
Under review as submission to TMLR

Reproducibility study of FairAC

Anonymous authors
Paper under double-blind review

Abstract

This work aims to reproduce the findings of the paper "Fair Attribute Completion on Graph
with Missing Attributes" written by Guo, Chu, and Li [10] by investigating the claims made
in the paper. This paper suggests that the results of the original paper are reproducible
and thus, the claims hold. However, the claim that FairAC is a generic framework for many
downstream tasks is very broad and could therefore only be partially tested. Moreover,
we show that FairAC is generalizable to various datasets and sensitive attributes and show
evidence that the improvement in group fairness of the FairAC framework does not come at
the expense of individual fairness. Lastly, the codebase of FairAC has been refactored and
is now easily applicable for various datasets and models.

1 Introduction

In recent years, graphs are an increasingly common data structure used in real-world applications [21].
Graph neural networks (GNNs) have shown promising performance in a large range of tasks, such as
community detection [13], node classification [14], link prediction [15] and graph classification [20].
However, there is a possibility that the graph data may be biased, for example due to under-representation
of a specific group [6]. If the model is trained on this biased graph, the model may be unfair with
respect to certain sensitive attributes such as demographic or gender [2, 8]. Aside from this, the node in-
formation of graph datasets often is incomplete, for example when a node was recently added to a network [5].

To address the problem of attribute completion and fairness in graph data, the FairAC framework
was proposed by Guo, Chu, and Li [10]. FairAC is a fair attribute completion framework which can be
applied to a dataset, after which the result can be used as input for many downstream tasks, such as node
classification or link prediction.

The aim of this paper is to reproduce the original paper of FairAC and extend on the original pa-
per. In summary, the following contributions are made:

1. The original FairAC paper is reproduced and the original claims are analysed.

2. The codebase of FairAC is improved and more easily applicable to other datasets and models.

3. The original paper is analyzed further by using new datasets, testing the framework on various
sensitive attributes and evaluating the performance on individual fairness.

2 Scope of reproducibility

This study describes the reproducibility of ’Fair Attribute Completion on Graph with Missing Attributes’
by Guo, Chu, and Li [10]. In earlier research, various fair graph methods have been developed, such as
Fairwalk [17] and fair GraphSAGE [9]. While previous research addressed fairness in graphs with partially
incomplete attributes [6], FairAC uniquely targets nodes with entirely missing attributes. This approach
also diverges from methods like those in [6] by addressing both node feature unfairness and topological
unfairness. In the context of fairness, feature unfairness refers to bias within a single node’s embedding,

1

Under review as submission to TMLR

which can be viewed as unfair when it contains sensitive information. Topological unfairness arises when
aggregating neighbouring nodes introduces sensitive information in the final embedding [12]. The paper
proposes FairAC, a fair attribute completion model for graphs. For more details on this method, see Section 3.

The claims that the paper made are as follows:

Claim 1 A new framework, namely FairAC, is proposed, which can be used for fair graph attribute comple-
tion and addresses both feature and topological unfairness in the resulting graph embeddings.

Claim 2 FairAC is generic and can be used in many graph-based downstream tasks.

Claim 3 FairAC is effective in eliminating unfairness while maintaining an accuracy comparable to other
methods.

Claim 4 FairAC is effective even if a large amount of the attributes are missing.

Claim 5 Adversarial learning is necessary to obtain a better performance on group fairness.

Beyond reproducing the original study, we extended our work to assess FairAC’s generalizability. This
involved evaluating the framework across different datasets and varying sensitive attributes. Additionally,
we conducted a more in-depth analysis of FairAC’s fairness capabilities, using a metric for individual fairness.

3 Methodology

The FairAC implementation is openly accessible, but the baseline code for GCN and FairGNN is not included
in this repository. To address this, we integrated these separate codebases, which are also publicly available,
into a unified framework. In the restructuring, we enhanced the codebase to support the use of various
datasets and different sensitive attributes in combination with FairAC. Furthermore, we expanded FairAC’s
evaluation criteria by incorporating a measure of individual fairness, offering contrast to the original paper’s
focus on group fairness.

3.1 Model description

FairAC is novel framework designed to ensure fairness in attribute completion for graph nodes, as depicted
in Figure 1. This framework is composed of roughly three components.

1. Auto-encoder. The auto-encoder is utilized to generate node embeddings of complete nodes. This
involves adversarial training with a sensitive classifier tasked with detecting the presence of sensitive
information in embeddings, guiding the auto-encoder towards more fair feature representation.

2. Attention-based attribute completion. FairAC employs an attention mechanism to determine
the importance of neighbouring nodes when completing the target node’s attributes. The final
embedding of the target node is created through a weighted aggregation, with the weights assigned
by the attention mechanism.

3. Topological fairness. The sensitive classifier reappears in this component to evaluate topological
fairness of the target node’s embedding, which is completely based on neighbouring nodes. If sensitive
information is present, it indicates that it originated from the aggregation of neighboring nodes,
highlighting potential topological bias.

2

Under review as submission to TMLR

Figure 1: The FairAC framework consists of mainly three components: An auto-encoder to generate embed-
dings, an attention-based mechanism for attribute completion and a sensitive classifier to apply adversarial
learning [10].

FairAC’s loss function integrates these three components (detailed in Appendix A). A hyperparameter β
is used to adjust the influence of the sensitive classifier on the overall loss. β is multiplied with the loss of
the sensitive classifier in both the topological and the node embedding prediction parts. The loss function
is defined as L = LF + LC + βLT , where LF represents the feature fairness component loss, defined as
LF = Lae − βLCs .

3.2 Datasets

The authors have made available csv files of the three real-world datasets used for their experiments. We
follow the paper and reproduce their evaluations on multiple datasets for each method. We present the
relevant datasets in detail in Table 5.

• NBA dataset. This is an extended version of a Kaggle dataset1 containing performance statistics
of approximately 400 NBA basketball players from the 2016-2017 season. It includes personal infor-
mation such as age, nationality, gender and salary [6], with player interactions on Twitter defining
the network relationships. The node label indicates whether a player’s salary is above the median
and nationality serves as the sensitive attribute, intended to be excluded from the embeddings.

• Pokec datasets. Derived from Pokec, a Slovakian social network [18], the Pokec-z and Pokec-n
datasets are adapted from Dai and Wang [6]. While the original FairAC paper used region as the
sensitive attribute for both Pokec datasets, our study also evaluates age and gender. Age is converted
to a binary variable by indicating if a person is younger than 21 years or not, similar to the approach
in the credit dataset [1].

Additional datasets, German Credit and Recidivism, were also used to evaluate FairAC [1]. These datasets
were selected for their different themes and small size, making attribute completion particularly useful due to
the higher importance of each data point. The code to preprocess the dataset was adapted from PyGDebias2.
For FairAC training, the first 25% of each dataset was used, a limitation due to memory constraints of the
machines used for the original paper. The subsequent GNN training utilized 50% of the data, with the
remaining 25% reserved for evaluation. All data splits follow those used in the original paper.

3.3 Hyperparameters

In order to reproduce the experiments of the original author as closely as possible, the hyperparameters
used in the original paper were used when available. This means that the feature drop rate (α) is 0.3 unless

1https://www.kaggle.com/datasets/noahgift/social-power-nba
2https://github.com/yushundong/PyGDebias/

3

Under review as submission to TMLR

mentioned otherwise. β is 1.0 for all datasets, except for pokec-n, where β is equal to 0.5. In case of missing
hyperparameters, the parameters in the provided shell scripts were adapted. For training, 3000 epochs were
used including 200 epochs used for autoencoder pretraining. An Adam optimizer was used with a learning
rate of 0.001 and a weight decay of 1 ·10−5. The details of all hyperparameters can be found in Appendix G.
In the original paper, all experiments are run three times. We assumed that this was done on three different
seeds. Since, in the available scripts, only one seed is stated, we’ve decided to use the seeds 40, 41 and 42,
per advice of the authors.

3.4 Evaluation metrics

Model performance is evaluated in terms of accuracy, AUC and fairness. When evaluating fairness, an
important distiction can be made between two fairness types: group fairness and individual fairness.
Group fairness measures equality between different protected groups, while individual fairness measures the
similarity in classification outcome for similar individuals [3]. The original paper uses two important metrics
to evaluate in terms of (group) fairness: statistical parity and equal opportunity. Additionally, we add an
individual fairness metric, consistency. The label y denotes the ground-truth node label and the sensitive
attribute s indicates a sensitive group. For example, we consider a binary node classification task and two
sensitive groups s ∈ {0, 1}.

Statistical Parity. Statistical Parity Difference (∆SP) [8] is used to capture the difference in model
prediction outcomes for different sensitive groups:

∆SP = P (ŷ|s = 0) − P (ŷ|s = 1) (1)

Equal Opportunity. Equal Opportunity Difference (∆EO) [11] is used to capture the difference in true
positive rates for different sensitive groups:

∆EO = P (ŷ = 1|s = 0, y = 1) − P (ŷ = 1|s = 1, y = 1) (2)

Consistency. Consistency is used to capture the individual fairness by measuring the consistency of out-
comes between individuals who are similar to each other [19]. The formal definition regarding a fairness
similarity matrix SF is:

consistency = 1 −
∑

i

∑
j |yi − ŷj | · SF

ij∑
i

∑
j SF

ij

, ∀i ̸= j. (3)

3.5 Experimental setup and code

All specific experiments conducted are described below, together with a description of the training details
and the code.

3.5.1 Model training

The original paper provided a brief overview of the training algorithm; for more details refer to [10]. Our
analysis found that certain critical details were missing in the original description. In the first part, the
data split, it was found that the AC model is trained on only 25% of the nodes in the dataset, and during
the test on the downstream task, the full 100% of the graph is used to complete any missing attributes and
create new embeddings for the downstream task. After the data is split, the training process is started. An
interesting detail in this process is that the auto-encoder in the AC model is pre-trained for 200 iterations.
This iteration count remains fixed across all datasets, meaning that for smaller datasets the auto-encoder
is pre-trained using comparatively less data, which is the case in for example the NBA or German credit
dataset, as described in Section 3.2. Furthermore, the auto-encoder and attribute completion model are
optimized differently during pre-training than during the training iterations. During pre-training they are
optimized using Lae + LC . This to be expected as the sensitive classifier is not being trained yet.

4

Under review as submission to TMLR

Evaluation of the model is done for the first time after 1000 epochs. Every 200 epochs, a GCN is
trained on the embeddings generated by FairAC. This GCN is evaluated and provides results for the
performance of FairAC. The final results reported are the results of the model with the best fairness
performance that scores above the accuracy and AUC threshold that are set at the start of training. For all
datasets, the thresholds were set to 0.65 and 0.69, respectively. The complete model training procedure for
the FairAC model is given in Appendix C.

3.5.2 Code

The original paper published their code, including shell scripts to run specific experiments, based on the
FairGNN codebase3. However, the code was difficult to work with and contained several peculiarities that
are not mentioned in the original work (as mentioned in Section 3.5.1). In order to run the code on additional
datasets and downstream tasks, the FairAC framework has been rewritten into an ergonomic library that
can be used for any GNN without any significant changes to the code. The source code for this reproduc-
tion has been made available (See Appendix D for more details). In addition to creating the library, the
implementation has been made faster, which makes the runtime about 33% faster.

3.5.3 Experiment reproducibility study

To accurately reproduce the original study, various experiments were conducted. Firstly, to verify claim 1, 2
and 3, the FairAC framework was applied on the default GCN on the datasets NBA, pokec-z and pokec-n.
The results of this were compared with the results of using only a GCN and using the FairGNN method.
Conducting experiments on different datasets provides evidence for claim 2 specifically. To verify claim 4,
experiments on all three models and the FairAC model without adversarial training were conducted with
different attribute missing rates, and the results are compared. Similarly, for claim 5, the FairAC model was
trained with different β values, to see the effect of adversarial learning.

3.5.4 Experiments beyond original paper

To further analyze the FairAC framework, additional experiments were conducted. To provide additional ev-
idence for claim 2, the framework was tested on two extra datasets, as described in Section 3.2. Additionally,
the framework was tested on different sensitive attributes, to provide further evidence for generalizability.
Specifically, two additional experiments were run on the pokec-z dataset, with the sensitive attributes age
and gender. Lastly, to test whether there is a trade-off between the group fairness provided by FairAC
and individual fairness, all experiments were tested on an additional metric, consistency, which measures
the individual fairness. The consistency between the default GCN and FairAC was compared to see the
influence of FairAC on individual fairness.

3.6 Computational requirements

All experiments were performed on 1 NVIDIA Titan RTX GPU. Training one FairAC model takes about 30
minutes on this GPU, while training a (Fair)GNN model takes about 10 minutes. Therefore, reproducing
all original experiments costs about 31 GPU hours. Roughly 15 GPU hours were used for performing the
additional experiments. Thus, 46 GPU hours were used in total. More details about the GPU usage can be
found in Appendix F.

4 Results

In this section, the results of the reproducibility study are described. This includes all experiments ran to
verify the claims as described in Section 2. In addition to this, the results of the work done beyond the
original study are described.

3https://github.com/EnyanDai/FairGNN

5

Under review as submission to TMLR

4.1 Results reproducibility study

In Table 1, the reproduced results of the original study are shown. Together with this, the performance
on individual fairness is shown, which are analyzed in Section 4.2. In the original study, the main trends
observed are that fairAC performs similarly to other methods on accuracy and AUC and outperforms all
other alternatives on statistical parity and equal opportunity. The same trends can be observed in the results
from the reproducibility study. The accuracy and AUC scores are similar, although not as good as FairGNN.
On statistical parity and equal opportunity, FairAC outperforms all other methods on almost every dataset.
The actual numbers of all methods are slightly different from the original paper. This could be due to the
optimization method not being deterministic. These results verify claim 1 and 3, as listed in Section 2.
Namely, FairAC addresses unfairness better than other methods while it maintains a comparable accuracy.

Dataset Method M Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP+∆EO ↓ Consistency ↑

NBA

GCN ✓ 66.98 ± 1.18 76.15 ± 1.40 0.14 ± 0.13 0.57 ± 0.06 0.71 ± 0.18 2.64 ± 0.00
ALFR × 64.3 ± 1.3 71.5 ± 0.3 2.3 ± 0.9 3.2 ± 1.5 5.5 ± 2.4 -

ALFR-e × 66.0 ± 0.4 72.9 ± 1.0 4.7 ± 1.8 4.7 ± 1.7 9.4 ± 3.4 -
Debias × 63.1 ± 1.1 71.3 ± 0.7 2.5 ± 1.5 3.1 ± 1.9 5.6 ± 3.4 -

Debias-e × 65.6 ± 2.4 72.9 ± 1.2 5.3 ± 0.9 3.1 ± 1.3 8.4 ± 2.2 -
FCGE × 66.0 ± 1.5 73.6 ± 1.5 2.9 ± 1.0 3.0 ± 1.2 5.9 ± 2.2 -

FairGNN ✓ 68.39 ± 3.12 74.29 ± 1.19 2.81 ± 4.01 3.00 ± 4.07 5.81 ± 8.08 2.64 ± 0.00
FairAC (Ours) ✓ 66.51 ± 1.09 75.69 ± 1.31 0.09 ± 0.08 0.10 ± 0.00 0.19 ± 0.08 2.64 ± 0.00

Pokec-z

GCN ✓ 65.10 ± 0.24 68.42 ± 0.12 1.72 ± 1.17 1.37 ± 0.51 3.08 ± 1.68 41.35 ± 0.01
ALFR × 65.4 ± 0.4 71.3 ± 0.3 2.8 ± 0.5 1.1 ± 0.4 3.9 ± 0.9 -

ALFR-e × 68.0 ± 0.6 74.0 ± 0.7 5.8 ± 0.4 2.8 ± 0.8 8.6 ± 1.2 -
Debias × 65.2 ± 0.7 71.4 ± 0.6 1.9 ± 0.6 1.9 ± 0.4 3.8 ± 1.0 -

Debias-e × 67.5 ± 0.7 74.2 ± 0.7 4.7 ± 1.0 3.0 ± 1.4 7.7 ± 2.4 -
FCGE × 65.9 ± 0.2 71.0 ± 0.2 3.1 ± 0.5 1.7 ± 0.6 4.8 ± 1.1 -

FairGNN ✓ 68.16 ± 0.59 75.67 ± 0.52 1.56 ± 0.45 3.17 ± 1.07 4.73 ± 1.47 41.35 ± 0.01
FairAC (Ours) ✓ 65.33 ± 0.30 71.20 ± 1.74 0.55 ± 0.10 0.13 ± 0.15 0.68 ± 0.09 41.33 ± 0.00

Pokec-n

GCN ✓ 67.88 ± 1.46 72.86 ± 1.44 3.22 ± 1.29 5.93 ± 2.76 9.15 ± 4.05 45.93 ± 0.00
ALFR × 63.1 ± 0.6 67.7 ± 0.5 3.05 ± 0.5 3.9 ± 0.6 3.95 ± 1.1 -

ALFR-e × 66.2 ± 0.4 71.9 ± 1.0 4.1 ± 1.8 4.6 ± 1.7 8.7 ± 3.5 -
Debias × 62.6 ± 1.1 67.9 ± 0.7 2.4 ± 1.5 2.6 ± 1.9 5.0 ± 3.4 -

Debias-e × 65.6 ± 2.4 71.7 ± 1.2 3.6 ± 0.9 4.4 ± 1.3 8.0 ± 2.2 -
FCGE × 64.8 ± 1.5 69.5 ± 1.5 4.1 ± 1.0 5.5 ± 1.2 9.6 ± 2.2 -

FairGNN ✓ 67.06 ± 0.37 71.58 ± 2.58 0.55 ± 0.50 0.30 ± 0.20 0.85 ± 0.31 45.93 ± 0.00
FairAC (Ours) ✓ 67.00 ± 1.93 72.57 ± 1.68 0.11 ± 0.06 0.47 ± 0.81 0.58 ± 0.76 45.94 ± 0.02

Table 1: Comparison of FairAC with FairGNN on the nba, pokec-z and pokec-n dataset. The methods are
applied on the GCN classifier. The best results are denoted in bold. The ALFR, ALFR-e, Debias, Debias-e
and FCGE baselines are adapted from Guo, Chu, and Li [10].

In addition to the main comparison of different baselines, an ablation study on different attribute missing
rates (α) was done in the original paper to verify claim 4. The results are shown in Table 2. The trends
in the reproduced results are very similar to the original trends, as FairAC performs best on fairness for
different α. However, for α = 0.1, it is observed that in the reproduced results, BaseAC, which is the
same architecture as FairAC but without adversarial training, performs slightly better than FairAC. In
addition to this, it is observed that adversarial training is more useful with a large attribute missing rate,
an observation that wasn’t made in the original paper.

Although the original results are reproduced, the reproduction would not have been possible without
access to the codebase. A lot of the training details, such as hyperparameters and pretraining of the
auto-encoder were not mentioned in the paper, only in the codebase. In addition to this, the random seeds
used in the original study were only retrieved after contact with the authors.

6

Under review as submission to TMLR

α Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP+∆EO ↓ Consistency ↑

0.1

GCN 65.93 ± 0.33 69.86 ± 1.73 3.52 ± 2.94 2.73 ± 3.18 6.26 ± 6.12 41.33 ± 0.00
FairGNN 68.67 ± 2.52 76.95 ± 0.53 1.97 ± 0.52 2.23 ± 0.31 4.20 ± 0.59 41.33 ± 0.00
BaseAC 66.16 ± 0.11 69.22 ± 0.07 0.08 ± 0.01 0.40 ± 0.20 0.48 ± 0.21 41.33 ± 0.00
FairAC 66.04 ± 0.69 70.72 ± 1.50 0.26 ± 0.28 0.50 ± 0.62 0.76 ± 0.90 41.33 ± 0.00

0.3

GCN 65.10 ± 0.24 68.42 ± 0.12 1.72 ± 1.17 1.37 ± 0.51 3.08 ± 1.68 41.35 ± 0.01
FairGNN 68.16 ± 0.59 75.67 ± 0.52 1.56 ± 0.45 3.17 ± 1.07 4.73 ± 1.47 41.35 ± 0.01
BaseAC 66.26 ± 0.32 71.11 ± 1.73 0.35 ± 0.15 0.73 ± 1.18 1.08 ± 1.32 41.33 ± 0.00
FairAC 65.33 ± 0.30 71.20 ± 1.74 0.55 ± 0.10 0.13 ± 0.15 0.68 ± 0.09 41.33 ± 0.00

0.5

GCN 65.65 ± 0.97 69.72 ± 2.15 2.75 ± 2.09 3.50 ± 3.32 6.25 ± 5.40 41.38 ± 0.02
FairGNN 65.97 ± 0.56 72.99 ± 0.44 2.40 ± 1.44 3.07 ± 2.41 5.47 ± 3.84 41.37 ± 0.01
BaseAC 65.45 ± 0.40 70.64 ± 1.10 0.13 ± 0.20 0.33 ± 0.58 0.47 ± 0.77 41.33 ± 0.00
FairAC 65.62 ± 0.02 71.11 ± 1.02 0.05 ± 0.05 0.30 ± 0.52 0.35 ± 0.50 41.33 ± 0.00

0.8

GCN 65.37 ± 1.30 71.62 ± 2.33 5.10 ± 3.12 5.53 ± 3.86 10.64 ± 6.84 41.47 ± 0.04
FairGNN 63.81 ± 0.50 67.57 ± 0.30 2.96 ± 0.28 1.77 ± 1.33 4.73 ± 1.10 41.44 ± 0.02
BaseAC 66.03 ± 0.69 71.06 ± 1.21 0.32 ± 0.39 0.67 ± 0.65 0.99 ± 0.86 41.33 ± 0.00
FairAC 65.38 ± 0.14 71.51 ± 0.68 0.23 ± 0.37 0.03 ± 0.06 0.27 ± 0.43 41.33 ± 0.00

Table 2: Comparison of FairAC with FairGNN on the pokec-z dataset with different attribute missing rates
(α). The methods are applied on the GCN classifier. The best results are denoted in bold.

Furthermore, a hyperparameter study of β was done
in the original paper. β balances fairness and accu-
racy (details in Section 3.1). The original study intro-
duced adversarial training to improve group fairness
and claimed that adversarial training is necessary for
a good performance on group fairness, based on β hy-
perparameter study. It reported that increasing β im-
proves fairness but slightly reduces accuracy by about
0.5%. However, the lack of standard deviation in the
original figure makes it unclear whether the experi-
ment was done three times or one. In this study, the
experiment is done three times. The mean and stan-
dard deviation are shown in Figure 2. In general, the
same trends are observed. Notably, at β = 0.8, we ob-
served a marginal increase in fairness, contrary to the
original study’s continuous decline. From this, it can
be concluded that adversarial learning helps fairness
performance in the FairAC framework.

Figure 2: Hyperparameter value study for β,
which influences the trade-off between accuracy
and fairness.

4.2 Results beyond original paper

In the original study, FairAC was presented as a generic method applicable to a wide range of downstream
tasks. This claim was primarily supported by tests on different datasets. Therefore, we performed additional
experiments to test this claim. Firstly, our study focused on examining FairAC’s performance across various
sensitive attributes. Unlike the original experiment that only considered region as the sensitive variable, in
this study age and gender were used as sensitive variables. The findings, detailed in Table 3, show that
gender as sensitive attribute produces results comparable to those obtained with region. However, for age,
the fairness performance decreases drastically. In this scenario, the standard GCN model outperforms both
fair models. This outcome is due to age being an important feature for the final prediction tasks, which
challenges the achievement of set accuracy and AUC thresholds. If the thresholds are set lower, the accuracy
decreases but the fairness increases. Experiments on different thresholds values can be found in Appendix E.

7

Under review as submission to TMLR

Sensitive attribute Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP+∆EO ↓ Consistency ↑

Region
GCN 65.10 ± 0.24 68.42 ± 0.12 1.72 ± 1.17 1.37 ± 0.51 3.08 ± 1.68 41.35 ± 0.01

FairGNN 68.16 ± 0.59 75.67 ± 0.52 1.56 ± 0.45 3.17 ± 1.07 4.73 ± 1.47 41.35 ± 0.01
FairAC 65.33 ± 0.30 71.20 ± 1.74 0.55 ± 0.10 0.13 ± 0.15 0.68 ± 0.09 41.33 ± 0.00

Gender
GCN 63.40 ± 0.20 68.56 ± 0.40 3.28 ± 0.71 2.97 ± 0.61 6.24 ± 1.13 41.35 ± 0.01

FairGNN 64.25 ± 0.41 72.25 ± 2.49 2.27 ± 0.95 2.63 ± 0.31 4.90 ± 0.77 41.35 ± 0.01
FairAC 66.44 ± 0.47 73.39 ± 0.20 0.66 ± 0.56 0.30 ± 0.10 0.96 ± 0.52 41.33 ± 0.00

Age
GCN 64.94 ± 1.11 71.33 ± 1.94 24.69 ± 3.21 20.57 ± 3.84 45.26 ± 6.96 41.35 ± 0.01

FairGNN 65.79 ± 0.20 72.53 ± 1.42 39.83 ± 4.80 37.23 ± 2.20 77.07 ± 6.70 41.35 ± 0.01
FairAC 65.82 ± 0.69 74.26 ± 0.42 27.46 ± 1.94 19.90 ± 2.52 47.36 ± 4.38 41.33 ± 0.00

Table 3: Comparison of FairAC with FairGNN and GCN on the pokec-z dataset with different sensitive
attributes. The methods are applied on the GCN classifier. The best results are denoted in bold.

The FairAC framework’s performance was evaluated on two additional datasets beyond those used in the
original study, with results detailed in Table 4. In the recidivism dataset, the fairness results are almost per-
fect across all methods. While FairGNN marginally outperforms FairAC in group fairness, FairAC performs
better in individual fairness. The credit dataset shows a similar pattern, with FairAC achieving the best
fairness performance among the methods tested, while maintaining comparable overall performance. These
outcomes lend further support to the claim that FairAC provides better fairness results than comparable
methods and thus support the claim that FairAC is a generic method. Moreover, we extended our analysis
by incorporating an additional metric, consistency, as explained in Section 3.4.

Contrary to the common trade-off between group and individual fairness [4], our findings (see Table 1)
indicate similar consistency levels across GCN, FairGNN and FairAC. This suggests that improving group
fairness does not necessarily compromise individual fairness.

Dataset Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP+∆EO ↓ Consistency ↑

Credit
GCN 72.16 ± 4.00 64.80 ± 0.45 7.43 ± 0.92 5.97 ± 0.95 13.40 ± 1.46 26.46 ± 0.27

FairGNN 77.19 ± 0.85 64.66 ± 0.46 2.02 ± 1.84 0.83 ± 1.10 2.85 ± 2.91 28.02 ± 1.41
FairAC 69.78 ± 2.94 65.13 ± 0.07 0.68 ± 0.51 0.50 ± 0.61 1.18 ± 0.29 27.24 ± 0.81

Recidivism
GCN 62.37 ± 0.02 63.01 ± 2.43 0.01 ± 0.02 0.07 ± 0.12 0.08 ± 0.14 3.93 ± 0.00

FairGNN 70.00 ± 0.00 56.66 ± 1.46 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 6.60 ± 0.00
FairAC 63.03 ± 1.17 70.32 ± 13.02 0.04 ± 0.08 0.00 ± 0.00 0.04 ± 0.08 3.93 ± 0.01

Table 4: Comparison of FairAC with FairGNN and GCN on the pokec-z dataset with different sensitive
attributes. The methods are applied on the GCN classifier. The best results are denoted in bold.

5 Discussion

In this study, various experiments on reproducing the study Fair Attribute Completion on Graph with Missing
Attribute [10] were presented. The results of these experiment support the original claims of the authors.
Specifically, FairAC has a better fairness performance than other graph attribute completion methods, while
maintaining a comparable accuracy, even when a large part of the attributes is missing. The method uses
adversarial learning, which indeed improves the performance. To support the claim that FairAC is a generic
method, various additional experiments were performed. From these experiments, it can be concluded that
FairAC is applicable across multiple datasets in different fields. Also, FairAC gives accurate results for various
sensitive attributes, while the performance might drop if the attribute is important for the downstream task.
To examine the impact of FairAC on individual fairness, an additional metric was implemented, from which
can be concluded that there is almost no trade-off between group fairness and individual fairness in this
study. Since this is contrary to most findings in literature [4], for future research it would be interesting to
look into the causes of a trade-off in individual fairness and group fairness.

8

Under review as submission to TMLR

The code implementation of this study, together with the refactored code from the FairAC paper, can be
found on GitHub4.

5.1 What was easy and what was difficult

The original paper provides a complete codebase of FairAC. This was very helpful, since the codebase also
includes the hyperparameters utilized in the experiments of the original paper. This made running the
experiments easier. However, understanding the code turned out to be a non-trivial task. A lot of training
and implementation details were not mentioned in the paper and the code was not clearly structured or
documented. This made it very difficult to adjust the codebase for additional experiments, therefore we
refactored all original code. In addition to this, the GCN and FairGNN baselines used in the original paper
were not part of the codebase, so these were adapted from the FairGNN codebase and changed to meet the
requirements of the FairAC paper.

5.2 Communication with original authors

We originally reached out the authors to ask for clarification on the setup on some of their experiments,
namely the random seeds used and the exact setup for the BaseAC experiment, since the description of this
experiment was inconsistent with the codebase. We received a very quick clear response to these questions.
Later in the project, we reached out again to ask some questions regarding ambiguities in the data handling
and splitting that was taking place in the code. We received a short response with some clarification regarding
the asked questions.

References

[1] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. “Towards a unified framework for fair and
stable graph representation learning”. In: Uncertainty in Artificial Intelligence. PMLR. 2021, pp. 2114–
2124.

[2] Alex Beutel et al. Data Decisions and Theoretical Implications when Adversarially Learning Fair Rep-
resentations. 2017. arXiv: 1707.00075 [cs.LG].

[3] Reuben Binns. “On the apparent conflict between individual and group fairness”. In: Proceedings of
the 2020 conference on fairness, accountability, and transparency. 2020, pp. 514–524.

[4] Reuben Binns. “On the apparent conflict between individual and group fairness”. In: Proceedings of
the 2020 conference on fairness, accountability, and transparency. 2020, pp. 514–524.

[5] Xu Chen et al. “Learning on Attribute-Missing Graphs”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 44.2 (Feb. 2022), pp. 740–757. issn: 1939-3539. doi: 10.1109/tpami.2020.
3032189. url: http://dx.doi.org/10.1109/TPAMI.2020.3032189.

[6] Enyan Dai and Suhang Wang. Say No to the Discrimination: Learning Fair Graph Neural Networks
with Limited Sensitive Attribute Information. 2021. arXiv: 2009.01454 [cs.LG].

[7] Yushun Dong et al. “Fairness in graph mining: A survey”. In: IEEE Transactions on Knowledge and
Data Engineering (2023).

[8] Cynthia Dwork et al. Fairness Through Awareness. 2011. arXiv: 1104.3913 [cs.CC].
[9] Sanjana Garg, Rohit Mujumdar, and Rohit Gajawada. “Exploring Fairness in Heterogenous Graph

Embeddings”. In: ().
[10] Dongliang Guo, Zhixuan Chu, and Sheng Li. Fair Attribute Completion on Graph with Missing At-

tributes. 2023. arXiv: 2302.12977 [cs.LG].
[11] Moritz Hardt, Eric Price, and Nathan Srebro. Equality of Opportunity in Supervised Learning. 2016.

arXiv: 1610.02413 [cs.LG].
[12] Zhimeng Jiang et al. Topology Matters in Fair Graph Learning: a Theoretical Pilot Study. 2023. url:

https://openreview.net/forum?id=TVMjn0RpLHf.
4https://anonymous.4open.science/r/FC86/

9

https://arxiv.org/abs/1707.00075
https://doi.org/10.1109/tpami.2020.3032189
https://doi.org/10.1109/tpami.2020.3032189
http://dx.doi.org/10.1109/TPAMI.2020.3032189
https://arxiv.org/abs/2009.01454
https://arxiv.org/abs/1104.3913
https://arxiv.org/abs/2302.12977
https://arxiv.org/abs/1610.02413
https://openreview.net/forum?id=TVMjn0RpLHf

Under review as submission to TMLR

[13] Di Jin et al. “Graph Convolutional Networks Meet Markov Random Fields: Semi-Supervised Commu-
nity Detection in Attribute Networks”. In: 33 (July 2019), pp. 152–159. doi: 10.1609/aaai.v33i01.
3301152. url: https://ojs.aaai.org/index.php/AAAI/article/view/3780.

[14] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks.
2017. arXiv: 1609.02907 [cs.LG].

[15] Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. 2016. arXiv: 1611 . 07308
[stat.ML].

[16] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. “DeepWalk: Online Learning of Social Representa-
tions”. In: CoRR abs/1403.6652 (2014). arXiv: 1403.6652. url: http://arxiv.org/abs/1403.6652.

[17] Tahleen Rahman et al. “Fairwalk: Towards fair graph embedding”. In: (2019).
[18] L. Takac and Michal Zábovský. “Data analysis in public social networks”. In: International Scientific

Conference and International Workshop Present Day Trends of Innovations (Jan. 2012), pp. 1–6.
[19] Paiheng Xu et al. GFairHint: Improving Individual Fairness for Graph Neural Networks via Fairness

Hint. 2023. arXiv: 2305.15622 [cs.LG].
[20] Muhan Zhang et al. “An end-to-end deep learning architecture for graph classification”. In: Proceedings

of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications
of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial
Intelligence. New Orleans, Louisiana, USA: AAAI Press, 2018. isbn: 978-1-57735-800-8.

[21] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: AI open 1 (2020),
pp. 57–81.

10

https://doi.org/10.1609/aaai.v33i01.3301152
https://doi.org/10.1609/aaai.v33i01.3301152
https://ojs.aaai.org/index.php/AAAI/article/view/3780
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1403.6652
http://arxiv.org/abs/1403.6652
https://arxiv.org/abs/2305.15622

Under review as submission to TMLR

Appendices
A Model details

In this section the components of the loss function are described in more detail. As explained in Section 3,
the loss function used by FairAC consists of three components: a feature fairness loss (LF), completion loss
(LC) and topological fairness loss (LT), with a parameter β to control the influence of the sensitive classifier:

L = LF + LC + βLT (4)

Feature fairness. The feature fairness loss consist of two components, an auto-encoder loss and sensitive
classifier loss. The feature fairness loss leverages the sensitive classifier Cs to adversarially train the auto-
encoder, such that the encoder is able to generate fair feature embeddings that can fool the sensitive classifier.

LF = Lae − βLCs
(5)

Auto-Encoder. The auto-encoder encodes original attributes Xi to feature embeddings Hi and reconstructs
the attributes X̂i from latent space. The reconstructed attributes should be close to the original attributes.
The loss optimizes for this:

Lae = 1
|Vkeep|

∑
i∈Vkeep

√(
X̂i − Xi

)2
(6)

Sensitive classifier. The sensitive classifier takes feature embeddings Hi as input and predicts the sensitive
attribute ŝi. Since the sensitive attribute is binary, binary cross entropy loss is used:

LCs
= − 1

|Vkeep|
∑

i∈Vkeep

si log ŝi + (1 − si) log(1 − ŝi) (7)

Attribute completion. The attribute completion loss measures the difference between the true feature
embeddings and the predicted feature embeddings across nodes whose attributes are intentionally dropped
(Vdrop). This loss is averaged over all such nodes:

LC = 1
|Vdrop|

∑
i∈Vdrop

√
(Ĥi − Hi)2. (8)

Topological fairness. The attribute completion may introduce topological unfairness by assuming topo-
logical information is similar to attributes. To address this issue, FairAC leverages the sensitive classifier
(Cs) to help mitigate this unfairness. The loss function aims to learn feature embeddings that can fool the
sensitive classifier (Cs) to predict uniformly over the sensitive category:

LT = − 1
|Vdrop|

∑
i∈Vdrop

si log ŝi + (1 − si) log(1 − ŝi). (9)

11

Under review as submission to TMLR

B Datasets

Dataset NBA Pokec-z Pokec-n Credit Recidivism
of nodes 403 67,797 66,569 30,000 18,876
of edges 16,570 882,765 729,129 200,526 321,308

Density 0.20456 0.00038 0.00032 0.00045 0.001804
Sensitive attributes country region region age race

Predicted labels salary working field working field no default next month bail vs. no bail

Table 5: Statistics of five graph datasets, namely nba, pokec-z, pokec-n, german credit and recidivism.

In Table 5, the statistics for all five datasets used in this study are given. There is a big difference in size
between all datasets. Pokec-z and Pokec-n are the largest dataset, followed by Credit, Recidivism and NBA,
respectively. NBA is a dataset with only a small number of nodes. However, the density of NBA is a lot
larger than the density of all other dataset. Lastly, the default sensitive attributes are displayed, together
with the node labels that are predicted in the downstream node prediction task.

C Model training details

Algorithm 1 Model training
Input: G = (V, E , X), S
Output: auto-encoder fAE , Sensitive classifier Cs, Attribute completion fAC

1: Obtain topological embedding T with DeepWalk
2: repeat Pre-train fAE

3: Obtain the feature embeddings H with fAE

4: Optimize fAE to prevent unstable embeddings by Lae + LC

5: until 200 iterations
6: repeat Train fAE , Cs and fAC using downstream task
7: Obtain the feature embeddings H with fAE

8: Optimize the Cs by LCs

9: Optimize fAE to mitigate feature unfairness by loss LF

10: Divide V+ into Vkeep and Vdrop based on α
11: Obtain the feature embeddings of nodes with missing attributes Vdrop by fAC

12: Optimize fAC to achieve attribute completion by loss LC

13: Optimize fAC to mitigate topological unfairness by loss LT

14: until convergence

In Algorithm 1, the model training process is shown. First of all, the auto-encoder is pre-trained for 200
epochs. After this, the auto-encoder is optimized, together with the sensitive classifier and the attribute
completion mechanism. More details can be found in Section 3.5.1.

D Codebase

The source is published at https://anonymous.4open.science/r/FC86/. A complete refactor of the orig-
inal codebase5 has been completed in order to make the framework significantly easier to apply on various
downstream tasks. The published code can be used as a library, with any GNN. The GNN only requires a

5https://github.com/donglgcn/FairAC

12

https://anonymous.4open.science/r/FC86/

Under review as submission to TMLR

slight modification, as the final layer needs to be excluded in order to train the FairAC model. For more
details see the README.md file in the repository.

E Fairness performance on age sensitive attribute with different thresholds

Threshold Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP+∆EO ↓ Consistency ↑

65% acc threshold
69% auc threshold

GCN 64.94 ± 1.11 71.33 ± 1.94 24.69 ± 3.21 20.57 ± 3.84 45.26 ± 6.96 41.35 ± 0.01
FairGNN 65.79 ± 0.20 72.53 ± 1.42 39.83 ± 4.80 37.23 ± 2.20 77.07 ± 6.70 41.35 ± 0.01
FairAC 65.82 ± 0.69 74.26 ± 0.42 27.46 ± 1.94 19.90 ± 2.52 47.36 ± 4.38 41.33 ± 0.00

60% acc threshold
64% auc threshold

GCN 61.85 ± 2.57 70.52 ± 0.80 18.55 ± 1.91 14.57 ± 1.25 33.12 ± 2.29 41.35 ± 0.01
FairGNN 59.77 ± 0.29 69.36 ± 3.51 19.66 ± 8.48 17.37 ± 5.34 37.03 ± 13.82 41.35 ± 0.01
FairAC 61.27 ± 0.84 73.59 ± 0.85 17.14 ± 2.77 12.07 ± 2.44 29.21 ± 5.13 41.33 ± 0.00

50% acc threshold
50% auc threshold

GCN 53.60 ± 0.06 55.34 ± 1.86 0.06 ± 0.06 0.03 ± 0.06 0.09 ± 0.08 41.35 ± 0.01
FairGNN 53.59 ± 0.00 54.29 ± 2.23 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 41.35 ± 0.01
FairAC 53.59 ± 0.00 54.32 ± 1.96 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 41.33 ± 0.00

Table 6: Comparison of FairAC with FairGNN and GCN on the pokec-z dataset with age as sensitive
attribute for different accuracy and auc thresholds. The methods are applied on the GCN classifier. The
best results are denoted in bold.

In Table 6, the experiments with different thresholds for the sensitive attribute age are displayed. In the
top row, the results of the original threshold are shown. As one can see and as was analysed in Section 4.2,
the model embeddings are a lot more unfair than for other sensitive attributes, respectively 47.36 versus
0.96. As the thresholds decrease, the embeddings get more fair, until the point where they reach 0.0. This
means that the model is able to produce fair embeddings, but for important attributes, it can cost a lot of
performance.

F GPU usage

Experiments #FairAC models #FairGNN models #GNN models #datasets #seeds GPU usage (hours)
Main (Table 1) 1 1 1 3 3 7.5
Alpha (Table 2) 8 4 4 1 3 16
Beta (Figure 2) 5 0 0 1 3 7.5

Sensitive attributes (Table 3, Table 6) 4 4 4 1 3 10
Other datasets (Table 4) 1 1 1 2 3 5

Total: 46

Table 7: GPU usage for all experiments published in this report. Every FairAC model takes roughly 30
minutes to train, every GNN and FairGNN model takes about 10 minutes to train.

In Table 7, the specifics of the GPU hours used per experiment are displayed. The alpha experiments cost
the most GPU hours, since all models, including FairAC without adverserial training, had to be trained for
every alpha.

G Hyperparameters

For training the models, various hyperparameters were set. All hyperparameters used in this study were
adapted from the original study. Per default, all models were trained for 3000 epochs, which includes 200
epochs pretraining of the auto-encoder. An initial learning rate of 0.001 was used. On this learning rate,
weight decay of 1 · 10−5 is applied. While training, a dropout of 0.5 is used. The main auto-encoder has a

13

Under review as submission to TMLR

hidden dimension of 128 and uses one attention head. The default feature drop rate (α) was set to 0.3, unless
mentioned otherwise. β was set to 1.0 for all datasets, expect for the pokec-n dataset, where it was set to
0.5. As an accuracy threshold, 65.0 was used and for the auc threshold, 69.0 was used. The hyperparameters
used for all dataset are shown in Table 8. For the dataset that were not used in the original study, the
hyperparameters were adapted from Dong et al. [7].

Dataset Minimum number of datapoints used for AC training Minimum number of datapoints used for sensitive classifier training
Pokec-n 500 200
Pokec-z 500 200
NBA 100 50

Credit 6000 500
Recidivism 200 100

Table 8: Hyperparameters specific to the data loading for all datasets used in this study.

In addition to these hyperparameters, the GNN and FairGNN model had to be pretrained. The pretraining
was done for 800 epochs. For the pretraining, all other hyperparameters are equal to the normal training
hyperparameters.

FairAC uses topological input embeddings which are created using Deepwalk [16]. This embedding
was created using 10 epochs with a walk length of 100 and a window size of 5. 4 workers were used, and the
dimension adapted was 64. Lastly, a learning rate of 0.05 was adapted.

14

	Introduction
	Scope of reproducibility
	Methodology
	Model description
	Datasets
	Hyperparameters
	Evaluation metrics
	Experimental setup and code
	Model training
	Code
	Experiment reproducibility study
	Experiments beyond original paper

	Computational requirements

	Results
	Results reproducibility study
	Results beyond original paper

	Discussion
	What was easy and what was difficult
	Communication with original authors

	Appendices
	Model details
	Datasets
	Model training details
	Codebase
	Fairness performance on age sensitive attribute with different thresholds
	GPU usage
	Hyperparameters

