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Abstract

For certain types of self-verifiable problems, such as those encountered in pro-1

gramming competitions, game theory, and mathematical domains, an intriguing2

question arises: Can a large language model, guided solely by iterative attempts3

and performance feedback rather than human prior knowledge, incrementally refine4

its solutions to ultimately surpass human-level problem solving capabilities? By5

continuously recording both successful and unsuccessful attempts and employing6

these historical records as reinforcement signals, is it possible to train a model7

through iterative refinement and reinforcement learning to achieve expertise well8

beyond that of human practitioners?9

Building on this concept, we leverage the Codegeex4-9B model as our foundational10

large language model and apply a reinforcement learning framework to the self-11

verifiable domain of programming challenges, such as those found in NOI/ACM12

competitions. Our preliminary experiments show that employing a feedback-driven13

problem-solving strategy can improve solution success rates by approximately14

5–10% points over random trial attempts. Subsequently, we further enhance15

the model’s capabilities through Direct Preference Optimization (DPO)-based16

reinforcement learning on the recorded solution histories.17

Although time constraints have limited the extent of our current data, we plan to18

release additional results in the coming days as we continue to refine and evaluate19

our system.20

1 Introduction21

With the rapid development of large language models (LLMs)(1), code-specific language models22

have garnered significant attention in the community. Built upon pre-trained LLMs, code LLMs such23

as the StarCoder series, CodeLlama series , DeepSeekCoder series , CodeQwen1.5 , and CodeStral24

, have demonstrated superior performance in coding evaluations (Chen et al., 2021; Austin et al.,25

2021; Cassano et al., 2022; Jain et al., 2024; Liu et al., 2024a; Li et al., 2024b; Guo et al., 2024b;26

Wu et al., 2024b). However, in comparison with the recently state-of-the-art proprietary LLMs,27

Claude-3.5-Sonnet (Anthropic, 2024) and GPT-4o (OpenAI, 2024), the code LLMs are still falling28

behind, either open-source or proprietary models.29

Problems in programming, mathematics, and game theory possess the characteristic of self-30

verification. Although current Large Language models have demonstrated strong capabilities in31

solving these problems, there is still a long way to go to reach or even surpass human levels. Taking32

programming problems as an example, the current strongest Large Language models—GPT-4o,33

GPT-o1-preview, and GPT-o1—have programming competition capabilities of 11.0%, 62%, and34
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89%, respectively (24). While GPT-o1’s programming ability is quite outstanding, there remains a35

certain gap compared to the best human performers.36

GPT-o1 significantly improved the model’s reasoning ability by introducing chain-of-thought (CoT)37

reinforcement learning. However, its training process relies on a large amount of high-quality38

human-labeled data and artificially designed search and reasoning processes (25; 26). These methods39

essentially incorporate human prior knowledge, allowing the model’s reasoning ability to improve40

rapidly. However, human prior knowledge may also limit the further evolution of the model’s thinking41

ability, and the human cognitive ceiling could become a bottleneck for the model, hindering it from42

surpassing human levels.43

Reviewing the development history of AI technology (27), we find that some effective methods are44

often simple and straightforward. AI primarily solves problems through learning and search. If we45

incorporate too much prior knowledge or tricks into the AI’s learning and search process, it may46

complicate the problem and limit AI’s continuous evolution. Therefore, if we allow Large Language47

models to search and learn independently, is it possible for them to surpass human capabilities?48

2 Relation Work49

In recent years, research on self-verifiable tasks has advanced rapidly. Such tasks are characterized50

by the ability to verify solutions through automated testing or clearly defined evaluation criteria,51

thereby creating a closed-loop environment in which large language models (LLMs) can receive52

direct feedback on their correctness and quality without relying on human prior knowledge. For53

example, the SELF-REFINE (29) method demonstrates that, in the absence of external supervision, a54

model can independently produce an initial answer, provide iterative feedback on that answer, and55

subsequently refine it multiple times. Through this iterative self-improvement process, the model56

performance is significantly improved in domains such as dialogue, mathematical reasoning, and code57

optimization, indicating that even without human annotations, internal feedback loops can effectively58

improve the quality of generation for a variety of tasks.59

Furthermore, approaches like Oracle-Guided Program Selection (28) employ carefully crafted test60

cases to guide the model in choosing correct code solutions from multiple candidates, thereby61

improving accuracy and trustworthiness. However, these methods still rely on manually designed62

test cases or selection steps, which can limit the capacity of the model for more widespread and63

autonomous development.64

Our approach seeks to advance beyond these limitations by further embracing the principle of65

self-reinforcement. Without relying on externally curated test cases or human intervention, our frame-66

work enables the model to continually explore and summarize knowledge from its own historical67

attempts. This process allows the model to autonomously discover effective solution strategies and68

optimize its performance. Such a fully closed-loop, self-reinforcing paradigm holds the promise of69

enabling models to iteratively enhance their problem-solving capabilities in tasks such as program-70

ming competitions and mathematical problem-solving, ultimately surpassing human expert-level71

performance.72

3 Research Plan73

Based on the introduction considerations, we believe that for problems that can be self-verified,74

we can design a system that enables Large Language models to improve their capabilities through75

self-iteration. The core of the entire system is divided into two main parts:76

Self-Feedback Problem Solving77

We let the Large Language model solve programming problems of the NOI/ACM type, with the main78

steps as follows:79

1. The model generates code based on the problem description and submits it to an online80

judge (OJ) system.81

2. After execution, the system provides feedback on whether the problem is accepted (AC) or82

there are errors (Wrong Answer or Timeout).83
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3. Based on the result:84

• Failure: The model reflects and adjusts the code based on the feedback and historical85

records, then returns to step 1 to continue attempting. If it still cannot solve the problem86

after N attempts, it generates negative sample data.87

• Success: Ends the attempt and generates positive sample data.88

4. When the historical record becomes too long, another model is used to compress and89

summarize it, providing more effective suggestions, ensuring that the model efficiently90

iterates and searches within limited input.91

Table 1: Performance Comparison
Model <Interview@any> <Competition@any>
MapCoder APPS-150-cherrypicked (GPT-4) 22
GPT-J 6B (Finetuned) 13.15 13.51
code-davinci-002 175B(CodeT) 14.3 6.2
Codex 12B (Raw) 3.7 3.32
MoTCoder-15b 19.7 11.09
GPT-Neo 2.7B (Finetuned) 9.83 11.4
code-davinci-002 175B 25.4 14.5
GPT-Neo 2.7B 0.8 0
CodeChain+WizardCoder-15b 7.49 3.75
GPT2 1.5B (Finetuned) 9.27 8.8
WizardCoder-15b 4.21 0.81
AlphaCode 1B Filtered from 50000 9.66 7.75
CodeRL+CodeT5 14.33 15.7
AlphaCode 1B 5.24 7.06

Codegeex4-9B (without self-feedback) 21.07 7.06
Codegeex4-9B + self-feedback strategy 26.21 9.63

Iterative Improvement92

1. In the above process, collect records of successful problem-solving after multiple attempts93

(positive samples) and records of multiple attempts still failing (negative samples).94
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2. Based on these data, fine-tune the model to reinforce its ability to solve programming95

problems.96

3. After multiple iterations, the model’s problem-solving ability is expected to continuously97

improve, ultimately reaching or even surpassing human levels.98

The core keys of the system are:99

• No Introduction of Human Hints or Prior Knowledge: All searches and reflections are100

completed by the model itself through iterative historical records. Humans do not provide101

any hints, ensuring that the model autonomously explores the optimal problem-solving102

strategies.103

• Iterative Reinforcement: The key lies in utilizing the data generated during continuous104

attempts to fine-tune and reinforce the model, rather than relying solely on multiple attempts.105

During the fine-tuning and iteration process, we believe that introducing GPT-o1’s chain-of-thought106

technique into the problem-solving process is crucial for rapidly improving the model’s reasoning107

ability. Therefore, when processing historical problem-solving data, we will focus on the model’s108

thinking process, fine-tuning it, and encouraging it to engage in multi-step reasoning before providing109

results, further enhancing the model’s reasoning capabilities.110

Problem

You are a proficient competitive programmer.
You have attempted to solve the following problem:
Please write a sorting algorithm.
Input

• A single line containing 1 ≤ n ≤ 20, the number of elements.
• A single line containing n integers, separated by spaces.

Output
• Print the sorted numbers on a single line, separated by spaces.

Example
Sample Input:
3
3 2 1
Sample Output:
1 2 3
Based on this, please write Python code to solve the problem. Ensure your code can execute
with __main__ as the entry point.

111

Accepted

def main():
import sys
input = sys.stdin.read
d = input().split()

n = int(d[0])
ns = list(map(int, d[1:n+1]))
ns.sort()
print(" ".join(map(str, ns)))

if __name__ == "__main__":
main()

Wrong Answer

score: -1
exitcode: 1 (execution failed)

Code output: Traceback
(most recent call last):
File "/tmp.py", line 1, in <sys>

main()
...
File "/tmp.py", line 6, in main
for map in d[n]:

~~~~~~^^^^^^^^^
KeyError: 3

112
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4 Methods113

This research mainly consists of three parts. Firstly, based on a fixed dataset, a model is prompted114

continuously using the chain-of-thought (COT) technique with historical records. Through an Online115

Judge, a batch of correct and incorrect answers can be obtained. Then, these questions and correct116

answers are used for supervised fine-tuning (SFT), aligning the model to the capability of answering117

these correct answers. In the third stage, correct and incorrect answers are used for Direct Preference118

Optimization, further enhancing the model’s answering ability. After one round of optimization, the119

model’s capability will be higher than its initial correctness. This optimized model can be iteratively120

refined multiple times, leading to continuous improvement in the model’s performance.121

Figure 2: An overview of one phase, including prompt with CoT, Supervised Fine-Tuning and
Reinforcement Learning. Such phase will iterate for multiple rounds which enable self-learning.

1. Application of Chain-of-Thought Technique:122

• Referencing Codegeex4-9B’s chain-of-thought, attempt to use historical data and rewards to123

conduct multiple rounds of prompting, stimulating the model’s self-thinking and reasoning124

capabilities based on CoT to provide answers.125

• Utilize an external Online Judge as a reward model, evaluating the model’s answers and126

providing results such as Accepted, Wrong Answer, Time Limit Exceeded, and Memory127

Limit Exceeded.128

• If the answer is correct, it is equivalent to collecting a correct sample. If the answer is129

incorrect, an incorrect sample is collected, and the negative reward is added to the historical130

data for the next round of prompting with CoT.131

2. Supervised Fine-Tuning to Align Model Capabilities:132

• Use the questions and correct answers as supervised data, and perform full-parameter133

Supervised Fine-Tuning on the model.134

• Fine-tune until the loss converges. At this point, the model’s capability should align with the135

first step, being able to answer questions correctly in one attempt that previously required136

multiple historical data prompts.137

3. Multi-Round Iterative Reinforcement System:138

• Use correct answers as preferred answers and incorrect answers and results as non-preferred139

answers, organizing them into corresponding data sets with the questions, and apply direct140

preference optimization to reinforce the model.141

• Conduct multiple rounds of reinforcement learning until the loss converges. At this point,142

the model should perform better than after SFT.143

• Return the model to the first step, using the first step’s prompt with CoT method to solve the144

same dataset. The accuracy will be higher than the previous round. After multiple rounds,145

the model can become stronger based on self-rethinking and self-learning.146
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5 Results and Discussion147

5.1 Results148

In the experiment, the following key metrics are used to evaluate the effectiveness of one round of the149

SFT and DPO stages:150

• sft_loss_train: The negative log-likelihood loss during the SFT stage. A smaller loss value151

indicates better model performance.152

• dpo_loss: The training loss during the DPO stage.153

• rewards_accuracies: Training accuracy.154

• rewards_margin: The margin of the rewards between the chosen samples and rejected155

samples.156

• logps_chosen: The log probability of the chosen samples.157

• logps_rejected: The log probability of the rejected samples.158

Due to some issues encountered during the SFT stage, the experiment proceeded directly with DPO.159

The training results curves indicate that the DPO loss can converge. The reward margins reflect the log-160

probability differences between the chosen samples and the rejected samples, thereby demonstrating161

that the DPO process progressively distinguishes between correct and incorrect answers.162

Figure 3: DPO loss Figure 4: DPO rewards/margins

We continued to experiment with the model trained using DPO by the first step, self-feedback163

prompting with CoT. Some temporary results are shown as below.164

Table 2: Performance Comparison
Model <Interview@any> <Competition@any>
Codegeex4-9B (without self-feedback) 21.07 7.06
Codegeex4-9B + self-feedback strategy 26.21 9.63
Codegeex4-9B + DPO + self-feedback 24.86 7.84

5.2 Discussion165

The first row of the table above shows the accuracy of the original CodeGeeX4-9B model without166

the problem-solving strategy with self-feedback. The second row shows the accuracy of the original167

CodeGeeX4-9B model with the problem-solving strategy with self-feedback, where the success rate168

of Interview@any improved from 21.07 to 26.21, and the success rate of Competition@any improved169

from 7.06 to 9.63.170

However, the third row shows the accuracy of the model after DPO, followed by the problem-solving171

strategy with self-feedback. In this case, the accuracy actually decreased, which the authors speculate172

is due to the absence of the SFT step during the experiment. DPO itself has been observed to exhibit173

a degradation phenomenon: the objective loss tends to reject the data in the rejected set rather than174

generating the data in the chosen set. The provided incorrect answers often differ from the correct175

answers by only a few sentences, especially in the self-feedback CoT, where the collected incorrect176

answers increasingly approximate the correct answers. This makes it more likely for DPO to reject177

those nearly correct results, thereby affecting the generation process of the correct answers.178
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In future work, it is plan to incorporate the SFT process that was not completed earlier, using SFT to179

ensure alignment with the correct answers first. It is expected that this method can achieve multi-180

phases improvement effects similar to those demonstrated in WEBRL. In each phase, the model181

can align the ability after prompting with CoT so that it can solve the accepted question at pass@1,182

instead of attempting for so many times. Then it can enhance the ability to achieve higher success183

rate than pass@1.184

However, unlike WEBRL, which shows only one SFT result in the figure, our method includes185

multiple rounds of SFT and DPO results. The expectation is that each round will achieve a higher186

success rate than the previous one.187

Figure 5: The enhancement of each phases of WEBRL.
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