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Abstract

Reliable medical image recovery is crucial for accurate patient diagnoses, but little
prior work has centered on quantifying uncertainty when using non-transparent
deep learning approaches to reconstruct high-quality images from limited measured
data. In this study, we develop methods to address these concerns, utilizing a VAE
as a probabilistic recovery algorithm for pediatric knee MR imaging. Through our
use of SURE, which examines the end-to-end network Jacobian, we demonstrate a
new and rigorous metric for assessing risk in medical image recovery that applies
universally across model architectures.

1 Introduction

Artificial intelligence has introduced a paradigm shift in medical image reconstruction in the last few
years, offering significant improvements in speed and image quality [1, 2, 3, 4, 5, 6]. Yet despite the
importance of assessing risk in medical image reconstruction, little work has explored the robustness
of deep learning (DL) architectures in inverse problems, and there is a lack of established methods
for quantifying model uncertainty [7]. Given the pernicious effects of inaccurate reconstruction, these
reliable uncertainty quantification methods could have utility both as an evaluation metric and as a
way of gaining interpretability regarding risk factors for a given model and dataset [8].

As such, this work introduces procedures that can provide insights into the model robustness of DL
MR reconstruction schemes. We develop a variational autoencoder (VAE) model for MR image
recovery, which is notable for its low error and probabilistic nature. We then introduce Stein’s
Unbiased Risk Estimator (SURE) as a means of assessing uncertainty of the DL model, which we
find effectively approximates MSE and serves as a valuable tool for assessing risk when the ground
truth reconstruction (i.e. fully sampled image) is unavailable.

2 Preliminaries and Problem Statement

In MR imaging, the goal is to recover the true image x0 ∈ Cn from undersampled k-space measure-
ments y ∈ Cm with m ≤ n that admit

y = Φx0 + v. (1)
Here, Φ in general includes the acquisition model with the sampling mask Ω, the Fourier operator F ,
as well as coil sensitivities. The noise term v also accounts for measurement noise and unmodeled
dynamics.

Given the ill-posed nature of this problem, it is necessary to incorporate prior information to obtain
high-quality reconstructions. This prior spans across a manifold of realistic images (S ⊂ Cn).
However, since not all points on this manifold are consistent with the measurements, we must consider
the intersection of the prior manifold S with a data consistent subspace Cy := {x ∈ Cn : y = Φx+v}.
Note that there might be multiple admissible solutions x0, x1, . . . , xn at the intersection with different
likelihoods.

While DL models can be effectively used for learning the projection onto the intersection S ∩ Cy,
performance can be limited on data unlike the training examples. In particular, one risk is the
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Figure 1: The model architecture, with aliased inputs feeding into the VAE encoder, the latent code feeding into
the VAE decoder, and data consistency applied to obtain the output reconstruction.

introduction of realistic artifacts, or so-termed "hallucinations," which can prove costly in a domain
as sensitive as medical imaging by misleading radiologists and resulting in incorrect diagnoses [9, 10].
Hence, analyzing the uncertainty and robustness of DL techniques in MR imaging is essential.

3 VAEs for Medical Image Recovery

For image recovery, we consider a probabilistic VAE architecture shown in Fig. 1. At test time, latent
code vectors are sampled from a normal distribution z ∼ N (µz, σz) to generate new reconstructions.
To ensure reconstructions did not deviate from physical measurement, an affine projection based on
the undersampling mask (i.e. data consistency) was applied, which we found essential for high SNR
[7].

The loss function in training was based on the mixture of pixel-wise `2 with a KL-divergence term
(weighted by constant η) that constrains the latent code. As η increased, the integrity of the latent
code was preserved at the expense of reconstruction quality. The training cost is formed as:

minEx,y

[
‖x̂− x0‖22

]
+ ηKL

(
N (µz, σz)‖N (0, 1)

)
. (2)

4 SURE for Uncertainty Analysis
4.1 Denoising SURE

In a clinical setting, it is not possible to know the fully-sampled ground truth corresponding to a
given reconstruction, which motivates the use of SURE [11, 12]. Despite being well-established,
SURE has not been widely used for uncertainty analysis in imaging or DL problems. With zero-filled
(aliased) input xzf and reconstruction x̂ with dimension n, SURE can be expressed as follows (where
r ∼ N (0, σ2I) is the noise process that describes the difference between the input and the ground
truth):

SURE = −nσ2 + ‖x̂− xzf‖2︸ ︷︷ ︸
RSS

+σ2 tr(
∂x̂

∂xzf
)︸ ︷︷ ︸

DOF

. (3)

This form importantly does not depend on ground truth image x0, and approximates the DOF with
the trace of the end-to-end network Jacobian J = ∂x̂/∂xzf . This direct dependence is of note, since
the Jacobian represents the network sensitivity to small input perturbations and has been previously
utilized to analyze robustness in computer vision tasks [13]. Additionally, this formulation is agnostic
to model architecture and can be applied to both deterministic and probabilistic networks.

By making the experimentally-validated assumption that error in the output reconstruction is not
large, σ2 can be estimated by setting the sum of the first two terms in the SURE expression to zero
(i.e. σ2 = ‖x̂− xzf‖2/n), yielding the following expression

SURE = σ2tr(J). (4)

4.2 Gaussian residuals with density compensation

The key assumption behind SURE is that the residual model is Gaussian with zero mean. However, it
is not safe to assume that the undersampling noise in MRI reconstruction inherits this property. For
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Figure 2: Histograms and quantile-quantile plots of the residuals between zero-filled and ground truth images
without (top two rows) and with density compensation with 2, 4, 8, and 16 fold undersampling, respectively.

Figure 3: SURE vs. MSE at various undersampling rates.

this reason, we introduce density compensation on the input image as a way of enforcing zero-mean
residuals. This approach has the added benefit of making artifacts independent of the underlying
image and we find that it significantly increases residual normality (see Fig. 2).

More specifically, given a 2D sampling mask Ω, we can treat each element of the mask as a Bernouli
random variable with a certain probability Di,j , where E[Ω] = D (this is dependent on the sampling
approach). With this formulation, we can define a density compensated zero-filled image as follows:
x̃zf = F−1D−1ΩFx0. We can rewrite this expression using x0 as

x̃zf = x0 + (F−1D−1ΩF − I)x0︸ ︷︷ ︸
:=r

. (5)

First, we observe that r has zero mean since E[D−1Ω] = I . In addition, the residual variance obeys

σ2 = tr
(
xH0 (F−1D−1F − I)x0

)
. (6)

In practice we do not have access to the ground truth image x0, and instead rely on the approximation
for σ2 for the residual variance. Given these main properties, the density compensation method
that this work introduces represents an important step that can allow denoising SURE to be used
effectively in medical imaging and other inverse problems.

5 Empirical Evaluations
We assess our model and methods on a dataset of Knee MR images (reconstructions and Monte
Carlo uncertainty results are shown in Appendix). The TensorFlow source code for implementation
is publicly available via Github1.

1https://github.com/MortezaMardani/GAN-Hallucination/tree/VAE-GAN
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Figure 4: Pixel-wise SURE and MSE images for a given reference slice with 2-fold undersampling. Note that
MSE depends on the ground truth while SURE does not.

Dataset. The Knee dataset used was obtained from 19 patients with a 3T GE MR750 scanner [14].
Each volume consisted of 320 2D slices of dimension 320 × 256 that were divided into training,
validation, and test examples, and a 5-fold variable density undersampling mask with radial view
ordering (designed to preserve low-frequency structural elements) was used to produce aliased input
images xzf for the model to reconstruct [15].

Network architecture. The VAE encoder was composed of 4 layers formed through a sequence of
strided convolution operations followed by ReLU activations and batch normalization [16]. Latent
space mean, µ, and standard deviation, σ, were represented by fully connected layers. The VAE
decoder also had 4 layers and utilized transpose convolution operations for upsampling [17]. Skip
connections were utilized to improve gradient flow through the network [18].

5.1 Residual distribution with density compensation

As described earlier, denoising SURE builds on the Gaussian assumption for the residuals r =
xzf − x0. To validate this assumption, we produce histograms and Q-Q plots of the residuals at
various undersampling rates, by considering the differences for individual pixels across test images.
From the top two rows of Fig. 2 one can observe the residual distribution is not perfectly normal in
any of the cases, which can limit the effectiveness and accuracy of SURE.

To overcome the lack of normality in the residuals, we apply our density compensation method. As
Fig. 2 (bottom two rows) shows, the distribution of residuals (for various undersampling rates) better
matches the normal distribution, and the mean of the distribution lies very close to zero.

5.2 SURE results

To evaluate the effectiveness of the density-compensated SURE approach, we produce correlations of
SURE versus MSE (which depends on the ground truth and is a standard metric for assessing model
error) using the results from our test images. Fig. 3 shows the strong linearity of the correlations
under all conditions. The linear relationship is strongest for higher undersampling rates (R2 = 0.97
for 2-fold while R2 = 0.84 for 16-fold). Nonetheless, the results show that even with relatively high
undersampling, SURE can be used to effectively estimate risk in medical image reconstruction.

Fig. 4 shows pixel-wise SURE and MSE maps for a given reference slice. The SURE approximation
is reasonably effective, with substantial overlap in the areas with highest reconstruction error.

6 Conclusions
This work introduces methods to analyze uncertainty in deep-learning based medical image recovery.
The strong correlations between SURE and MSE at both the global and pixel level indicate that, with
our density compensation modification, this new approach for uncertainty quantification has great
potential as a general-purpose risk evaluation tool in imaging problems (and is by nature effective
across arbitrary deep learning architectures).

Future work will address data uncertainty related to the acquisition model and training set size. Addi-
tionally, it would be useful to analyze uncertainty for abnormal and pathological cases specifically.
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Figure 5: The aliased input, reconstructions with one recurrent block (RB) and pure MSE loss, one RB and 10
percent GAN loss, two RBs and pure MSE loss, and two RBs and 10 percent GAN loss, and the ground truth for
a representative slice (5 fold undersampling with radial view ordering). SSIM between the given image and the
ground truth is shown for all cases. The top row shows absolute error for the highlighted ROI.

7 Appendix

7.1 Reconstructions with VAE model

In assessing the VAE model, we considered two modifications. First, we incorporated an adversarial
component, by using an 8-layer CNN as the discriminator to provide feedback to the VAE generator
(this GAN setup has been shown to better model high frequencies important in MR imaging) [7].
The influence of the discriminator was weighted by constant λ. Secondly, we explored a recurrent
architecture, in which multiple recurrent blocks (RBs) are used (i.e. the model generator and data
consistency layers repeat) [19]. Figure 5 shows model reconstructions and errors under combinations
of these hyperparameters. GAN loss results in sharper images, though error is introduced since MSE
has less weight in the loss function. Multiple RBs seem to improve image quality and can serve as a
simple and useful tool for promoting robustness in reconstruction.

7.2 Monte Carlo Uncertainty Results

As another technique for assessing uncertainty, we used a Monte Carlo approach to statistically
analyze outputs corresponding to a given input under various hyperparameter settings. Utilizing the
probabilistic nature of the VAE model, for a given zero-filled image xzf = ΦHy (i.e. the aliased
input to the model), we can use our encoder to find the mean µ and variance σ2 of the latent code z,
which we use to draw samples. We can then use our decoder to produce reconstructions of latent code
samples zi and then aggregate the results over k samples to produce pixel-wise mean and variance
maps for the reconstructions.

This Monte Carlo sampling approach allows one to evaluate variance as well as higher order statistics,
which can be very useful in understanding the extent and impact of model uncertainty. However,
despite the information the Monte Carlo approach can provide, important statistics such as bias are
dependent on knowledge of the ground truth, which is where SURE proves to be a superior method.

Figures 6 and 7 show Monte Carlo results derived from analyzing 1K outputs for a given reference
test slice (obtained by latent code sampling). Mean reconstruction, pixel-wise variance, squared bias
(difference between mean reconstruction and ground truth), and squared error are shown, utilizing
the common relation error2 = bias2 + variance [20].

The results indicate that variance, bias, and error increase as the GAN loss weight λ increases and
as the number of RBs decreases. Furthermore in all cases with GAN loss, the variance extends to
structural components of the image, which poses the most danger in terms of diagnosis. Nevertheless,
with a reasonably conservative choice of GAN weight, the risk is substantially lower. More RBs can
lower variance as well as error, and can be a useful tweak to improve robustness.
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Figure 6: Mean reconstruction, pixel-wise variance, bias2, and error2 for a given reference slice across all
realizations (5 fold undersampling and one recurrent block). Row 1: 0% GAN loss (λ = 0) . Row 2: 5% GAN
loss (λ = 0.05). Row 3: 10% GAN loss (λ = 0.10).

Figure 7: Mean reconstruction, pixel-wise variance, bias2, and error2 for a given reference slice across all
realizations (5 fold undersampling and no adversarial loss). Row 1: one RB. Row 2: two RBs. Row 3: four RBs.
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