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Abstract

Graphical User Interface (GUI) agents, pow-001
ered by Large Foundation Models, have002
emerged as a transformative approach to au-003
tomating human-computer interaction. These004
agents autonomously interact with digital sys-005
tems via GUIs, emulating human actions such006
as clicking, typing, and navigating visual ele-007
ments across diverse platforms. Motivated by008
the growing interest and fundamental impor-009
tance of GUI agents, we provide a comprehen-010
sive survey that categorizes their benchmarks,011
evaluation metrics, architectures, and training012
methods. We propose a unified framework that013
delineates their perception, reasoning, planning,014
and acting capabilities. Furthermore, we iden-015
tify important open challenges and discuss key016
future directions. Finally, this work serves as a017
basis for practitioners and researchers to gain018
an intuitive understanding of current progress,019
techniques, benchmarks, and critical open prob-020
lems that remain to be addressed.021

1 Introduction022

Large Foundation Models (LFMs) are among the023

most transformative technologies that have recently024

changed the entire research landscape of AI as025

well as our everyday lives (Naveed et al., 2023;026

Wang et al., 2024d). Recently, we have witnessed a027

paradigm shift from using LFMs purely as con-028

versational chatbots (Touvron et al., 2023; Chi-029

ang et al., 2023; Dam et al., 2024) to employing030

them for performing actions and automating use-031

ful tasks (Wang et al., 2024b; Zhao et al., 2023;032

Yao et al., 2023; Shinn et al., 2023; Shen et al.,033

2024b; Cheng et al., 2024c). In this direction, one034

approach stands out: leveraging LFMs to inter-035

act with digital systems, such as desktops, mobile036

phones, or web browsers, through Graphical User037

Interfaces (GUIs) in the same way humans do—for038

example, by controlling the mouse and keyboard039

to interact with visual elements displayed on a de-040

vice’s monitor (Iong et al., 2024; Hong et al., 2023;041

Lu et al., 2024; Shen et al., 2024a). 042

This approach holds great potential, as GUIs are 043

ubiquitous across almost all computer devices that 044

humans interact with in their work and daily lives. 045

However, deploying LFMs in such environments 046

poses unique challenges, such as dynamic layouts, 047

diverse graphical designs across different platforms, 048

and grounding issues—for instance, fine-grained 049

recognition of elements within a page that are often 050

small, numerous, and scattered (Liu et al., 2024b). 051

Despite these challenges, many early efforts have 052

shown significant promise (Lin et al., 2024; Cheng 053

et al., 2024a), and growing interest from major 054

players in the field is becoming evident1. 055

Given the immense potential and rapid progress 056

in this field, we propose a unified and systematic 057

framework to categorize the various types of con- 058

tributions within this space. 059

Organization of this Survey. We begin our survey 060

by clearly defining the term “GUI Agent,” followed 061

by a traditional RL formalism of GUI Agent tasks 062

in Section 2. We then summarize different datasets 063

and environments in Section 3 to provide readers a 064

clearer picture of the kinds of problem settings cur- 065

rently available. We summarize various GUI Agent 066

architectural designs in Section 4, followed by dif- 067

ferent ways of training them in Section 5. Lastly, 068

we discuss open problems and future prospects of 069

GUI Agent research in Section 6. 070

2 Preliminaries 071

Definition 1 (GUI AGENT). An intelligent au- 072

tonomous agent that interacts with digital plat- 073

forms, such as desktops, or mobile phones, through 074

their Graphical User Interface. It identifies and 075

observes interactable visual elements displayed on 076

the device’s screen and engages with them by click- 077

ing, typing, or tapping, mimicking the interaction 078

patterns of a human user. 079

1Anthropic, Google DeepMind, OpenAI
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3 Benchmarks080

GUI agents are developed and evaluated on various081

platforms, including desktops, mobile phones, and082

web browser environments. This section summa-083

rizes benchmarks for all of these platform types.084

When evaluating GUI Agents, it is crucial to dis-085

tinguish between an environment and a dataset.086

A dataset is a static collection of data point, where087

each consists of several input features (e.g., a ques-088

tion, a screenshot of the environment, or the current089

state of the environment) and some output features090

(e.g., correct answers or actions to be taken). A091

dataset remains unchanged throughout the evalua-092

tion process. In contrast, an environment is an in-093

teractive simulation that represents a real-world sce-094

nario of interest. A GUI environment includes the095

GUI interface of a mobile phone or a desktop. Un-096

like datasets, environments are dynamic—actions097

taken within the environment can alter its state,098

hence, allowing modeling the problem as Markov099

Decision Processes (MDPs) or Partially Observable100

MDPs (POMDPs), with defined action, state, and101

observation spaces, and a state transition function.102

Another critical dimension of the existing bench-103

marks for GUI Agentsis the distinction between the104

open-world and closed-world assumptions. Closed-105

world datasets or environments presume that all106

necessary knowledge for solving a task is con-107

tained within the benchmark itself. In contrast,108

open-world benchmarks relax this constraint, al-109

lowing relevant information required to complete a110

task to exist outside the benchmark.111

3.1 Static Datasets112

3.1.1 Closed-World Datasets113

RUSS dataset introduces real-world instructions114

mapped to a domain-specific language (DSL)115

that enables agents to execute web-based tasks116

with high precision (Xu et al., 2021). Similarly,117

Mind2Web expands the task set to 2000 diverse118

tasks (Deng et al., 2023), and MT-Mind2Web119

adapts into conversational settings with multi-turn120

interactions (Deng et al., 2024). In contrast, TURK-121

INGBENCH focuses on common micro tasks in122

crowdsourcing platforms, featuring a rich mix of123

textual instructions, multi-modal elements, and124

complex layouts (Xu et al., 2024). Focusing on125

visual and textual interplay, VisualWebBench in-126

cludes OCR, element grounding, and action pre-127

diction tasks, which require fine-grained multi-128

modal understanding (Liu et al., 2024b). Similarly,129

ScreenSpot focuses on GUI grounding for click- 130

ing and typing directly from screenshots (Cheng 131

et al., 2024b). Complementing this, WONDER- 132

BREAD extends evaluation to business process 133

management tasks, emphasizing workflow docu- 134

mentation and improvement rather than automa- 135

tion alone (Wornow et al., 2024). EnvDistraction 136

dataset explores agent susceptibility to distractions 137

in GUI environments, offering insights into faithful- 138

ness and resilience under cluttered and misleading 139

contexts (Ma et al., 2024). NaviQAte introduces 140

functionality-guided web application navigation, 141

where tasks are framed as QA problems, pushing 142

agents to extract actionable elements from multi- 143

modal inputs (Shahbandeh et al., 2024). 144

Evaluating on static closed-world datasets is par- 145

ticularly convenient, thanks to their lightweight 146

and ease in setting up compared to environments. 147

They are also especially valuable for fine-grained 148

evaluation, reproducibility, and comparing models 149

under identical conditions. However, they lack the 150

dynamism of real-world applications, as models 151

are tested on fixed data rather than adapting to new 152

inputs or changing scenarios. 153

3.1.2 Open-World Datasets. 154

While most existing datasets are designed under 155

the closed-world assumption, several datasets do 156

not follow this paradigm. GAIA dataset tests agent 157

integration diverse modalities and tools to answer 158

real-world questions, often requiring web browsing 159

or interaction with external APIs (Mialon et al., 160

2023). WebLINX emphasizes multi-turn dialogue 161

for interactive web navigation on real-world sites, 162

enhancing agents’ adaptability and conversational 163

skills (Lù et al., 2024). 164

Evaluation on static open-world datasets bal- 165

ances the ease of setting up an evaluation setting 166

with realism since the agents interact with real- 167

world websites. However, due to the nature of real- 168

world websites, they are often unpredictable and 169

prone to changes, which makes it more challenging 170

to reproduce and compare with prior methods. 171

3.2 Interactive Environments 172

3.2.1 Closed-World Environments. 173

Closed-world interactive environments provide 174

controlled and reproducible settings for evaluat- 175

ing agent capabilities. MiniWoB offers synthetic 176

web tasks requiring interactions with webpages us- 177

ing mouse and keyboard inputs (Shi et al., 2017). It 178

focuses on fundamental skills like button clicking 179
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and form filling, providing a baseline for evaluat-180

ing low-level interaction. CompWoB extends Mini-181

WoB with compositional tasks, requiring agents to182

handle multi-step workflows and generalize across183

task sequences (Furuta et al., 2023). This intro-184

duces dynamic dependencies that reflect real-world185

complexity. WebShop simulates e-shopping tasks186

that challenge agents to navigate websites, process187

instructions, and make strategic decisions (Yao188

et al., 2022). WebArena advances realism with189

self-hosted environments across domains like e-190

commerce and collaborative tools, requiring agents191

to manage long-horizon tasks (Zhou et al., 2023b).192

VisualWebArena adds multimodal challenges, inte-193

grating visual and textual inputs for tasks like navi-194

gation and object recognition (Koh et al., 2024a).195

Shifting to enterprise settings, WorkArena eval-196

uates agent performance in complex UI environ-197

ments, focusing on knowledge work tasks in Ser-198

viceNow platform (Drouin et al., 2024). ST-199

WebAgentBench incorporates safety and trustwor-200

thiness metrics, assessing policy adherence and201

minimizing risky actions, critical for business de-202

ployment (Levy et al., 2024). Lastly, VideoWe-203

bArena introduces long-context video-based tasks,204

requiring agents to understand instructional videos205

and integrate them with textual and visual data to206

complete tasks. It emphasizes memory retention207

and multimodal reasoning (Jang et al., 2024).208

Closed-world environments serve as evaluation209

platforms that mimic the dynamism of real-world210

environments while offering stability and repro-211

ducibility. However, setting up such benchmarks is212

often challenging, as they typically require consid-213

erable storage space and engineering skills.214

3.2.2 Open-World Environments.215

Open-world interactive environments challenge216

agents to navigate dynamic, real-world websites217

with evolving content and interfaces. WebVLN218

introduces a novel benchmark for vision-and-219

language navigation on websites, requiring agents220

to interpret visual and textual instructions to com-221

plete tasks such as answering user queries (Chen222

et al., 2024). It emphasizes multimodal reason-223

ing by integrating HTML structure with rendered224

webpages, setting a foundation for realistic web225

navigation. WebVoyager leverages LLM to per-226

form end-to-end navigation on 15 real websites227

with diverse tasks (He et al., 2024b). Its multi-228

modal approach integrates screenshots and HTML229

content, enabling robust decision-making in dy-230

namic online settings. AutoWebGLM optimizes 231

web navigation through HTML simplification and 232

reinforcement learning (Lai et al., 2024). This 233

framework tackles the challenges of diverse action 234

spaces and complex web structures, demonstrating 235

significant improvement in real-world tasks with 236

its AutoWebBench benchmark. MMInA evaluates 237

agents on multihop, multimodal tasks across evolv- 238

ing real-world websites (Zhang et al., 2024e). The 239

benchmark includes 1,050 tasks requiring sequen- 240

tial reasoning and multimodal integration to com- 241

plete compositional objectives, such as comparing 242

products across platforms. WebCanvas pioneers 243

a dynamic evaluation framework to assess agents 244

in live web environments (Pan et al., 2024). Its 245

Mind2Web-Live dataset captures the adaptability 246

of agents to interface changes and includes met- 247

rics like key-node-based intermediate evaluation, 248

fostering progress in online web agent research. 249

Open-world environments are ideal for achiev- 250

ing both realism and dynamism. However, getting 251

consistent evaluation and reproducibility is diffi- 252

cult as they evaluate agents on live websites that 253

are subject to frequent changes. 254

3.3 Evaluation Metrics 255

Task Completion Metrics. The majority of 256

benchmarks use task completion rate as the pri- 257

mary metric to measure GUI Agents’ performance. 258

However, different papers define task completion 259

differently. Success can be defined as whether 260

an agent successfully stops at a goal state (Chen 261

et al., 2024; Zhou et al., 2023b), with Zhou et al. 262

(2023b) programmatically checking if the intended 263

outcome has been achieved (e.g., a comment has 264

been posted, or a form has been completed), or 265

whether the returned results exactly match the 266

ground truth labels (Shi et al., 2017; Yao et al., 267

2022; Koh et al., 2024a; Drouin et al., 2024; Levy 268

et al., 2024; Mialon et al., 2023). Another approach 269

is to measure success based on whether an agent 270

completes all required subtasks (Lai et al., 2024; 271

Zhang et al., 2024e; Pan et al., 2024; Furuta et al., 272

2023; Jang et al., 2024; Cheng et al., 2024b). This 273

approach can be further extended to measure partial 274

success, as shown in Zhang et al. (2024e). Web- 275

Voyager uses GPT-4V to automatically determine 276

success based on the agent’s trajectory, reporting 277

a high agreement rate of 85.3% with human judg- 278

ments (He et al., 2024b). Instead of using a single 279

final-state success metric, WebLINX measures an 280
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overall success rate based on aggregated turn-level281

success rates across tasks (Lù et al., 2024). The282

turn-level success rates are computed depending on283

the type of actions, e.g., Intersection Over Union284

(IoU) for click or submit actions, and F1 for285

say or textinput actions. Lastly, there are286

task-specific metrics to measure success, e.g., us-287

ing ROUGE-L, F1 for open-ended generation (Liu288

et al., 2024b; Xu et al., 2024; Wornow et al., 2024),289

accuracy for multiple choice question tasks (Liu290

et al., 2024b), Precision and Recall for Standard291

Operating Procedure (SOP) validation (Wornow292

et al., 2024), and so on.293

Intermediate Step Metrics. While the task com-294

pletion rate is a straightforward single-numeric295

metric that simplifies comparing the overall per-296

formance of agents, it fails to provide clear insights297

into their specific behaviors. Although some fine-298

grained metrics measure step-wise performance,299

their scope remains limited. WebCanvas evalu-300

ates step scores using three distinct targets: URL301

Matching, which verifies whether the agent navi-302

gated to the correct webpage; Element Path Match-303

ing, which checks if the agent interacted with the304

appropriate UI element, such as a button or text305

box; and Element Value Matching, which ensures306

the agent inputted or extracted the correct values,307

such as filling a form or reading text. WebLINX308

uses an intent match metric to assess whether the309

predicted action’s intent aligns with the reference310

intent. Similarly, Mind2Web and MT-Mind2Web311

evaluate Element Accuracy by measuring the rate312

at which the agent selects the correct elements.313

These systems also measure the precision, recall,314

and F1 score for token-level operations, such as315

clicking or typing, and calculate the Step Success316

Rate, which reflects the proportion of individual317

task steps completed correctly. While step-wise318

evaluations provide more fine-grained insight into319

the agent’s performance, it is often challenging to320

collect reference labels at the step level while also321

providing enough flexibility to consider different322

paths to achieve the original tasks.323

Efficiency, Generalization, Safety and Robust-324

ness Metrics. Lastly, we summarize additional325

metrics that evaluate various aspects of GUI agents326

beyond their raw performance. Existing bench-327

marks include metrics for efficiency (Shahbandeh328

et al., 2024; Chen et al., 2024; Shahbandeh et al.,329

2024), generalization across diverse or composi-330

tional task settings (Furuta et al., 2023), adherence 331

to safety policies (Levy et al., 2024), and robustness 332

to environmental distractions (Ma et al., 2024). 333

4 GUI Agent Architectures 334

This section focuses on various architectural de- 335

signs of a GUI Agent agent, which we categorize 336

into four main types: (1) Perception: designs that 337

enable the GUI Agent agent to perceive and inter- 338

pret observations from its environment; (2) Reason- 339

ing: designs related to the cognitive processes of a 340

GUI Agent agent, such as using an external knowl- 341

edge base for long-term memory access or a world 342

model of the environment to support other modules 343

like planning; (3) Planning: designs related to de- 344

composing a task into subtasks and creating a plan 345

for their execution; and (4) Acting: mechanisms 346

that allow the GUI Agent agent to interact with the 347

environment, including representing actions in nat- 348

ural language using specific templates, JSON, or 349

programming languages as action representations. 350

4.1 Perception 351

Unlike API-based agents that process structured, 352

program-readable data, GUI agents must perceive 353

and understand the on-screen environment that is 354

designed for human consumption. This requires 355

carefully chosen interfaces that allow agents to 356

discover the location, identity, and properties of 357

the interactive elements. Broadly, these percep- 358

tion interfaces can be categorized into four types: 359

accessibility-based, HTML/DOM-based, screen- 360

visual-based, and hybrid ones, with each offering 361

different capabilities and posing distinct privacy 362

and implementation considerations. 363

4.1.1 Accessibility-Based Interfaces 364

Modern mobile and desktop operating systems usu- 365

ally provide accessibility APIs2 that expose a se- 366

mantic hierarchy of UI components, including their 367

roles, labels, and states345. GUI agents can utilize 368

accessibility APIs to identify actionable elements 369

and derive semantic cues without relying solely on 370

pixel-based detection. These interfaces are resilient 371

2https://en.wikipedia.org/wiki/Computer_accessibility
3https://developer.apple.com/library/archive/

documentation/Accessibility/Conceptual/
AccessibilityMacOSX/OSXAXmodel.html

4https://developer.apple.com/design/
human-interface-guidelines/accessibility

5https://learn.microsoft.com/en-us/windows/apps/design/
accessibility/accessibility
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to minor layout changes or styling updates; how-372

ever, their effectiveness depends on proper imple-373

mentation by developers. Accessibility APIs may374

also be limited when dealing with highly dynamic375

elements (e.g., custom drawing canvases or gaming376

environments) and may not natively expose visual377

content. Although these APIs help reduce the com-378

plexity of visually parsing the screen, the agent379

may need additional perception methods for full380

functionality. On the positive side, accessibility-381

based interfaces typically require minimal sensitive382

user data, thereby reducing privacy concerns.383

4.1.2 HTML/DOM-Based Interfaces384

For web GUIs, agents frequently utilize the Docu-385

ment Object Model (DOM) to interpret the struc-386

tural layout of a page. The DOM provides a hierar-387

chical representation of elements, allowing agents388

to locate targets like buttons or input fields based389

on tags, attributes, or text content. However, raw390

HTML data or DOM tree usually has redundant391

and noisy structure. Various methods are proposed392

to handle this. Mind2Web (Deng et al., 2023) uti-393

lizes a fine-tuned small LM to rank the elements in394

a page before the final prediction of action with a395

large LM, and WebAgent (Gur et al., 2023) uses396

a specialized model HTML-T5 to generate task-397

specific HTML snippets. AutoWebGLM (Lai et al.,398

2024) designs an algorithm to simplify HTML con-399

tent. While HTML/DOM-based interfaces provide400

rich structural data, they require careful prepro-401

cessing and, in some cases, additional heuristics402

or trained models to locate and interpret key UI403

components accurately.404

4.1.3 Screen-visual-based Interfaces405

With advances in computer vision and multimodal406

LLM, agents can utilize screen-visual information,407

like screenshots, to perceive on-screen environ-408

ment. OmniParser (Lu et al., 2024) utilizes an409

existing multimodal LLM (e.g., GPT-4V) to parse410

a screenshot into a structured representation of411

the UI elements. However, screen-visual-based412

perception introduces privacy concerns since en-413

tire screenshots may contain sensitive information.414

Additionally, computational overhead increases as415

models must handle high-dimensional image in-416

puts. Despite these challenges, such interfaces are417

crucial for agents operating in environments where418

high-quality accessibility interfaces and DOM in-419

formation are unavailable, or environments where420

dynamic or visual information is crucial, like image421

or video editing software. 422

4.1.4 Hybrid Interfaces 423

To achieve robust and flexible performance across 424

diverse environments, many GUI agents employ 425

a hybrid approach. These systems combine ac- 426

cessibility APIs, DOM data, and screen-visual in- 427

formation to form a more comprehensive under- 428

standing of the interface. Leading methods in GUI 429

agent tasks, such as OS-Atlas(Wu et al., 2024b) 430

and UGround (Gou et al., 2024), demonstrates 431

that hybrid interfaces that combine visual and tex- 432

tual inputs can enhance performance. Hybrid in- 433

terfaces based approaches also facilitate error re- 434

covery—when accessibility or DOM data are in- 435

complete or misleading, the agent can fall back on 436

screen parsing, and vice versa. 437

4.2 Reasoning 438

WebPilot employs a dual optimization strategy for 439

reasoning (Zhang et al., 2024d). WebOccam im- 440

proves reasoning by refining the observation and 441

action space of LLM agents (Yang et al., 2024). 442

OSCAR introduces a general-purpose agent to gen- 443

erate Python code from human instructions (Wang 444

and Liu, 2024). LAST leverages LLMs for reason- 445

ing, acting, and planning (Zhou et al., 2023a). 446

4.3 Planning 447

Planning involves decomposing a global task into 448

multiple subtasks that progressively approach the 449

goal state starting from an initial state (Huang et al., 450

2024). Traditional planning methods, such as sym- 451

bolic approaches and reinforcement learning, have 452

significant limitations: symbolic methods require 453

extensive human expertise to define rigid system 454

rules and lack error tolerance (Belta et al., 2007; 455

Pallagani et al., 2022), while reinforcement learn- 456

ing demands impractical volumes of training data, 457

often derived from costly environmental interac- 458

tions (Acharya et al., 2023). Recent advancements 459

in LLM-powered agents offer a transformative al- 460

ternative by positioning LLM-powered agents as 461

the cognitive core for planning agents (Huang et al., 462

2024). When equipping agents with GUIs as the 463

medium, LLM-powered agents can directly interact 464

with nearly all application domains and resources 465

to enhance planning strategies. Based on what 466

application domains/resources agents use for plan- 467

ning, we divide existing works into planning with 468

internal and external knowledge. 469
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4.3.1 Planning with Internal Knowledge470

Planning with internal knowledge of GUI agents471

is to leverage the inherent knowledge to reason472

and think about the potential plans to fulfill the473

global task goals (Schraagen et al., 2000). Web-474

Dreamer (Gu et al., 2024) uses LLMs to simulate475

the outcomes of the actions of each agent and then476

evaluate the result to determine the optimal plan477

at each step. MobA (Zhu et al., 2024) devises a478

two-level architecture to power the mobile phone479

management, with a high level for understanding480

user commands, tracking history memories and481

planning tasks, and a low level to act the planned482

module. Agent S (Agashe et al., 2024) introduces483

an experience-augmented hierarchical planning to484

perform complex computer tasks.485

4.3.2 Planning with External Knowledge486

Enabling LLM-powered agents to interact with487

diverse applications and resources through GUIs488

allows them to leverage external data sources,489

thereby enhancing their planning capabilities. For490

example, Search-Agent (Koh et al., 2024b) com-491

bines LLM inference with A* search to explore and492

backtrack to alternative paths explicitly, AgentQ493

(Putta et al., 2024) combines LLM with MCTS.494

Toolchain (Zhuang et al.) models tool planning as a495

tree search algorithm and incorporates A* search to496

adaptively retrieve the most promising tool for sub-497

sequent use based on accumulated and anticipated498

costs. SGC (Wu et al., 2024a) decomposes the499

query and performs embedding similarity match be-500

tween the concatenated subquery with the current501

retrieved task API and each of the existing APIs,502

and then selects the top one from the existing neigh-503

boring APIs. Thought Propagation Retrieval (Yu504

et al., 2023) prompts LLMs to propose a set of505

analogous problems and then applies established506

prompting techniques, like Chain-of-Thought, to507

derive solutions. The aggregation module subse-508

quently consolidates solutions from these analo-509

gous problems, enhancing the problem-solving pro-510

cess for the original input. WebShop, Mind2Web,511

and WebArena (Zhou et al., 2023c; Deng et al.,512

2023) allow agents to interact with webs to plan for513

web browsing for search. WMA (Chae et al., 2024)514

utilizes world models to address the mistakes made515

by LLMs for long-horizon tasks.516

4.4 Acting517

Acting in GUI agents involves translating the518

agent’s reasoning and planning outputs into exe-519

cutable steps within the GUI environment. Unlike 520

purely text-based or API-driven agents, GUI agents 521

must articulate their actions at a finer granular- 522

ity—often down to pixel-level coordinates—while 523

also handling higher-level semantic actions such 524

as typing text, scrolling, or clicking on specific 525

elements. Several directions of approaches have 526

emerged: 527

Those utilizing textual interfaces may only rely 528

on text-based metadata (HTML, accessibility trees) 529

to identify UI elements. For example, WebAgent 530

(Gur et al., 2023) and Mind2Web (Deng et al., 531

2023) use DOM or HTML representations to locate 532

interactive elements. Similarly, AppAgent(Zhang 533

et al., 2023) and MobileAgent (Wang et al., 2024a) 534

leverage accessibility APIs to identify GUI compo- 535

nents on mobile platforms. 536

However, as highlighted in UGround (Gou et al., 537

2024), such metadata can be noisy, incomplete, and 538

computationally expensive to parse at every step. 539

To overcome these limitations, recent research em- 540

phasizes visual-only grounding—mapping textual 541

referring expressions or instructions directly to 542

pixel-level coordinates on a screenshot. UGround 543

trains large action models using only screen-level 544

visual inputs. OmniParser (Lu et al., 2024) also 545

demonstrates how vision-only approaches can 546

parse GUIs without HTML or accessibility data. 547

Similarly, OS-Atlas (Wu et al., 2024b) leverages 548

large-scale multi-platform training data to achieve 549

universal GUI grounding that generalizes across 550

web, mobile, and desktop platforms. By unifying 551

data sources and action schemas, OS-Atlas show- 552

cases the feasibility of a universal approach to ac- 553

tion grounding. 554

5 GUI Agent Training Methods 555

This section summarizes different strategies to 556

elicit the ability to solve agentic tasks in a GUI 557

Agent agent. We broadly categorize these strate- 558

gies into two types: (1) Prompt-based Methods 559

and (2) Training-based Methods. Prompt-based 560

methods do not involve the training of parame- 561

ters; they elicit the ability to solve agentic tasks by 562

providing detailed instructions or demonstrations 563

within the prompt. Training-based methods, on the 564

other hand, involve optimizing the agent’s parame- 565

ters to maximize an objective, such as pretraining, 566

fine-tuning, or reinforcement learning. 567
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5.1 Prompt-based Methods568

Prompt-based methods enable GUI agents to ex-569

hibit learning and adaptation during inference570

through carefully designed prompts and interaction571

mechanisms, without modifying model parameters.572

This learning and adaptation occur as the agent’s573

state evolves by incorporating context from past574

actions or stored knowledge.575

One key approach is the use of dynamic action576

generation and accumulation. DynaSaur (Nguyen577

et al., 2024) enables agents to dynamically create578

and compose actions by generating and executing579

Python code via prompting. Given task instruc-580

tions, the agent outputs code snippets defining new581

actions or reusing existing ones, effectively learn-582

ing new skills and improving performance over583

time. Agent Q (Putta et al., 2024) and OSCAR584

(Wang and Liu, 2024) incorporate self-reflection585

and self-critique mechanisms via prompts, enabling586

agents to iteratively improve decision-making by587

identifying and rectifying errors. Auto-Intent (Kim588

et al., 2024) focuses on unsupervised intent discov-589

ery and utilization, extracting intents from interac-590

tion histories and incorporating them into future591

prompts. Other techniques include state-space ex-592

ploration in LASER (Ma et al., 2023), state ma-593

chine in OSCAR (Wang and Liu, 2024), expert594

development and multi-agent collaboration in Mo-595

bileExperts (Zhang et al., 2024b), and app memory596

in AutoDroid (Wen et al., 2024).597

Despite the potential of prompt-based methods,598

the limited context size of LLMs and the difficulty599

of designing effective prompts that elicit the desired600

behavior remain.601

5.2 Training-based Methods602

5.2.1 Pre-training603

Earlier models for GUI tasks relied on assembling604

smaller encoder-decoder architectures to address605

visual understanding challenges due to its ability606

to learn unified representations from diverse visual607

and textual data, enhance transfer learning capa-608

bilities, and integrate multiple modalities deeply.609

For example, PIX2STRUCT (Lee et al., 2023) is610

pre-trained on a screenshot parsing task, which in-611

volves predicting simplified HTML representations612

from screenshots with visually masked regions. It613

employs a ViT (Dosovitskiy, 2020) as the image614

encoder, T5 (Raffel et al., 2020) as the text encoder,615

and a Transformer-based decoder.616

Training of recent GUI agent models often in-617

volve the continual pre-training of existing vision 618

large language models on additional large-scale 619

datasets. This step refines the model’s general 620

knowledge and modifies or assembles new neu- 621

ral network modules into the backbone, providing 622

a stronger foundation before fine-tuning on smaller, 623

curated datasets for GUI tasks. VisionLLM (Wang 624

et al., 2023) utilizes public datasets to integrate 625

BERT (Devlin, 2018) and Deformable DETR (Zhu 626

et al., 2020) into large language models, focus- 627

ing on visual question answering tasks centered 628

on grounding and detection. SeeClick (Cheng 629

et al., 2024a) is built using continual pre-training 630

on Qwen-VL (Bai et al., 2023) with datasets incor- 631

porating OCR-based layout annotation to predict 632

click actions. UGround (Gou et al., 2024) use con- 633

tinual pre-training on the LLaVA-NEXT (Liu et al., 634

2024a) model without its low-resolution image fu- 635

sion module on a large dataset and synthetic data 636

to align visual elements with HTML metadata for 637

planning and grounding tasks. 638

Pre-training is also used to adapt new designs for 639

improved computational efficiency in GUI-related 640

tasks. CogAgent (Hong et al., 2023) employs 641

a high-resolution cross-module to process small 642

icons and text, enhancing its efficiency for GUI 643

tasks such as DOM element generation and ac- 644

tion prediction. ShowUI (Lin et al., 2024) built 645

on Qwen2-VL (Wang et al., 2024c) with a visual- 646

token selection module to improve the computa- 647

tional efficiency for interleaved high-resolution 648

grounding. 649

5.2.2 Fine-tuning 650

Fine-tuning has emerged as a key strategy to adapt 651

large vision-language models (VLMs) and large 652

language models (LLMs) to the specialized domain 653

of GUI interaction. Unlike zero-shot or prompt- 654

only approaches, fine-tuning can enhance both the 655

model’s grounding in GUI elements and its ability 656

to execute instructions reliably. 657

Recent work highlights reducing hallucinations 658

and improving grounding. Falcon-UI (Shen et al., 659

2024a) fine-tunes on large-scale instruction-free 660

GUI data and then fine-tunes on Android and 661

Web tasks, achieving high accuracy with fewer 662

parameters. VGA (Ziyang et al., 2024), through 663

image-centric fine-tuning, reduces hallucinations 664

by tightly coupling visual inputs with GUI ele- 665

ments, thus improving action reliability. Simi- 666

larly, UI-Pro (Li et al., 2024) identifies a hidden 667

recipe for systematic fine-tuning of VLMs, scaling 668
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down model size while maintaining state-of-the-art669

grounding accuracy.670

Other methods leverage fine-tuning to incor-671

porate domain-specific reasoning and functional-672

ities such as functionality-aware fine-tuning for673

generating human-like interactions (Liu et al.,674

2024d), alignment strategies to handle multilingual,675

variable-resolution GUI inputs (Nong et al., 2024).676

Some methods emphasize autonomous adaptation,677

such as learning to execute arbitrary voice com-678

mands through trial-and-error exploration (Pan679

et al., 2023) and learning for cross-platform GUI680

grounding without structured text (Cheng et al.,681

2024a). Additionally, fine-tuning can specialize682

models for context-sensitive actions. Techniques683

proposed by Liu et al. (2023) enable context-aware684

text input generation, improving coverage in GUI685

testing scenarios. Taken together, these fine-tuning686

methods demonstrate how careful parameter adap-687

tation, data scaling and multimodal alignment can688

collectively advance the reliability, interpretability,689

and performance of GUI agents.690

5.2.3 Reinforcement Learning691

Reinforcement learning (RL) was used in the early692

text-based agent WebGPT to improve information693

retrieval of the GPT-3 based model (Nakano et al.,694

2021). Liu et al. (2018) use human demonstra-695

tions to constrain the search space for RL, though696

using workflows as a high-level process for the697

model to complete without specifying the specific698

details. An example from Liu et al. (2018) is for699

the specific process of forwarding a given email,700

the workflow would involve clicking forward, typ-701

ing in the address, and clicking send. Deng et al.702

(2023) uses RL based on human demonstrations as703

the reward signal. While early agents constrained704

the input and action spaces to only text, recent work705

has extended to GUI agents.706

WebRL framework uses RL to generate new707

tasks based on previously unsuccessful attempts708

as a mitigation for sparse rewards (Qi et al., 2024).709

Task success is evaluated by an LLM-based out-710

come reward model (ORM) and KL-divergence is711

used to prevent significant shifts in policies during712

the curriculum. AutoGLM apply online, curricu-713

lum learning, in particular to address error recovery714

during real-world use and to correct for stochas-715

ticity not present in simulators (Liu et al., 2024c).716

DigiRL uses a modified advantage-weighted regres-717

sion (AWR) algorithm for offline learning (Peng718

et al., 2019), but modifies AWR for more stochastic719

environments by using a simple value function and 720

curriculum learning. 721

6 Open Problems & Challenges 722

Graphical User Interface (GUI) agents face critical 723

challenges in understanding user intent, ensuring 724

security and privacy, optimizing inference latency, 725

and achieving personalization. Current systems 726

often struggle to infer goals accurately, reaching 727

only around 51.1% accuracy on unseen websites 728

(Kim et al., 2024), and robust generalization across 729

diverse tasks remains a priority (Stefanidi et al., 730

2022; Gao et al., 2024). Security and privacy con- 731

cerns become prominent as agents handle sensi- 732

tive information, potentially exposing users to risks 733

(He et al., 2024a; Zhang et al., 2024a), particu- 734

larly when relying on cloud-based processing and 735

raising issues of unauthorized access (Zhang et al., 736

2024c). Inference latency poses additional hur- 737

dles, as real-time responsiveness is essential for 738

seamless user interactions, especially in resource- 739

constrained scenarios, demanding efficiency with- 740

out compromising accuracy. Future efforts should 741

focus on lightweight modeling, adaptive methods, 742

and hardware acceleration to reduce computational 743

overhead. Meanwhile, personalization aims to re- 744

fine user experiences by predicting intentions and 745

tailoring interactions (Berkovitch et al., 2024), po- 746

tentially guided by explicit feedback. Addressing 747

these interconnected challenges will foster more se- 748

cure, responsive, and user-centric GUI agents that 749

adapt to evolving requirements and environments. 750

Ultimately, advancing these areas will elevate the 751

abilities of GUI agents in real-world deployments. 752

7 Conclusion 753

In this survey, we have thoroughly explored GUI 754

Agents, examining various benchmarks, agent ar- 755

chitectures, and training methods. Although con- 756

siderable strides have been made, problems such 757

as intent understanding, security, latency, and per- 758

sonalization remain critical challenges. We hope 759

this survey will act as a valuable resource for re- 760

searchers, offering structure and practical guidance 761

in this rapidly growing and exciting field, and in- 762

spiring further inquiry into GUI Agents. We are 763

confident that the progress in this area will mark 764

an important milestone, benefiting humankind, sig- 765

nificantly enhancing our daily productivity, and 766

transforming the way we interact with computers. 767
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Limitations768

We recognize that some studies have explored in-769

teractions between LFM-based agents and digital770

systems through interfaces other than GUIs, such771

as Command Line Interfaces (CLI) or Application772

Programming Interfaces (API). However, these ap-773

proaches are relatively limited in scope compared774

to GUI-based methods. To maintain a focused775

scope for our survey, we have chosen not to in-776

clude them in our discussion.777
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