d)

= |X ∗|−1S−1
d r

−dαhi
αlo

η σ
−d

(
αhi−αlo
αloαhi

)
− Cϵ≤η (85e)

= |X ∗|−1S−1
d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d
Cϵ≤η (85f)

where Sd is the volume constant for a d-sphere under the given norm. S−1
d has been upper bounded

for the 2-norm in Lemma 35. For the∞-norm, S−1
d = 2−d. We have written Cϵ≥η in terms of Cϵ≤η

to clarify which is larger.

Therefore,

C = max
{
1, |X ∗|−1S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}
Cϵ≤η (86a)

= max
{
1, |X ∗|−1S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

. (86b)

Intuitively, if the radius for which the polynomial bounds hold (rη) is large and the minimum
curvature constant σ− is also large, then the bound Cϵ≤η holds for large deviations from optimality η.
The number of η-radius ℓ-balls required to cover the remaining space, Cϵ≥η, will be comparatively
small.

B.3 D-BLIN

The regret bound for Doubling BLiN (Feng et al., 2022) was originally proved assuming a standard
normal distribution, however, the authors state their proof can be easily adapted to any sub-Gaussian
distribution, which includes bounded random variables. This matches our setting with bounded
payoffs, so we repeat their analysis here for that setting.

In what follows, in an effort to match notation in (Feng et al., 2022), let µ(x) = −Lτ (s(x))
denote the expected reward for evaluating x ∈ [0, 1]d; µ̂(x) is an unbiased estimate of µ(x). Here,
s : [0, 1]n(m̄−1) →

∏
i∆

mi−1 is any function that maps from the unit hypercube to a product
of simplices; we analyze two such maps in Appendix B.1. Also let Am denote the collection of
hypercubes to be investigated during the mth batch of arm pulls, C ∈ Am denote a hypercube
partition in X , nm indicates the number of times each cube in Am is played in batch m, and Bstop
denote the last batch.

Definition 7 (Global Arm Accuracy). E def
=

{
|µ(x) − µ̂m(C)| ≤ rm +

√
c1

lnT
nm

, ∀ 1 ≤ m ≤

Bstop − 1, ∀C ∈ Am, ∀x ∈ C
}

.
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Define: nm = c2
lnT
r2m

=⇒ rm =
√
c2

lnT
nm

.

Definition 8 (Elimination Rule). Eliminate C ∈ Am if µ̂max
m − µ̂m(C) ≥ 2(1 +

√
c1/c2)rm =

2(
√
c2 +

√
c1)

√
lnT
nm

where µ̂max
m

def
= maxC∈Am µ̂m(C).

Lemma 27. Pr[E ] ≥ 1− 2T−2(c1/c
2−1).

Proof. Let µ̂m(C) = 1
nm

∑nm

i=1 yC,i be the unbiased estimate of µ(x ∈ C) using nm samples.
Assume each yC,i ∈ [a, b] with c = b − a and µ̂(C) = 1

nm

∑nm

i=1 yC,i. Applying a Hoeffding
inequality gives

Pr
[
|µ̂(C)− E[µ̂(C)]| ≥

√
c1

lnT

nm

]
≤ 2e−2c1 lnT/c2 (87a)

= 2(elnT )−2c1/c
2

(87b)

= 2T−2c1/c
2

∀C. (87c)

By Lipschitzness of µ we also have

|E[µ̂(C)]− µ(x)| ≤ rm, ∀x ∈ C. (88)

Then consider

sup
x∈C
|µ(x)− µ̂(C)| = sup

x∈C
|µ(x)− E[µ̂(C)] + E[µ̂(C)]− µ̂(C)| (89a)

≤ sup
x∈C

(
|µ(x)− E[µ̂(C)]|+ |E[µ̂(C)]− µ̂(C)|

)
(89b)

= sup
x∈C
|µ(x)− E[µ̂(C)]|+ |E[µ̂(C)]− µ̂(C)| (89c)

≤
√
c1

lnT

nm
+ rm (89d)

with probability 1− 2T−2c1/c
2

. The first inequality follows by triangle inequality and the second
follows from equation (88) and considering the complement of equation (87c).

The complement of this result occurs with probability

Pr
[
sup
x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
≤ 2T−2c1/c

2

. (90)

At least 1 arm is played in each cube C ∈ Am for 1 ≤ m ≤ Bstop− 1, therefore, |Am| ≤ T must be
true given the exit condition of the algorithm. In addition, assume Bstop ≤ T (Bstop will be defined
such that this is true). Then a union bound over all T 2 events gives

Pr
[
∃m ∈ [1, Bstop − 1], C ∈ Am s.t. sup

x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
(91a)

≤
Bstop−1∑
m=1

∑
C∈Am

Pr
[
sup
x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
(91b)

≤
Bstop−1∑
m=1

∑
C∈Am

2T−2c1/c
2

(91c)

≤ 2T−2c1/c
2

T 2. (91d)

Taking the complement of this event and noting that supx∈C |µ(x)− µ̂(C)| ≤ rm +
√
c1

lnT
nm

=⇒

|µ(x)− µ̂(C)| ≤ rm +
√
c1

lnT
nm
∀x ∈ C gives the desired result.
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Lemma 28 (Optimal Arm Survives). Under event E , the optimal arm x∗ = argmaxµ(x) is not
eliminated after the first Bstop − 1 batches.

Proof. Let C∗
m denote the cube containing x∗ in Am. Under event E , for any cube C ∈ Am and

x ∈ C, the following relation shows that C∗
m avoids the elimination rule in round m:

µ̂(C)− µ̂(C∗
m) ≤

(
µ(x) + rm +

√
c1

lnT

nm

)
+

(
− µ(x∗) + rm +

√
c1

lnT

nm

)
(92a)

= (µ(x)− µ(x∗))︸ ︷︷ ︸
≤0

+2rm + 2

√
c1

lnT

nm
(92b)

≤ 2

√
c2

lnT

nm
+ 2

√
c1

lnT

nm
(92c)

= 2(
√
c1 +

√
c2)

√
lnT

nm
(92d)

where the first inequality follows from applying Lemma 27 to upper bound µ̂(C) and µ̂(C∗
m) indi-

vidually. The remaining steps use the optimality of x∗, the definition of rm, and the elimination
rule.

Lemma 29. Under event E , for any 1 ≤ m ≤ Bstop, any C ∈ Am and any x ∈ C, ∆x satisfies

∆x ≤ 4(1 +
√
c1/c2)rm−1 (93)

Proof. For m = 1, recall that rm is the side length of a cube C ∈ Am, therefore, ∆x ≤ rm−1 ≤
4(1 +

√
c1/c2)rm−1 holds directly from the Lipschitzness of µ.

For m > 1, let C∗
m−1 ∈ Am−1 be the cube containing x∗. From Lemma 28, this cube has not been

eliminated under event E . For any cube C ∈ Am and x ∈ C, it is clear that x is also in the parent of
C, denoted Cpar (x ∈ C ⊂ Cpar). Then for any x ∈ C, it holds that

∆x = µ(x∗)− µ(x) ≤
(
µ̂m−1(C

∗
m−1) + rm−1 +

√
c1

lnT

nm−1

)
(94a)

+
(
− µ̂m−1(Cpar) + rm−1 +

√
c1

lnT

nm−1

)
= (µ̂m−1(C

∗
m−1)− µ̂m−1(Cpar)) + 2(

√
c1 +

√
c2)

√
lnT

nm−1
(94b)

≤ (µ̂max
m−1 − µ̂m−1(Cpar)) + 2(

√
c1 +

√
c2)

√
lnT

nm−1
(94c)

≤ 2(
√
c1 +

√
c2)

√
lnT

nm−1
+ 2(
√
c1 +

√
c2)

√
lnT

nm−1
(94d)

= 4(
√
c1 +

√
c2)

√
lnT

nm−1
(94e)

= 4(1 +
√
c1/c2)rm−1 (94f)

where we have applied Lemma 27 similarly as in Lemma 28 and also used the definition of rm−1.
The last two inequalities use the fact that µ̂m−1(C

∗
m−1) ≤ µ̂max

m−1 and Cpar was not eliminated.

Theorem 2 (BLiN Regret Rate). With probability exceeding 1− 2T−2(c1/c
2−1) , the T -step total

regret R(T ) of BLiN with Doubling Edge-length Sequence (D-BLiN) Feng et al. (2022) satisfies

R(T ) ≤ 8(1 +
√
c1/c2)(2c2 + 1) ln(T )

1
dz+2T

dz+1
dz+2 (95)

where dz is the zooming dimension of the problem instance. In addition, D-BLiN only needs no more
than B∗ = log 2(T )−log 2(ln(T ))

dz+2 + 2 rounds of communications to achieve this regret rate.
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Proof. Since rm = rm−1

2 =⇒ rm−1 = 2rm for the Doubling Edge-length Sequence, Lemma 29
implies that every cube C ∈ Am is a subset of S(8(1 +

√
c1/c2)rm). Thus from the definition of

zooming dimension (Corollary 5 with appropriate condition), we have

|Am| ≤ Nrm ≤ Czr−dzm . (96)

Fix any positive number B. Also by Lemma 29, we know that any arm played after batch B incurs
a regret bounded by 8(1 +

√
c1/c2)rB , since the cubes played after batch B have edge length no

larger than rB . Then the total regret that occurs after batch B is bounded by 8(1 +
√
c1/c2)rBT

(where T is an upper bound on the number of arms).

Thus the regret can be bounded as

R(T ) ≤
B∑

m=1

∑
C∈Am

nm∑
i=1

∆xC,i
+ 8(1 +

√
c1/c2)rBT (97)

where the first term bounds the regret in the first B batches of D-BLiN, and the second term bounds
the regret after the first B batches. If the algorithm stops at batch B̃ < B , we define Am = for any
B̃ < m ≤ B and inequality equation (97) still holds.

By Lemma 29, we have ∆xC,i
≤ 8(1+

√
c1/c2)rm for allC ∈ Am. We can thus bound equation (97)

by

R(T ) ≤
B∑

m=1

|Am| · nm · 8(1 +
√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (98a)

≤
B∑

m=1

Nrm · nm · 8(1 +
√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (98b)

=

B∑
m=1

Nrm · c2
lnT

r2m
· 8(1 +

√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (98c)

=

B∑
m=1

Nrm ·
lnT

rm
· 8c2(1 +

√
c1/c2) + 8(1 +

√
c1/c2)rBT (98d)

where equation (98b) uses equation (96), and equation (98c) uses equality nm = c2
lnT
r2m

. Since

rm = 2−m+1 and Nrm ≤ Czr−dzm ≤ Cz2(m−1)dz , we have

R(T ) ≤
B∑

m=1

Cz2
(m−1)dz · lnT

2−m+1
· 8c2(1 +

√
c1/c2) + 8(1 +

√
c1/c2)2

−B+1T (99a)

= 8(1 +
√
c1/c2)

[
c2Cz lnT

B∑
m=1

2(m−1)(dz+1) + 2−B+1T
]
. (99b)
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Continuing we find

R(T ) ≤ 8(1 +
√
c1/c2)

[
c2Cz lnT

B∑
m=1

2(m−1)(dz+1) + 2−B+1T
]

(100a)

= 8(1 +
√
c1/c2)

[
c2Cz lnT

B∑
m=1

(
2dz+1

)m−1
+ 2−B+1T

]
(100b)

= 8(1 +
√
c1/c2)

[
c2Cz lnT

B−1∑
m=0

(
2dz+1

)m
+ 2−B+1T

]
(100c)

= 8(1 +
√
c1/c2)

[
c2Cz lnT

(2B(dz+1) − 1

2dz+1 − 1

)
+ 2−B+1T

]
via geometric series (100d)

≤ 8(1 +
√
c1/c2)

[
c2Cz lnT

( 2B(dz+1)

2dz+1 − 1

)
+ 2−B+1T

]
(100e)

≤ 8(1 +
√
c1/c2)

[
c2Cz lnT

(
2 · 2

B(dz+1)

2dz+1

)
+ 2−B+1T

]
(100f)

= 8(1 +
√
c1/c2)

[
2c2Cz2

(B−1)(dz+1) lnT + 2−(B−1)T
]
. (100g)

This inequality holds for any positive B. By choosing B∗ = 1 +
log2(

T
lnT )

dz+2 , we have

R(T ) ≤ 8(1 +
√
c1/c2)

[
2c2Cz

( T

lnT

) (dz+1)
(dz+2)

lnT +
( lnT
T

) 1
(dz+2)

T
]

(101a)

= 8(1 +
√
c1/c2)

[
2c2CzT

(dz+1)
(dz+2) lnT 1− (dz+1)

(dz+2) + T 1− 1
(dz+2) lnT

1
(dz+2)

]
(101b)

= 8(1 +
√
c1/c2)

[
2c2CzT

(dz+1)
(dz+2) lnT

1
(dz+2) + T

(dz+1)
(dz+2) lnT

1
(dz+2)

]
(101c)

= 8(1 +
√
c1/c2)(2c2Cz + 1)T

(dz+1)
(dz+2) lnT

1
(dz+2) . (101d)

Corollary 6 (BLiN Regret Rate Refined). Setting c1 = 2c2 and c2 = 2
(

c
4Cz

)2/3

simplifies Theo-
rem 2 such that

R(T ) ≤ 8(1 + (4c2Cz)
1/3)2T

(dz+1)
(dz+2) lnT

1
(dz+2) . (102)

with probability 1− 2T−2.

Proof. If we set c1 = 2c2 and c2 = 2
(

c
4Cz

)2/3

, then
√
c1/c2 = c

(
4Cz

c

)1/3

=
(
4c2Cz

)1/3

=

2c2Cz .

Lemma 30. The zooming dimension and zooming constant under the ℓ(x, y) = ||x− y||∞ norm are

dz =
1

2
nm̄ (103)

Cz = |X ∗|−1
( 4

r2ησ−∞

)nm̄
(104)

where σ−∞ = ||Hess(−f(x))−1||∞ is an upper bound on the infinity norm of the inverse Hessian
matrix of the function at every equilibrium.

Proof. Recall from Theorem 1 that dz = d(αhi−αlo

αloαhi
) with constant Cz = 16−d

′
C where C is defined

below. In addition, BLiN assumes ℓ(x, y) = ||x − y||∞. Matching to Assumption 1, we see that
σ+ = αlo = 1. Under the infinity norm, the volume constant Sd = 2d.

We will define the other constants with respect to properties of the Hessian of f(x) about each
equilibrium, specifically the infinity norm of the inverse Hessian so that σ− = σ−∞. This means
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we will bound the function locally with a quadratic, i.e., αhi = 2. Lastly, recall from Corollary 5
that ψ = 1

32 and the dimension of our search space (the product space of player mixed strategies) is
d = n(m̄− 1) ≤ nm̄ for simplicity.

Plugging this information into Theorem 1, we find

dz = d′ =
1

2
nm̄ (105)

and

C = max
{
1, |X ∗|−1S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

(106a)

= max
{
1, |X ∗|−12−d

(
r2ησ

1
2
−∞

)−d}( 32

σ
1/2
−∞

)d
(106b)

= max
{
1, |X ∗|−1

(
2r2ησ

1
2
−∞

)−d}( 32

σ
1/2
−∞

)d
(106c)

hard
= |X ∗|−1

(
2r2ησ

1
2
−∞

)−d( 32

σ
1/2
−∞

)d
(106d)

hard
= |X ∗|−1

( 16

r2ησ−∞

)nm̄
(106e)

where hard indicates we are assuming rη and σ−∞ are small enough to dominate the other operand
of the max.

Finally, converting the near optimality constant to a zooming constant, we find

Cz = 16−dz |X ∗|−1
( 16

r2ησ−∞

)nm̄
(107a)

= |X ∗|−1
( 4

r2ησ−∞

)nm̄
. (107b)

B.4 BOUNDED DIAMETERS AND WELL-SHAPED CELLS

We assume the feasible set is a unit-hypercube of dimensionality d where cells are evenly split along
the longest edge to give b new partitions and xh,i represents the center of each cell.

There exists a decreasing sequence w(h) > 0, such that for any depth h ≥ 0 and for any cell Xh,i of
depth h, we have supx∈Xh,i

ℓ(xh,i, x) ≤ w(h). Moreover, there exists ν > 0 such that for any depth
h ≥ 0, any cell Xh,i contains an ℓ-ball of radius νw(h) centered at xh,i.

ℓ(x, y) c γ ν

ℓ(x, y) = ||x− y||α2 dα/2
(
b
2

)α
b−α/d d−α/2b−2α

ℓ(x, y) = ||x− y||α∞
(
b
2

)α
b−α/d b−2α

Table 3: Bounding Constants: supx∈Xh,i
ℓ(xh,i, x) ≤ w(h) = cγh.

B.4.1 L2-NORM

Lemma 31 (L2-Norm Bounding Ball). Let ℓ(x, y) = ||x − y||α2 . Then supx∈Xh,i
ℓ(xh,i, x) ≤

w2(h) = cγh where c =
(
db2

4

)α/2
and γ = b−α/d.
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Proof.

w(0) =
[ d∑
i=1

(1/2)2
]α/2

=
(d
4

)α/2
(108a)

w(1) =
[
(1/b · 1/2)2 +

d∑
i=2

(1/2)2
]α/2

= [(1/b2)(1/4) + (d− 1)(1/4)]α/2 (108b)

=
(d− 1 + 1/b2

4

)α/2
(108c)

w(d) =
[ d∑
i=1

(1/b · 1/2)2
]α/2

=
( d

4 · b2
)α/2

(108d)

w(h) =
[
r(1/b)2(q+1)(1/2)2 +

d∑
i=r

(1/b)2q(1/2)2
]α/2

(108e)

=
[
(1/b)2q(1/2)2

(
r(1/b)2 + (d− r)

]α/2
(108f)

=
[
(1/b2)q(1/4)

(
d− r(1− 1

b2
)
)]α/2

(108g)

≤
[
(1/b2)q(1/4)d

]α/2
(108h)

≤
[
(1/b2)h/d−1(1/4)d

]α/2
(108i)

=
[
(1/b2)h/d(b2/4)d

]α/2
(108j)

=
(db2

4

)α/2
(1/b)

α
d h (108k)

= cγh (108l)

where q, r = divmod(h, d) =⇒ q ≥ h/d− 1, c =
(
db2

4

)α/2
, and γ = (1/b)α/d = b−α/d.

Lemma 32 (L2-Norm Inner Ball). Let ℓ(x, y) = ||x − y||α2 . Any cell Xh,i contains an ℓ-ball of
radius νw2(h) where ν = (db4)−α/2.

Proof. Any cell Xh,i contains an ℓ-ball of radius equal to its shortest axis:

rmin =
[
(1/4)(1/b2)⌈h/d⌉

]α/2
(109a)

≥
[
(1/4)(1/b2)h/d+1

]α/2
(109b)

=
( 1

b2 · 4
)α/2

(1/b)
α
d h (109c)

= w(h) ·
( 1

db4
)α/2

. (109d)

B.4.2 L∞-NORM

Lemma 33 (L∞-Norm Bounding Ball). Let ℓ(x, y) = ||x − y||α∞. Then supx∈Xh,i
ℓ(xh,i, x) ≤

w∞(h) = cγh where c =
(
b
2

)α
and γ = b−α/d.

Proof. Any cell Xh,i is contained by an ℓ-ball of radius equal to its longest axis:

rmax =
[
(1/4)(1/b2)⌊h/d⌋

]α/2
(110a)

≤
[
(1/4)(1/b2)h/d−1

]α/2
(110b)

=
(b2
4

)α/2
(1/b)

α
d h (110c)

= cγh (110d)
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where c =
(
b2

4

)α/2
, and γ = (1/b)α/d = b−α/d.

Lemma 34 (L∞-Norm Inner Ball). Let ℓ(x, y) = ||x − y||α∞. Any cell Xh,i contains an ℓ-ball of
radius νw∞(h) where ν = b−2α.

Proof. Any cell Xh,i contains an ℓ-ball of radius equal to its shortest axis:

rmin =
[
(1/4)(1/b2)⌈h/d⌉

]α/2
(111a)

≥
[
(1/4)(1/b2)h/d+1

]α/2
(111b)

=
( 1

b2 · 4
)α/2

(1/b)
α
d h (111c)

= w(h) ·
( 1

b4
)α/2

. (111d)

B.5 STOCHASTIC SIMULTANEOUS OPTIMISTIC OPTIMIZATION

StoSOO is flexible in its choice of metric and partitioning structure. In StoSOO, we may choose
ℓ(x, y) = ||x− y||22.

Lemma 35. The volume of a d-sphere with radius r and d even is given by Sdrd where S−1
d ≤

√
2πd

(
d

2πe

)d/2
.

Proof. First, we recall Stirling’s bounds on the factorial:
√
2πn(ne )

ne
1

12n+1 < n! <
√
2πn(ne )

ne
1

12n .
This will be useful for bounding the Gamma function: Γ(d) = (d− 1)! for even d.

Given d is even, we start with the exact formula for Sd:

S−1
d =

Γ(d/2 + 1)

πd/2
(112a)

=
(d/2)!

πd/2
(112b)

<

√
2π(d/2)(d/2e )d/2e

1
12(d/2)

πd/2
(112c)

=
π1/2d1/2( d2e )

d/2e
1
6d

πd/2
(112d)

=
π1/2d(d+1)/2e

1
6d

(2πe)d/2
(112e)

≤
√
2πd

( d

2πe

)d/2
. (112f)

Lemma 36. The near optimality dimension and constant under the ℓ(x, y) = ||x− y||22 norm are

d′ = 0 (113)

C = |X ∗|−1
√
2πnm̄

( nm̄

5νr2ησ−2

)nm̄/2
(114)

where σ−2 is a lower bound on the singular value of the Hessian matrix of the function at every
equilibrium and ν is defined in Table 3 for the corresponding ℓ(x, y)-ball.

Proof. Recall from Theorem 1 that d′ = d(αhi−αlo

αloαhi
) with constant C defined below. In addition,

we will analyze StoSOO with the choice ℓ(x, y) = ||x − y||22. Matching to Assumption 1, we see
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that σ+ = 1 and αlo = 2. Under the 2-norm, the volume constant S−1
d ≤

√
2πd

(
d

2πe

)d/2
(see

Lemma 35).

We will bound the function locally with a quadratic, i.e., αhi = 2. Lastly, from (Valko et al., 2013,
Corollary 1), ψ = ν

3 with ν = 1
db2 defined in Table 3 and the dimension of our search space (the

product space of player mixed strategies) is d = n(m̄− 1) ≤ nm̄ for simplicity.

Plugging this information into Theorem 1, we find d′ = 0 and

C = max
{
1, |X ∗|−1S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

(115a)

= max
{
1, |X ∗|−1S−1

d r−dη

}( 1

ψσ−2

)d/2
(115b)

hard
= |X ∗|−1S−1

d r−dη

( 3

νσ−2

)d/2
(115c)

hard
≤ |X ∗|−1

√
2πd

( d

2πe

)d/2( 3

νr2ησ−2

)d/2
(115d)

hard
≤ |X ∗|−1

√
2πd

( b2d2

5r2ησ−2

)d/2
(115e)

hard
= |X ∗|−1

√
2πnm̄

(b2n2m̄2

5r2ησ−2

)nm̄/2
(115f)

where hard indicates we are assuming rη, the radius of the ball under which the local polynomial
bounds are accurate, is small enough to dominate the other operand of the max.

Theorem 3 (StoSOO Regret Rate). Corollary 1 of Valko et al. (2013) implies that with probability
1− δ, the regret, Rt, of StoSOO after t pulls is upper bounded as

(2 + b2/d)

√
logb(tk/δ)

2 logb(e)k
+

1

4
db2(1+2/d)b−

1
dC

√
t/k (116)

where d = n(m̄−1), b is the branching factor for partitioning cells, C is the near-optimality constant,
and k is the maximum number of evaluations per node.

Proof. Plugging the constants c, γ, and ν defined in Table 3 for the 2-norm into Corollary 1 of Valko
et al. (2013), we find with probability 1− δ:

Rt ≤ (2 + 1/γ)ϵ+ cγ
1

2C

√
t/k−2 (117a)

= (2 + 1/γ)

√
log(tk/δ)

2k
+ cγ

1
2C

√
t/k−2 (117b)

= (2 + b2/d)

√
log(tk/δ)

2k
+

1

4
db2(b−2/d)

1
2C

√
t/k−2 (117c)

= (2 + b2/d)

√
logb(tk/δ)

2 logb(e)k
+

1

4
db2(1+2/d)(b−2/d)

1
2C

√
t/k (117d)

= (2 + b2/d)

√
logb(tk/δ)

2 logb(e)k
+

1

4
db2(1+2/d)b−

1
dC

√
t/k. (117e)

Proposition 2. Assume the same conditions as Theorem 3 and let k = t logb(t)
−ρ where ρ ≥ 3.

Then the StoSOO (Algorithm 1 of Valko et al. (2013)) bound requires t = b(
dC
2 )

2
ρ−2 pulls before

exhibiting a Õ(T−1/2) decay in regret.
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Proof. We know from the given definition of k that
√
t/k = logb(t)

ρ/2. We will analyze the second

term in the regret formula of Corollary 3. Note that the second term, b−
1

dC

√
t/k = (b

√
t/k)−

1
dC =

(blogb(t)
ρ/2

)−
1

dC = (blogb(t)·logb(t)
(ρ−2)/2

)−
1

dC =
(
tlogb(t)

(ρ−2)/2
)− 1

dC

= t−
logb(t)

(ρ−2)/2

dC . To

achieve a t−1/2 convergence rate (or better), we need t ≥ b( dC
2 )

2
ρ−2 . For convenience, we report the

entire simplification of the bound below:

Rt ≤ (2 + b2/d)

√
logb(tk/δ)

2 logb(e)k
+

1

4
db2(1+2/d)b−

1
dC

√
t/k (118a)

= (2 + b2/d)

√
logb(t

2/(δ logb(t)
ρ)) logb(t)

ρ

2 logb(e)t
+

1

4
db2(1+2/d)t−

logb(t)
(ρ−2)/2

dC (118b)

≤ (2 + b2/d)

√
logb(t

2/δ) logb(t/δ)
ρ

2 logb(e)t
+

1

4
db2(1+2/d)t−

logb(t)
(ρ−2)/2

dC (118c)

= (2 + b2/d)

√
2 logb(t/δ)

ρ+1

2 logb(e)t
+

1

4
db2(1+2/d)t−

logb(t)
(ρ−2)/2

dC (118d)

=
(2 + b2/d)√

logb(e)

logb(t/δ)
(ρ+1)/2

√
t

+
1

4
db2(1+2/d)t−

logb(t)
(ρ−2)/2

dC (118e)

=
(2 + b2/d)√

logb(e)

[logb(t)− logb(δ)]
(ρ+1)/2

√
t

+
1

4
db2(1+2/d)t−

logb(t)
(ρ−2)/2

dC . (118f)

B.6 REGRET TO PAC BOUNDS

Lemma 37. [Loss Regret to Exploitability Regret] Assume exploitability of a joint strategy x is upper
bounded by f(Lτ (x)) where f is a concave function and Lτ is a loss function. Let xt be a joint
strategy randomly drawn from the set of predictions made by an online learning algorithm A over T
steps. Then the expected exploitability of xt is bounded by the average regret of A:

Et[ϵt] ≤ f(
1

T
R(T )). (119)

Proof.

Et[ϵt] = Et[f(L(xt))] ≤ f(Et[L(xt)]) = f(
1

T

∑
t

L(xt)) = f(
1

T
R(T )) (120)

where the inequality follows from Jensen’s inequality.

Theorem 4 (BLiN PAC Rate). Assume ηk = η = 2/L̂ as defined in Lemma 2, τ = 1
ln(1/p) so that all

equilibria place at least p
m∗ mass on each strategy, and a previously pulled arm is returned uniformly

at random (i.e., t ∼ U(T )). Then for any w > 0,

ϵt ≤ w
[
τ log

(∏
k

mk

)
+ 2(1 + (4c2Cz)

1/3)
√
2nL̂

( lnT
T

) 1
2(dz+2)

]
(121)

with probability (1 − w−1)(1 − 2T−2) where m∗ = maxkmk, and c ≤ nm̄
L̂

(
ln(m∗)
ln(1/p) + 2

)2

is an

upper bound on the range of L̂τ (Corollary 1), L̂ =
(

ln(m∗)
ln(1/p) +2

)(
m∗2

p ln(1/p) +nm̄
)

(Corollary 2), the

zooming dimension dz = 1
2nm̄, and the zooming constant Cz = |X ∗|−1

(
4

r2ησ−∞

)nm̄
(Corollary 30).
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Proof. Assume ηk = η = 2
L̂

as defined in Lemma 2 so that Lτ is 1-Lipschitz with respect to || · ||∞.
Also assume a previously pulled arm is returned uniformly at random. Starting with Lemma 13 and
applying Corollary 6, we find

E[ϵt] ≤ τ log
(∏

k

mk

)
+

√
2n

mink ηk

√
1

T

∑
t

Lτ (xt) (122a)

≤ 1

ln(1/p)
log

(∏
k

mk

)
+
√
nL̂

√
8(1 + (4c2)1/3)2T

−1
(dz+2) lnT

1
(dz+2) (122b)

=
1

ln(1/p)
log

(∏
k

mk

)
+ 2(1 + (4c2Cz)

1/3)
√
2nL̂

( lnT
T

) 1
2(dz+2)

(122c)

with probability 1− 2T−2 where m∗ = maxkmk, and c ≤ nm̄
L̂

(
ln(m∗)
ln(1/p) +2

)2

is an upper bound on

the range of sampled values from L̂τ (see Corollary 1).

Markov’s inequality then allows us to bound the pointwise exploitability of any arm returned by the
algorithm as

ϵt ≤ w
[ 1

ln(1/p)
log

(∏
k

mk

)
+ 2(1 + (4c2Cz)

1/3)
√

2nL̂
( lnT
T

) 1
2(dz+2)

]
(123)

with probability (1− w−1)(1− 2T−2) for any w > 0.

Theorem 5 (StoSOO PAC Rate). Corollary 1 of Valko et al. (2013) implies that with probability
(1− w−1)(1− δ) for any w > 0, a uniformly randomly drawn arm (i.e., t ∼ U([T ])) achieves

ϵt ≤ w
[ 1

ln(1/p)
log

(∏
k

mk

)
+
√
nL̂

√√√√ξ1

√
logb(Tk/δ)

2 logb(e)k
+ ξ2b

− 1
dC

√
T/k

]
(124)

where d = n(m̄−1), ξ1 = (2+22/d), ξ2 = 1
4db

2(1+2/d), k = T logb(T )
−3, b is the branching factor

for partitioning cells, and the near-optimality constant C = |X ∗|−1
√
2πd

(
b2d2

5r2ησ−2

)d/2
(Lemma 36).

Proof. Assume ηk = η = 2
L̂

as defined in Lemma 2. Also assume a previously pulled arm is returned
uniformly at random. Starting with Lemma 13 and applying Theorem 3 and Lemma 37, we find

E[ϵt] ≤ τ log
(∏

k

mk

)
+

√
2n

mink ηk

√
1

T

∑
t

Lτ (xt) (125a)

≤ 1

ln(1/p)
log

(∏
k

mk

)
+

√
nL̂

√√√√ξ1

√
logb(Tk/δ)

2 logb(e)k
+ ξ2b

− 1
dC

√
T/k (125b)

with probability 1− δ where m∗ = maxkmk, d = n(m̄− 1), ξ1 = (2 + 22/d), ξ2 = 1
4db

2(1+2/d),
k = T logb(T )

−3, b is the branching factor for partitioning cells, and the near-optimality constant

C = |X ∗|−1
√
2πd

(
b2d2

5r2ησ−2

)d/2
(Lemma 36).

Markov’s inequality then allows us to bound the pointwise exploitability of any arm returned by the
algorithm as

ϵt ≤ w
[ 1

ln(1/p)
log

(∏
k

mk

)
+
√
nL̂

√√√√ξ1

√
logb(Tk/δ)

2 logb(e)k
+ ξ2b

− 1
dC

√
T/k

]
(126)

with probability (1− w−1)(1− δ) for any w > 0.
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B.7 COMPLEXITY OF POLYMATRIX GAMES

Lemma 38. For a polymatrix game defined by the set of bimatrix games with payoff matrix P kkl for
every player k and l ̸= k, the rank of the matrix M(x) defined in equation (11) can be equivalently
studied by replacing all instances of Hk

kl with P kkl.

Proof. Consider the polymatrix game given by the set of matrices P kkl for every k and l ̸= k. The
polymatrix game can be equivalently written in normal form, albeit, less concisely. Note that the
polymatrix approximation, Hk

kl, as we have defined it (see Section 2 Preliminaries) of this normal-
form representation between players k and l with all other players’ strategies marginalized out is
related to the true underlying bimatrix game between them as follows:

Hk
kl[ak, al] = Ex−kl

[uk(ak, al, x−kl)] ∀ak, al (127a)

= a⊤k

(
P kklal +

∑
j ̸∈{k,l}

P kkjxj

)
∀ak, al (127b)

= a⊤k P
k
klal + a⊤k

( ∑
j ̸∈{k,l}

P kkjxj

)
︸ ︷︷ ︸

pk

∀ak, al (127c)

where P kkl is player k’s payoff matrix for the bimatrix game between players k and l in a polymatrix
game and pk does not depend on player l’s strategy.

This implies that Hk
kl is equal to P kkl up to a constant offset of the rows, i.e.,

Hk
kl = P kkl + Ck (128)

where Ck is a matrix with constant rows.

Consider the matrix M(x) which contains Hk
kl blocks. Recall that the bottom rows of M(x) contain

rows of 1’s matching each column of Hk
kl blocks. Consider multiplying the lth row of 1’s (which

contains 0’s on all columns not in the lth block) by
√
ηk[I − 1

mk
1k1

⊤
k ]Ck and subtracting it from the

block containing
√
ηk[I − 1

mk
1k1

⊤
k ]H

k
kl,

√
ηk[I −

1

mk
1k1

⊤
k ][H

k
kl − Ck] =

√
ηk[I −

1

mk
1k1

⊤
k ]P

k
kl. (129)

Note that
√
ηk[I − 1

mk
1k1

⊤
k ]Ck still remains a matrix with constant rows (the preconditioner effec-

tively subtracts a constant matrix from Ck). This multiplying and subtracting a row from another
is an elementary operation on the matrix, meaning it does not change its row rank. Therefore, for
a polymatrix game, we can reason about the positive definiteness of the Hessian at equilibria by
examining the matrix M(x) with all Hk

kl’s swapped for P kkl’s.

Interestingly, at zero temperature (where QRE = Nash), M is constant for a polymatrix game, so
the rank of this matrix can be computed just once to extract information about all possible interior
equilibria in the game. Furthermore, the Hessian is positive semi-definite over the entire joint strategy
space, implying the loss function is convex (see Figure 5 (left) for empirical support). This indicates,
by convex optimization theory, 1) all mixed Nash equilibria in polymatrix games form a convex set
(i.e., they are connected) and 2) assuming mixed equilibria exist, they can be computed simply by
stochastic gradient descent on L. If M is rank-nm̄, then this interior equilibrium is unique.

Complexity Approximation of Nash equilibria in polymatrix games is known to be PPAD-
hard (Deligkas et al., 2022). In contrast, if we restrict our class of polymatrix games to those
with at least one interior Nash equilibrium, our analysis proves we can find an approximate Nash
equilibrium in deterministic, polynomial time (Corollary 7). This follows directly from the fact that L
is convex, our decision set X =

∏
k Xk is convex, and convex optimization theory admits polynomial

time approximation algorithms (e.g., gradient descent). We consider the assumption of the existence
of an interior Nash equilibrium to be relatively mild3, so this positive complexity result is surprising.

3Marris et al. (2023) shows 2-player, 2-action polymatrix games with interior Nash equilibria make up a
non-trivial 1/4 of the space of possible 2× 2 games.
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Also, note that the Hessian of the loss at Nash equilibria is encoded entirely by the polymatrix
approximation at the equilibrium. Therefore, approximating the Hessian of L about the equilibrium
(which amounts to observing near-equilibrium behavior (Ling et al., 2018)) allows one to recover
this polymatrix approximation (up to constant offsets of the columns which equilibria are invariant
to (Marris et al., 2023)).
Corollary 7 (Approximating Nash Equilibria of Polymatrix Games with Interior Equilibria). Con-
sider the class of polymatrix games with interior Nash equilibria. This class of games admits a fully
polynomial time deterministic approximation scheme (FPTAS).

Proof. Lemma 3 relates the approximation of Nash equilibria to the minimization of the loss function
L(x). By Lemma 1, this loss function attains its minimum value of zero if and only if x is a
Nash equilibrium. For polymatrix games, the Hessian of this loss function is everywhere finite
and positive definite (Lemma 16), therefore, this loss function is convex. The decision set for this
minimization problem is the product space of simplices, therefore it is also convex. Given that we
only consider polymatrix games with interior Nash equilibria, we know that our loss function attains
a global minimum within this set. By convex optimization theory, this function can be approximately
minimized in a polynomial number of steps by, for example, (projected) gradient descent (Boyd and
Vandenberghe, 2004). Gradient descent requires computing the gradient of the loss function at each
step. From Lemma 14, we see that computing the gradient (at zero temperature) simply requires
reading the polymatrix description of the game (i.e., each bi-matrix game Hk

kl between players),
which is clearly polynomial in the size of the input (the polymatrix description). The remaining
computational steps of gradient descent (e.g., projection onto simplices) are polynomial as well.
In conclusion, gradient descent approximates a Nash equilibrium in polynomial number of steps
(logarithmic if strongly-convex (Mairal, 2013)), each of which costs polynomial time, therefore the
entire scheme is polynomial.
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C EXPERIMENTAL SETUP AND DETAILS

Here we provide further details on the experiments.

C.1 GAMBIT

The seven methods from the gambit (McKelvey et al., 2016) library that we tested on the 3-
player and 4-player Blotto games are listed below (with runtimes). Only gambit-enumpoly and
gambit-enumpure are able to return any NE for 3-player Blotto within a 1 hour time limit (and
only pure equilibria). And only gambit-enumpure returns any NE for the 4-player game.

• gambit-enumpoly [73 sec 3-player, timeout 4-player]

• gambit-enumpure [72 sec 3-player, 45 sec 4-player]

• gambit-gnm

• gambit-ipa

• gambit-liap

• gambit-logit

• gambit-simpdiv

C.2 LOSS VISUALIZATION AND RANK TEST

Figure 5 and claims made in Section 5 analyze several classical matrix games. We report the payoff
matrices in standard row-player / column-player payoff form below. All games are then shifted and
scaled so payoffs lie in [0, 1] (i.e., first by subtracting the minimum and then scaling by the max).

RPS: 
0/0 −1/1 1/− 1

1/− 1 0/0 −1/1
−1/1 1/− 1 0/0

 . (130)

Chicken: [
0/0 −1/1

1/− 1 −3/− 3

]
. (131)

Matching Pennies: [
1/− 1 −1/1
−1/1 1/− 1

]
. (132)

Modified-Shapleys: 
1/− 0.5 0/1 0.5/0

0.5/0 1/− 0.5 0/1

0/1 0.5/0 1/− 0.5

 . (133)

Prisoner’s Dilemma: [
−1/− 1 −3/0
0/− 3 −2/− 2

]
. (134)
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C.2.1 LOSS ON FAMILIAR GAMES

We visualize our proposed loss Lτ on two classic 2-player, general-sum games: Chicken, payoff
matrix (131), and the Prisoner’s Dilemma, payoff matrix (134). Each plot in Figure 5 visualizes
the loss at various strategy profiles in probability-space; each strategy profile is represented by each
player’s probability of playing action 1 of 2 (top row / first column of payoff matrix). Temperature τ
is varied across the plots. Figure 5 repeats this same visualization but in logit-space to better show
the equilibria closest to the boundaries.

Figure 5: Upper Bound (ϵ ≤ fτ (Lτ )) Heatmap Visualization. The first row examines the loss
landscape for the classic anti-coordination game of Chicken (Nash equilibria: (0, 1), (1, 0), (2/3, 1/3))
while the second row examines the Prisoner’s dilemma (Unique Nash equilibrium: (0, 0)). For
improved visibility, we subtract the offset τ log(m2) from fτ (Lτ ) per Lemma 13, which relates the
exploitability at positive temperature to that at zero temperature. Temperature increases for each
plot moving to the right. For high temperatures, interior (fully-mixed) strategies are incentivized
while for lower temperatures, nearly pure strategies can achieve minimum exploitability. For zero
temperature, pure strategy equilibria (e.g., defect-defect) are not captured by the loss as illustrated by
the bottom-left Prisoner’s Dilemma plot with a constant loss surface.

Figure 6: [Figure 5 Repeated in Logit-Space (ln( p
1−p )) Rather than Probability-Space (p)] Upper

Bound (ϵ ≤ fτ (Lτ )) Heatmap Visualization. The first row examines the loss landscape for the classic
anti-coordination game of Chicken (Nash equilibria: (0, 1), (1, 0), (2/3, 1/3)) while the second row
examines the Prisoner’s dilemma (Unique Nash equilibrium: (0, 0)). Temperature increases for each
plot moving to the right. For improved visibility, we subtract the offset τ log(m2) from fτ (Lτ ) per
Lemma 13, which relates the exploitability at positive temperature to that at zero temperature. For
high temperatures, interior (fully-mixed) strategies are incentivized while for lower temperatures,
nearly pure strategies can achieve minimum exploitability. For zero temperature, pure strategy
equilibria (e.g., defect-defect) are not captured by the loss as illustrated by the bottom-left Prisoner’s
Dilemma plot with a constant loss surface.
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C.3 SADDLE POINT ANALYSIS

To generate Figure 2, we follow a procedure similar to the study of MNIST in (Dauphin et al., 2014)
(Section 3 of Supp.). Their recommended procedure searches for critical points in two ways. The
first repeats a randomized, iterative optimization process 20 times. They then sample one these 20
trials at random, select a random point along the descent trajectory, and search for a critical point
(using Newton’s method) nearby. They repeat this sampling process 100 times. The second approach
randomly selects a feasible point in the decision set and searches for a critical point nearby (again
using Newton’s method). They also perform this 100 times.

Our protocol differs from theirs slightly in a few respects. One, we use SGD, rather than the saddle-
free Newton algorithm to trace out an initial descent trajectory. Two, we do not add noise to strategies
along the descent trajectory prior to looking for critical points. Thirdly, we minimize gradient norm
rather than use Newton’s method to look for critical points. Lastly, we use different experimental
hyperparameters. We run SGD for 1000 iterations rather than 20 epochs and rerun SGD 100 times
rather than 20. We sample 1000 points for each of the two approaches for finding critical points.

C.4 SGD ON CLASSICAL GAMES

The games examined in Figure 3 were all taken from (Gemp et al., 2022). Each is available via open
source implementations in OpenSpiel (Lanctot et al., 2019) or GAMUT (Nudelman et al., 2004).

We compare against several other baselines, replicating the experiments in (Gemp et al., 2022). RM
indicates regret-matching and FTRL indicates follow-the-regularized-leader. These are, arguably, the
two most popular scalable stochastic algorithms for approximating Nash equilibria. yQREauto is a
stochastic algorithm developed in (Gemp et al., 2022).

For each of the experiments, we sweep over learning rates in log-space from 10−3 to 102 in increments
of 1. We also consider whether to run SGD with the projected-gradient and whether to constrain
iterates to the simplex via Euclidean projection or entropic mirror descent (Beck and Teboulle, 2003).
We then presented the results of the best performing hyperparameters. This was the same approach
taken in (Gemp et al., 2022).

Saddle Points in Blotto To confirm the existence of saddle points, we computed the Hessian of
L(x10k) for SGD (s = ∞), deflated the matrix by removing from its eigenvectors all directions
orthogonal to the simplex, and then computed its top-(nm̄ − n) eigenvalues. We do this because
there always exists a n-dimensional nullspace of the Hessian at zero temperature that lies outside the
tangent space of the simplex, and we only care about curvature within the tangent space. Specificaly,
at an equilibrium x, if we compute z⊤Hess(L)z where z is formed as a linear combination of the
vectors {[x1, 0, . . . , 0]⊤, . . . , [0, . . . , xn]⊤, then each block B̃kl is identically zero at an equilibrium:
B̃klxl =

√
ηk[I − 1

mk
11⊤]Hk

klxl =
√
ηkΠT∆(∇kxk

) = 0. By Lemma 16, this implies there is zero
curvature of the loss in the direction z: z⊤Hess(L)z = 0.

C.5 BLIN ON ARTIFICIAL GAME

To construct the 7-player, 2-action, symmetric, artifical game in Figure 4, we used the following
coefficients (discovered by trial-and-error):[
0.09906873 0 0.23116037 0 0.62743528 0 0.19813746

0 0.33022909 0 0.03302291 0 0.62743528 0

]
.

(135)

The first row indicates the payoffs received when player i plays action 0 and the background
population plays any of the possible joint actions (number of combinations with replacement). For
example, the first column indicates the payoff when all background players play action 0. The second
column indicates all background players play action 0 except for one which plays action 1, and so on.
The last column indicates all background players play action 1. These 2n scalars uniquely define the
payoffs of a symmetric game.
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Given that this game only has two actions, we represent a mixed strategy by a single scalar p ∈ [0, 1],
i.e., the probability of the first action. Furthermore, this game is symmetric and we seek a symmetric
equilibrium, so we can represent a full Nash equilibrium by this single scalar p. This reduces our
search space from 7× 2 = 14 variables to 1 variable (and obviates any need for a map s from the
unit hypercube to the simplex—see Lemma 22).
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