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Abstract

The effectiveness of scaling up training data in
robotic manipulation is still limited. A primary
challenge in manipulation is the tasks are diverse,
and the trained policy would be confused if the
task targets are not specified clearly. Existing
works primarily rely on text instruction to de-
scribe targets. However, we reveal that current
robotic data cannot train policies to understand
text instruction effectively, and vision is much
more comprehensible. Therefore, we introduce
utilizing vision instruction to specify targets. A
straightforward implementation is training a pol-
icy to predict the intermediate actions linking the
current observation and a future image. Neverthe-
less, a single future image does not describe the
task target in insufficient detail. To handle this
problem, we propose to use sparse point flows
to provide more detailed information. Extensive
tasks are designed based on real and simulated
environments to evaluate the effectiveness of our
vision instructed pre-training (VIP) method. The
results indicate VIP improves the performance on
diverse tasks significantly, and the derived policy
can complete competitive tasks like “opening the
lid of a tightly sealed bottle”.

1. Introduction
Following the data scaling law, the natural language pro-
cessing and computer vision communities have achieved
remarkable breakthroughs (Achiam et al., 2023; Liu et al.,
2024). In the robotics community, there are also many at-
tempts of incorporating more robotic data (O’Neill et al.,
2024; Kim et al., 2024). However, the effectiveness of large-
scale training in robotic manipulation is still limited (Billard
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Figure 1. Visualization comparison between the action attention
maps of the text instructed policy and vision instructed policy. We
can observe that the text instructed policy is confused about which
region to concentrate on, while the vision instructed policy focuses
on the target correctly. This phenomenon suggests that vision
instruction is more comprehensible by policy networks.

& Kragic, 2019). This is partly because manipulation data is
ambiguous due to its multi-modal nature (Chi et al., 2023).
Given the same observation, there could exist multiple ob-
jects to manipulate and the potential actions are diverse,
such as picking, sorting, and rotating.

To handle this ambiguity, it is important to describe task
targets clearly to the policy. A common practice in existing
manipulation pre-training paradigms is describing task tar-
gets using text instructions like “pick up the green block”.
These paradigms expect that the trained policy understands
what the green block is in the input image and predicts the
action sequence of picking it up. Therefore, the policy needs
to align the information between text and vision, such as the
words “green block” and the appearance of this green block.
However, we find that existing manipulation data is not di-
verse sufficiently to train a policy to own this capability,
which demands millions of image-text pairs as suggested
in previous literature (Liu et al., 2024). As shown in Fig. 1,
the text instructed policy fails to concentrate on the green
block specified in the text instruction, and the robot hand
often grasps a block in a false color.

In this work, we reveal that vision instruction, such as a
future image predicting the grasp moment, is much more
comprehensible by policies in the current robotic data di-
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versity scale. As illustrated in Fig. 1, the vision instructed
policy focuses on the correct block and grasps it success-
fully. This is because both the observation and instruction
lie in the vision domain, avoiding the need for numerous
data to bridge the feature gap between different domains.
We can also understand this phenomenon from the view
of analyzing human infant behaviors, as existing robotic
policies are built upon infant-level intelligent networks like
ResNet (He et al., 2016) due to real-time deployment re-
quirements. When we tell an infant to pick up a green block,
the infant cannot understand the instruction even after many
iterations of text explanations. However, if we show the
infant what is the green block and how to grasp it through
vision, the infant could gradually make correct reactions.

Therefore, vision instruction is more suitable for prompt-
ing policies in the current diversity scale of robotic data.
A natural idea of using vision instruction is feeding the
policy with future images besides the current observation,
and the policy is optimized to predict correct actions that
make the robot reach the status described in future images.
However, a single future image is insufficient to describe ma-
nipulation dynamics and more frames lead to dramatically
increasing computation cost. To specify the manipulation
procedures clearly while maintaining an acceptable compu-
tational burden, we propose to represent the intermediate
action information with sparse point flows. Specifically, we
sample sparse points in the current vision observation and
track the moving dynamics of these points. Therefore, the
input to the pre-trained policy in VIP includes the current
image, a future image describing the target, and the sparse
point flows between the current and future images.

However, sparse point flows and future images are unavail-
able during inference. To handle the lack of sparse point
flows, we progressively remove them during pre-training by
random masking. This design gradually boosts the action
prediction challenge and helps the policy learn more mean-
ingful representation (Oquab et al., 2024). For the future
image in inference, we replace it as the cropped region of the
object to manipulate from the current observation. We find
this design achieves better performance, as it excludes the
disturbance from image background while also clearly spec-
ifying the target object. Additionally, this design enables us
to specify the object manipulation order dynamically.

Combining the above designs, Vision Instructed Pre-
training (VIP) is derived. Based on VIP, we pre-train our de-
signed fully Transformer-based policy using 1.7B of manip-
ulation data (Khazatsky et al., 2024). Extensive real-robot
and simulated tasks are designed to verify the performance.
For real-robot experiments, we devise tasks to validate dif-
ferent capabilities of policies from various perspectives, and
the tasks include pouring blueberries into a juicer cup, open-
ing the lid of a tightly sealed bottle, and cleaning plates

given the online specified order. In simulated experiments,
we build a real-time human hand pose acquisition system to
teleoperate robotic hands in Isaac Gym (Makoviychuk et al.,
2021) and design several tasks of transporting and stacking
color blocks following task instructions. The experimental
results demonstrate the superior performance of VIP.

2. Related Work
Demonstration Learning based Robotic Manipulation.
Robotic manipulation has advanced markedly due to the
integration of machine learning techniques (Fang et al.,
2019). Among existing methodologies, demonstration learn-
ing has garnered significant attention for its training effi-
ciency (Zhao et al., 2023). The fundamental premise of
demonstration learning is that a human teacher performs
a task while the robot records the relevant data, such as
sensory inputs, actions, and corresponding outcomes. This
recorded data is subsequently used to train models that allow
the robot to replicate the demonstrated behavior in similar
situations (Florence et al., 2022).

Existing demonstration learning policies can be broadly cat-
egorized into two groups, i.e., explicit policies (Fu et al.,
2024b) and implicit policies (Chi et al., 2023). Among
them, explicit policies directly map environment observa-
tions to actions, and the policy output is supervised with
human demonstration trajectories by computing regression
losses (Fu et al., 2024a). By contrast, implicit policies de-
fine the distributions of actions with energy-based models,
where predicting the next action is framed as identifying
the manipulation trajectory with minimal energy (Chi et al.,
2024). This modeling approach allows for the natural rep-
resentation of multi-modal distributions in manipulation
trajectories. Consequently, some studies suggest implicit
policies are more advantageous for robotic manipulation
learning (Florence et al., 2022). Nevertheless, we contend
that explicit policies offer faster response speeds due to
their simplicity, which is crucial for robotic manipulation.
In addition, the iterative decoding mechanism inherent in
Transformer models is similar to the denoising process in
implicit policies, and thus can also handle the multi-modal
ambiguity in robotic manipulation to some extent. Hence,
in this work, we develop a fully Transformer-based policy
adopting the explicit prediction paradigm.

Robotic Pre-training. Recent advancements in natural
language processing and computer vision demonstrate the
efficacy of first pre-training models on large-scale data and
then fine-tuning them for specific downstream applications
(Achiam et al., 2023; Wang et al., 2023b). Drawing inspira-
tions from these successes, the robotic learning community
begins to explore pre-training paradigms to enhance robotic
manipulation capabilities (Radosavovic et al., 2023; Nair
et al., 2023; Majumdar et al., 2023). The principal idea be-
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Figure 2. Overall pipeline of VIP. The input to the pre-trained policy includes two image frames (the observation frame and future
frame) and sparse point flows, which describe the changing dynamics of the scene. The sparse point flows are gradually removed by the
progressive mask module during pre-training.

hind robotic pre-training is to first expose the robotic policy
to a wide range of tasks and environments, allowing it to
learn generalizable representations for diverse robotic tasks
(Brohan et al., 2022). Subsequently, a fine-tuning phase
on specific manipulation tasks is conducted, utilizing the
previously gained prior knowledge to enhance performance
and efficiency (Zitkovich et al., 2023).

Pre-training a policy requires a substantial amount of data
(Fang et al., 2020). However, robotic manipulation data is
expensive to collect. To mitigate this issue, some methods
generate data through simulated environments (Wang et al.,
2023a). However, significant discrepancies in appearance
and motion dynamics between simulated and real-robot data
limit thier effectiveness. Several methods employ large
language models to generate grasp positions for objects
in 2D images (Vuong et al., 2024), but this approach is
constrained by its two-dimensional output, whereas robotic
manipulation occurs in a three-dimensional space. Recently,
collaborative efforts among various institutions have led to
the creation of large-scale datasets by merging existing data
sources (O’Neill et al., 2024) or collecting new data across
diverse scenarios (Khazatsky et al., 2024). Thanks to these
datasets, a handful of promising pre-trained policies are de-
rived (Kim et al., 2024). Nevertheless, robotic manipulation
trajectories remain ambiguous if without appropriate task
instructions as prompt. Existing pre-training algorithms pre-
dominantly use text instructions to inform the policy, which
restricts the pre-training effectiveness, as previously noted.

Robotic Instruction. Robotic manipulation learning is in-
trinsically a long-sequence auto-regressive problem, often
involving thousands of action steps within a short dura-
tion (Chen et al., 2024). Therefore, a basic challenge in
manipulation lies in the ability of a policy to determine
the appropriate actions based on the current observation.
This problem is especially serious if the task to perform

involves multi-object manipulation or there are many poten-
tial operation steps (Shi et al., 2023). To alleviate this prob-
lem, instructions are demanded to guide policies with task-
specific information. In previous works, the instructions are
mostly represented as natural language (Brohan et al., 2022;
Zitkovich et al., 2023). Alternatively, some researchers have
also explored voice instructions (Shi et al., 2024), but voice
information similarly poses learning difficulties. By con-
trast, images are more readily comprehensible for policy
networks, as the commonly adopted backbones of these net-
works are already pre-trained on extensive image datasets
(He et al., 2016). This pre-existing visual understanding in
robotic policies is akin to the innate vision comprehension
in human infants. Despite the potential of visual instruc-
tions, their applications remain unexplored in the context of
robotic manipulation. Existing studies on visual instructions
have primarily focused on goal images within game-based
reinforcement learning (Yuan et al., 2024) and navigation
(Majumdar et al., 2022). This work aims to bridge the gap
in exploring visual instructions for robotic manipulation.

3. Method
3.1. Vision Intructed Pre-training

A data sample for robotic manipulation pre-training consists
of two parts, a video sequence V = {I1, I2, · · · , IT } and
the corresponding robot actions A = {ā1, ā2, · · · , āT }. In
a real robotic manipulation application, future information
is unavailable, and a policy π needs to predict future actions
A using only the current observation I1. However, manipu-
lation trajectories are highly diverse. Directly regressing A
based on I1 is too ambiguous for π. To address this problem,
instruction is demanded in pre-training to disclose future
information to π to guide the generation of future actions.

The previous robotic pre-training paradigms often disclose
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future manipulation trajectory information with text-based
task description. These methods take vision observation
and text description as input to predict actions, the process
of which demands aligning the information among three
domains (vision, text, and action). Nevertheless, we reveal
that existing robotic data is not diverse enough to align
text and vision representation. In addition, it is challeng-
ing to elaborate manipulation procedures clearly based on
text description. Different from previous paradigms, this
work proposes VIP, which pre-trains a policy π to predict
actions based on solely vision information. As illustrated in
Fig. 2, the vision information includes current observation
I1, future observation IT , and sparse point flows. Notably,
each observation could contain multiple images captured by
different cameras at the same timestamp.

In VIP, we first transform I1 and It as visual features F1 and
Ft by a shared encoder like ResNet (He et al., 2016) in the
pre-trained policy. Besides, we utilize sparse point flows in
moving image regions to describe the missing intermediate
robot manipulation information. We gradually remove the
point flows through the progressive mask module shown
in Fig. 2, and the remaining flows are transformed into the
feature Fp by a simple MLP layer. Refer to Section 3.2 for
details about how the point flows are generated and masked.
According to Fig. 2, F1 is the environment observation. FT

and Fp are the vision instruction, which describes the future
moving dynamics. F1, FT , and Fp are input to the action de-
coder (e.g., Transformer decoders or diffusion heads) of the
pre-trained policy to produce T action predictions {at}Tt=1

and corresponding Laplacian uncertainty values {σt}Tt=1.
We optimize the pre-trained policy by minimizing a loss L
constructed based on {at}Tt=1, {σt}Tt=1, and {āt}Tt=1 as:

L=
1

T

T∑
t=1

(

√
2|at − āt|

σt
+ log σt). (1)

Notably, {σt}Tt=1 has no ground truth and is learned in an
unsupervied manner. Refer to previous literature (Li et al.,
2022; Kendall & Gal, 2017) for why uncertainty can be
captured in this way. According to Eq. (1), we can observe
that the learned uncertainties {σt}Tt=1 exhibit higher values
for more ambiguous action segments. Consequently, larger
{σt}Tt=1 result in a smaller penalization for the discrepan-
cies between predicted actions {at}Tt=1 and demonstrated
actions {āt}Tt=1. This property enables π to concentrate on
more deterministic action segments.

3.2. Sparse Point Flow

Consecutive frames in a video contain numerous redundant
information for recording the changing dynamics of a robot.
Therefore, employing a video sequence to describe manip-
ulation procedures to a pre-trained policy leads to huge
computation cost. Differently, as depicted in Fig. 3, using

Figure 3. The conceptual diagram of sparse point flow. Consecu-
tive frames in a video comprise numerous pixels and contain much
redundant information for describing the movement of a robot
hand. By contrast, a small group of points tracking moving pixels,
namely sparse point flows, are much more efficient.

sparse point flows in moving image regions is much more
efficient. Compared with using an image sequence where
every frame comprises tens of thounsands of pixels, the
sparse point flows only have tens of points and can describe
the robot hand manipulation process clearly.

In this work, we generate sparse point flows based on Co-
Tracker (Karaev et al., 2024), a state-of-the-art point tracker.
A simple implementation of using CoTracker is first ran-
domly sample some points in the first frame of a video
sequence and then provide these points to CoTracker. Co-
Tracker can automatically track the point flows in subse-
quent frames. However, this implementation suffers from
two drawbacks: (i) We only concern the changing regions
in the frames of a video, while this implementation wastes
many points in the static background. (ii) In many frames,
the robot hand is invisible or not moving. These frames
should not be incorporated into the pre-training data.

To handle the aforementioned two drawbacks, we adopt a
two-stage strategy to generate the sparse point flows. Specif-
ically, we first uniformly sample points in the first frame and
produce point flows using CoTracker. Then, we remove the
point flows that keep static among frames. If the remaining
moving flows are too few (e.g., fewer than three), we do not
add this video sequence into pre-training data. Conversely,
if there are enough moving flows, we randomly sample
more points around these remaining moving flows to pro-
duce more sufficient point flows. After these two phases of
point sampling, the derived sparse point flows describe the
changing dynamics of the video sequence in a both efficient
and detailed manner.

Nevertheless, we find that too abundant point flows prevent
the policy from learning very meaningful vision represen-
tation. There are mainly two problems. On the one hand,
infering robot hand actions from point flows is easier than
using vision observations. Therefore, very sufficient point
flow information makes the policy become lazy to explore
the feature in vision observations. On the other hand, the
point flows are unavailable in inference, so adopting point
flows during pre-training causes an input information gap be-
tween pre-training and inference. To address these two prob-
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lems, we gradually remove point flows during pre-training
by masking them with an increasing probability. Specifi-
cally, assuming there are totally N pre-training iterations,
we randomly mask αn of point flows at the nth iteration,
where αn = min(1.25× n

N , 1). In this way, the point flow
is completely removed at the end of pre-training, and thus
the above two problems are tackled.

3.3. Vision Instruction after Pre-train

As the robots used in applications are often different from
the robots for gathering pre-train data, a small handful of
demonstration data is needed to fine-tune the pre-trained pol-
icy. To maintain usage consistency, The implementation of
the policy in fine-tuning is the same as the one in inference.
Therefore, we elaborate them together in this part.

The main difference between pre-training and the subse-
quent fine-tuning and inference phases is the vision instruc-
tion. As shown in Fig. 2, the vision instruction in pre-
training consists of two parts, the future frame and sparse
point flows. As introduced in Section 3.2, the sparse point
flows are completely removed at the end of pre-training, so
the problem is how to get the future frame. To address this
problem, we first try training a diffusion based world model
(Parmar et al., 2024; Ho et al., 2020) to predict the future
image. It can be observed from Fig. 4 that the world model
predicted image is more accurate in simple simulated sce-
narios but not satisfactory in real scenarios. For example, as
shown in the second row of Fig. 4, the world model output
is easy to collapse to being the same as the input image.

There are mainly two reasons resulting in this phenomenon.
First of all, the future observation ot+1 is affected by both
the current state st and action at. However, the input to
the world model only includes st, because at is unavailable.
Why we predict ot+1 is to use ot+1 for guiding the genera-
tion of at. In other words, predicting ot+1 demands at and
outputting at depends on ot+1, which is an endless loop.
Hence, at is not input to the world model. This restricts the
future image prediction accuracy. Secondly, compared with
simulated environments, the object interaction dynamics
like collision in real scenarios is more complex.

According to the above analysis, we cannot employ a fu-
ture frame as the vision instruction. To bridge this gap, we
propose to replace the future frame in pre-training as the
cropped image region of the object to manipulate during
fine-tuning and inference. Although different from future
frames, the cropped image also specifies where the robot
hand should move towards for manipulation, as illustrated
in the third row of Fig. 4. Our experimental results indicate
that the pre-trained policy can adapt to using this new vision
instruction based on only a little fine-tuning data. In addi-
tion, as the cropped image delivers which is the next object
to manipulate, users can change the object manipulation
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Figure 4. Visualization of different vision instructions. The three
columns of images in the first and second rows show the world
model input, future ground truth, and future image prediction in
simulated and real scenarios. The third row illustrates the cropped
image of the object to manipulate.

order dynamically by providing different cropped image
regions during inference. The cropped image regions can
be specified in various ways, e.g., user eye gaze recogniza-
tion, user instruction understanding based on an LLM, an
external detection or segmentation model, etc.

3.4. Vision Instructed Robotic Transformer

To fully exploit the potential of VIP, we develop a fully
Transformer-based policy named Vision Instructed Robotic
Transformer (VIRT). In VIRT, we implement the policy
vision encoder in Fig. 2 with twelve Transformer encoders.
These encoders are initialized from the weight of DINOv2
(Oquab et al., 2024). Before inputting I1 and It to the
encoders, we randomly mask a ratio τ of their pixels. This
operation forces VIRT to be more sensitive to image details,
as it can only depend on random remained image pixels
to predict actions. The policy action decoder in Fig. 2 is
modeled as three Transformer decoders. T learnable queries
are randomly initialized to interact with F1, Ft, and Fp in
decoders to produce {at}Tt=1 and {σt}Tt=1.

4. Experiments
Experimental platforms. We evaluate the effectiveness of
our method in both real and simulated environments. For the
real environment, we conduct experiments using the Cobot
Magic robot (Agilex, 2024). As shown in Fig. 5, the robot
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Figure 5. Illustrations of the Cobot Magic robot and how it is tele-
operated. The robot has two master arms and two puppet arms.

(a) Hand Pose based Arm Control (b) Hand Pose based Gripper Control

Figure 6. Illustrations of how we teleoperate the robot in Isaac
Gym. We build a real-time hand pose acquisition system to map
the human hand pose to robot joint rotations. The orientation and
translation of the palm are used to control the end of the robot arm.
The distance between the thumb and index finger is employed to
determine the opening or closing of the gripper.

is integrated with four robot arms, i.e., two master arms
and two puppet arms. When collecting demonstration data,
we manually control the master arms, and the puppet arms
imitate the actions of the master arms in real time. After fine-
tuning the pre-trained policy with the demonstration data,
the policy directly controls the puppet arms in inference.
Three cameras are deployed on the robot, which are the
right camera, front camera, and left camera, respectively.

The simulated environments are built based on Isaac Gym
(Makoviychuk et al., 2021), which supports GPU-based ef-
ficient physics simulation. A Franka Panda robotic arm is
deployed in each simulation environment to manipulate ob-
jects, with four cameras strategically positioned to observe
the scene from various angles, including three peripheral
views and one hand view. Unlike previous approaches that
rely on manually crafted script rules for generating ma-
nipulation demonstrations (Zhao et al., 2023), we build
a real-time hand pose acquisition system to teleoperate
the simulated robotic arm, which better mimics the real
demonstration data distribution. Specifically, a Leap Motion
Controller (Ultraleap, 2013), which is a binocular infrared
camera, is adopted to estimate the hand translation and
orientation. Then, as shown in Fig. 6, we map the trans-
lation and orientation of the hand palm to the robot arm
end-effector position using pre-defined rules, and the joint
rotation angles of the robot arm are derived based on inverse
kinematics (Kucuk & Bingul, 2006). The opening or closing
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Figure 7. Illustrations of the three designed real-robot tasks, which
include Pour Blueberries, Open the Lid, and Clean the Table.

Move a Single Box Transport the Specified Box Stack the Specified Boxes

Figure 8. Illustrations of the three designed simulated tasks, which
include Move a Single Box, Transport the Specified Box, and Stack
the Specified Boxes.

of the robot gripper is controlled by the distance between
the thumb and index finger of the human hand.

Evaluation tasks. To fully evaluate the effectiveness of
our proposed techniques, we design three real-robot tasks
and three simulated tasks. As depicted in Fig. 7, the three
real-robot tasks include Pour Blueberries, Open the Lid, and
Clean the Table. We collect 100 demonstrations of data for
every task. In the Pour Blueberries task, the robot needs
to first remove the juicer cup from the juicer and place it
on the table. Then, the robot picks up the plate containing
blueberries and pours all blueberries into the juicer cup.
For the Open the Lid task, the robot uses a robotic hand
to hold a bottle with a tightly screwed lid. The another
hand first needs to grasp the lid. After a series of twists,
the robot gradually unscrews and removes the lid from the
bottle. In the Clean the Table task, three plates of different
colors and a small cabinet are positioned on a table. The
robot is required to move the plates onto the cabinet in a
color order that is randomly specified during test. The three
tasks test the multi-step operation, precise manipulation, and
instruction following capabilities of policies, respectively.

The three simulated tasks are Move a Single Box, Transport
the Specified Box, and Stack the Specified Boxes, as visu-
alized in Fig. 8. We collect 50 demonstrations for the first
task and 100 demonstrations for each of other two tasks. In
Move a Single Box, the robot needs to transport the box on



VIP: Vision Instructed Pre-training for Robotic Manipulation

Table 1. Effectiveness study of VIP in both real and simulated environments.

Policy Pre-train Pour Blueberries ↑ Open Lid ↑ Clean Table ↑ Move Box ↑ Transport Box ↑ Stack Boxes ↑ Speed ↑

ConvMLP % 0.00 0.00 0.00 0.24 0.12 0.03 17.54
ConvMLP ✓ 0.00 0.00 0.00 0.38 0.17 0.11 17.54
Diffusion % 0.19 0.46 0.24 0.72 0.51 0.43 27.32
Diffusion ✓ 0.28 0.54 0.28 0.85 0.60 0.56 27.32

ACT % 0.28 0.51 0.25 0.84 0.61 0.47 43.48
ACT ✓ 0.34 0.59 0.30 0.90 0.65 0.58 43.48

VIRT (Ours) % 0.30 0.65 0.29 0.87 0.65 0.54 39.22
VIRT (Ours) ✓ 0.42 0.71 0.37 0.92 0.74 0.68 39.22

a table into a container. For Transport the Specified Box,
five different colors of boxes are randomly located on a
table, and the robot should move the box described by a
random instruction to the container. Differently, in Stack
the Specified Boxes, two boxes are specified. The robot
is expected to move the first box in the container and then
stack the second box on the first box.

Implementation details. In VIP, the pre-trained model
parameters are updated using AdamW (Loshchilov, 2017)
and the learning rate is 1e−5. The action prediction horizon
T and image masking ratio τ are set to 20 and 0.5. Without
a special statement, the cropped image is obtained from
YOLOv10-small (Wang et al., 2024). We pre-train policies
using Droid (Khazatsky et al., 2024) due to its large scale
data volume and scene diversity. Besides, the manipulation
trajectories in Droid present high ambiguity and are helpful
for verifying the superiority of VIP. The pre-training consists
of 120K iterations and fine-tuning comprises 8K iterations.

4.1. VIP Effectiveness

We study the effectiveness of VIP based on the aforemen-
tioned six tasks comprising Pour Blueberries, Open the
Lid, Clean the Table, Move a Single Box, Transport the
Specified Box, and Stack the Specified Boxes. Besides our
developed VIRT, we further evaluate the effectiveness of
pre-training on representative policies such as ConvMLP
(Zhang et al., 2018), Diffusion Policy (Chi et al., 2023), and
ACT (Zhao et al., 2023). Among them, ConvMLP is the
most commonly adopted baseline, which first extracts im-
age feature using convolutional neural network (CNN) and
then regresses actions based on the extracted feature. Dif-
ferent from ConvMLP, Diffusion policy decodes the action
chunk through iterative denoising. ACT consists of a CNN
backbone, encoders, and decoders. Its basic architecture is
similar to VIRT. For fair comparison, the cropped image
region is input to all these policies as vision instruction.
We pre-train these policies with the proposed pre-training
paradigm described in Section 3 separately and then fine-
tune them with the demonstration data of every task. These
policies are tested for 100 times on each task, and we report
their success rates as well as inference speeds (test on a

Table 2. Comparison among various instructions.

Pre-train Inference Move Box Transport Box Stack Boxes

F Cropped 0.87 0.64 0.50
S Cropped 0.78 0.51 0.36

F+S Text 0.85 0.19 0.06
F+S Future 0.88 0.67 0.54
F+S Cropped 0.92 0.74 0.68

single RTX4090 GPU) in Table 1.

According to the results, we can observe that our designed
pre-training paradigm is effective for all the policies in vari-
ous model architectures. The success rates of these policies
are boosted in both simulated and real robotic manipulation
environments, indicating the value of incorporating more
diverse training data.

Comparing the various policies, it is found that VIRT
achieves the best performance, and its inference speed is
also promising. For ConvMLP, its primary problem is its
output head is a naive MLP, which is fast but fails to estimate
actions precisely. In Diffusion Policy, since it adds random
noise to action labels during training, the policy network is
required to learn to recover actions from any noise. This
requirement makes Diffusion Policy generally demand more
data to converge well. VIRT is superior to ACT thanks to
its broader perceptive field in encoders and the well-learned
encoder representation inheriting from DINOv2.

4.2. Instruction Comparison

In this part, we analyze the effectiveness of different instruc-
tions used in pre-training and inference. The experiments
are conducted based on the VIRT policy with the three
simulated tasks. The experimental results are presented
in Table 2. The studied pre-training instructions include
only future image (F), only sparse point flows (S), and us-
ing both them (F+S). The analyzed inference instructions
are text instruction, a world model predicted future image,
and cropped images of target objects. According to the re-
sults, we can find that solely using a future image or sparse
point flows does not lead to effective pre-training due to
the lack of sufficient manipulation process description. By
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Table 3. Ablation study on designs of VIRT.

DINO Uncern Mask Move Box Transport Box Stack Boxes

0.80 0.58 0.49
✓ 0.86 0.66 0.57
✓ ✓ 0.90 0.69 0.66
✓ ✓ ✓ 0.92 0.74 0.68

Table 4. Study on the data scaling law.

Pre-train Fine-tune Move Box Transport Box Stack Boxes

0% 100% 0.87 0.65 0.54
10% 100% 0.81 0.55 0.49
50% 100% 0.89 0.68 0.60
100% 10% 0.40 0.25 0.06
100% 50% 0.77 0.58 0.43
100% 100% 0.92 0.74 0.68

contrast, combining them results in significant manipulation
performance boosts, confirming the effectiveness of VIP.

Additionally, we can observe that although the policy based
on text instruction obtains comparable performance with
the ones using vision instructions on the Move a Single Box
task, its performance on the other two tasks are much infe-
rior. This is because there is only a single box on the table in
Move a Single Box task, while the policy needs to grasp the
correct box out of multiple boxes according to the provided
instruction in the other two tasks. As visualized in Fig. 1,
the text instruction based policy does not really understand
the instruction content and often grasps an incorrect target.
Moreover, it is found that the vision instruction based on a
cropped image is superior than employing a future image.
This is because of two reasons. On the one hand, the future
image quality predicted by a world model is limited. On the
other hand, the cropped image removes the disturbance from
image background and guides the generated manipulation
trajectories more clearly.

4.3. Method Analysis

Ablation study. This part conducts an ablation study on the
designs in VIRT that are not clearly analyzed before. We
mainly study the influences of three designs, i.e., initializing
encoder weight with DINOv2, uncertainty in supervision
loss, and randomly masking the input images. Notably,
to show the value of DINOv2 representation more clearly,
when DINOv2 is not adopted, we replace the encoders in
VIRT as ResNet18, the backbone that is widely adopted
in previous robot policies. The experimental results are
reported in Table 3. As shown, all these designs improve
the success rates of VIRT on the three evaluated tasks sig-
nificantly. Specifically, DINOv2 initialization provides the
policy with the initial ability of extracting discriminative rep-
resentation. Incorporating uncertainty into the supervision
loss in Eq. (1) helps the policy concentrate on predicting the

Brightness Noise Blur

Figure 9. Robustness analysis of VIRT to different disturbances,
e.g., brightness change, vision noise, and image blur.

Table 5. Analysis on the policy robustness.

Brightness Blur Noise Move Box Transport Box Stack Boxes

0.92 0.74 0.68
✓ 0.86 0.67 0.60

✓ 0.88 0.71 0.65
✓ 0.75 0.64 0.52

trajectory parts that are less ambiguous. Ramdomly mask-
ing pixels of input images forces the Transformer-based
policy to maintain its sensitivity to local features.

Scaling law. In this part, we study whether the data scaling
law appears in the pre-training and fine-tuning procedures
of robotic manipulation. Specifically, we conduct experi-
ments using different amounts of the total pre-training and
fine-tuning data, and the experimental results are presented
in Table 4. According to the results, we can first observe
that increasing both the pre-training and fine-tuning data
is beneficial to improving the manipulation success rates.
Interestingly, comparing the 1st row (no pre-training is con-
ducted) and 2nd row of the results, it can be found that
pre-training with only a little data harms the policy perfor-
mance. This is because the policy is prone to over-fitting
to the pre-training data domain if the pre-training data is
insufficient, and there is a significant gap between the pre-
training and fine-tuning data domains. In addition, we can
find that increasing the fine-tuning data volume boosts exe-
cution success rates more significantly, which is because the
fine-tuning data aligns better with inference observations.

Policy robustness. This part analyzes the robustness of
VIRT to different unseen environment disturbances. As
illustrated in Fig. 9, the studied disturbances include en-
vironment brightness, vision noise, and image blur. For
environment brightness, we reduce the lightness intensity
by 40%. To analyze the influence of random vision noise,
we add random Gaussian noise to the perceived images.
For image blur, we smooth the perceived images with a
blur kernel with the shape of 3 × 3. We replace the in-
put to the trained policy as the images with the studied
noise and then test the success rates on various evaluation
tasks. The experimental results are presented in Table 5.
As shown, VIRT presents promising robustness to different
environment changes thanks to the robust representation
obtained from the large-scale pre-train stage. In addition,
the Gaussian noise unseen in training data leads to the most
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significant performance degradation.

5. Conclusion
In this work, we have revealed that vision instruction is more
comprehensible than text instruction for current robotic poli-
cies. Based on this insight, we have designed VIP, which
utilizes vision observations and sparse point flows to predict
actions. To bridge the information gap between pre-training
and applications, we have proposed to remove sparse point
flows progressively during pre-training and replaced future
images as cropped images of objects to manipulate. By
combining the strengths of VIP with our developed policy
VIRT, VIRT learns to complete diverse challenging tasks.
Extensive experiments have been conducted in both real and
simulated environments to confirm the effectiveness of our
proposed techniques from various perspectives.
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