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ABSTRACT

Machine learning interatomic potentials (MLIPs) can predict energy, force, and
stress of materials and enable a wide range of downstream discovery tasks. A key
design choice in MLIPs involves the trade-off between invariant and equivariant
architectures. Invariant models offer computational efficiency but may not perform
as well, especially when predicting high-order outputs. In contrast, equivariant
models can capture high-order symmetries, but are computationally expensive. In
this work, we propose HIENet, a hybrid invariant-equivariant materials interatomic
potential model that integrates both invariant and equivariant message passing lay-
ers. Furthermore, we show that HIENet provably satisfies key physical constraints.
HIENet achieves state-of-the-art performance with considerable computational
speedups over prior models. Experimental results on both common benchmarks
and downstream materials discovery tasks demonstrate the efficiency and effec-
tiveness of HIENet. Finally, additional ablations further demonstrate that our
hybrid invariant-equivariant approach scales well across model sizes and works
with different equivariant model architectures, providing powerful insights into
future MLIP designs.

1 INTRODUCTION

The discovery of materials with desired properties underpins a wide range of technological ad-
vancements (de Pablo et al., 2019; Stach et al., 2021; Shafian et al., 2025; Lv et al., 2022; Zheng
et al., 2021; Miracle & Thoma, 2024). However, traditional materials discovery relies heavily on
costly trial-and-error experimental methods. Computational approaches, particularly those leveraging
advanced quantum mechanical methods such as density functional theory (DFT), have accelerated
this process (Zhang et al., 2023), but despite their benefits, simulating systems with a large number of
atoms remains extremely expensive.

Recent progress in machine learning interatomic potentials (MLIPs) offers a promising path forward
by enabling the prediction of energies, forces, and stresses of materials while achieving signifi-
cant speedups compared to traditional DFT methods. However, existing MLIP models still face a
fundamental trade-off: invariant models are computationally efficient but struggle with high-order
property predictions, while equivariant models can better capture high-order interactions but are
computationally expensive.

An additional design choice is whether to enforce model predictions to adhere to key physical
constraints detailed in Sec. 3.1. Recent works have tried to learn these physical constraints, such
as EquiformerV2 (Liao et al., 2024), which enforces global symmetry operations but not the other
physical laws, and ORB (Neumann et al., 2024), which doesn’t impose any constraints on model
predictions. While it is more computationally expensive to enforce these physical constraints, it is
also necessary for MLIPs to perform well, especially on downstream discovery tasks beyond energy,
force, and stress prediction.

In this work, we propose HIENet, a materials MLIP that satisfies key physical constraints for
energy, force, and stress predictions while integrating both invariant and equivariant designs to
achieve state-of-the-art (SOTA) performance with considerable computational speedups compared
to existing models. An overview of HIENet is provided in Figure 1. Unlike prior approaches
that rely exclusively on either invariant or equivariant layers, HIENet balances these strategies to
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Figure 1: HIENet overview. The model converts material structures into graph representations and
processes them through a hybrid architecture combining invariant and equivariant message passing
networks to predict physical properties. The model supports accurate dynamic simulations (bottom)
and enables diverse materials science applications (right).

leverage the scalability of invariant layers while utilizing equivariant layers to effectively capture
high-order interactions. Moreover, in contrast to existing models like EquiformerV2 (Liao et al., 2024)
and Orb (Neumann et al., 2024), HIENet rigorously satisfies physical constraints, including O(3)
equivariance for force and stress, and adheres to physical conservation laws through physics-informed
derivative-based methods. Experimental results on common benchmarks including Materials Project
Trajectory, Matbench Discovery, and downstream materials discovery tasks including evaluations
on phonons, bulk moduli, ab initio molecular dynamics, and alloys as detailed in Sec. 5.1, 5.2, 5.3
and Appendix B,C demonstrate the efficiency and effectiveness of HIENet. Additional ablations
in Sec. 5.5 further demonstrate the generality of our hybrid invariant-equivariant approach across
different model capacities and equivariant layer designs.

2 PRELIMINARIES

Problem definition. The core task in developing MLIPs is to learn a mapping from materials atomic
structures to quantum mechanical properties. Specifically, given a crystal structure, we aim to predict
three quantities; the total energy E, the forces acting on each atom F = {Fi ∈ R3, 1 ≤ i ≤ n},
where n denotes number of atoms in a cell, and the stress tensor σ ∈ R3×3, which governs cell
deformation. While these properties are directly useful for many applications such as structural
relaxation and predicting thermodynamic stability, from these we can derive many other important
material properties such as phonon band structures and bulk moduli as shown in Sec. 5.3. We also
provide preliminaries about molecular dynamics simulation of materials in Appendix A.

Crystal structures. Unlike regular molecules, crystals are periodic in nature and are characterized
as three-dimensional lattices with infinitely repeating unit cells. Adopting the notation of Yan et al.
(2024), a crystal structure can be described as a triple M = (Z,P,L), which represents both atomic
and geometric information. The atomic composition is denoted by Z = [z1, z2, · · · , zn] ∈ Rn, where
zi represents the atomic number of i-th atom in the unit cell. The arrangement of these atoms in
Euclidean space is given by 3D coordinates P = [p1,p2, · · · ,pn] ∈ R3×n. The periodicity of the
unit cell is specified by the lattice matrix L = [ℓ1, ℓ2, ℓ3] ∈ R3×3, whose columns are the three
lattice vectors.

3 HYBRID INVARIANT-EQUIVARIANT NETWORKS

We propose Hybrid Invariant-Equivariant Network (HIENet), a materials interatomic potential model
that integrates both invariant and equivariant message passing layers. HIENet is carefully designed to
satisfy important physical constraints detailed in Sec. 3.1, consisting of physics-informed geometric
crystal graphs detailed in Sec. 3.2, a hybrid invariant-equivariant network design detailed in Sec. 3.3,
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and physics-informed property predictions detailed in Sec. 3.4. All together, HIENet achieves state-
of-the-art performance on common benchmarks and downstream materials discovery tasks while
significantly improving computational efficiency compared to prior models. Additionally, HIENet
satisfies all desirable physical constraints with mathematical proofs in Sec. 3.5.

3.1 PHYSICAL CONSTRAINTS FOR MLIPS

As detailed in Sec. 2, MLIPs are developed to predict energy, forces, and stress of materials atomic
systems. While some MLIPs such as EqV2 and ORB can achieve moderate performance on some tasks
without satisfying key physical constraints, such models under-perform on many important materials
discovery tasks such as phonon frequency calculations, bulk moduli prediction, and molecular
dynamics simulations. As such, in order for MLIPs to generalize well and have robust performance
across downstream tasks, it is essential that model predictions satisfy key physical constraints.

Rototranslational Symmetries. Crystal structures exhibit inherent symmetry under global rotations,
translations, and reflections. To respect these symmetries, the predicted energy must be E(3) invariant,
while forces and stress must be O(3) equivariant. We formalize these requirements as follows:
Definition 3.1 (O(3) Equivariance). A MLIP produces O(3) equivariant predictions if, for a crystal
structure M = (Z,P,L), its predicted energy Ê, forces F̂ = (F̂1, . . . , F̂n), and stress tensor σ̂
transform under any rotation R ∈ R3×3, |R| = ±1 and translation b ∈ R3 as follows:

Ê(Z,P,L) = Ê(Z,RP+ b,RL)

F̂i(Z,P,L) = R⊤F̂i(Z,RP+ b,RL),

σ̂(Z,P,L) = R⊤σ̂(Z,RP+ b,RL)R.

Importantly, there is a distinction between invariant/equivariant layers and invariant/equivariant
predictions. For example, CHGNet (Deng et al., 2023b) exclusively uses E(3) invariant message
passing layers, yet CHGNet force and stress predictions are O(3) equivariant because they use
gradient-based force and stress calculations. When we refer to a model being O(3) equivariant, we
are referring to the outputs, not the individual layers, unless otherwise specified.

Physical Plausibility. Beyond symmetry considerations, MLIPs must satisfy several key physical
laws to be reliable for downstream applications. These include force conservation, force equilibrium,
and stress tensor symmetry. We define these constraints formally as follows:
Definition 3.2 (Force Conservation and Equilibrium). Forces must form a conservative vector field
derived from the potential energy surface, and in the absence of external influences, the sum of forces
on all atoms is zero:

F = −∇PE,

n∑
i=1

Fi = 0, (1)

Definition 3.3 (Stress Tensor Symmetry). The predicted stress tensor must be symmetric:
σij = σji ∀i, j ∈ 1, 2, 3 (2)

In addition to these physical laws, the potential energy surface must be continuously differentiable to
enable accurate downstream property calculations requiring higher-order derivatives.

Our HIENet model rigorously enforces all the outlined symmetry and physical constraints through
the carefully designed geometric crystal graphs, model architecture, and gradient-based force and
stress computation, with details provided in Sec. 3.2, 3.3, 3.4, and 3.5.

3.2 GEOMETRIC GRAPH REPRESENTATIONS SATISFYING PHYSICAL CONSTRAINTS

For a crystal structure, M = (Z,P,L) we construct an O(3) equivariant crystal graph G = (V,E)
that preserves physical symmetries inherent in crystal structures. Specifically, for a crystal structure
M = (Z,P,L), each atom i in the unit cell and all its periodic duplicates are represented by a single
node i ∈ V with node features hi = Wembzi, where Wemb ∈ Rd×nz is a learnable embedding
matrix and zi is the one-hot encoding of atomic number zi. An edge will be built from node j to i
when the Euclidean distance between a periodic duplicate j′ of j and i satisfies

||rj′i||2 = ∥pj + k1ℓ1 + k2ℓ2 + k3ℓ3 − pi∥2 ≤ Rcut, k1, k2, k3 ∈ Z, (3)
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Figure 2: HIENet Model Architecture. We construct O(3) equivariant crystal graphs. We then apply
an invariant message passing layer followed by several equivariant message passing layers before
predicting the total energy, Ê and using physical laws to compute F̂ , σ̂.

where Rcut is a fixed cutoff radius.

Edge features hji are then embedded using radial Bessel basis functions with a polynomial enve-
lope (Gasteiger et al., 2021) function fpoly:

hji =
2 sin

(
nπ
Rcut

∥rji∥2
)

Rcut∥rji∥2
fpoly (∥rji∥2, Rcut) . (4)

Importance of using envelope function. It is worth noting that the smooth envelope is crucial
for energy conservation and computing physically meaningful force predictions. It ensures that the
energy and its derivatives smoothly decay to zero at the cutoff boundary.

Importance of constructing O(3) equivariant crystal graphs. Unlike previous work (Yan et al.,
2022; 2024), our constructed crystal graphs are O(3) equivariant due to the use of a fixed cutoff
radius and edge vectors rji that are O(3) equivariant by definition. It is important to note that O(3)
equivariance of the input crystal graphs is a necessary condition for achieving O(3) equivariant
predictions in MLIPs. As shown in our experiments in Appendix E, violating this equivariance in the
graph construction leads to a measurable drop in MLIP performance.

3.3 HYBRID INVARIANT-EQUIVARIANT DESIGN

Our HIENet model consists of several invariant and equivariant message passing layers which
iteratively update node features for each atom.

E(3) Invariant Layer. In the invariant message passing layers, we update node features hi using a
graph transformer mechanism. Specifically, we compute key kji, query qji, and value vji vectors as:

kji = WK (hi||hj ||hij) , qji = WQ (hi||hj ||hij) , vji = Φ(hi||hj ||hji) , (5)
where Φ is an MLP with SiLU nonlinearities (Elfwing et al., 2018) and || denotes vector concatenation.
We then compute attention scores and aggregate the values over neighboring nodes to update the
node features:

h′
i = φ(hi) + (1− φ(hi))

∑
j∈Ni

vji ⊙ σ

(
qji ⊙ kji√

d

)
, (6)

where ⊙ represents element-wise multiplication, σ is the sigmoid activation function, and φ is an
MLP with a sigmoid activation in the final layer that acts as a learnable gating mechanism.

O(3) Equivariant Layer. The HIENet equivariant layers build node features fi,ℓ for each rotation
order ℓ ≤ Lmax. In practice we use Lmax = 3. In the first equivariant message passing layer, we
initialize fi,0 = hi, the output of the previous invariant layer. In each equivariant layer, we embed
edge vectors rji using spherical harmonics Y l(

rji
||rji|| ) and update the equivariant features as:

f ′
i,ℓ =

1

|Ni|

Lmax∑
l=0

∑
j∈Ni

TPℓ

(
Wfi, Y

l

(
rji

||rji||

))
(7)
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where TPℓ is the standard tensor product operation yielding outputs with rotation order ℓ. We further
add a skip connection and gate mechanism to output updated node features:

f ′
i = ψ (Wskipfi +WEf

′
i) (8)

where ψ is an equivariant gate activation function defined as:

ψ(fi) = ϕ(fi,0)⊕

 ⊕
0<l≤Lmax

ϕ(fi,0)fi,l

 (9)

where ϕ is the SiLU activation function and ⊕ is the direct sum operation.

Hybrid MLIPs. Our HIENet model consists of one or more invariant message passing layers
followed by several equivariant layers. The final equivariant layer outputs are aggregated across the
graph and the energy is predicted as E =

∑
i Wefi,0. In practice, we find that one invariant message

passing layer achieves a good balance between performance and efficiency. We provide additional
details and ablations on the model design in Appendix E and F.

3.4 PHYSICS INFORMED PROPERTY PREDICTIONS

In order to ensure that our force and stress predictions obey the aforementioned physical constraints,
we use gradient-based methods to compute force and stress. Specifically, our model directly predicts
the total energy, Ê and we compute the force acting on atom i as F̂i = −∇pi

Ê, where ∇pi
represents

the gradient with respect to the position vector pi. This approach automatically guarantees that:

Proposition 3.4. HIENet predictions F̂i form a conservative vector field.

Proposition 3.5. HIENet predictions satisfy force equilibrium
∑N

i=1 F̂i = 0 when no external
influences are applied.

Similarly, we compute the stress tensor through strain derivatives σ̂ij = 1
V

∂Ê
∂ϵij

, where ϵ is the lattice
strain tensor and V is the volume of the unit cell. We ensure that σ̂ will be symmetric by first
symmetrizing the strain matrix ϵsym = 1

2 (ϵ+ ϵ⊤). All together, our approach guarantees that:

Proposition 3.6. HIENet predictions are O(3) equivariant as defined in Sec. 3.1.

3.5 PROOFS OF SATISFYING PHYSICAL CONSTRAINTS

While previous works (Schütt et al., 2017; 2021; Chen & Ong, 2022; Deng et al., 2023b; Park et al.,
2024b) used gradient-based calculations, none of these works prove that their proposed methods
satisfy desired physical laws. In this section, we rigorously prove each of the previously stated
propositions and show that HIENet satisfies all desirable physical constraints.

Proof of Proposition 3.4. By definition, a vector field v : R → Rn is conservative if there exists a
continuously differentiable scalar field φ such that v = ∇φ.

We compute forces as F̂ = −∇PÊ, so HIENet predictions form a conservative force-field as long as
the energy E is continuously differentiable with respect to the atom positions, pi. Clearly, each of the
operations in HIENet, linear transforms, SiLU (Elfwing et al., 2018) activations, spherical harmonics
Y l(

rji
||rji|| ), and edge embedding functions, are continuously differentiable within the domain of

possible interatomic distances, i.e. for ||rji|| ≠ 0. Importantly, fpoly is specifically chosen so that it is
continuously differentiable and decays to 0 at Rcut (Gasteiger et al., 2021). Because each operation
in HIENet is continuously differentiable, the force predictions therefore form a conservative vector
field, as desired.

Proof of Proposition 3.5. We define edge force as F̂ji = − ∂Ê
∂rji

.

5
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Forces acting on each atom can be decomposed as:

F̂i = − ∂Ê

∂pi
= −

∑
j∈Ni

(
∂Ê

∂rji

∂rji
∂pi

+
∂Ê

∂rij

∂rij
∂pi

)
(10)

= −
∑
j∈Ni

(
∂Ê

∂rji
− ∂Ê

∂rij

)
=
∑
j∈Ni

(
F̂ji − F̂ij

)
(11)

Because the graph construction is symmetric, i.e. rji = rij :

n∑
i=1

F̂i =

n∑
i=1

∑
j∈Ni

(
F̂ji − F̂ij

)
=

∑
(i,j)∈E

(
F̂ji − F̂ij

)
= 0 (12)

Therefore, the forces acting on each atom sum to 0 as desired.

Proof of Proposition 3.6. We provide a sketch of the proof idea with additional details in Appendix G.

HIENet energy predictions are E(3) invariant: the invariant layers are E(3) invariant by construction,
and for the equivariant layers, we only extract the final l = 0 features, which are invariant. Because
the energy predictions are invariant and because we use gradient-based property predictions described
in Sec. 3.4, the force, and stress predictions will be O(3) equivariant as desired.

One important point missing from the existing literature is that the graph-construction method can
prevent the model from satisfying key physical constraints. For example, previous works such as Yan
et al. (2022); Liao et al. (2024) use nearest-neighbor graph construction, which is not continuously
differentiable. In Yan et al. (2024) additional edge vectors are added which will violate the condition
that F̂ji = F̂ij in the proof of Proposition 3.5, causing the forces to not sum to 0.

4 RELATED WORK

In this section, we focus on materials MLIPs and provide related works on conventional computation
methods in Appendix A.2. Recent advances in materials property prediction models (Xie & Grossman,
2018; Choudhary & DeCost, 2021; Yan et al., 2022; Lin et al., 2023; Choudhary et al., 2024; Yan
et al., 2024) and the availability of high-quality materials dynamics datasets (Chen & Ong, 2022;
Deng et al., 2023a; Barroso-Luque et al., 2024) generated using DFT-based algorithms have facilitated
the development of powerful materials MLIPs. Among these MLIPs, models with only invariant
layers, such as M3GNet (Chen & Ong, 2022), CHGNet (Deng et al., 2023a), Orb (Neumann et al.,
2024), and EScAIP (Qu & Krishnapriyan, 2024), are computationally efficient but struggle to produce
physically meaningful and robust predictions, especially on downstream tasks. In contrast, models
with purely equivariant layers, including MACE (Batatia et al., 2023), SevenNet (Park et al., 2024a),
and EquiformerV2 (Barroso-Luque et al., 2024), are more powerful, but also more computationally
expensive. Their extensive use of tensor product operations limits their scalability. Moreover, even
some equivariant models, such as EquiformerV2, violate force conservation, undermining its utility
in realistic materials tasks as seen in Sec. 5.

Different from these existing MLIPs, our proposed HIENet satisfies all key physical constraints
and combines the scalability and efficiency of invariant designs with the robustness and symmetry-
capturing capabilities of equivariant designs. This novel integration offers a promising direction for
the next generation of MLIPs design.

5 EXPERIMENTAL EVALUATIONS

In this section, we evaluate HIENet’s overall modeling capacity as a MLIP. We assess its performance
on the widely used Matbench Discovery benchmark (Riebesell et al., 2023) and Materials Project
Trajectory (MPtrj) dataset (Deng et al., 2023a) in Sec. 5.1 and 5.2. We then provide evaluations on
important downstream materials discovery tasks in Sec. 5.3, where we find that models which do
not satisfy physical constraints perform poorly. In Sec. 5.4 we evaluate computational efficiency

6
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Table 1: Model performance on the Unique Prototype split of the Matbench Discovery benchmark. DAF is
the Discovery Acceleration Factor from Riebesell et al. (2023) which measures model performance to classify
thermodynamic stability. MAE and RMSE are in meV/atom. RMSD is the root mean squared displacement
between predicted and reference structures after relaxation. Missing results from corresponding model marked
by -.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

DAF ↑ 4.93 4.64 4.70 4.63 3.78 3.361
MAE ↓ 41 42 45 48 57 63
RMSE ↓ 84 87 91 87 101 103
R2 ↑ 0.793 0.778 0.756 0.776 0.697 0.689
F1 ↑ 0.777 0.77 0.765 0.76 0.669 0.613
Accuracy ↑ 0.93 0.93 0.92 0.92 0.88 0.85
Precision ↑ 0.754 0.709 0.719 0.708 0.577 0.514
RMSD ↓ 0.080 - 0.101 0.085 0.091 0.095

and demonstrate that HIENet is able to achieve SOTA performance across all tasks while still
providing considerable computational speedups. Finally, in Sec. 5.5 we provide ablations studies
to demonstrate the robustness and generality of our hybrid invariant-equivariant network design.
We provide additional downstream materials discovery evaluations on ab initio molecule dynamics
simulations and phase diagram prediction for alloy design in Appendix B and Appendix C.

Experimental setup. We train our HIENet on the MPtrj dataset (Deng et al., 2023b), which contains
1.58M crystal structures. We split the dataset and use 95% for training and 5% for validation
following Batatia et al. (2023). For fair comparison, we compare with models trained on this dataset
and without any auxiliary data or training objectives. Specifically, we compare against state-of-the-art
methods including EquiformerV2 (Liao et al., 2024), ORB (Neumann et al., 2024), SevenNet (Park
et al., 2024b), MACE (Batatia et al., 2023), and CHGNet (Deng et al., 2023b). Of these baselines, all
but ORB have equivariant force and stress predictions, and all but EquiformerV2 and ORB satisfy the
physical constraints listed in Sec. 3.1. More detailed model settings and training details can be found
in Appendix F. In all tables, we mark best performing model in bold and second best in underlined.

5.1 EVALUATION ON MATBENCH DISCOVERY

Matbench Discovery benchmark (Riebesell et al., 2023) is a comprehensive testbed for crystalline
materials structure optimizations and stability predictions. Notably, the Matbench Discovery bench-
mark structures come from a different distribution from the MPtrj training dataset, thus posing an
out-of-distribution (OOD) generalization problem. As shown in Table 1, HIENet performs best on all
seven metrics and has a significant performance gain on the Discovery Acceleration Factor (DAF).
Additionally, we observe that while ORB performs well on all of the energy-related metrics, it has the
worst performance of all models on RMSD, a metric that measures the models ability to accurately
relax structures to stability. This aligns with out intuitions that downstream tasks such as structural
optimization require models to obey physical symmetries.

5.2 MATERIALS PROJECT TRAJECTORY DATASET

We then evaluate HIENet’s ability to accurately predict energy, force, and stress on a held-out MPtrj
validation set following Deng et al. (2023a); Batatia et al. (2023). SevenNet does not hold-out any
validation split and trains their model on the entire 1.58M structures. To compare with SevenNet,
we also report HIENet performance on the training split. As seen in Table 2, HIENet achieves
state-of-the-art performance across train and validation splits. Notably, HIENet reduces the energy
mean absolute error (MAE) by nearly 50% and the force MAE by 23% compared to the previous
state-of-the-art EquiformerV2.

5.3 EVALUATIONS ON PHONONS AND BULK MODULUS PREDICTION

Phonon frequency evaluation. Phonons are collective excitations of atomic vibrations in crystal
structures with translational symmetry, playing a crucial role in determining the dynamical stability
and thermal conductivity of materials. The calculation of phonon band structure relies on the atomic

7
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Table 3: Error in phonon frequency prediction on structures from Riebesell & Naik (2024). MAE and MSE
computed against each q-point, and RMSE taken as the root of MSE over all q-points and bands. Band structures
shown in Appendix.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

MAE (THz) 0.316 1.359 1.601 0.325 0.529 1.359
MSE (THz2) 0.332 4.65 5.441 0.358 0.837 4.21
RMSE (THz) 0.446 1.657 1.973 0.455 0.699 1.604

Table 4: Error in bulk modulus KV RH prediction across 1,763 crystal structures sampled from Material Project.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

MAE (GPa) ↓ 10.52 24.76 34.7 11.5 28.84 21.67
R2 ↑ 0.93 0.64 -21.9 0.9 -54.1 0.7

forces upon displacement of atoms in different phonon modes along high-symmetry paths in the
first Brillouin zone. Because of this, it is critical for model predictions to obey physical symmetries
and for the forces to be conservative. We perform a phonon band structure calculation workflow
using Phonopy (Togo et al., 2023; Togo, 2023) on the set of structures from Riebesell & Naik (2024).
Additional results and details of our workflow are provided in Appendix D.1.

Table 2: MAE on train and validation splits. Inv. and Eqv. denote
whether the model uses invariant or equivariant message passing
layers. ORB (Neumann et al., 2024) does not report results on
MPtrj and MACE does not report stress performance.

Model Inv. Eqv. Energy ↓ Forces ↓ Stress ↓
(meV/atom) (meV/Å) (kBar)

Train

SevenNet-0 ✗ ✓ 11.5 41 2.78
SevenNet-l3i5 ✗ ✓ 8.3 29 2.33
HIENet ✓ ✓ 5.91 20.76 1.95
Validation

CHGNet ✓ ✗ 33 79 3.51
MACE ✗ ✓ 20 45 -
EquiformerV2 ✗ ✓ 12.4 32.22 2.48
HIENet ✓ ✓ 6.77 24.82 2.31

As shown in Table 3, HIENet out-
performs all baseline models across
all metrics for phonon frequency
calculations. Additionally, while
EquiformerV2 and ORB have good
performance on MPtrj and Matbench
Discovery, they have the worst perfor-
mance among all models on this task.
As previously mentioned, this may be
because this task requires models pre-
dictions to obey physical constraints
and be physically meaningful in or-
der for the phonon calculations to be
accurate.

Evaluation on bulk modulus. Model
efficacy on zero-shot prediction of ma-
terial properties was further evaluated on calculations of the fourth-order elastic tensor and the
corresponding VRH average bulk modulus KV RH (Hill, 1952). A test set was generated by querying
the Materials Project Database (Jain et al., 2013) for entries with between 1 and 6 sites that also had
reported elasticity values. Following Batatia et al. (2023), we remove entries with highly unphysical
bulk modulus reference values less than -50 GPa or greater than 600 GPa as well as those resulting
in a calculated singular matrix, resulting in a final evaluation set of 1,763 crystal systems. Elastic
tensors and bulk moduli were computed using the MatCalc’s Elasticity module (Liu et al., 2024).
Additional details on our workflow and dataset are provided in Appendix D.2.

As shown in Table 4, HIENet outperforms all models on MAE and R2. In fact, HIENet and SevenNet
are the only models capable of achieving reasonable accuracy, demonstrating both the difficulty of
this task and the robustness of our model. We provide parity plots for all models in Appendix D.2.

5.4 HIENET EFFICIENCY

In addition to demonstrating improved performance across all benchmarks and downstream tasks,
we show that HIENet is more computationally efficient than competing equivariant models. This is
highly important for downstream materials discovery applications such as structural relaxation and
random structure search, which require thousands of forward passes of the model. As seen in Table 5,
HIENet is 90% faster than SevenNet-l3i5 and over 140% faster than EquiformerV2, all while having
better performance than both models. Both EquiformerV2 and SevenNet exclusively use equivariant
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Figure 3: Hybrid Architecture Ablation. Model
throughput measured on an Nvidia H100 GPU with
a batch size of 128. EqvNet uses only equivariant
message passing layers and InvNet uses only invari-
ant layers. Validation loss measured on the MPtrj
validation set. Hybrid invariant-equivariant models
(HIENet) consistently outperform equivariant-only
and invariant-only models across all model sizes.
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Figure 4: Hybrid Architecture Generality. Model
throughput measured on an Nvidia H100 GPU with a
batch size of 128. InvSevNet represents the SevenNet
model (Park et al., 2024b) with an additional invariant
message passing layer. InvSevNet outperforms Seven-
Net across all tested model sizes, but still performs
worse than HIENet.

message passing layers, which limits the throughput and scalability of these models. At the same
time, models without O(3) equivariant force and stress predictions, such as ORB, may be faster, but
will perform poorly on realistic materials discovery tasks, as shown in Sec. 5.1 and 5.3.

5.5 GENERALITY AND ROBUSTNESS OF HYBRID NETWORK DESIGN

Table 5: Number of parameters and inference through-
put of HIENet compared with top performing equivariant
models. Throughput evaluated using random samples
from the MPtrj dataset on a single Nvidia A100 GPU
with batch size 1.

Model Num. of Param. Throughput ↑
(Samples / sec.)

SevenNet-l3i5 1,171,327 11.9
EquiformerV2 31,207,434 9.4
HIENet 7,860,155 22.6

Hybrid architecture ablation. We provide
an ablation study to demonstrate that our hy-
brid invariant-equivariant architecture outper-
forms invariant-only and equivariant-only mod-
els. In Figure 3 we see that HIENet outperforms
EqvNet (only equivariant layers) and InvNet
(only invariant layers) across a range of model
sizes. Additionally, we see that InvNet consis-
tently performs poorly, which aligns with our in-
tuitions that equivariant message passing layers
are important to capture high-order atomic inter-
actions and accurately predict force and stress.

Hybrid architecture generality. To show that our idea of combining invariant and equivariant
layers works well across different model designs, we add our invariant layer to SevenNet to form a
hybrid model based on their equivariant designs. As shown in Figure 4, this InvSevNet consistently
outperforms the base SevenNet even when controlling for model speed. Additionally, we observe
that HIENet still outperforms the InvSevNet model across all tested model sizes. Because our hybrid
invariant-equivariant works well with different models, we believe this approach provides a general
new direction to design powerful and efficient MLIP models.

6 CONCLUSION, LIMITATIONS, AND SOCIETAL IMPACTS

We propose HIENet, a machine learning interatomic potential for materials that demonstrates the
importance of (1) integrating invariant and equivariant message-passing layers and (2) satisfying phys-
ical constraints for powerful, efficient MLIPs. HIENet achieves state-of-the-art performance across
a range of benchmarks and applications, while being significantly faster than existing equivariant
models. We provide ablation studies to further demonstrate generality and robustness of our hybrid
design. Current limitations include (1) focusing primarily on materials discovery, while extensions to
other science domains are underexplored, and (2) computational constraints preventing training on
hundred-million-scale datasets where HIENet’s full potential could be realized. Future work will
explore these directions. The societal impacts of novel materials discovery may apply to this work.

9
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7 ETHICS STATEMENT

The potential benefits and risks associated with AI-powered novel materials discovery may apply to
this work.

8 REPRODUCIBILITY STATEMENT

The code for HIENet is included in the supplemental materials to support the reproducibility of the
proposed method.
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A MOLECULAR DYNAMICS SIMULATION

A.1 MOLECULAR DYNAMICS SIMULATIONS AND STRUCTURAL OPTIMIZATION OF
MATERIALS

Molecular dynamics simulation. Molecular dynamics (MD) simulation (Alder & Wainwright, 1959)
is an important computational method to compute structural, chemical, and thermodynamic properties,
which allows for in-depth mechanistic understanding and materials discovery. MD simulation
essentially solves Newton’s equations of motion for both atomic positions and cell parameters of a
material system under a specific thermodynamic ensemble. Specifically, the simulation workflow
relies on iterative computation of the total system energy E, atomic forces Fi, and stress tensor σ.
For a given starting structure configuration, E, Fi, and σ can be calculated using classical methods
or machine learning interatomic potentials. The acceleration, velocity, and position of atoms can
be subsequently determined over a time step through numerical integration methods such as the
Velocity-Verlet algorithm under a thermodynamic ensemble. The atomic forces of the new structure
will then be updated for the next time step. By iterative numerical integration, the system will evolve
under the thermodynamic ensemble and interatomic interactions determined by the force field. Stress
also plays a crucial role in MD simulations when controlling pressure, such as in an NPT ensemble
(i.e. under the constant number of particle, constant pressure, and constant temperature condition).
In order to obtain statistically averaged physical quantities, such calculation needs to be performed
iteratively for many time steps, hence computational efficiency becomes critical.

Structural optimization. Different from molecular dynamics, structural optimization usually aims
to relax the structure and/or cell parameters to their ground state or metastable state. It also involves
the calculation of energy, force and stress, which are subsequently used by optimization algorithms
or optimizers to update the structure, such as Conjugate Gradient algorithm (CG) (Hestenes et al.,
1952) and Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) (Fletcher, 2000). This process is
repeated until the final convergence criteria is reached,

A.2 CONVENTIONAL COMPUTATION METHODS

Several kinds of simulation techniques are widely used in computational materials science at various
scales, such as Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965),
MD simulations (Alder & Wainwright, 1959), and Monte Carlo (MC) simulations (Metropolis et al.,
1953). DFT is a quantum mechanical method that can be used to simulate material systems at the
electronic level. Its key principle is that the ground-state energy of a system can be expressed as a
functional of electron density, which reduces 3Ne-dimensional interacting many-body system down
to a fictitious 3-dimensional non-interacting system. However, DFT is computationally expensive
and is limited to small systems. MD simulation method has already been elaborated in Appendix A.1
where a force field is required for calculating energy, force, and stress. There are two types of MD
simulations depending on the underlying force field: ab initio MD (AIMD) simulations where atomic
forces are calculated by quantum mechanical method such as DFT, and classical MD simulations
where empirical force fields are used to calculate atomic forces. AIMDs are relatively more accurate
but computationally expensive, limiting its application to small systems. Classical MD simulations
are computationally efficient and can handle large systems, but very often they either lack the accuracy
required for highly precise simulations, or cannot be transferred to different simulation conditions.
MC simulations are based on statistical mechanics which rely on iterative energy calculations and
configuration sampling and updates. Another key challenge is that both classical MD and MC
simulations depend on the availability of empirical force fields for the system of interest. Therefore,
it is highly desirable to develop machine learning interatomic potentials that can provide accurate and
efficient calculations of energy, force, and stress of arbitrary materials system, which will significantly
advance materials science, physics and chemistry and allow for studying fundamental mechanism
and discovering new materials.

B EVALUATIONS ON Ab Initio MOLECULAR DYNAMICS

As mentioned in Appendix A.1, Ab initio molecular dynamics (AIMD) simulation is an incredibly
important application of machine learning interatomic potentials (MLIPs). Here we evaluate HIENet
and baseline MLIPs on AIMD simulations.
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Figure 5: Evaluation of energy, force, and stress predictions for 64-atom Si system calculated by
foundation models: a) HIENet, b) SevenNet-l3i5, c) MACE-MP-0, d) CHGNet, and e) eqV2 31M mp
with respect to the DFT results.
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Table 6: MLIP prediction accuracy across 4,000 configurations of Si systems. Energy MAE is in
meV/atom, Force MAE is in meV/Å, and Stress MAE is in kBar. Best performing model for each
metric in bold and second best underlined.

HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

Energy MAE 2 19 48 10 55 79
R2 0.995 0.794 -0.344 0.932 -0.762 -2.617

Force MAE 62 29 65 98 208 267
R2 0.989 0.998 0.988 0.974 0.885 0.805

Stress MAE 0.995 2.065 2.693 2.171 2.918 4.224
R2 0.938 0.706 0.507 0.652 0.466 -0.102

To evaluate MLIPs performance, we generate a testing dataset consisting of silicon (Si) systems
containing 64 atoms in a 2× 2× 2 supercell. A Γ-centered Monkhorst–Pack k-point sampling grid
of 2× 2× 2 (Monkhorst & Pack, 1976) was used. AIMD simulations were performed in the NVT
ensemble with a Nosé-Hoover thermostat at four temperatures of 300, 500, 700, and 900 K with
time step of 1 fs for 1,000 steps at each temperature. In total, 4,000 configurations were generated
for model evaluation. Since configurations are sampled from a variety of temperatures, this task
represents an out-of-distribution generalization problem compared to the MPtrj training dataset.
We select Si systems because it is a representative material of great interest and importance to the
semiconductor industry.

AIMD simulations were conducted using DFT as implemented in VASP with the PBE exchange-
correlation energy functional. A plane-wave basis set with a cutoff energy of 520 eV was used to
ensure numerical accuracy in the simulations. To ensure consistency between training and evaluation,
all input settings were generated using the MPRelaxSet class.

For each system configuration, we compute MLIP energy, forces, and stress and compare with
DFT reference data. As shown in Table 6, HIENet achieves vastly better accuracy on energy and
stress performance compared to baseline models, though EquiformerV2 has better accuracy on
force predictions. Parity plots for each model are shown in Fig. 5, where we observe that HIENet
consistently performs well across all system configurations.

C EVALUATIONS ON ALLOYS

We also evaluate MLIP performance on phase diagram calculations using the Alloy Theoretic Auto-
mated Toolkit (ATAT) (Van De Walle et al., 2002) framework following the approach outlined in Zhu
et al. (2025). Phase diagrams are graphical representations of the state of materials under arbitrary
conditions and accurately predicting them is a necessary condition for the further development of
complex materials (Arróyave, 2022).

Starting with the simple Au-Pt binary systems, we first generate Special Quasirandom Structures
(SQS) (Zunger et al., 1990) of FCC Au-Pt with different compositions using ATAT, with 32 atoms in
a 2× 2× 2 supercell—the SQS structures are designed to mimic disordered alloys within a certain
precision. Then, the relaxation and free energy calculations are carried out using ab initio calculations
and MLIPs. For all ab initio calculations, VASP (Kresse & Hafner, 1993; 1994; Kresse & Furthmüller,
1996a;b) is used with the PBE exchange-correlation functional and PAW pseudopotentials at the
level of GGA (Blöchl, 1994; Perdew et al., 1996). The k-point density is set to 8,000 k-points per
reciprocal atom for all calculations.

In Figure 6, we plot the formation energies of the Au-Pt FCC binary systems calculated by HIENet
and baseline MLIPs. We see that HIENet shows strong agreement with first-principles DFT results as
our model predictions closely match the true formation energy across all Au concentrations.

In addition, although all the models successfully give a positive formation energy for the SQS’s,
predicting the miscibility gap in the phase diagram, most of the models including CHGNet, MACE,
ORB, GRACE and EquiformerV2 fail to reproduce the correct ordering of the formation energies:
∆G (xAu = 0.5) > ∆G (xAu = 0.25) > ∆G (xAu = 0.75), as shown in Table 7. Such ordering of
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Figure 6: Formation energies per atom of the Au-Pt binary FCC system calculated with models
trained on the MPtrj dataset. eqV2 refers to EquiformerV2 and SevenNet is the SevenNet-l3i5 model.

Table 7: Ordering of Au-Pt formation energies calculated with different potentials (1 for the lowest
formation energy and 3 for the highest). Ideally, MLIP predictions should match the VASP ordering
of formation energies.

Model Ordering of Formation Energies
∆G (xAu = 0.25) ∆G (xAu = 0.5) ∆G (xAu = 0.75)

CHGNet 1 2 3
MACE 1 3 2
ORB 1 2 3
SevenNet-l3i5 2 3 1
GRACE 1 3 2
EquiformerV2 1 3 2
HIENet 2 3 1

VASP 2 3 1

formation energies is highly important in thermodynamics and materials science, as it governs the
stability of the phases.

Finally, we demonstrate how HIENet can be used for multi-element systems. In Figure 7, we present
a ternary phase diagram for the Cr-Mo-V system at 1,000 K calculated with ATAT and HIENet. The
ternary phase diagram calculation correctly identifies the BCC phase miscibility gap in the Cr-Mo
region.

D EVALUATIONS ON PHONON AND BULK MODULUS

D.1 PHONON FREQUENCY EVALUATION

As the calculations of the Material Project phonon dataset were performed using the PBEsol exchange-
correlation energy functional, it would be inconsistent to compare them with the models trained
on the data using the Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) exchange-correlation
energy functional. PhononDB, a database of phonon calculations including band structure, DOS,
and thermal properties for over 10,000 materials evaluated using the PBE functional, provides a
more effective reference for comparison, hence was used as the reference for the evaluation as
detailed below. Phonon frequencies and corresponding band structures were computed using the
Phonopy package via the finite displacement method (Togo et al., 2023; Togo, 2023) where MLIPs
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Figure 7: Cr-Mo-V ternary phase diagram at 1,000 K calculated with ATAT and HIENet. Only the
BCC phase is included in the calculation. The phase diagram is plotted with the Pandat (Chen et al.,
2002) software package.

were employed to compute the dynamical matrices and corresponding phonon band structures of
each crystal structure. To ensure direct comparison between PhononDB and calculated data, the
Phonopy objects were initialized with the same unit cell and supercell matrices as used in PhononDB
calculations. Additionally, the primitive cell matrix was included if defined. Displaced supercells
were generated using a default displacement of 0.01 Å and the corresponding forces were evaluated
with our model. High-symmetry k-path in the Brillouin zone was computed using SeeK-Path (Hinuma
et al., 2017; Atsushi Togo & Tanaka, 2024). Using this workflow, the high-symmetry k-paths and the
sampling grids were identical between the reference phonon band structure from PhononDB and the
predicted band structure from our model.

In addition to the frequency evaluation in Table 3, we provide several phonon band structure diagrams
calculated using HIENet in Figure 8 for Si, CdTe, Cs2KInF6, and GaAgS2 systems. We observe that
the HIENet-predicted phonon band structures of Si exhibits reasonable accuracy, and the phonon band
structures for CdTe, Cs2KInF6, and GaAgS2 are in very good agreement with the PhononDB DFT
results across the entire frequency range and high-symmetry k-paths. Furthermore, the phonon band
structure of Cs2KInF6 contains negative phonon frequencies, indicating the dynamical instability of
the crystal structure despite its local stability. Impressively, the HIENet predictions agree with the
DFT data extremely well even in this negative frequency regime across all high-symmetry pathways.
As such, HIENet can be a powerful MLIP for predicting a materials thermal conductivity and
structural stability.

D.2 BULK MODULUS EVALUATION

To compute bulk modulus, we need to calculate the elastic tensor for each crystal. The latter is
calculated by first relaxing the input structure to the default force tolerance of 0.1 eV/Å using each
MLIP. The relaxed structure is then deformed with strains of (±0.005, ±0.01) applied to normal
modes and strains of (±0.06, ±0.03) applied to shear modes for a total of 4 strain magnitudes for
each of the 6 strain modes. The resulting stress-strain values are fit linearly to compute the elastic
tensor. The reference elastic constants in the Materials Project were calculated using DFT with
the PBE functional in the generalized gradient approximation (GGA) (Langreth & Mehl, 1983) as
implemented the Vienna Ab-initio Simulation Package (VASP) (Kresse & Furthmüller, 1996b). For
metallic entries, a plane wave cutoff energy of 700 eV with k-point density of 7,000 per reciprocal
atom was used. For non-metallic entries such as insulators or semiconductors, a plane wave cutoff
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a) b)

c) d)

Figure 8: Phonon band structures for a) Si, b) CdTe, c) Cs2KInF6, and d) GaAgS2 calculated using
HIENet compared with reference data in the PhononDB database.
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a)
 b)


c)
 d)


e)
 f)


Figure 9: Comparison of bulk modulus KV RH calculated by a) HIENet, b) SevenNet-l3i5, c) ORB,
d) MACE, e) EquiformerV2, and f) CHGNet with the reference data in the Materials Project database.

energy of 700 eV was once again used with a k-point density of 10,000 per reciprocal atom (De Jong
et al., 2015). In addition to the main results reported in Table 4, we provide parity plots for each
model in Fig. 9.

E ADDITIONAL ABLATION RESULTS

To empirically justify why we use O(3) equivariant crystal graph representations instead of the
geometrically complete but SO(3) equivariant crystal graphs from Yan et al. (2024), we provide an
additional ablation study in Table 8 where we include the additional periodic encoding from Yan et al.
(2024). We observe that SO(3) equivariant HIENet performs slightly worse, which aligns with our
intuitions as the underlying DFT algorithm is O(3) equivariant.

Additionally. we investigate different arrangements of message passing layers in Table 9. ’Inv.
First’ represents our baseline HIENet architecture of applying one invariant layer followed by several
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Table 8: Mean absolute errors on MPtrj validation set for HIENet with O(3) and SO(3) equivariant
crystal graphs. Models trained for 20 epochs on the MPtrj dataset. Best performing model in bold.

Equivariance Energy ↓ Force ↓ Stress ↓
(meV/atom) (meV/Å) (kBar)

SO(3) 19.13 56.12 3.98
O(3) 16.26 49.29 3.48

Table 9: Mean absolute errors on MPtrj validation set for HIENet with different orders of message
passing layers. Models trained for 20 epochs on the MPtrj dataset. Best performing model in bold.

MP Layer Energy ↓ Force ↓ Stress ↓
Ordering (meV/atom) (meV/Å) (kBar)

Mixed 50.35 94.62 6.41
Equiv. First 32.26 77.22 4.94
Inv. First 16.26 49.29 3.48

equivariant layers, ’Equiv. First’ applies several equivariant layers followed by one invariant layer, and
’Mixed’ applies alternating invariant and equivariant layers. The invariant-first ordering consistently
outperforms other configurations, validating our architectural design choice. We hypothesize that
applying invariant layers before equivariant layers builds more informative node representations that
enable the equivariant layers to be more effective than in equivariant-only models.

Table 10: Hyperparameter sensitivity analysis on MPtrj validation set. Models trained for 10 epochs.
Best performing model in bold and second best underlined.

Cutoff (Å) Lmax
Speed ↑ Energy ↓ Forces ↓ Stress ↓

(samples/sec) (meV/atom) (meV/Å) (kBar)

4 3 17.10 16.27 45.51 3.31
5 2 18.75 14.16 44.12 3.21
5 3 15.58 13.92 42.83 3.19
5 4 10.64 12.55 40.19 3.06
6 3 12.52 12.95 40.86 3.12

Furthermore, We evaluate the sensitivity of HIENet to key architectural hyperparameters. As shown
in Table 10, increasing the cutoff radius and maximum spherical harmonics order Lmax consistently
improves model accuracy but reduces inference speed. The chosen combination for the final model
of 5Å cutoff radius and Lmax = 3 provides a good balance between accuracy and computational
efficiency. All tested configurations demonstrate stable training convergence.

F MODEL SETTINGS AND EXPERIMENTAL DETAILS

F.1 HIENET SETTINGS

HIENet consists of 1 invariant and 3 equivariant message passing layers. For the invariant message
passing layers, we use a hidden dimension of 512 for node features and a single attention head.
The equivariant layers use a representation that consists of 512 scalar channels with l = 0, 128
vector channels with l = 1, 64 higher-order tensor channels with l = 2, and 32 higher-order tensor
channels with l = 3. We use 8 radial Bessel basis functions for distance encoding and a polynomial
envelope (Gasteiger et al., 2020) with p = 6. We use SiLU and sigmoid activation functions (Elfwing
et al., 2018) throughout the network to ensure smooth and continuously differentiable gradients. To
prevent overfitting, we regularize the model by applying dropout to the MLPs that operate on scalar
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features in both invariant and equivariant message passing layers. Specifically, we employ a dropout
rate of pattn = 0.1 for MLPs involved in attention calculations, while using a lower rate of p = 0.06
for all other MLPs in the network. Additionally, we scale the input energies by the root mean square
(RMS) of forces from the training dataset and shift by element-wise reference energies from the same
dataset.

Following Batatia et al. (2023), we split the Materials Project Trajectory (MPtrj) Dataset (Deng
et al., 2023a) into training (95%) and validation (5%) sets. We train the model for 250 epochs on a
platform with 2 AMD EPYC 7J13 64-Core Processors (240 cores total), 1.7 TiB DDR4 memory, and
8 NVIDIA A100-SXM4-80GB GPU accelerators. We use a total batch size of 384 (48 per GPU),
which results in the model taking 118 minutes per training epoch and 6 minutes per validation epoch.

We provide the code used for training in the supplementary materials.

F.2 OPTIMIZATION

We optimize HIENet using the AdamW optimizer (Loshchilov & Hutter, 2019) with weight decay of
0.001. The learning rate follows a cosine annealing schedule (Loshchilov & Hutter, 2022) with an
initial warm-up phase to stabilize early training.

The loss function combines energy, force, and stress predictions with different weighting factors as:
L = λELE + λFLF + λσLσ (13)

where LE , LF , and Lσ represent the Huber losses for energy, force, and stress predictions, respec-
tively, with δ = 0.01. We set the weighting coefficients λE = 1.0, λF = 1.0, and λσ = 0.01.

To improve model generalization and training stability, we additionally maintain an exponential
moving average (EMA) of model parameters with a decay rate of 0.999.

The hyperparameters for both the model architecture and optimization are summarized in Table 11.

Table 11: Hyperparameters used for model training.

Hyperparameter Value

Optimizer AdamW
Learning rate scheduler Cosine Annealing
Maximum learning rate 0.01
Minimum learning rate 0.000005
Warmup epochs 0.1
Warmup factor 0.2
Number of epochs 250
Batch size 48
Weight decay 0.001
Dropout rate, p 0.06
Attention dropout rate, pattn 0.1
Energy loss weight, λE 1.0
Force loss weight, λF 1.0
Stress loss weight, λσ 0.01
Model EMA Decay 0.999

F.3 ENVELOPE FUNCTION

As mentioned in Sec. 3.2, we use the polynomial envelope function (Gasteiger et al., 2021):

fpoly(r) = 1− (p+ 1)(p+ 2)

2
dp + p(p+ 2)dp+1 − p(p+ 1)

2
dp+2 (14)

where p ∈ Z, 0 < p. In practice, we select p = 6. It is critical to have such an envelope function in
order to ensure that the MLIP energy predictions are continuously differentiable with respect to atom
positions. The polynomial envelope was selected because the first and second derivatives of hji will
then go to 0 at the cutoff radius Rmax.
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G DETAILED EQUIVARIANCE PROOF

Here we provide a more rigorous and detailed proof of the Proposition 3.6] that pertains to the O(3)
equivariance of HIENet’s predictions.

Proof of Proposition 3.6. First, the radius-based graph construction ϑgraph described in Sec. 3.2 is
O(3) equivariant:

ϑgraph(Z,RP+ b,RL) = Rϑgraph(Z,P,L)

This is because the radius-based graph construction only depends on the relative positions between
atoms and the resulting displacement vectors rji will rotate accordingly.

Second, the proposed HIENet message passing layers ϑHIENet are E(3) invariant for the final energy
prediction. The invariant message passing layers are E(3) invariant by construction because they
only operate on the magnitude ||rji|| and for the equivariant message passing layers, we only extract
the final l = 0 features, which are invariant by the definition of the Clebsch-Gordan tensor product.
Because of this:

Ê(Z,RP+ b,RL) = ϑHIENet(ϑgraph(Z,RP+ b,RL)) = ϑHIENet(Rϑgraph(Z,P,L)) (15)

= ϑHIENet(ϑgraph(Z,P,L)) = Ê(Z,P,L), (16)

Therefore, HIENet energy predictions are E(3) invariant. Based on the physics informed property
predictions described in Sec. 3.4, we then have:

F̂i(Z,RP+ b,RL) = −∇Rpi
Ê(Z,P,L) = −R∇pi

Ê(Z,P,L) = RF̂i(Z,P,L), (17)

σ̂(Z,RP+ b,RL) =
1

V
∇RϵijRT Ê =

1

V
R∇ϵij ÊRT = Rσ̂(Z,P,L)RT , (18)

therefore energy, force, and stress each transform appropriately under rototranslation and HIENet
predictions are O(3) equivariant.

H LLM USAGE

We have used LLMs to polish our paper writing. Specifically, we have used LLMs to refine wording
and grammar throughout the paper. The research contributions, experimental design, analysis, and
conclusions are our own work.

I LICENSES FOR EXISTING ASSETS

We have used datasets including the Materials Project Trajectory (MPtrj) dataset (Deng et al., 2023a)
with MIT License and Materials Project Database (Jain et al., 2013) with the Creative Commons
Attribution 4.0 International License. For evaluations, we have used the Matbench Discovery
benchmark (Riebesell et al., 2023) with MIT License, Phonopy and Togo PhononDB Database (Togo
et al., 2023; Togo, 2023) with the BSD 3-Clause License, Alloy Theoretic Automated Toolkit (ATAT)
(Van De Walle et al., 2002) with the Creative Commons Attribution-NoDerivatives 4.0 International
License, and MatCalc’s Elasticity module (Liu et al., 2024) with the BSD 3-Clause License. For
model comparisons, we included EquiformerV2 (Liao et al., 2024) with the MIT License, ORB
(Neumann et al., 2024) with the Apache License Version 2.0, SevenNet (Park et al., 2024b) with
the GNU General Public License Version 3.0, GRACE (Bochkarev et al., 2024) with the Academic
Software Licence, MACE (Batatia et al., 2023) with the MIT License, and CHGNet (Deng et al.,
2023b) with the BSD 3-Clause License.
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