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ABSTRACT

This study introduces a novel application of Quantum Generative Adversarial
Networks (QGANs) by incorporating a new fairness principle, representational
fairness, which improves equitable representation of various demographic groups
in quantum-generated data. We propose a group-wise gradient norm clipping
technique that constrains the magnitude of discriminator updates for each demo-
graphic group, thereby promoting fair data generation. Furthermore, our approach
mitigates the issue of mode collapse, which is inherent in both QGANs and clas-
sical GANs. Empirical evaluations confirm that this method enhances representa-
tional fairness while maintaining high-quality sample generation.

1 INTRODUCTION

Ensuring fairness in machine learning (ML) has become paramount as ML models increasingly
influence decision-making in diverse domains Pessach & Shmueli (2022); Caton & Haas (2024);
Mehrabi et al. (2021). Although Generative Adversarial Networks (GANs) produce high-fidelity
synthetic data, they often exhibit representation bias, misrepresenting or underrepresenting certain
demographic groups.

Quantum computing holds the potential to revolutionize deep learning Salloum et al. (2025) and
generative AI by leveraging quantum parallelism and entanglement to enhance model expressiveness
and training efficiency. However, as quantum-based generative models evolve, it is imperative to
ensure that they do not inherit or exacerbate fairness issues that have historically plagued classical
AI models. Addressing these biases is crucial to realizing the full potential of quantum-enhanced
generative AI in practical applications Perrier (2021).

We address this issue by building on RepFair-GAN Sabbagh et al., which introduces group-wise
gradient norm clipping to control the magnitude of each group’s gradient during discriminator train-
ing. This method improves representational fairness without compromising sample quality. Our
work extends RepFair-GAN to Quantum Generative Adversarial Networks (QGANs), leading to
RepFair-QGAN, which utilzies quantum computational advantages to further enhance fairness in
synthetic data generation. Figure 1a and Figure 1b show the generated samples from QGAN and
RepFair- QGAN, respectively. The qGAN samples exhibit higher variability in classification con-
fidence, while RepFair:qGAN produces more consistently classified digits, supporting its improved
fairness in digit generation.

Key Novelty

• We introduce group-wise gradient norm clipping for mitigating representation bias, ensur-
ing each demographic group’s gradient updates are uniformly controlled.

• Our method inherently tackles mode collapse, a well-known challenge in both classical and
quantum GANs.
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(a) Generated digit samples using QGAN. Pre-
dicted digits and classifier confidence scores are
displayed. Variability in confidence indicates po-
tential biases in generation.

(b) Generated digit samples using RepFair-
QGAN. Predictions show higher confidence and
consistency, demonstrating improved fairness in
generative modeling.

Figure 1: Comparison of digit samples generated using qGAN and RepFair-QGAN. The confidence
and consistency in predictions highlight the fairness improvements achieved by RepFair-QGAN.

• We extend our approach to QGANs, leveraging quantum computational advantages to en-
hance representational fairness while retaining high-quality sample generation.

The remainder of this paper details the theoretical foundations of our gradient-clipping strategy,
provides empirical evidence of its effectiveness in promoting uniform data generation, and discusses
its broader implications for fairness in generative modeling.

2 METHODOLOGY

In this section, we outline our methodological framework for designing and training generative
models. We first discuss the fundamentals of QGANs, underscoring their potential for learning
complex distributions. We then examine representational fairness, a separate but important concern
that focuses on ensuring sensitive attributes are uniformly represented in generated data.

2.1 QGANS

QGANs extend classical GAN architectures by embedding quantum resources into the data genera-
tion process. Formally, let U(θ) be a parameterized quantum circuit acting on an n-qubit initial state
|0⟩⊗n. The quantum generator then produces the state

|ψθ⟩ = U(θ) |0⟩⊗n, (1)

whose measurement outcomes approximate samples drawn from the target distribution Pdata.

A classical or quantum discriminator Dϕ evaluates whether a given sample is real or generated. De-
noting the generator’s output distribution by Gθ(z), where z is drawn from some latent distribution
Pz , one can write a typical adversarial loss function as

L(Dϕ) =
∑
x

Pdata(x) log
(
Dϕ(x)

)
+

∑
z

Pz(z) log
(
1−Dϕ(Gθ(z))

)
, (2)

which the discriminator maximizes with respect to ϕ. The generator’s parameters θ are trained to
minimize the same objective, resulting in the minimax optimization:

min
θ

max
ϕ

L(θ, ϕ). (3)
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By leveraging quantum parallelism, QGANs can encode high-dimensional distributions with fewer
parameters than purely classical networks. However, current quantum hardware limitations, such
as qubit noise, restricted circuit depth, and limited qubit counts, can hamper practical performance.
While the broader subject of fairness is important in machine learning, we do not incorporate fairness
constraints into QGAN training in this work.

2.2 REPRESENTATIONAL FAIRNESS

Previous works Tan et al. (2020); Choi et al. (2020) have examined biases in classical GANs that pro-
duce non-uniform distributions over sensitive attributes. Achieving balanced group representation
alone does not necessarily prevent such biases Kenfack et al. (2021). Here, we consider a generic
methodology for promoting equitable outcomes in generative models by examining how data from
sensitive groups are generated.

Consider a dataset D = {X,S}, where X = {xi}Ni=1 is drawn from Pdata(X) and S = {si}Ni=1 is a
binary sensitive attribute. The generator

gθ : Rd → Rn×n (4)

transforms random noise Z ∼ Pz into synthetic data

Dθ = gθ(Z). (5)

By applying a function h : X → S, one obtains a distribution

P
(
h(gθ(Z))

)
, (6)

which captures how frequently each sensitive attribute appears in the generated samples.

Definition (Representational Fairness). A generator gθ is said to be ε-representationally fair if
it produces a distribution of sensitive attributes that is, up to ε, indistinguishable from the uniform
distribution U(S). Formally,

dist
(
P
(
h(gθ(Z))

)
, U(S)

)
≤ ε. (7)

Minimizing the Kullback–Leibler divergence between these two distributions is one approach to
achieving

KL
(
P
(
h(gθ(Z))

)
, U(S)

)
= ε. (8)

When ε = 0, the generator perfectly matches the uniform distribution of the sensitive attribute.

In principle, one could explore how representational fairness constraints might interact with a quan-
tum generator. However, in this work, we focus on classical fairness considerations and do not
explicitly integrate fairness objectives into our QGAN setup.

3 EXPERIMENTS AND RESULTS

We conducted our experiments using the MNIST dataset LeCun et al. (1998), divided into black
and white background subsets. A Conditional Generative Adversarial Network (CGAN) Mirza &
Osindero (2014) was trained to generate digits while considering both variations. A pre-trained
classifier with 100% accuracy identified the digit and background color of each generated sample,
enabling analysis of representation distribution and generative biases. Experiments were run on the
Pennylane QPU simulator for efficient evaluation.

Figure 2 shows the distribution of generated digits for RepFair-QGAN and qGAN. The mean count
across classes is around 200, but qGAN exhibits imbalances, overrepresenting some digits (e.g., digit
3 with 383 samples) and underrepresenting others (e.g., digit 9 with 71 samples). RRepFair-QGAN
achieves a more uniform distribution, enhancing fairness.

To quantify fairness, Figure 3 presents variance and standard deviation measurements. QGAN’s
variance is 9496.89, compared to 3658.89 for RepFair-QGAN, while its standard deviation is 97.45,
reduced to 60.49 for RepFair:qGAN. Lower values indicate better balance in generated samples.
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Figure 2: Distribution of generated digits across methods. The x-axis represents digit classes (0-9),
and the y-axis shows the sample count. RepFair-QGAN achieves a more balanced representation
than QGAN.
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Figure 3: Fairness evaluation: Variance and standard deviation of digit distributions for RepFair-
QGAN and QGAN. Lower values indicate improved balance.

Our results demonstrate that RepFair-QGAN enhances fairness by reducing representation imbal-
ances, as indicated by lower variance and standard deviation. Future work may extend this approach
to more complex datasets and further investigate the impact of fairness constraints on generative
modeling.

4 LIMITATIONS

Due to the limited number of qubits available, this study focuses exclusively on the MNIST dataset.
MNIST offers a multi-class setting necessary to examine fairness issues in representations; however,
more complex datasets cannot be effectively learned with the current qubit constraints, and simpler
datasets would not provide enough class diversity. Extending these techniques to more complex
datasets will require additional qubits or more efficient quantum architectures, which remains a key
direction for future work.

5 CONCLUSION

Our findings demonstrate that group-wise gradient clipping successfully extends to QANs, enabling
the exploration of fairness in emerging quantum gate-based machine learning. We observed that
biases commonly inherited from classical deep learning indeed transfer to the quantum domain,
as shown by skewed image generation on MNIST. By incorporating group-wise gradient clipping,
these biases were mitigated, yielding more balanced representations across classes. While MNIST
was chosen due to qubit limitations and its multi-class nature, future research could expand these
techniques to more complex datasets as quantum hardware evolves. This work highlights the im-
portance of fairness considerations in quantum models and lays the foundation for further studies on
mitigating representation bias in quantum machine learning.
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