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Abstract

Advances in 3D generative AI have enabled the creation of physical objects from1

text prompts, but challenges remain in creating objects involving multiple com-2

ponent types. We present a pipeline that integrates 3D generative AI with vision-3

language models (VLMs) to enable the robotic assembly of multi-component4

objects from natural language. Our method leverages VLMs for zero-shot, multi-5

modal reasoning about geometry and functionality to decompose AI-generated6

meshes into multi-component 3D models using predefined structural and panel7

components. We demonstrate that a VLM is capable of determining which mesh8

regions need panel components in addition to structural components based on9

object functionality. Evaluation across test objects shows that users preferred the10

VLM-generated assignments 90.6% of the time, compared to 59.4% for rule-based11

and 2.5% for random assignment. Lastly, the system allows users to refine compo-12

nent assignments through conversational feedback, enabling greater human control13

and agency in making physical objects with generative AI and robotics.14

1 Introduction15

Recent developments in 3D Generative AI have enabled users to create a wide variety of geometries16

from natural language input [12, 7, 24]. Extending this capability to make physical objects from a text17

prompt could empower users who don’t have technical expertise in complex 3D design software or18

manufacturing processes. While previous research has explored physical making with 3D generative19

AI, challenges remain in creating objects composed of multiple component types with different20

functionalities [5, 6, 4]. Robotic assembly offers a potential approach to create physical objects21

from multiple component types, while supporting modularity, reuse and part-level editing [8, 11, 10].22

However, most 3D generative AI models produces monolithic meshes that lack the component-level23

representation required for robotic assembly path planning and assembly sequencing generation.24
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Decomposing AI-generated meshes into predefined components is challenging since assignments25

can depend on the geometry and functionality of both the object and its parts. In this study, we use26

two component types: structural and panel components (Figure 1). While structural components27

are assigned to the object’s base geometry to ensure stability, the main focus is on determining the28

placement of panel components based on the object’s geometry and intended function. For example,29

a stool may require horizontal panels on the seat to create a flat surface for sitting, while a lamp may30

need panels on its lampshade frame to diffuse light. In addition to geometry and functionality, panel31

assignments can also vary according to user preferences, highlighting the need for user feedback32

to support human-AI co-creation for physical making. To address these challenges and enable33

text-driven, multi-component robotic assembly with generative AI, we present:34

- A function and geometry aware approach that uses VLM-based multimodal reasoning to assign35

panel components and decompose AI-generated meshes into multi-component 3D models.36

- A conversational feedback workflow using VLMs to enable users to adjust component assignments37

and provide human control in the AI-driven robotic assembly process without task-specific training.38

- An end-to-end framework connecting natural language input, 3D generative AI, VLM, and robotic39

assembly with predefined components, to create multi-component physical objects from text prompts.40

Figure 1: From text input to multi-component robotic assembly using predetermined components

2 Related Work41

3D Generative AI for Prompt-Based Design and Fabrication. Recent advances in text-to-3D42

models such as DreamFusion [19], Get3D [7], and Latte3D [23] have enabled users to generate43

a wide array of geometries from natural language prompts. To physically realize these models,44

prior work has mainly explored 3D printing pipelines [4, 22]. Systems such as Sketch2Prototype45

transform sketches into printable designs for additive manufacturing [5]. Style2Fab extends this46

by allowing users to modify and customize the stylistic attributes of 3D models while preserving47

printability [6]. However, these approaches are for 3D printing with generative AI output which lacks48

the component-level representation necessary for robotic assembly.49

Part Aware Generation of 3D Objects. Part-aware generative models have enabled structured 3D50

shape synthesis through component-level reasoning. For example, PartGen [3] develops a diffusion-51

based pipeline that reconstructs semantically meaningful parts from text inputs. StructureNet [16]52

introduces graph-based part hierarchies geometry synthesis. ShapeAssembly [9] generates objects53

using a programmatic part layout optimized for visual coherence. While these contributions advance54

part-level generative modeling, they mostly aim to reconstruct coherent shapes or to support part-level55

geometry editing. In contrast, our goal is to leverage part-level reasoning to inform the assembly56

geometry from a predefined set of component type.57

Component Segmentation of 3D Objects. Previous approaches to decomposing 3D shapes into58

components have relied on supervised methods such as hierarchical recursive networks, point-based59

segmentation, and semantic graphs [27, 2, 26]. More recent unsupervised and generative methods,60

such as Neural Parts [18], auto-decoder frameworks for 3D diffusion models [17], and joint-aware61

techniques [13], address earlier limitations by introducing flexibility and connection constraints for62

multi-part reconstruction. However, while these methods improve geometric decomposition, they do63

not consider robotic assembly or the functional roles of components.64
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Vision-Language Models for Prompt Based Robotic Assembly. VLMs have previously been used65

to ground natural language instructions for assembly tasks. For example, CLIPort [20] couples CLIP-66

based perception for pick-and-place tasks. SayCan [1] integrates language models with affordance67

scoring to execute multi-step instructions. StructDiffusion [14] use diffusion and transformer archi-68

tectures with multimodal input for compositional tasks. VLMs have also been explored for assembly69

sequence generation. Zhu et al. [28] introduces a seq2seq transformer that infers part assembly70

sequences. Neural Assembler [25] convert multi-view imagery of block-based models into step-wise71

assembly plans. These systems demonstrate the potential of VLMs from robotic manipulation to72

assembly sequence generation. In this paper, we extend the use of VLMs for generating assembly73

geometry by assigning component types based on object functionality.74

3 Methods75

Text-to-Mesh Generation. We present a pipeline using VLM and generative AI to translate natural76

language inputs into multi-component 3D models for robotic assembly. The system begins with a77

user prompt, which is used to generate a mesh using Autodesk’s 3D generative AI model [15].78

Mesh Discretization. We define two classes of assembly components: (1) structural components,79

which form the primary load-bearing frame, and (2) panel components, which attach to the structural80

frame to provide functional surfaces. To create primary load-bearing frame, the AI-generated mesh81

is discretized into structural components. This is done by voxelizing the mesh using a fixed grid82

resolution based on the dimensions of the structural components. The placement of panel components83

depend on the functionality and geometry of the object. Attaching panels indiscriminately can add84

unnecessary weight and waste components. To address this, we developed a VLM task to selectively85

assign faces that should have panel components based on the functionality of the object.86

VLM for Function Aware Part Selection. The VLM is tasked to understand the object’s functionality87

and geometry to identify the parts requiring a predefined component. In this study we use Google’s88

Gemini 2.5 pro model. The VLM gives a response based on the three inputs: the description of89

the object from the user (to understand the object’s functionality), an axonometric image of the AI90

generated mesh (to understand the object’s geometry), and the component type - in this case the type91

is panel component (to understand the component’s functionality). Conditioned on these inputs, the92

VLM is tasked to reason over both functionality and geometry to determine which parts require the93

component. For example, given the prompt “I want a chair” and the image of the AI-generated mesh,94

the VLM returns for panel component “Parts = seat, backrest” as shown in Figure 2.95

System Prompt: You are an assistant that selects the functional parts of an object that require a96

specified component type. Use: (1) the description of the object, (2) an axonometric image of the97

AI-generated mesh, and (3) the component type. Select the minimal set of parts that fulfill the object’s98

functionality. Output only the part names as specified, no explanations.99

Query: Given an image of {user text prompt}, identify which parts of the object should have panel100

component based on the object’s intended functionality. Select only the minimal number of distinct101

parts required. Output format: Parts = []102

Figure 2: System Pipeline: Vision Language Model for Function and Geometry Aware Part Selection
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VLM for Geometry Aware Part Selection. The previous VLM task provides a list of parts within103

the object that require a given component. However, the robot must also know where those parts are104

physically located within the assembly. To map these parts back to the AI-generated geometry, we105

merge coplanar faces in the discretized mesh and assign each mesh face a unique integer label for106

the VLM to reference. Labels for inward-facing vertical and downward-facing horizontal faces are107

omitted, as they might not be reachable by the robot arm. This prevents the model from assigning108

panels to places the robot can’t access. For the second VLM task, the model receives three inputs: the109

description of the object from the user, an axonometric rendering of the labeled mesh faces showing110

both sides of the geometry, and the part list produced by the first VLM task. Conditioned on these111

inputs, the VLM matches each identified part to the corresponding face label. For the example, given112

the list of parts from the first VLM task “Parts = seat, backrest” and the image of the labeled mesh,113

the VLM returns “Labels = 4, 6” (Figure 3). These labels are mapped to their respective locations in114

the 3D model for robotic assembly.115

System Prompt: You are an assistant that maps functional parts of an object to their face labels in a116

labeled axonometric mesh. Use: (1) the description of the object, (2) an image of a labeled mesh, and117

(3) a list of parts. Select the minimal set of labels that correspond to the listed parts. Output only the118

label numbers, no explanations.119

Query: Given a labeled image of {prompt}, select the label numbers that exactly correspond to the120

following parts: {parts}. Select only the minimal set of labels needed. Output format: Labels = []121

VLM for Human in the Loop Conversational User Alignment. After the initial component122

assignment, users can provide feedback to refine or override the VLM generated results. Because123

human preferences can vary, the system leverages user input instead of relying solely on the VLM.124

In this task, the user feedback serves as additional context to match the user’s intent. The VLM125

processes three inputs: the description of the object, an axonometric rendering of the labeled mesh126

faces showing both sides of the geometry, and the user feedback (Figure 3). Conditioned on these127

inputs, VLM outputs the labels corresponding to the user’s feedback. The updated labels are mapped128

to the mesh to regenerate the multi-component assembly. This human-in-the-loop approach leverages129

conversational feedback to adjust and control assembly outcomes.130

System Prompt: You are an assistant that updates component assignments based on user request. Use:131

(1) the description of the object, (2) the labeled mesh image, (3) the user request. Select the minimal132

set of labels that fulfill the user request. Output only the label numbers, no explanations.133

Query: Given a labeled image of {user prompt}, select the label numbers that match the following134

request: {user feedback}. Select only the minimal set of labels needed. Output format: Labels = []135

Figure 3: User Alignment: Integrating human feedback with geometry-aware VLM part assignment

Robotic Assembly Once the multi-component assembly is generated by the VLM, a UR20 robotic136

arm equipped with Robotiq grippers assemblies the physical geometry. The multi-component137

assembly from the VLM is exported as two lists: a coordinate list C = {(xi, yi, zi, rxi , ryi , rzi)},138

and a component type list T = {t0, t1}. In our implementation, the type ti = 0 denotes a structural139

component, which is picked from source si = 0 (a conveyor belt with structural components), while140

ti = 1 denotes a panel component, which is picked from source si = 1 (a stack of panel components).141
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The coordinate list is sorted in a bottom-to-top sequence while preserving connectivity to ensure that142

physically connected components are placed consecutively. For each component i in C, the robot143

moves to the source coordinate si based on the component type ti, picks the component, moves to144

the component coordinate ci, and place the component (Figure. 4. See algorithm 1 in appendix 4 for145

more detail.146

Figure 4: The robotic assembly of the prompt: "Make me a chair", "I want panels on the seat"

4 Experiments and Results147

Experiment Setup. To assess the effectiveness of the Vision-Language Model (VLM) approach,148

we conducted a comparative analysis against a rule-based approach and a random approach. In the149

rule-based approach, panels were assigned to all upward-facing mesh labels, under the assumption150

that horizontal surfaces are the most likely functional user case for panel components. For the random151

approach, panels were assigned by randomly selecting labels from the set of mesh faces.152

Figure 5: End-to-end robotic assembly of multi-component objects from user prompts and feedback.
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We recruited thirty two participants to evaluate component assignments on five objects across three153

approaches, resulting in 480 judgments. Participants were asked to select all alternatives they154

considered appropriate or acceptable for panel placement based on the object’s function. We assume155

that multiple valid assignments may exist based on user preference rather than a single ground truth.156

To avoid forced-choice bias, participants were allowed to select multiple options or none for an object.157

For each object–method pair, we compute the selection rate as:158

Rateo,m =
# participants selecting method m on object o

32
× 100%.

Results. 92 % of users agreed with the VLM generated panel assignments. However, only 58.7 % of159

the user agreed with the rule-based panel assignments. The rule-based approach performs as well as160

the VLM approach on objects with predominantly horizontal surfaces, such as the table and shelf, but161

fails on more complex objects like the chair, lamp, and trash can. The random assignment approach162

performed worst, with a mean selection rate of just 4.0 %.163

Additionally, to compare conditions under non-exclusive selection, we applied pairwise McNemar164

tests, which evaluate responses based on discordant pairs. In this test a higher χ2 indicates a larger165

imbalance, and thus a stronger preference for one method. The VLM-based approach was chosen166

significantly more often than both the rule-based approach (χ2 = 38.11) and the random assignment167

(χ2 = 137.11). All pairwise differences remain significant after Bonferroni correction (∗p < 0.017).168

These findings demonstrate that, even without forced-choice constraints, participants preferred169

VLM-generated placements. (See Appendix C for details.)170

Table 1: Percentage and number of times a user selected a method. Evaluated by 32 participants

Method Chair Table Lamp Shelf Trash Can Mean
VLM (ours) 96.9 % (31) 100.0 % (32) 81.3 % (26) 100.0 % (32) 75.0 % (24) 90.6 %
Rule–based 18.8 % (6) 100.0 % (32) 34.4 % (11) 100.0 % (32) 43.8 % (14) 59.4 %
Random 0.0 % (0) 0.0 % (0) 0.0 % (0) 6.3 % (2) 6.3 % (2) 2.5 %

Table 2: Pairwise McNemar tests with Bonferroni correction for the three comparisons (α =
0.05/3 ≈ 0.0167). Continuity-corrected results are given in Appendix C

Comparison χ2 p-value Conclusion
VLM Assignment (ours) vs. Rule-Based 38.11 < 0.001 VLM≫ Rule
VLM Assignment (ours) vs. Random 137.11 < 0.001 VLM≫ Random
Rule-Based vs. Random 88.17 < 0.001 Rule≫ Random

Human in the Loop Feedback for VLM Outputs. Participants also suggested alternative ways of171

assigning the panel components outside of the three provided methods in the survey. These suggested172

feedback edits include: applying panels only to the seat of the chair but not the backrest, applying173

panels to the lampshade but not the base of the lamp, and applying panels only to the bottom two tiers174

of the shelf. This implies that while the VLM can generate valid outputs, there can be more than one175

solution. As with many design problems, there can be multiple solutions to the same issue, and these176

can be subjective to the user’s preferences. In this case, the AI-generated output serves as a starting177

point for some users to diverge from. Beyond automation, natural language feedback enables human178

control in the AI-driven pipeline, accommodating varied user preferences and creative liberties.179

Robotic Assembly of VLM Generated Designs The end-to-end robotic assembly pipeline was180

demonstrated using various user prompts. The robot was able to execute feasible grasp configurations181

and assembly sequences based on VLM-generated outputs and user-refined outputs. During assembly,182

the robot did not place any inward- or downward-facing panels, confirming that VLM outputs can183

comply with fabrication constraints when potential violations are preprocessed out of the input image.184
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Figure 6: Robotic assembly of select user prompts and feedback, https://youtu.be/gw5ClQtKmAc

5 Discussion and Limitations185

Our work demonstrates that VLMs can decompose AI-generated meshes into predefined components186

based on object functionality and geometry, using zero-shot multi-modal reasoning without task-187

specific training. We attribute the relative success of the VLM-based approach to its broad prior188

knowledge of object functions, geometric reasoning, and worldview acquired through large-scale189

multi-modal pretraining. Additionally, unlike the rule-based approach, VLMs can ground their190

reasoning in both the user prompt and the geometry of the object provided in the input image.191

One of the goals and constraints of this study is the use of predefined assembly components. The192

current implementation is restricted to two component types. While the narrower scope enabled193

controlled evaluation and physical assembly with the robotic arm, future work can expand the fixed194

component library to diversify the types of assembly elements [21]. This includes extending the VLM195

pipeline to additional functional components, such as hinges and handles, as well as material-specific196

components, such as wood, plastic, or metal. Currently, the evaluation is limited to common objects197

and simple prompts. Future studies should explore the framework with complex user prompts or198

unconventional objects, which may require multi-turn human-AI interaction with larger edit distances.199

This work introduces a pipeline that combines 3D generative AI, VLM-based reasoning, and robotic200

assembly to transform natural language prompts into functional multi-component objects. In addition,201

the system supports user edits through natural language feedback, bridging automation with human202

agency. Together, these capabilities move toward a vision-language-driven workflow for human-AI203

co-creation and robotic assembly.204
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A Technical Appendices and Supplementary Material327

The following sections include additional details such as supplementary figures, full system prompts,328

robotic assembly implementation, user survey setup, and full calculation of the statistical analysis329

results on the experiment data330

A.1 Predefined Component types: Structural and Panel331

The structural component is a volumetric cube composed of six faces. It is used for the object’s base332

geometry to ensure stable robotic assembly. Each side of the structural component has 16 small333

magnets arranged in a polarity pattern (positive and negative) that ensures proper alignment when the334

adjacent component connects. The cube’s internal grid structure forms a lattice, making it lightweight335

while maintaining strength. The top face of the structural component includes a unique feature that336

allows the robotic arm’s gripper to easily grasp it. The panel component is a flat plane designed to337

attach to the structural component. To ensure proper connection, the magnet arrangement follows338

the same polarity pattern as the structural component. Additionally, the panel component includes339

openings that allow the robotic gripper to securely grasp it during assembly. See figure 7.340

Figure 7: The two predefined component types used in our system.
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Figure 8: Text to Multi-Component Robotic Assembly of the Prompt: "Make me a chair", "I want
panels on the seat"

Figure 9: The robotic assembly of the prompt: "Make me a chair", "I want panels on the seat"
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Figure 10: Text to Multi-Component Robotic Assembly of the Prompt: "A wide bowl", Panels only
for the bottom

Figure 11: Text to Multi-Component Robotic Assembly of the User Prompt: "Assemble a lamp",
"Put panels on the lampshade"
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Figure 12: Text to Multi-Component Robotic Assembly of the Prompt: "Build a shelf with two tiers"

Figure 13: Text to Multi-Component Robotic Assembly of the Prompt: "I want a round coffee table"
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B Robotic Assembly Implementation Details341

The robotic assembly demonstrations are developed using Autodesk’s internal robotics research342

platform integrated with Fusion 360. All experiments were conducted on a standard desktop that can343

run Python code.344

Algorithm 1 Robotic Assembly Algorithm for Panel Component and Structural Component
Require: • Component coordinates C = {(xi, yi, zi, rxi

, ryi
, rzi)}ni=1

• Component types T = {t0, t1} where ti ∈ {0, 1}
• Source locations S0, S1 for each component type

Ensure: All component are placed at target positions using pick-and-place operations
1:
2: Initialization
3: Initialize robot to home pose proot
4: Open gripper with width wopen
5: Iterate through all components in component cooridnates sequence
6: for i = 1 to n do
7: Determine source location based on component type
8: if ti = 0 then Structural Component
9: source← S0

10: end if
11: if ti = 1 then Panel Component
12: source← S1

13: end if
14: Compute pickup and placement poses
15: pickup← (source.x, source.y, source.z)
16: place← (xi, yi, zi, rxi , ryi , rzi)
17: Pick-up sequence
18: Move to (pickup.x, pickup.y, pickup.z + hsafe)
19: Move to pickup
20: Close gripper with force fgrab
21: Move to (pickup.x, pickup.y, pickup.z + hsafe)
22: Placement sequence
23: Move to (place.x, place.y, place.z + hsafe)
24: Move to place
25: Open gripper with width wrelease
26: Move to (place.x, place.y, place.z + hsafe)
27: Output: Component i successfully placed
28: end for

C Additional Details on Experiment and Results345

IRB Approval Statement This study involving human subjects was reviewed by the Massachusetts346

Institute of Technology Committee on the Use of Humans as Experimental Subjects (MIT COUHES),347

which serves as the Institutional Review Board (IRB) for MIT.348

The study received an IRB exemption determination (Exemption Category 3) as it involved minimal349

risk and no collection of sensitive personal information. All participants were adults who provided350

informed consent prior to participating. No personally identifying information was collected.351

Before beginning the survey, participants were informed that:352

• They would be shown five objects generated by our AI-based design system.353

• Their task would be to evaluate panel placements for each object.354

• They could skip any question they did not wish to answer.355

• Their responses would remain anonymous and would be used for academic research purposes356

only.357
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• They would not receive monetary or other forms of compensation for participating in the358

study.359

Instructions for Selection360

For each object, you will see three possible configurations for where panels could be361

placed. The configurations were generated using three different methods. Select all362

configurations that you believe have appropriate or acceptable panel placements363

for the given object and its function. You may select one, more than one, or none at364

all. Please select according to what you think is functionally appropriate. Please365

use the check mark on Adobe PDF to select a checkbox.366

Figure 14: Layout of the survey document with three options of each of the five objects. No labels
were provided to avoid bias. A checkbox allowed participants to select each option, and a line was
provided after each object for text input.

Instructions for Alternative Assignments367
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For each object, indicate whether you think there is an alternative way to assign368

panels that is different from the options shown above. If yes, describe how you369

would assign the panels differently. If no, just write “No.”. Please use Adobe PDF370

text box for the text entry.371

C.1 Derivation of Test Statistics: Pairwise McNemar Tests372

For every participant–object–method triple we log a binary outcome (1 = “panel placement judged373

appropriate”, 0 = “not selected”). When comparing two methods, A and B, we form a 2 × 2374

contingency table and consider only the discordant cells:375

Table 3: Variables for McNemar Calculation.

Participant’s judgement on that object Contributes to
A = 1, B = 0 (A chosen, B not) b

A = 0, B = 1 (B chosen, A not) c

A = 1, B = 1 or A = 0, B = 0 (concordant; ignored)

Test statistic. McNemar’s null hypothesis is b = c. We report the uncorrected statistic and, in376

parentheses, the continuity-corrected version:377

χ2
uncorr =

(b− c)2

b+ c
, χ2

corr =
(|b− c| − 1)2

b+ c
.

Table 4: Discordant counts and McNemar results ( 160 trials per comparison for the five objects)

Comparison b c χ2
uncorr p χ2

corr p

VLM vs. Rule 56 7 38.11 < 0.001 36.57 < 0.001
VLM vs. Random 143 2 137.11 < 0.001 135.17 < 0.001
Rule vs. Random 94 2 88.17 < 0.001 86.26 < 0.001

All p-values remain well below the Bonferroni-adjusted threshold α = 0.05/3 ≈ 0.0167; applying378

the continuity correction does not change any conclusion.379

Interpretation. A larger χ2 indicates a stronger imbalance between the two discordant cells.380

For example, more participants selected one method but not the other. The results confirm that381

VLM-generated placements were overwhelmingly preferred over both baselines, even though partici-382

pants were free to select multiple methods for the same object.383
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NeurIPS Paper Checklist384

1. Claims385

Question: Do the main claims made in the abstract and introduction accurately reflect the386

paper’s contributions and scope?387

Answer: [Yes]388

Justification: The introduction lists three concrete contributions, and these same contribu-389

tions are implemented in the Methods section and validated in Experiments.390

2. Limitations391

Question: Does the paper discuss the limitations of the work performed by the authors?392

Answer: [Yes]393

Justification: Section 5 discusses several limitations of the proposed work, including the394

use of a fixed library and the evaluation being limited to simple prompts. The authors also395

note that future extensions should support a broader range of functional components and396

multi-turn user interaction.397

3. Theory assumptions and proofs398

Question: For each theoretical result, does the paper provide the full set of assumptions and399

a complete (and correct) proof?400

Answer: [NA] .401

Justification: The paper does not present any formal theoretical results or mathematical402

theorems. It focuses on a novel system design and empirical evaluation of VLM-based403

reasoning for robotic assembly.404

4. Experimental result reproducibility405

Question: Does the paper fully disclose all the information needed to reproduce the main ex-406

perimental results of the paper to the extent that it affects the main claims and/or conclusions407

of the paper (regardless of whether the code and data are provided or not)?408

Answer: [Yes]409

Justification: The paper provides detailed descriptions of the experimental setup, including410

the user study, VLM prompting tasks, mesh discretization, component assignment logic,411

and user study protocol. It also includes algorithmic pseudocode for robotic assembly and412

statistical analysis procedures.413

5. Open access to data and code414

Question: Does the paper provide open access to the data and code, with sufficient instruc-415

tions to faithfully reproduce the main experimental results, as described in supplemental416

material?417

Answer: [No] .418

Justification: The code for Autodesk’s internal robotics platform and Project Bernini is419

currently under active research and remains closed-source / proprietary. However, the paper420

offers detailed descriptions of the key methodology and how alternative tools can be used as421

substitutes for the framework in the Appendix. The paper also provides open access to the422

VLM prompts and the robotic assembly algorithm in the appendix.423

6. Experimental setting/details424

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-425

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the426

results?427

Answer: [Yes]428

Justification: The paper clearly specifies all relevant experimental details, including the429

user study, the design of the VLM prompting tasks, the inputs provided (text prompts and430

images), the mesh discretization process, the predefined component types, and robotic431

assembly for the readers to understand and interpret the results. See Appendix ???? B.432

The paper does not involve training new models, as it uses a pretrained VLM (Gemini 2.5433

Pro) in a zero-shot setting. Therefore, there are no training data splits, hyperparameters, or434

optimizers to report.435
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7. Experiment statistical significance436

Question: Does the paper report error bars suitably and correctly defined or other appropriate437

information about the statistical significance of the experiments?438

Answer: [Yes]439

Justification: The result section and Table 2 reports chi-square statistics and Bonferroni-440

corrected p-values for all pairwise comparisons. The statistical test used (McNemar test) is441

for the non-exclusive selection setup, and the calculation is explained in detail in Appendix442

C.443

8. Experiments compute resources444

Question: For each experiment, does the paper provide sufficient information on the com-445

puter resources (type of compute workers, memory, time of execution) needed to reproduce446

the experiments?447

Answer: [Yes]448

Justification: : The paper specifies that the VLM experiments were conducted using Google’s449

Gemini 2.5 Pro in a zero-shot setting, which does not require local training or significant450

compute resources. The robotic assembly experiments were conducted using a Universal451

Robots UR20 industrial robotic arm, with the process described in detail in Appendix B.452

All experiments were conducted on a standard desktop that can run Python code, which453

interfaced with Project Bernini for 3D generation, the VLM for reasoning, and Autodesk’s454

internal robotics platform for robotic programming.455

9. Code of ethics456

Question: Does the research conducted in the paper conform, in every respect, with the457

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?458

Answer: [Yes]459

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that the research460

conducted in this paper complies with all outlined principles.461

10. Broader impacts462

Question: Does the paper discuss both potential positive societal impacts and negative463

societal impacts of the work performed?464

Answer: [Yes]465

Justification: The paper discusses broader impacts in the Introduction and the Discussion466

section, highlighting societal implications of the proposed system. The Introduction section467

notes that the system enables accessible physical making for non-experts through natural468

language. We also mentioned how robotic assembly could support modular construction and469

part-level editing for component reuse. The discussion section calls for further study and470

impact, including handling complex prompts and ways to add human oversight and control471

in creative workflows with AI and robotic systems.472

11. Safeguards473

Question: Does the paper describe safeguards that have been put in place for responsible474

release of data or models that have a high risk for misuse (e.g., pretrained language models,475

image generators, or scraped datasets)?476

Answer: [NA] .477

Justification: The paper does not release any new pretrained models, large-scale datasets, or478

generative tools that pose a high risk of misuse. It uses existing closed-source tools (e.g.,479

Gemini 2.5 Pro, Project Bernini) and focuses on system integration and framework design.480

12. Licenses for existing assets481

Question: Are the creators or original owners of assets (e.g., code, data, models), used in482

the paper, properly credited and are the license and terms of use explicitly mentioned and483

properly respected?484

Answer: [Yes]485
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Justification: All third-party assets used in the paper, including Google’s Gemini 2.5 Pro486

vision-language model and Autodesk’s Project Bernini, are properly credited in the text and487

citations. These tools are accessed in accordance with their respective terms of use. The488

paper does not redistribute these assets but uses them as services or platforms within the489

scope allowed for academic research. No external code or datasets with restrictive licenses490

are included or released.491

13. New assets492

Question: Are new assets introduced in the paper well documented and is the documentation493

provided alongside the assets?494

Answer: [Yes]495

Justification: While the paper does not release new datasets, models, or code, it introduces496

new assets in the form of figures, videos, and physically assembled objects generated through497

the proposed pipeline. These assets are documented throughout the paper and the appendix.498

14. Crowdsourcing and research with human subjects499

Question: For crowdsourcing experiments and research with human subjects, does the paper500

include the full text of instructions given to participants and screenshots, if applicable, as501

well as details about compensation (if any)?502

Answer: [Yes]503

Justification: The paper includes a user study involving 25 participants who evaluated504

component assignments across five objects. The study design is described in the main paper,505

including the number of participants, object conditions, and the non-exclusive selection506

task. Participants were recruited and completed the survey voluntarily, providing informed507

consent. More details on Appendix C.508

15. Institutional review board (IRB) approvals or equivalent for research with human509

subjects510

Question: Does the paper describe potential risks incurred by study participants, whether511

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)512

approvals (or an equivalent approval/review based on the requirements of your country or513

institution) were obtained?514

Answer: [Yes]515

Justification: The user study posed minimal risk to participants. We obtained IRB exemption516

through our institution’s ethics review process, which determined that the study qualifies as517

exempt human subjects research (Appendix C) Participants were informed of the study’s518

purpose, participated voluntarily, and provided informed consent prior to completing the519

survey. No sensitive personal data was collected.520

16. Declaration of LLM usage521

Question: Does the paper describe the usage of LLMs if it is an important, original, or522

non-standard component of the core methods in this research? Note that if the LLM is used523

only for writing, editing, or formatting purposes and does not impact the core methodology,524

scientific rigorousness, or originality of the research, declaration is not required.525

Answer: [Yes]526

Justification: The paper uses a language model specifically, Google’s Gemini 2.5 Pro as a527

core component of the methodology. The VLM performs zero-shot, multimodal reasoning528

to assign functional components to AI-generated 3D meshes based on input prompts and529

object geometry.530
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