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ABSTRACT

Recent advances in image-text pretraining have significantly enhanced visual un-
derstanding by aligning visual and textual representations. Contrastive Language-
Image Pretraining (CLIP) has played a pivotal role in multimodal learning. How-
ever, its focus on single-label, single-granularity alignment limits its effective-
ness in complex domains such as medical imaging, where images often corre-
spond to multiple high-level labels (e.g., disease categories) across different an-
notation granularities (e.g., diagnostic description, clinical explanation). To ad-
dress this, we propose Multi-Granular Language Learning (MGLL), a contrastive
learning framework designed to improve both multi-label and cross-granularity
alignment. MGLL leverages structured multi-label supervision, integrates textual
descriptions across granularities, and introduces soft-label supervision with point-
wise constraints to enhance alignment. MGLL employs smooth Kullback–Leibler
(KL) divergence to ensure cross-granularity consistency while maintaining com-
putational efficiency as a plug-and-play module for vision-language models. Pre-
trained on our constructed large-scale multi-granular datasets and evaluated across
multiple datasets, MGLL outperforms other state-of-the-art methods in down-
stream tasks. The code will be available on GitHub.

1 INTRODUCTION

In recent years, the large-scale image-text pretraining has significantly improved the performance of
downstream computer vision tasks. Among these approaches, Contrastive Language-Image Pre-
training (CLIP) Radford et al. (2021) has gained widespread popularity for its ability to learn
aligned visual and textual representations from paired data. CLIP has been extensively utilized
in multimodal learning, ensuring that representations from different modalities remain semantically
consistent. Consequently, CLIP has been employed for pretraining vision foundation models and
fine-tuning on various downstream tasks, such as classification, image segmentation, and object
detection. Despite the success of CLIP and related pretraining methods in aligning images with
textual categories, simple image-text pair matching remains inadequate in medical domains such
as imaging, biosignal analysis, and genomics. A single medical image or signal often maps to
multiple target categories, requiring both multi-label and multi-granularity alignment. As shown in
Fig. 1, a retinal fundus image may present both Diabetic Macular Edema and Diabetic Retinopathy,
along with finer-grained labels like Severe Diabetic Macular Edema and Moderate Non-Proliferative
Diabetic Retinopathy. This calls for alignment across multiple semantic levels. Existing multi-
label contrastive methods Wang et al. (2022b); Saporta et al. (2024); Naeem et al. (2024) focus on
instance-label correlations but struggle with cross-granular semantics and generalization. Compared
to natural images, medical images encode more complex, hierarchical information—spanning diag-
noses, structures, lesions, and textures—yet suffer from data scarcity due to privacy and annotation
costs, further compounding the challenge.

In this study, we aim to address the challenges of multi-label alignment and cross-granularity
alignment through a generalizable image-text contrastive learning framework simultaneously. Here,
we define “label” as a high-level disease category that an image belongs to, whereas “granularity”
represents different levels or aspects of medical annotations, such as diagnostic attributes or clinical
explanations. Unlike previous image-text contrastive pretraining approaches, which rely on single-
granular, single-label supervision, we construct a multi-granular, multi-label datasets by collecting
rich textual descriptions associated with the labels. Furthermore, we extend the original CLIP image
and text loss Radford et al. (2021) to incorporate soft-label supervision and introduce point-wise
constraints to enhance multi-label alignment. At the same time, we define contrastive learning ob-
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Figure 1: The illustrative comparison of input and outcome between CLIP and MGLL.

jectives for each granularity level and employ smooth Kullback–Leibler (KL) divergence to achieve
cross-granularity alignment. By jointly optimizing these learning objectives, our proposed MGLL
(Multi-Granular Language Learning) effectively aligns image-text pairs across both multiple la-
bels and multiple granularities. Notably, our method does not introduce any granularity-sensitive
encoders, ensuring no additional computational cost. This allows MGLL to function as a plug-
and-play module that can be integrated into any vision foundation model or large vision-language
model Touvron et al. (2023). We hope our method and experiments can provide new insights into
medical vision-language pretraining and facilitate more effective visual representation learning. Our
contributions are as follows:

• We propose MGLL, a novel contrastive learning framework using multi-granular language
that enables simultaneous multi-label and cross-granularity alignment.

• We provide a set of architecture-agnostic, multi-label, multi-granularity learning objectives
that can be seamlessly integrated into vision-language models and foundation models to
enhance medical visual understanding.

• We design a structured multi-granular, multi-label system and construct large-scale multi-
granular retinal and X-ray image-text datasets. Extensive experiments on over ten down-
stream datasets demonstrate that MGLL consistently outperforms other state-of-the-art
(SOTA) methods, exhibiting superior generalization ability.

2 RELATED WORK

2.1 IMAGE-TEXT CONTRASTIVE LEARNING

Large-scale image-text pretraining underpins modern multimodal learning. Contrastive methods
like CLIP Radford et al. (2021) align visual and textual features via paired data. Variants such as
SILC Naeem et al. (2024) use local-to-global pairwise learning, Symile Saporta et al. (2024) models
higher-order multimodal relations, and Long-CLIP Zhang et al. (2024) handles extended text via
stretched embeddings. MedCLIP Wang et al. (2022b) addresses false negatives in medical data
by semantic matching. Recent foundation models Silva-Rodriguez et al. (2025); Du et al. (2024);
Li et al. (2025); Zhang et al. (2023) tailor contrastive learning to specific domains. Still, standard
frameworks often underperform in medical settings due to data scarcity and complex semantics.
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Figure 2: The overview of MGLL (Multi-Granular Language Learning) pretraining pipeline.

2.2 MULTI-LABEL LEARNING

While conventional deep networks perform well in single-label classification, real-world objects
often carry multiple labels across entities, actions, and attributes Zhang et al. (2022); Khattak et al.
(2024); Dai et al. (2024). Early work by Wang et al. Wang et al. (2016) learned joint image-
label embeddings, and later introduced a recurrent attention module for interpretability Wang et al.
(2017b). SupCon Khosla et al. (2020) extended contrastive learning to supervised settings using
label structures, while Zhang et al. Zhang et al. (2022) proposed a hierarchy-preserving loss. Yet,
these methods remain limited in vision-language integration, with fixed label spaces constraining
semantic flexibility.

2.3 MULTI-GRANULARITY LEARNING

Visual and textual data convey semantics across multiple granularities. Recent work explores this via
diverse frameworks Zhao et al. (2024); Li et al. (2024a); Liu et al. (2024a). Wang et al. Wang et al.
(2022a) use bidirectional cross-attention for fine-grained alignment, Zhao et al. Zhao et al. (2024)
propose a multi-granularity vision flow, and Xiong et al. Xiong et al. (2022) align inter-/intra-modal
features with decision fusion. Du et al. Du et al. (2022) capture cross-modal multi-granular seman-
tics for retrieval. Most of the these approaches rely on fixed training pipelines that limit their ability
to incorporate heterogeneous or hierarchical annotations. Our MGLL provides a more flexible and
generalizable framework for learning both multi-label and cross-granularity visual–language repre-
sentations. MGLL can effectively utilize different types of granularity information across diverse
datasets without requiring specific annotation formats or model architectures. MGLL also displays
robust performance under complex scenarios such as mixed granularity and noised annotations.

3 MULTI-GRANULAR LANGUAGE LEARNING

3.1 OVERVIEW

To achieve multi-label and cross-granularity matching between images and text, we propose MGLL,
a multi-granularity language-based contrastive learning framework. As shown in Fig. 2, our frame-
work consists of an image encoder and a text encoder, where we use Vision Transformer Doso-
vitskiy et al. (2020) and BERT Devlin et al. (2019) as the default choices. First, we collect rich
textual descriptions for both fundus and X-ray images, constructing two multi-granularity datasets:
MGLL-Fundus and MGLL-Xray. Next, we leverage the encoded image representations and multi-
granularity text representations for multi-label contrastive learning, employing smoothed KL di-
vergence to align cross-granularity representations. We then describe how to transform multi-
granularity text into hierarchical representations and detail the MGLL objective. Furthermore, we
provide both empirical and theoretical analyses, demonstrating that MGLL captures richer image-
text correlations than CLIP without additional parameters. This enables the learning of more dis-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

criminative visual features, improving downstream vision tasks. Finally, we introduce the construc-
tion of large-scale multi-granular datasets: MGLL-Fundus and MGLL-Xray.

3.2 THE MGLL OBJECTIVES

Most contrastive learning methods rely on the traditional CLIP loss, but our primary goal is to
achieve simultaneous multi-label and cross-granularity alignment between image-text pairs. To this
end, we improve the standard CLIP loss by introducing the soft CLIP loss, the point-wise loss, and
the smooth KL (Kullback–Leibler) divergence loss in our proposed multi-granularity language
learning objective. The soft CLIP loss LsCLIP enhances the visual encoder by enabling better align-
ment with multi-label features. The point-wise loss optimizes the alignment of visual features with
specific text features at a given granularity, further improving multi-label alignment. The smooth
KL divergence loss helps different granularity features converge toward a unified feature space, fa-
cilitating cross-granularity alignment of visual representations. To quantify the similarity between
image and text features, we adopt a soft alignment strategy, allowing an image Vi to align not only
with a single label Ti but also with multiple related labels Tik, k ∈ {1, 2, . . . ,Mi} as Eqs. (1)
and (2), where N is the total number of images, Mi is the number of text labels associated with
the i-th image, Vi and Tik represent the encoded features of the i-th image and its corresponding
k-th text label, respectively. sim(Vi, Tik) is the similarity function measuring their alignment. The
temperature parameter τ controls the sharpness of the probability distribution, while the weight fac-
tor wik determines the contribution of the k-th text label to the alignment of the i-th image. The
text-to-image loss lki can be obtained simply by swapping the roles of the image and text terms of
the image-to-text loss lik in Eq. (2).

lik = −wik log
exp(sim(Vi, Tik)/τ)∑N

n=1

∑Mn

m=1 exp(sim(Vi, Tnm)/τ)
(1)

LsCLIP =
1

2
∑N

i=1 Mi

N∑
i=1

Mi∑
k=1

(lik + lki) (2)

Each image feature Vi is treated as multiple pairs (Vi, Ti1), (Vi, Ti2), ..., (Vi, TiMi), and wik is the
probability of selecting Tik as a valid label for Vi. wik is derived from the co-occurrence matrix
normalization as Eq. (3). Instead of forcing the model to align strictly with one label like CLIP,
MGLL allows multi-label optimization and prevents the model from being biased toward a single
label.

wik =
coocurrence(Vi, Tik)∑
k coocurrence(Vi, Tik)

(3)

To further optimize the alignment between visual and textual features, we employ binary cross
entropy as point-wise loss LP to refine multi-label alignment as Eq. (4), where x

′

ij = σ(xij), xij =
sim(Vi, Tj) represents the similarity logits between the encoded image feature Vi and text feature
Tj before applying activation. The binary label yij ∈ {0, 1} indicates whether the image-text pair is
a valid match. σ(x) is the Sigmoid activation function, defined as σ(x) = 1

1+e−x , which normalizes
the logits into a probability range. Tj denotes the annotation corresponding to a single label at a
specific granularity level. M denotes the total number of annotations, and N represents the total
number of images. These annotations are consistent with those defined in Eq. (1). Since the point-
wise loss does not explicitly model the relationships among annotations, we omit the label subscripts
of M and Tj for simplicity. By explicitly supervising individual image-text pairs, this loss enhances
fine-grained multi-label alignment and improves the discriminability of visual representations.

LP = −
N∑
i=1

M∑
j=1

yij log x
′

ij + (1− yij) log(1− x
′

ij)

N
(4)

To achieve cross-granularity alignment, we employ the smooth Kullback–Leibler (KL) divergence
loss LsKL, formulated as follows. Given m similarity logits between the encoded image feature and
the text feature {Pi}mi=1, we define the mean distribution as the average of all predicted distributions:
M = 1

m

∑m
i=1 Pi. Then, we compute the KL divergence between each predicted distribution and

the mean distribution as Eqs. (5) and (6), where P
(j)
i represents the predicted probability of the i-th
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model for category j. This loss encourages consistency across different granularity levels by align-
ing their predicted distributions toward the mean distribution M , which achieves cross-granularity
alignment.

DKL(Pi∥M) =
∑
j

P
(j)
i log

P
(j)
i

M (j)
(5)

LsKL =

m∑
i=1

DKL(Pi∥M) (6)

The final loss with weight factors is as Eq. (7), where α1 is 0.5, α2 is 1, and α3 is 1 by experimental
setting.

LMGLL = α1LsCLIP + α2Lp + α3LsKL (7)

3.3 EMPIRICAL AND THEORETICAL ANALYSIS OF MGLL
3.3.1 EMPIRICAL ANALYSIS

CLIP aligns each image with a single text label, limiting its effectiveness in multi-label scenarios.
MGLL addresses this by using soft CLIP loss and point-wise loss to align visual features with mul-
tiple correlated text labels on a shared manifold. For multi-granularity alignment, MGLL encodes
each granularity in separate spaces and aligns image features accordingly. A smooth KL divergence
loss further promotes consistency by aligning features across granularities with their mean distri-
bution, preventing overfitting to any single level. This enables MGLL to distinguish both coarse
and fine-grained categories (e.g., Glaucoma vs. Diabetic Macular Edema, and Severe vs. Moderate
Diabetic Macular Edema), where CLIP typically fails.

3.3.2 THEORETICAL ANALYSIS

We provide a theoretical comparison between MGLL and CLIP. CLIP maximizes similarity between
image and corresponding text features while minimizing contrastive loss for mismatched pairs, as
defined in Eq. (8), where Vi and Ti are image and text features, sim(I, T ) = I·T

∥I∥∥T∥ is cosine
similarity, and τ is a temperature parameter.

LCLIP = − 1

N

N∑
i=1

log
exp(sim(Vi, Ti)/τ)∑N
j=1 exp(sim(Vi, Tj)/τ)

(8)

However, CLIP only aligns an image Vi with a single text label Ti, limiting its effectiveness in
multi-label settings. It also projects text features of different granularities into the same space,
which is suboptimal when finer semantic distinctions are needed. MGLL overcomes these issues by
introducing Soft CLIP Loss, Point-wise Loss, and Smooth KL Divergence Loss to support multi-
label and cross-granularity alignment in appropriate feature subspaces.

(1) Soft CLIP Loss: MGLL allows an image feature Vi to align with multiple text features
{Ti1, Ti2, ..., TiMi

}. At optimality, this leads to the condition in Eq. (9), implying Eq. (10), where
Vi converges to the weighted center of its associated text features. This contrasts with CLIP, which
aligns each image to a single text feature, highlighting MGLL’s advantage in multi-label learning.

Mi∑
k=1

wik∇Visim(Vi, Tik) = 0 (9)

Mi∑
k=1

wik
Tik

∥Tik∥
=

Vi

∥Vi∥
(10)

(2) Point-wise Loss: To enhance image-text alignment, we introduce a point-wise binary cross-
entropy loss Lp with its gradient shown in Eq. (11). If yij = 1, the objective is to maximize
σ(xij), strengthening similarity between Vi and Tj . If yij = 0, it minimizes σ(xij), suppressing
similarity with irrelevant text. This encourages alignment with all valid labels while filtering out
noise, improving over CLIP’s single-label constraint.
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∂Lp

∂xij
= σ(xij)− yij (11)

(3) Smooth KL Divergence Loss: To enforce cross-granularity consistency, we introduce Smooth
KL Divergence Loss. The mean distribution is defined as M = 1

m

∑m
i=1 Pi where {Pi}mi=1 are

predicted distributions. By the non-negativity of KL divergence, Eq. (12) achieves equality only
when Pi = M . Minimizing LKL thus enforces P1 = P2 = · · · = Pm = M , encouraging consistent
representations across granularities and improving alignment in feature space.

DKL(Pi∥M) ≥ 0, ∀i (12)

While CLIP optimizes image-text alignment, it overlooks feature variability across granularities and
lacks consistency in visual alignment. By aligning each image feature Vi with a single text feature
Ti, it risks biased representations. In contrast, MGLL drives text features of different granularities
toward a shared mean distribution M , promoting common semantic grounding and aligning visual
features with all granularity levels, not just one.

3.4 LARGE-SCALE MULTI-GRANULAR DATASETS

3.4.1 MGLL-FUNDUS DATASET

In this study, we construct a large-scale multi-granularity fundus image-text dataset, MGLL-Fundus,
consisting of 246,389 pairs of fundus images and corresponding multi-granularity textual descrip-
tions. The image data in MGLL-Fundus originates from 49 public datasets, covering more than
50 disease categories (details are provided in the supplementary material). The multi-granularity
textual descriptions mainly include two levels of granularity: disease category and clinical expla-
nation. The disease-level granularity comprises normal/abnormal labels along with specific dis-
ease categories. The clinical explanation granularity provides detailed textual descriptions derived
from label explanations in datasets and EyeWiki EyeWiki (2024). As shown in Fig. 2, the disease-
level description is “Abnormal, Age-related Macular Degeneration”, while its corresponding clini-
cal explanation is “Changes in the retinal pigment epithelium.” By incorporating multi-granularity
textual descriptions, we establish a hierarchical labeling system for fundus images, including nor-
mal/abnormal classification, disease categorization, and detailed clinical descriptions, which enable
cross-granularity image-text alignment and enhance performance across different granularity levels.
Our multi-granularity approach can also be adopted to other modalities.

3.4.2 MGLL-XRAY DATASET

In radiology research, the heterogeneity of study descriptions in DICOM (Digital Imaging and
Communications in Medicine) headers complicates patient cohort selection, especially with man-
ual methods. MIDRC (Medical Imaging and Data Resource Center) MIDRC (2024) highlight this
challenge, where over 138,000 studies are categorized into only 97 unique descriptions, while the
rest are described by 1,300 different descriptions. Therefore, we need LOINC (Logical Observation
Identifiers Names and Codes), which provides a standardized coding system to enhance data shar-
ing and analysis. To facilitate data coordination with, we collect 190,882 X-ray images from the
MIDRC repository MIDRC (2024). We convert the images from DICOM to PNG format while ex-
tracting key metadata. The extracted multi-granularity textual information includes modality, study
description, and series description. Modality includes CR (Computed Radiography), which has a
lower resolution and signal-to-noise ratio (SNR), and DX (Digital Radiography), which uses flat-
panel detectors for higher-quality imaging. Study Description provides an exam-level overview,
such as ”Chest X-ray”, while Series Description details specific imaging sequences like ”PA View”
(posteroanterior) or ”Lateral View”. These multi-granularity textual features serve as the textual
component of MGLL-Xray dataset.

4 EXPERIMENTS

4.1 SETUP

We construct a large-scale multi-granularity fundus image-text dataset for pre-training, with further
details provided in the supplementary material. To evaluate our model’s performance, we conduct
experiments on eleven downstream datasets: FIVES Jin et al. (2022), IDRiD Porwal et al. (2018),
OIA-DDR Li et al. (2019b), ADAM Fang et al. (2022), PALM Fang et al. (2024), REFUGE Orlando
et al. (2020), RIM-ONE Batista et al. (2020), RFMiD Pachade et al. (2021), MIDRC-XR MIDRC
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Figure 3: The quantitative comparison (AUC) between baseline methods and proposed MGLL on
nine fundus downstream datasets.

(2024), MIDRC-XR-Portable MIDRC (2024), ChestX-ray14 Wang et al. (2017a) under both linear
probing and full fine-tuning settings. In our quantitative evaluation, we employ AUC (Area Under
the receiver operating characteristic Curve), mAP (mean Average Precision), and ACC (Accuracy)
as assessment metrics. As for the multi-label setting, we report the category-wise average accuracy
as ACC. We adopt ViT-L/14 Dosovitskiy et al. (2020) as the image encoder and BiomedicalBERT
Alsentzer et al. (2019) as the text encoder by default. All experiments were conducted under iden-
tical settings, with baselines pre-trained on our self-constructed multi-granularity datasets to ensure
fair comparison. We strictly followed the official data splits of all downstream datasets. During
pretraining, we only used the training sets for model training and the validation sets for pretraining
evaluation, while the test sets were never accessed.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

4.2.1 EVALUATION ON RETINAL FUNDUS DATASETS

Utilizing the multi-granularity image-text fundus dataset we constructed, we pretrain our model
within the Multi-Granular Language Learning (MGLL) framework to enhance its capability in fea-
ture representation for retinal fundus images. We conduct comprehensive experiments to compare
the performance of MGLL against several state-of-the-art (SOTA) baseline methods across nine
downstream datasets, covering a wide range of retinal diseases. The AUC results for both linear
probing and full fine-tuning are presented in Fig. 3, while more detailed results can be found in
the supplementary material (Tables 15 to 23). MGLL consistently achieves significant performance
improvements across all nine datasets, with particularly strong gains in the linear probing setting.
Notably, on the multi-label dataset RFMiD Pachade et al. (2021), MGLL outperforms other methods
by at least 16.6% in linear probing and 6.7% in full fine-tuning, demonstrating its superior capabil-
ity in handling imbalanced data distributions. Fig. 4 visualizes class activation maps (CAMs) from
CLIP and MGLL on two cases with different retinal diseases. It is evident that CLIP fails to extract
meaningful features, instead assigning nearly uniform attention weights across the entire fundus im-
age. In contrast, MGLL effectively localizes key regions of interest (ROIs) for different diseases.
Specifically, MGLL accurately highlights hard exudates for chorioretinitis and the retinal pigment
epithelium for age-related macular degeneration. These quantitative and qualitative evaluations col-
lectively indicate that MGLL possesses extraordinary capability in effective feature extraction and
performance enhancement across diverse retinal diseases.

4.2.2 EVALUATION ON X-RAY DATASETS

We pretrain MGLL on the MGLL-Xray dataset and conduct experiments on MGLL and other SOTA
baseline methods (Radford et al. (2021); Tiu et al. (2022); Zhang et al. (2023); Zhou et al. (2023a);
Dai et al. (2024); Khattak et al. (2024); Lai et al. (2024); Xie et al. (2025)) on the MIDRC-XR
and MIDRC-XR-Portable datasets, which are shown in the Table 1. In the linear probe setting,
MGLL achieves significant advancements over the second-best method (UniChest Dai et al. (2024)
on MIDRC-XR and UniMed-CLIP Khattak et al. (2024) on MIDRC-XR-Portable), with improve-
ments of 2.23% and 3.81% in AUC, respectively, indicating superior representation learning capa-
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Table 1: The performance evaluation on MIDRC-XR, MIDRC-XR-Portable, and ChestX-ray14.
Bold indicates best performance and underline shows second-best.

Method
MIDRC-XR MIDRC-XR-Portable ChestX-ray14

Linear Probe (%) Fully Fine-tune (%) Linear Probe (%) Fully Fine-tune (%) Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP AUC ACC mAP AUC ACC mAP AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 54.72 51.18 16.62 88.52 80.83 62.04 71.43 78.22 22.31 91.83 90.08 83.94 69.75 78.09 18.33 82.05 87.58 31.79
CheXzero (Nat. BME-22) 51.31 43.85 12.71 80.11 73.26 55.46 72.84 80.13 23.56 92.47 92.42 85.23 68.72 76.98 15.97 81.81 87.39 31.52

KAD (Nat. Com-23) 53.44 47.13 14.86 85.74 78.39 60.12 73.53 80.71 23.88 93.41 92.98 85.96 73.72 78.95 21.87 83.80 89.13 34.01
MRM (ICLR-23) 56.23 53.61 17.73 90.67 83.95 64.76 79.38 86.05 27.72 96.52 95.07 86.95 74.63 79.87 23.23 84.28 89.57 35.62

UniChest (TMI-24) 59.02 54.78 19.32 92.51 86.32 66.93 78.49 85.28 27.37 95.44 94.32 86.38 76.15 81.72 25.52 85.84 89.99 37.97
UniMed-CLIP (arXiv-24) 57.33 54.07 18.06 94.15 87.47 68.49 80.05 86.63 28.16 94.31 93.55 86.19 75.54 81.21 24.96 82.59 88.36 32.19

CARZero (CVPR-24) 57.92 54.43 18.79 93.48 86.94 67.62 75.24 82.67 25.65 92.94 92.66 85.67 77.32 83.94 26.88 82.95 88.65 32.86
FG-CLIP (ICML-25) 58.31 54.59 19.03 93.29 86.71 67.44 80.31 86.77 28.27 96.93 95.74 87.42 76.62 82.35 25.98 85.10 89.73 37.02

MGLL 61.25 56.57 21.19 99.08 90.06 73.33 83.86 89.06 30.62 99.75 98.80 89.87 82.94 90.41 28.53 87.37 92.71 39.17
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Figure 4: The Class Activation Maps of different diseases from CLIP and MGLL.

bilities. The performance gap becomes even more significant in the fully fine-tuned setting. To
demonstrate its generalization capability, we conduct additional experiments using multi-granular
labels constructed from the MIMIC-CXR dataset Johnson et al. (2019), evaluating performance on
the ChestX-ray14 benchmark Wang et al. (2017a). The results reveal its exceptional transferability,
with substantial performance advantages across all other baseline methods. In the linear probe set-
ting, MGLL achieves 82.94% AUC, 90.41% accuracy, and 28.53% mAP, surpassing the second-best
method (CARZero Lai et al. (2024)) by 5.62%, 6.47%, and 1.65% respectively. The improvement
highlights its superior representation learning capacity, suggesting that its multi-granular approach
captures more generalizable features that transfer effectively across datasets. These consistent and
substantial improvements also demonstrate that MGLL enables more robust feature extraction.

4.3 PERFORMANCE WITH MGLL IN MLLMS

To evaluate MGLL’s impact as a specialized vision encoder within multimodal large language mod-
els (MLLMs) for ophthalmological diagnostics, we design a multiple-choice benchmark involving
2,233 clinical cases over ten ophthalmological conditions, where each fundus image prompted mod-
els to select the correct diagnosis from four options (one correct, three random alternatives). We
replace the standard vision encoders in seven advanced MLLMs with our pretrained MGLL: In-
structBLIP Dai et al. (2023), Mini-Gemini Li et al. (2024b), Qwen-VL Bai et al. (2023), InternVL
Chen et al. (2024a), LLaVA Liu et al. (2024a), LLaVA-Med Li et al. (2024a), Med-Flamingo Moor
et al. (2023), and Janus-Pro Chen et al. (2025). All MLLMs were fine-tuned on the target dataset
to ensure a fair comparison. Results demonstrate consistent and substantial improvements across all
tested MLLMs, with average accuracy gains ranging from 4.6% (InternVL) to 34.1% (LLaVA-Med)
as shown in Table 2. Notably, medically-specialized models exhibited the most dramatic enhance-
ments, with Med-Flamingo and LLaVA-Med showing 31.7% and 34.1% increases respectively.
This dramatic improvement can be attributed to the alignment between MGLL’s ophthalmology-
specific visual feature extraction capabilities and the medical reasoning frameworks already embed-
ded within these models. Even the high-performing general-purpose MLLMs like LLaVA (72.73%
to 79.98%) also achieve significant gains with MGLL. The improvements across challenging condi-
tions like Tessellation and Retinitis underscore MGLL’s capacity to extract clinically relevant visual
features from fundus images, highlighting its robust adaptability across models.
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Table 2: Comparison of multiple-choice accuracy with MGLL in multimodal large language models
on selected ten representative diseases.
Method AMD Cataract CSR DR Glaucoma Media Haze Myopia Retinitis DME Tessellation Average ↑
InstructBLIP Dai et al. (2023) 80.17% 80.00% 0.00% 76.51% 59.30% 16.13% 44.25% 11.11% 63.79% 41.67% 47.29%

+ MGLL 83.63% 85.00% 28.57% 82.55% 65.43% 45.16% 52.65% 44.44% 74.14% 58.33% 61.99% (14.7% ↑)
Mini-Gemini Li et al. (2024b) 76.61% 85.00% 14.29% 79.87% 67.90% 38.71% 58.41% 33.33% 60.34% 33.33% 54.78%

+ MGLL 82.46% 85.00% 42.86% 84.56% 72.22% 58.06% 64.16% 55.56% 65.52% 41.67% 65.21% (10.4% ↑)
Qwen-VL Bai et al. (2023) 81.87% 75.00% 28.57% 80.54% 78.40% 54.84% 76.55% 22.22% 84.48% 25.00% 60.75%

+ MGLL 85.96% 80.00% 42.86% 89.93% 87.04% 70.97% 80.97% 33.33% 89.66% 41.67% 70.24% (9.5% ↑)
InternVL Chen et al. (2024a) 81.29% 85.00% 71.43% 94.63% 89.51% 64.52% 88.05% 44.44% 87.93% 66.67% 77.35%

+ MGLL 86.55% 90.00% 71.43% 96.64% 90.74% 67.74% 91.15% 55.56% 94.83% 75.00% 81.96% (4.6% ↑)
LLaVA Liu et al. (2024a) 83.04% 90.00% 42.86% 87.25% 91.36% 48.39% 88.50% 44.44% 93.10% 58.33% 72.73%

+ MGLL 84.80% 90.00% 57.14% 93.96% 91.98% 61.29% 90.71% 66.67% 96.55% 66.67% 79.98% (7.3% ↑)
LLaVA-Med Li et al. (2024a) 16.37% 15.00% 42.86% 26.85% 25.31% 25.81% 23.89% 33.33% 16.67% 16.67% 24.28%

+ MGLL 58.48% 65.00% 57.14% 77.18% 59.26% 51.61% 57.08% 44.44% 55.17% 58.33% 58.37% (34.1% ↑)
Med-Flamingo Moor et al. (2023) 25.73% 30.00% 57.14% 36.91% 24.07% 22.58% 18.58% 22.22% 24.14% 8.33% 26.97%

+ MGLL 69.01% 75.00% 71.43% 80.54% 61.11% 54.84% 45.58% 44.44% 51.72% 33.33% 58.70% (31.7% ↑)
Janus-Pro Chen et al. (2025) 88.30% 75.00% 42.86% 93.29% 90.74% 58.06% 87.17% 33.33% 62.07% 58.33% 68.92%

+ MGLL 90.64% 85.00% 71.43% 96.64% 95.06% 67.74% 90.27% 55.56% 70.69% 75.00% 79.80% (10.88% ↑)

4.4 ABLATION STUDIES

4.4.1 ABLATION STUDY ON MGLL OBJECTIVES

We conduct an ablation study to analyze the effectiveness of each objective in MGLL on the RFMiD
dataset, as shown in Table 3. The standard CLIP model performs the worst, highlighting its limita-
tions in medical image understanding. Incorporating the point-wise Loss LP significantly improves
performance, demonstrating its ability to enhance feature extraction. The soft CLIP loss LsCLIP also
improves over CLIP, which enables soft alignment with multiple labels. Combining both losses
(LsCLIP + LP) further boosts performance, indicating their complementary effects. Finally, adding
the soft-KL loss LsKL leads to the best performance, demonstrating its role in refining feature consis-
tency across different learning objectives. These results validate the effectiveness of each objective.

Table 3: Ablations of different MGLL objectives
on RFMiD.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 44.66 92.53 7.28 65.10 92.86 17.31
LP 70.34 92.69 23.83 88.25 94.31 56.46

LsCLIP 67.86 92.63 20.52 85.13 93.58 50.67
LsCLIP + LP 75.73 92.77 30.16 90.31 94.87 62.27

LsCLIP + LP + LsKL 79.62 92.84 34.08 92.83 95.48 64.99

Table 4: Ablations of granularity count on
MIDRC-XR-Portable.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 71.43 78.22 22.31 91.83 90.08 83.94
MGLL1 80.54 86.97 28.32 95.96 94.66 86.54
MGLL2 82.92 88.35 29.43 97.26 96.84 87.68
MGLL3 83.86 89.06 30.62 99.75 98.80 89.87

Table 5: Ablations of image encoder on RFMiD.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 44.66 92.53 7.28 65.10 92.86 17.31
ConvNext-Base 74.45 92.73 27.94 88.55 94.57 57.62
ConvNext-Large 78.34 92.80 32.03 91.29 94.95 62.93

ViT-B/16 75.53 92.76 30.11 89.46 94.83 61.84
ViT-L/14 79.62 92.84 34.08 92.83 95.48 64.99
ViT-H/14 79.18 92.81 33.42 92.07 95.29 63.85

Table 6: Ablations of text encoder on RFMiD.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 44.66 92.53 7.28 65.10 92.86 17.31
CLIPtext 68.93 92.66 22.14 88.76 94.58 58.14
BERT 79.62 92.84 34.08 92.83 95.48 64.99

LLaMA 74.89 92.75 29.38 90.97 95.04 62.86

4.4.2 ABLATION STUDY ON GRANULARITY COUNT

The ablation study on granularity count demonstrates the significant impact of multi-granular lan-
guage supervision on model performance. As shown in Table 4, incrementally increasing the num-
ber of granularity levels consistently improves performance across all evaluation metrics. MGLL3,
which utilizes three distinct granularity levels (modality, study description, and series description),
achieves superior results compared to both MGLL1 (all textual information combined into a sin-
gle granularity) and MGLL2 (two granularity levels). Specifically, under linear probe evaluation,
MGLL3 outperforms the baseline CLIP by substantial margins (+12.43% AUC, +10.84% ACC,
+8.31% mAP) and shows marked improvement over MGLL1 (+3.32% AUC, +2.09% ACC, +2.30%
mAP). The similar trend persists in fully fine-tuned scenarios. These results confirm that preserv-
ing the hierarchical structure of medical imaging information enables more comprehensive vision-
language alignment than flattened representations, validating the core idea of the Multi-Granular
Language Learning framework.
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4.4.3 SELECTION OF IMAGE ENCODER AND TEXT ENCODER

The ablation study on image encoders reveals significant performance variations across different
architectural choices when evaluated on the RFMiD dataset as shown in Table 5. Vision Trans-
former (ViT) Dosovitskiy et al. (2020) generally outperforms CNN counterparts (ConvNeXt Liu
et al. (2022b)), with ViT-L/14 achieving optimal results across all metrics. Interestingly, the larger
ViT-H/14 model shows slightly diminished performance compared to ViT-L/14, suggesting a poten-
tial overfitting scenario or diminishing returns with increased model complexity in this domain.

The comparative analysis of text encoders demonstrates that the choice of language model signif-
icantly impacts the model’s ability to align textual and visual representations. BERT emerges as
the optimal text encoder, achieving the highest performance across all evaluation metrics as shown
in Table 6. The standard CLIP text encoder (denoted as CLIPtext) shows the limited performance
among the tested alternatives, though it still substantially improves upon the baseline CLIP model.
These findings suggest that the bidirectional attention mechanisms are suitable for the structured,
hierarchical medical terminology utilized in MGLL.

4.4.4 ABLATION STUDY ON IMAGE QUALITY AND TEXT QUALITY

Image resolution is a critical factor in the performance of MGLL as evidenced by the ablation exper-
iments on the MIDRC-XR-Portable dataset. The performance exhibits a clear monotonic relation-
ship with image resolution, with Standard-Resolution (512×512) significantly outperforming both
Low-Resolution (128×128) and Ultra Low-Resolution (64×64) configurations across all evaluation
metrics as shown in Table 7. These findings underscore the importance of preserving fine-grained
visual details in medical imaging applications, as higher resolution allows the model to capture sub-
tle radiological features. However, MGLL substantially outperforms the baseline CLIP even at Ultra
Low-Resolution, suggesting that MGLL provides robust improvements regardless of image quality.

The integrity of textual information significantly impacts model performance, as demonstrated
through controlled degradation experiments on the MIDRC-XR-Portable dataset. The analysis con-
trasts standard textual descriptions against two degraded conditions: “Error” (20% partial errors in
modality, study, or series descriptions) and “Missing” (20% partial omissions in these same fields).
Standard textual descriptions yield superior performance across all metrics as show in Table 8. The
“Missing” condition demonstrates intermediate performance, while the “Error” condition shows
more performance degradation, suggesting that incorrect information is more detrimental than in-
complete information. Nevertheless, both degraded conditions still significantly outperform the
baseline CLIP model, indicating the robustness of MGLL to textual noise. These findings have
important practical implications for clinical deployment scenarios, where reporting systems may
contain documentation gaps or transcription errors, and suggest that MGLL maintains considerable
diagnostic utility even under suboptimal documentation conditions.

Table 7: Ablations of image quality on MIDRC-
XR-Portable.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 71.43 78.22 22.31 91.83 90.08 83.94
Ultra Low-Res 78.82 85.68 27.49 94.48 93.69 86.22

Low-Res 80.66 87.02 28.53 98.18 97.65 88.46
Standard-Res 83.86 89.06 30.62 99.75 98.80 89.87

Table 8: Ablations of text quality on MIDRC-
XR-Portable.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP 71.43 78.22 22.31 91.83 90.08 83.94
Error 80.02 86.48 28.01 97.71 97.22 87.96

Missing 81.14 87.25 28.86 98.62 97.95 88.74
Standard 83.86 89.06 30.62 99.75 98.80 89.87

5 CONCLUSION

This study introduces Multi-Granular Language Learning (MGLL), a novel contrastive learning
framework that addresses limitations in existing vision-language pretraining methods. MGLL uti-
lizes textual information on different granular levels while employing soft-label supervision with
point-wise constraints to enhance representation quality, which advances multi-label and cross-
granularity alignment capabilities simultaneously. The implementation of smooth Kullback–Leibler
divergence also ensures cross-granularity consistency. Our evaluations across multiple downstream
datasets demonstrate that MGLL consistently outperforms state-of-the-art methods in downstream
tasks, particularly in domains requiring multi-label understanding at various granular levels. The
results validate its ability to capture complex semantics in visual data, establishing MGLL as an
advancement in developing future vision-language models.
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Ethics statement This research uses exclusively publicly available medical imaging datasets and
does not require Institutional Review Board (IRB) approval. All datasets utilized in this study, in-
cluding the 49 public fundus imaging datasets comprising MGLL-Fundus, the MIDRC repository
for X-ray images, MIMIC-CXR, and other evaluation datasets, have been previously released for
research purposes with appropriate ethical clearances and patient consent procedures handled by
the original data providers. All patient identifiers have been removed from the datasets prior to our
access, ensuring full de-identification in compliance with HIPAA and other relevant privacy regula-
tions. We have strictly adhered to the usage terms and conditions specified by each dataset provider
and have not attempted to re-identify any individuals. Our multi-granularity learning approach is
designed to improve automated medical image analysis, particularly for diabetic retinopathy, glau-
coma, age-related macular degeneration, and chest X-ray interpretation. The MIDRC dataset ap-
plications focus on enhancing radiological assessment capabilities, which could potentially assist
healthcare providers in resource-limited settings and improve diagnostic consistency. However, we
emphasize that our models are intended as diagnostic support tools and should not replace clinical
judgment. We commit to responsible AI development by ensuring transparent reporting of model
limitations, encouraging rigorous clinical validation before any real-world deployment, and advo-
cating for appropriate human oversight in all clinical applications. We do not claim our models are
ready for direct clinical use without further validation and regulatory approval.

Reproducibility statement We have made extensive efforts to ensure the reproducibility of our
work. The complete implementation, including the original source code and a README file with
detailed instructions, is provided in the supplementary materials. Training configurations and hyper-
parameters are fully documented in both the source code and Section 4.1. Step-by-step mathematical
derivations of the proposed methodology are presented in Section 3.3 and Appendix A. All datasets
employed in this study are publicly available, with references and preprocessing procedures de-
scribed in Section 3.4 and Appendix B. The experimental setup is described in Section 4.1 and more
details are described in Appendix C. To ensure fair comparison and reproducibility, all experiments
used identical settings with baseline models pre-trained on our custom multi-granularity datasets.

REFERENCES

cataract dataset. https://www.kaggle.com/datasets/jr2ngb/
cataractdataset/, 2020. Accessed: 2025-02-20.

Vietai advance course - retinal disease detection, 2020. https://www.kaggle.com/
competitions/vietai-advance-retinal-disease-detection-2020/data
[Accessed: (May. 6, 2024)].

Augemnted ocular diseases, 2021. https://www.kaggle.com/datasets/
nurmukhammed7/augemnted-ocular-diseases [Accessed: 2025-02-20].

Derbi hackathon retinal fundus image dataset, 2022. https://www.kaggle.com/
datasets/nikkich9/derbi-hackathon-retinal-fundus-image-dataset
[Accessed: 2025-02-20].
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A DETAILED THEORETICAL ANALYSIS OF MGLL

A.1 SOFT CLIP LOSS

Formulation of the Soft CLIP Loss In contrast to standard CLIP, which forces an image represen-
tation Vi to align with a single text label Ti. MGLL uses the Soft CLIP Loss to allow an image to
align with multiple text features {Ti1, Ti2, . . . , TiMi

}. In doing so, the loss is designed so that the
optimal image feature becomes the weighted “center” of its associated text features. This mitigates
bias toward any single label and better captures the multi-label nature of the data. The loss for an
image–label pair is defined as the following formula:

lik = −wik log
esim(Vi,Tik)/τ∑N

n=1

∑Mn

m=1 e
sim(Vi,Tnm)/τ

(13)

where wik is the weight assigned to the k-th text label for image i, derived via the following formula:

wik =
cooccurrence(Vi, Tik)∑
k cooccurrence(Vi, Tik)

(14)

where sim(Vi, Tik) measures the similarity between image and text features (typically cosine simi-
larity). τ is the temperature parameter controlling the sharpness of the resulting probability distri-
bution. The overall loss is given by

LsCLIP =
1

2
∑N

i=1 Mi

N∑
i=1

Mi∑
k=1

(
lik + lki

)
(15)

Derivation of the Optimality Condition

(a) The Goal of the Optimization

For the purposes of our analysis, we focus on how the loss aligns Vi with its multiple text features
Tik. At an optimum, the gradient of the loss with respect to the image feature Vi must vanish. That
is, we require

∇Vi
LsCLIP = 0 . (16)

Focusing on the part of the loss involving the alignment between Vi and its labels, we can write a
simplified optimality condition (ignoring symmetric contributions from text-to-image terms):

Mi∑
k=1

wik ∇Vi
sim(Vi, Tik) = 0 . (17)

(b) Computing the Gradient

Assume for simplicity that both image and text features are normalized to unit norm:

∥Vi∥ = 1 and ∥Tik∥ = 1 . (18)

Under this assumption, the cosine similarity reduces to a dot product:

sim(Vi, Tik) = Vi · Tik . (19)

The derivative with respect to Vi is then straightforward:

∇Vi
(Vi · Tik) = Tik . (20)

Thus, the optimality condition becomes
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Mi∑
k=1

wik Tik = λVi , (21)

where λ is a scalar (a Lagrange multiplier that arises from the normalization constraint on Vi).
Because Vi is unit norm, this equation can be re-arranged to yield

Vi =

∑Mi

k=1 wik Tik∥∥∥∑Mi

k=1 wik Tik

∥∥∥ . (22)

This result shows that at the optimal solution, the visual feature Vi is aligned with the weighted
average (or the “center”) of its associated text features.

(c) Rewriting in Normalized Form

More generally, even when the features are not explicitly normalized in the network, one can express
the optimality condition in terms of normalized vectors:

Mi∑
k=1

wik
Tik

∥Tik∥
=

Vi

∥Vi∥
. (23)

This is equivalent to the expression provided earlier, emphasizing that Vi converges to the weighted
centroid of the normalized text features.

Interpretation and Discussion Unlike CLIP, which uses a one-to-one image–text matching—the
Soft CLIP Loss allows each image to be simultaneously aligned with multiple text descriptions. The
weighting wik (derived from the co-occurrence matrix) ensures that each text label contributes to
the final image representation in proportion to its relevance. The optimality condition guarantees
that the image representation Vi is not overly biased by any single text feature but is instead the
“center” of all its semantic descriptors. This is crucial in multi-label settings where an image may
contain several objects or concepts. In standard CLIP, the loss encourages Vi to align closely with
a single text label Ti. Here, the Soft CLIP Loss’s optimality condition shows that the ideal Vi is
instead a weighted aggregate of multiple text labels, overcoming the limitation of forcing one-to-
one alignment in a multi-label context. The detailed derivation shows that under the Soft CLIP Loss,
the following gradient condition

Mi∑
k=1

wik ∇Vi
sim(Vi, Tik) = 0 (24)

leads directly to the interpretation that the optimal image feature Vi is the normalized weighted sum
of its associated text features. This theoretical result underpins MGLL’s capability to perform multi-
label alignment, ensuring that image representations capture the combined semantic information
provided by multiple labels.

A.2 POINT-WISE LOSS

Formulation of the Point-wise Loss The point-wise loss LP is designed to refine the alignment be-
tween visual and textual features on a per-pair basis. Unlike global or batch-level losses, this loss
explicitly supervises each image–text pair, ensuring that every valid pair (where yij = 1) is pulled
closer together in the feature space while non-matching pairs (where yij = 0) are pushed apart.
This detailed supervision is achieved via a binary cross-entropy formulation applied to the similarity
logits between an image feature Vi and a text feature Tj . The point-wise loss is defined as

LP =

N∑
i=1

M∑
j=1

yij log x
′

ij + (1− yij) log(1− x
′

ij)

−1×N
(25)

where xij = sim(Vi, Tj) are the similarity logits (before activation) between the i-th image and the
j-th text. x

′

ij = σ(xij) = 1
1+e−xij

is the probability computed by the Sigmoid activation. yij ∈
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{0, 1} is the binary label indicating whether the image-text pair is a valid match. This formulation
is typical for binary classification tasks and allows the network to learn to distinguish relevant from
irrelevant image–text pairs.

Derivation of the Gradient To understand how the loss drives the optimization, we derive the gradi-
ent with respect to the logits xij .

(a) Loss for a Single Pair

Consider the binary cross-entropy loss for a single image–text pair (i, j):

ℓij = − [yij log σ(xij) + (1− yij) log(1− σ(xij))] (26)

(b) Derivative with Respect to xij

We can let pij = σ(xij). Using the chain rule, the derivative of ℓij with respect to xij is:

∂ℓij
∂xij

=
∂ℓij
∂pij

· dpij
dxij

(27)

Step 1. Compute ∂ℓij
∂pij

. We can differentiate ℓij with respect to pij as follows:

∂ℓij
∂pij

= −
(
yij
pij

− 1− yij
1− pij

)
(28)

Step 2. Compute dpij

dxij
. Since pij = σ(xij) and the derivative of the sigmoid function is as follows:

dσ(xij)

dxij
= σ(xij)(1− σ(xij)) = pij(1− pij) (29)

So we have
dpij
dxij

= pij(1− pij) (30)

Step 3. Combine the Derivatives. We can multiply the two derivatives gives as follow:

∂ℓij
∂xij

= −
(
yij
pij

− 1− yij
1− pij

)
· pij(1− pij) (31)

Expanding and simplifying, we have:

∂ℓij
∂xij

= − (yij(1− pij)− (1− yij)pij) (32)

Distributing the negative sign results in:

∂ℓij
∂xij

= pij − yij (33)

Thus, for each image–text pair, the gradient is:

∂ℓij
∂xij

= σ(xij)− yij (34)

Since the overall point-wise loss LP is the average over all pairs, the gradient with respect to each
xij remains the same:

∂LP

∂xij
= σ(xij)− yij (35)

Interpretation and Discussion This gradient expression, σ(xij) − yij , provides clear insights into
the optimization dynamics:
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For a Positive Pair (yij = 1): The gradient becomes σ(xij)− 1. If the predicted probability σ(xij)
is less than 1, the gradient is negative, prompting an increase in xij (and hence σ(xij)). This drives
the features Vi and Tj closer together.

For a Negative Pair (yij = 0): The gradient simplifies to σ(xij). If σ(xij) is positive (which it
always is, since σ(x) ∈ (0, 1)), the gradient is positive, pushing xij downward. This reduces the
similarity, ensuring that irrelevant image–text pairs are further separated.

Thus, the gradient directs the model to increase similarity for valid pairs (driving σ(xij) towards
1). And it also decreases similarity for invalid pairs (driving σ(xij) towards 0). In contrast to the
standard CLIP framework, which optimizes a global alignment between an image and a single text
description, the point-wise loss enables the model to adjust each image–text pair individually, lead-
ing to a more discriminative and robust feature space. Every potential image–text pair is evaluated,
allowing the model to learn subtle distinctions. By penalizing both false positives and false negatives
at the individual pair level, the loss helps to create a more separable and robust embedding space.
The derivation of its gradient, ∂LP

∂xij
= σ(xij)− yij , clearly shows that the optimization encourages

high similarity for valid pairs and low similarity for invalid pairs. Point-wise Loss not only enhances
the discriminability of the visual representations but also supports the multi-label learning methods.

A.3 SMOOTH KL DIVERGENCE LOSS

Overview and Motivation The Smooth KL Divergence Loss is introduced to enforce consistency
across predictions obtained at different granularities. In scenarios where multiple predicted logits
{zi}mi=1 are available (each corresponding to a different granularity or viewpoint), we wish to align
their probability distributions so that they all “agree” on the prediction. This is achieved by first
converting the logits into probability distributions via the Softmax function:

Pi = Softmax(zi) (36)

and then encouraging each Pi to be close to the average (mean) distribution:

M =
1

m

m∑
i=1

Pi (37)

The overall loss is given by

LsKL =

m∑
i=1

DKL(Pi∥M) (38)

where for each i the KL divergence is defined as

DKL(Pi∥M) =
∑
j

P
(j)
i log

P
(j)
i

M (j)
(39)

Properties of KL Divergence There are two key properties of the KL divergence:

1. Non-negativity (Gibbs’ Inequality):

DKL(P∥Q) ≥ 0 (40)

for any two probability distributions P and Q.

2. Zero if and Only if Equality:

DKL(P∥Q) = 0 if and only if P = Q (41)

These properties imply that the divergence is minimized (and equals zero) when the two distributions
are identical.

Detailed Derivation and Proof

(a) Expressing the Loss
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Given the predicted distributions {Pi}mi=1 and the mean distribution M , the loss is

LsKL =

m∑
i=1

∑
j

P
(j)
i log

P
(j)
i

M (j)


︸ ︷︷ ︸

DKL(Pi∥M)

(42)

Because each DKL(Pi∥M) ≥ 0, it follows that

LsKL ≥ 0 (43)

(b) Conditions for Zero Loss

The loss for a single term, DKL(Pi∥M), equals zero if and only if

P
(j)
i = M (j) for every category j (44)

Since this must hold for every i, we have:

P1 = P2 = · · · = Pm = M (45)

This is the necessary and sufficient condition for minimizing the loss:

LsKL = 0 ⇐⇒ P1 = P2 = · · · = Pm (46)

Thus, by minimizing LsKL, the model is encouraged to produce consistent predictions across differ-
ent granularities. So the mean distribution is defined as

M =
1

m

m∑
i=1

Pi (47)

If all Pi are equal, then it is trivial to see that

M = Pi ∀i (48)

Therefore, the minimization process pushes each individual Pi toward the common distribution M ,
ensuring consistency across different predictions.

(c) Gradient Considerations

While the explicit gradient derivation is more involved due to the dependency of M on every Pi, we
can outline the intuition of individual KL divergence and the intuition of coupled optimization.

1. Individual KL Divergence: For each i, consider the derivative of

DKL(Pi∥M) =
∑
j

P
(j)
i log

P
(j)
i

M (j)
(49)

with respect to P
(j)
i . If we ignore the dependence of M on Pi (as an approximation), the derivative

is
∂DKL(Pi∥M)

∂P
(j)
i

≈ log
P

(j)
i

M (j)
+ 1 (50)

The condition for a minimum (when this derivative is zero for all j) is then

log
P

(j)
i

M (j)
+ 1 = 0 =⇒ P

(j)
i

M (j)
= e−1 (51)

which alone does not yield Pi = M ; however, when accounting for the normalization constraint∑
j P

(j)
i = 1 and the simultaneous optimization across all Pi, the equilibrium is reached only when

P
(j)
i = M (j) for every i and j.

2. Coupled Optimization: Since M is the average of all Pi, any deviation in one Pi from the others
will increase its corresponding KL divergence. Thus, the overall optimization drives all predictions
to align with each other.
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Interpretation and Discussion By minimizing LsKL, we force the different predictions (from various
granularities) to become consistent. Every Pi is toward the common mean M , ensuring that the
predictions from different parts of the model or from different feature granularities agree with each
other. This consistency also contributes to a more stable and robust feature space, as the model learns
to reconcile variations in prediction across granularities. The Smooth KL Divergence Loss LsKL =∑m

i=1 DKL(Pi∥M) is fundamentally designed to enforce that all predicted probability distributions
Pi (across different granularities) become identical by driving them toward the mean distribution
M .

B DATASET DETAILS

B.1 PRETRAIN DATASETS

MGLL-Fundus: We develop MGLL-Fundus, a comprehensive multi-granularity fundus image-text
dataset comprising 246,389 image-text pairs. This dataset integrates fundus images from 49 public
datasets, encompassing more than 50 disease categories. The data distribution of the MGLL-Fundus
dataset is presented in Table 9. The textual descriptions in MGLL-Fundus are structured across two
distinct granularity levels: disease category and clinical explanation. The disease-level granularity
includes normal/abnormal classification and specific disease categorization, while the clinical expla-
nation granularity provides detailed textual descriptions derived from dataset label explanations and
EyeWiki EyeWiki (2024). Some multi-granularity textual description examples from the dataset are
illustrated in Table 10.

Table 9: The data distribution of MGLL-Fundus dataset.
Dataset Num Dataset Num Dataset Num

HRF Budai et al. (2013) 45 INSPIRE-AVR Niemeijer et al. (2011) 40 IOSTAR Zhang et al. (2016) 30
RITE Hu et al. (2013) 40 G1020 Bajwa et al. (2020) 1020 GAMMA Wu et al. (2023) 100

ORIGA Zhang et al. (2010) 650 REFUGE Orlando et al. (2020) 1200 ODIR Larxel (2021) 7000
PALM Fang et al. (2024) 1200 RFMiD Pachade et al. (2021) 3200 RFMiDv2 Panchal et al. (2023) 860

APTOS Karthik et al. (2019) 3662 DeepDRiD Liu et al. (2022a) 1600 EyePACS Dugas et al. (2015) 35126
IDRID Porwal et al. (2018) 516 ADAM Fang et al. (2022) 1200 ACRIMA Diaz-Pinto et al. (2019) 705

MESSIDOR-2 Abràmoff et al. (2013) 1748 JSIEC Cen et al. (2021) 1000 AIROGS De Vente et al. (2023) 101442
LAG Li et al. (2019a) 4854 PARAGUAY Benı́tez et al. (2021) 757 PAPILA Kovalyk et al. (2022) 488
BiDR Darabi (2024) 2838 FIVES Jin et al. (2022) 800 FUND Hassan et al. (2022) 179

E-ophta Decenciere et al. (2013) 463 BRSET Nakayama et al. (2023) 16266 MuReD Rodrı́guez et al. (2022) 2208
OIA-DDR Li et al. (2019b) 12522 SUSTech-SYSU Lin et al. (2020) 1219 Cataract 202 (2020) 601

DGOCF Takahashi et al. (2017) 9939 BoVW Pires et al. (2014) 2013 HarvardGlaucoma Kim (2018a) 1544
RIM-ONE Batista et al. (2020) 485 CHAKSU Kumar et al. (2023) 1345 DiaRetDB Kauppi et al. (2007) 89

LSD Wei et al. (2019) 175 GNG Nandi (2022) 400 AOD 202 (2021) 14813
DHRF 202 (2022) 2757 VietAI vie (2020) 3435 ToxoFundus Alam et al. (2024) 411

Papilledema Kim (2018b) 1369 BEH Islam et al. (2021) 634 ROD Binu (2023) 281
ROI Adal et al. (2015) 1120

Summary 246,389 images

MGLL-Xray: To enhance data compatibility, we assembled 190,882 X-ray images from the MIDRC
repository MIDRC (2024). We transformed these images from DICOM to PNG format while pre-
serving essential metadata. The extracted multi-granularity textual information encompasses three
levels: modality, study description, and series description. The modality category distinguishes
between CR (Computed Radiography), characterized by relatively lower resolution and signal-to-
noise ratio (SNR), and DX (Digital Radiography), which employs flat-panel detectors to achieve
superior image quality. Study Description provides examination-level context (e.g., ”Chest X-ray”),
while Series Description specifies imaging protocols such as ”PA View” (posteroanterior) or ”Lat-
eral View.” These hierarchical textual elements constitute the textual component of our MGLL-Xray
dataset. Some multi-granularity textual description examples from this dataset are presented in Ta-
ble 11.

MIMIC-CXR: To further evaluate the generalization capability of our approach, we conducted
supplementary experiments using multi-granular labels from MIMIC-CXR dataset Johnson et al.
(2019), with performance assessed on the ChestX-ray14 benchmark Wang et al. (2017a). The
MIMIC-CXR dataset represents one of the largest publicly available collections of chest radio-
graphs, comprising 377,110 images associated with 227,835 imaging studies. This dataset encom-
passes 14 common thoracic pathologies, including atelectasis, cardiomegaly, consolidation, edema,
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Table 10: The multi-granularity textual description examples of MGLL-Fundus dataset.
Disease Category Clinical Explanation

Abnormal, Mild Non-Proliferative Diabetic Retinopathy Only microaneurysms observed
Abnormal, Moderate Non-Proliferative Diabetic Retinopathy Retinal hemorrhages or hard exudates observed

Abnormal, Severe Non-Proliferative Diabetic Retinopathy Many intraretinal hemorrhages or definite venous beading observed
Abnormal, Proliferative Diabetic Retinopathy Neovascularization or vitreous/preretinal hemorrhage

Abnormal, Cataract Opacification of crystalline lens observed
Abnormal, Myopia Leopard fundus observed

Abnormal, Media Haze Opacity of media observed
Abnormal, Branch Retinal Vein Occlusion Occlusion of the central retinal vein

Abnormal, Tessellation The choroidal vessels are visible due to the reduced density of the pigments
Abnormal, Laser Scars Circular or irregular shaped scars on the retinal surface observed

Abnormal, Central Serous Retinopathy Fluid accumulation under the retina observed
Abnormal, Optic Disk Cupping The thinning of neuroretinal rim such that optic disc appears excavated

Abnormal, Central Retinal Vein Occlusion Occlusion of the central retinal vein and the presence of flame-shaped hemorrhages
Abnormal, Tortuous Vessels Marked tortuosity of the retinal blood vessels
Abnormal, Asteroid Hyalosis Numerous astroid bodies are dispersed in vitreous
Abnormal, Optic Disc Pallor Pale yellow discoloration of the optic disc
Abnormal, Optic Disc Edema Swelling of the optic disc
Abnormal, Optociliary Shunt Presence of prepapillary vascular loops or optociliary shunt vessels

Abnormal, Anterior Ischemic Optic Neuropathy Optic disc swelling and pallor
Abnormal, Parafoveal Telangiectasia Yellow, lipid-rich exudation or parafoveal graying or tortuous blood vessels

Abnormal, Retinal Traction Presence of traction and retinal traction detachment
Abnormal, Retinitis Presence of vitreous inflammation or intraretinal hemorrhage

Abnormal, Chorioretinitis The hard exudates observed
Abnormal, Macular Hole A small retinal break located in the center of the fovea observed

Abnormal, Retinitis Pigmentosa The presence of bone-spicule deposits and arterial narrowing
Abnormal, Cotton Wool Spots The presence of soft exudates

Abnormal, Coloboma The missing of portion of tissue in both the choroid and retina
Abnormal, Preretinal Hemorrhage Boat-shaped hemorrhage which obscures the underlying retina

Abnormal, Myelinated Nerve Fibers Gray-white opaque lesions with feathery edges observed
Abnormal, Hemorrhagic Retinopathy The presence of flame-shaped hemorrhages

Abnormal, Central Retinal Artery Occlusion The presence of pale, whitening, and retinal swelling
Abnormal, Tilted Disk The tilting presence of the oval optic disc

Abnormal, Cystoid Macular Edema The presence of multiple cystoid areas in the macula and causes retinal edema
Abnormal, Post-traumatic Choroidal Rupture The breaks in the choroid, Bruch’s membrane, and RPE

Abnormal, Choroidal Folds The presence of folds in the choroid
Abnormal, Vitreous Hemorrhage The presence of extravasated blood in one of the spaces created around the vitreous body

Abnormal, Macroaneurysm Fusiform or round dilation of the retinal arterioles which occur in the temporal retina observed
Abnormal, Vasculitis The presence of inflammation of retinal blood vessels

Normal, Healthy Clear optic disk boundaries, Normal fundus color, No apparent retinopathy

Table 11: The multi-granularity textual description examples of MGLL-Xray dataset.
Modality Study Description Series Description

CR CHEST PORT 1 VIEW (RAD)-CS AP(shutter)
CR XR CHEST AP PORTABLE AP
CR XR RIBS RIGHT WITH CHEST AP OR PA - SINGLE VIEW PA Ribs LOWER
CR XR PORT CHEST 1V CXR AP GRID
CR XR CHEST 2 VIEWS W Chest Lat.
CR XR CHEST AP PA LATERAL 2 VW Lateral
CR XR PORT CHEST 1V ClearRead Bone Suppression
CR XRAY CHEST ONE VIEW XRAY CHEST FRONTAL AND LATERAL VIEWS
CR XR RIGHT HIP 2+ VIEWS ORTHOPEDICS PRE OPERATIVE X HIP X-Table Lat
CR XR CHEST PA AND LATERAL X Chest a.p.
DX XR CHEST 2 VIEWS, FRONTAL AND LATERAL PA
DX XR WRIST LEFT (ROUTINE: AP,LAT,OBL) XR WRIST LEFT (ROUTINE: AP,LAT,OBL)
DX XR CHEST 2 VIEWS PA AND LATERAL Chest
DX XR THORACOLUMBAR SPINE STANDING 2 OR 3 VIEWS Thoraco Lumbar
DX XR THORACIC SPINE AP AND LATERAL Thoracic-spine
DX XR SCOLIOSIS STUDY 2 OR 3 VIEWS (NEURO INTERPRETATION) DR Long Spine
DX XR RIGHT RIBS 2 VIEWS UNILATERAL Rib
DX XR RIGHT SHOULDER 1 VIEW AP Ext Rot(shutter)
DX XR RIGHT KNEE 4+ VIEWS (NON-TRAUMA, PAIN/ARTHRITIS) Patella
DX XR RIGHT HIP 2-3 VIEWS (UNILATERAL) WITH PELVIS WHEN PERFORMED Hip-joint
DX XR CHEST 1 VW, FRONTAL PA CHEST LANDSCAPE

effusion, emphysema, fibrosis, hernia, infiltration, mass, nodule, pleural thickening, pneumonia,
and pneumothorax, along with a ”No Finding” category for normal cases. For our multi-granularity
framework, we leveraged two distinct levels of textual information available in MIMIC-CXR: the
structured disease labels (coarse granularity) and the detailed radiology reports (fine granularity).
The disease labels provide categorical classification, while the reports offer comprehensive clinical
interpretations with anatomical specificity, disease progression details, and differential diagnoses.
This hierarchical representation allows our model to simultaneously process high-level disease cat-
egorization and nuanced clinical descriptions. Some examples of these multi-granularity textual
descriptions are presented in Table 12.
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Table 12: The multi-granularity textual description examples of MIMIC-CXR dataset.
Disease Labels Radiology Reports
Pleural Effusion New tracheostomy is midline. The approximate diameter of the tube, 11 mm, compares to the diameter of the

trachea, 27 mm. This sizing should be evaluated clinically. Pneumomediastinum outlines the tracheal wall and
extends into deep subcutaneous emphysema in the neck, presumably a function of tracheostomy. Followup

advised. There is no pneumothorax or pleural effusion. Lungs are clear. Heart size is normal.
Edema The small right apical pneumothorax is stable and unchanged. The right chest tube is in stable position.

Unchanged parenchymal opacity at the left lung base. Unchanged size of the cardiac silhouette and stable
position of the right internal jugular vein catheter.

Atelectasis Monitoring and support devices are in stable position. Stable left retrocardiac atelectasis and right basal
parenchymal opacity. No pulmonary edema. No larger pleural effusions. No pneumothorax.

Cardiomegaly Support lines and tubes are unchanged in position. The left-sided pleural effusion continues to decrease in
size. There is improved aeration at the left base. Partially layering right-sided pleural effusion is again seen.

There is a new small left-sided apical pneumothorax.
Lung Opacity Slight worsening of cardiomegaly and mild-to-moderate pulmonary edema, accompanied by increasing

moderate left pleural effusion and persistent small right pleural effusion. Indwelling support and monitoring
devices are unchanged in position, including a proximally located left PICC, terminating at the junction of the

left axillary and subclavian veins.
Lung Lesion Single portable upright AP image of the chest. There are low lung volumes. There is an interval increase in

the alveolar opacities bilaterally, consistent with moderate to severe new onset pulmonary edema. The
cardiomediastinal silhouette appears to be somewhat enlarged from prior exam, particularly in the right

mediastinum. There is no large pleural effusion or pneumothorax. A pacer is seen overlying the left anterior
chest with intact leads in appropriate position.

Pneumonia Portable AP radiograph of the chest was reviewed with no prior studies available for comparison. Heart size is
top normal. Mediastinum is grossly unremarkable. Lungs are essentially clear except for right basal opacity
which unclear if represents a true lesion or summation of shadows. Repeated radiograph preferably with full

inspiration is required. If finding is persistent, assessment with chest CT would be necessary.
No Finding Tracheostomy tube is in satisfactory position with the tip 4.5 cm above the carina. The right internal jugular

central line and nasogastric tube are unchanged in position. The heart remains stably enlarged. Lung volumes
are markedly reduced and there is a small layering left effusion with persistent retrocardiac consolidation

likely reflecting partial lower lobe atelectasis. No pulmonary edema. No obvious pneumothorax.

B.2 DOWNSTREAM DATASETS

We evaluate our proposed MGLL alongside several baseline methods on multiple downstream
datasets. The details of these datasets are presented in Table 13. The multiple-choice evaluation
benchmark details are in Table 14.

Fundus Imaging Datasets:

FIVES Jin et al. (2022): A collection of 800 retinal images categorized into four diagnostic classes:
normal, age-related macular degeneration, diabetic retinopathy, and glaucoma.

IDRiD Porwal et al. (2018): Contains 516 retinal images with annotated severity grades for diabetic
retinopathy (DR) and diabetic macular edema (DME).

OIA-DDR Li et al. (2019b): Comprises 12,523 fundus images labeled with diabetic retinopathy
severity classifications.

ADAM Fang et al. (2022): A dataset of 1,200 fundus images specifically designed for age-related
macular degeneration detection.

PALM Fang et al. (2024): Consists of 1,200 fundus images annotated for pathological myopia
diagnosis.

REFUGE Orlando et al. (2020): Includes 1,200 retinal images with binary classification for glau-
comatous and non-glaucomatous.

RIM-ONE Batista et al. (2020): A retinography collection of 485 images developed for glaucoma
evaluation.

RFMiD Pachade et al. (2021): Encompasses 3,200 retinal images with multi-label annotations
across 45 categories. Our evaluation focuses on 12 labels where positive cases exceed 2% preva-
lence.

Radiographic Imaging Datasets:

MIDRC-XR MIDRC (2024): A dataset contains 111,816 X-ray images across 14 LOINC-coded
categories (including XR Chest AP views).
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Table 13: The details of downstream datasets.
Name Numer (Train : Val : Test) Label Categories

FIVES Jin et al. (2022) 480 : 120 : 200 Normal, Age-related Macular
Degeneration, Diabetic retinopathy, and

Glaucoma
IDRiD Porwal et al. (2018) 319 : 94 : 103 Severity levels of Diabetic Retinopathy

(no apparent, mild non-proliferative,
moderate non-proliferate, severe
non-proliferate, proliferative) and

Diabetic Macular Edema (no apparent,
mild, moderate, severe)

OIA-DDR Li et al. (2019b) 6260 : 2503 : 3759 Severity levels of Diabetic Retinopathy
(no apparent, mild non-proliferative,

moderate non-proliferate, severe
non-proliferate, proliferative)

ADAM Fang et al. (2022) 400 : 400 : 400 Age-related Macular Degeneration and
no Age-relatedd Macular Degeneration

PALM Fang et al. (2024) 400 : 400 : 400 Pathological myopia and Healthy
REFUGE Orlando et al. (2020) 400 : 400 : 400 Glaucoma and Healthy
RIM-ONE Batista et al. (2020) 270 : 69 : 146 Glaucoma and Healthy
RFMiD Pachade et al. (2021) 1920 : 640 : 640 Diabetic Retinopathy, Age-related

Macular Degeneration, Media haze,
drusens, Myopia, Branch Retinal Vein
Occlusion, Tessellation, Laser scars,
Optic disc cupping, Optic disc pallor,

Optic disc edema, and Retinitis
MIDRC-XR MIDRC (2024) 89453 : 11182 : 11181 XR Chest AP, XR Chest 2 Views, XR

Unspecified body region Views, XR
Chest Single view, XR Chest PA and

Lateral, XR Chest Views, XR Chest AP
and Lateral, XR Chest and Abdomen

Single view, XR Ribs Views, XR
Abdomen AP, XR Abdomen Single
view, XR Chest View and Abdomen
Supine and Upright, XR Abdomen

Supine and Upright, XR Ribs Views and
Chest PA

MIDRC-XR-Portable MIDRC (2024) 63253 : 7906 : 7907 Portable XR Chest AP single view,
Portable XR Chest Views AP, Portable
XR Abdomen AP, Portable XR Chest
Views, Portable XR Chest Views W

inspiration and expiration, Portable XR
Abdomen Supine and Upright

ChestX-ray14 Wang et al. (2017a) 77872 : 8652 : 25596 Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia,
Pneumothorax, Consolidation, Edema,

Emphysema, Fibrosis, Pleural
Thickening, Hernia
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MIDRC-XR-Portable MIDRC (2024): Focuses on portable radiography with 79,066 X-ray images
across 6 LOINC-coded categories (including Portable XR Chest AP single views).

ChestX-ray14 Wang et al. (2017a): A comprehensive medical imaging repository contains 112,120
frontal-view chest radiographs annotated with 14 labels. Labels are extracted from corresponding
radiological reports.

Evaluation Benchmark on MLLMs (Multiple-choice Benchmark): A comprehensive ophthalmic
evaluation dataset comprising 2,233 images across 25 distinct diagnostic categories. The label dis-
tribution of the multiple-choice evaluation benchmark is in Table 14.

Table 14: The label distribution of the multiple-choice evaluation benchmark.
Label Num Label Num
Health 890 Other disease (Other) 50
Myopia 226 Tessellation 12
Retinitis 9 Chorioretinitis 3

Diabetic Retinopathy (DR) 149 Drusen 30
Media Haze (MH) 31 Central Serous Retinopathy (CSR) 7

Cataract 20 Arteriosclerotic Retinopathy (AR) 2
Optic Disk Cupping (ODC) 32 Optic Disc Edema (ODE) 11

Optic Disc Pallor (ODP) 2 Hypertensive Retinopathy (HR) 3
Branch Retinal Vein Occlusion (BRVO) 16 Central Retinal Vein Occlusion (CRVO) 11

Age-related Macular Degeneration (AMD) 171 No Age-related Macular Degeneration (No AMD) 311
Diabetic Macular Edema (DME) 58 No Diabetic Macular Edema (No DME) 11

Glaucoma 162 No Glaucoma 12
Choroidal Neovascularization (CN) 4 Summary 2233 images

C SETUP DETAILS

C.1 EVALUATION METRICS

In our quantitative evaluation, we employ Area Under the Receiver Operating Characteristic Curve
(AUC), mean Average Precision (MAP), and Accuracy (ACC) as assessment metrics. Among these,
AUC serves as our primary evaluation metric, as it reflects overall model performance. MAP is
particularly useful for handling long-tailed label distributions. To better assess performance on the
imbalanced multi-label dataset such as RFMiD Pachade et al. (2021), we report the category-wise
average accuracy instead of overall accuracy. As for the accuracy on the multiple-choice bench-
mark, we implement a four-option forced-choice classification approach utilizing the MGLL-Fundus
dataset. For each fundus image presented, the model must select the most probable diagnostic clas-
sification from among four distinct disease labels. These options comprise the correct diagnostic
label along with three additional labels randomly sampled from the complete disease names avail-
able in the dataset. The randomized inclusion of incorrect options helps evaluate model performance
in distinguishing the correct diagnosis from plausible alternatives, which also enables quantitative
assessment of diagnostic accuracy.

C.2 IMPLEMENTATION DETAILS

We adopt ViT-L/14 Dosovitskiy et al. (2020) as the image encoder and BiomedicalBERT Alsentzer
et al. (2019) as the text encoder. All images are resized to 224 × 224, and data preprocessing includes
random flipping (probability = 0.5) and color jittering (factor = 0.1). We set the batch size to 32, the
feature vector dimension to 768, and the temperature coefficient to 0.07. Optimization is performed
using AdamW Loshchilov & Hutter (2017) with a learning rate of 1e-4, weight decay of 0.0001,
and hyperparameters β1 = 0.9, β2 = 0.98, and ϵ = 1e− 6. All experiments are conducted with the
NVIDIA RTX A6000 GPU.
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D MORE DETAILED EXPERIMENTAL RESULTS

D.1 DETAILED RESULTS ON RETINAL FUNDUS DATASETS

We present the complete experimental results for performance comparison with eight baselines
(Radford et al. (2021); Yao et al. (2023); Zhou et al. (2023b); Silva-Rodriguez et al. (2025); Wu
et al. (2024); Du et al. (2024); Khattak et al. (2024); Qiu et al. (2024)) on downstream retinal fundus
datasets in Table 15 to Table 23. The experimental results demonstrate that the MGLL consis-
tently outperforms existing approaches across nine retinal fundus datasets in both linear probing and
full fine-tuning evaluation settings. Notably, MGLL demonstrates particularly strong gains in the
linear probing setting, where it demonstrates substantial improvements over second-best methods
(e.g., achieving 90.02% AUC in ADAM compared to UniMed-CLIP’s 79.33%, and 92.42% AUC
in REFUGE versus RET-CLIP’s 84.59%). To further analyze these results, we observe consistent
performance improvements across multiple evaluation metrics. For instance, in the FIVES dataset,
MGLL achieved 89.73% AUC, 52.00% ACC, and 75.32% mAP in linear probing, significantly out-
performing RETFound (88.09% AUC, 49.00% ACC, 72.55% mAP). When fully fine-tuned on this
dataset, MGLL maintained its advantage with 94.98% AUC, 72.00% ACC, and 86.34% mAP.

The robust performance of MGLL can be attributed to its multi-granularity learning approach, which
effectively captures both local and global features in retinal fundus images. This architectural advan-
tage enables MGLL to identify subtle pathological patterns that may be overlooked by conventional
methods. For example, in the REFUGE dataset (glaucoma detection), MGLL achieved a 7.83%
improvement in AUC over the second-best method in linear probing setting.

Additionally, the exceptional performance on the PALM dataset (99.66% AUC, 96.00% ACC, and
99.72% mAP in linear probing) demonstrates MGLL’s capacity to achieve near-perfect diagnostic
accuracy in certain retinal conditions. When compared to previous state-of-the-art methods such as
VisionFM (97.12% AUC) and RET-CLIP (95.25% AUC), MGLL offers clinically significant im-
provements in detection reliability. This superior performance indicates excellent feature represen-
tation quality and transferability of our pretrained MGLL, enabling effective adaptation to diverse
diagnostic tasks with fine-tuning.

Table 15: The performance evaluation on FIVES. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 81.25 37.00 64.21 88.96 64.00 76.22
KgCoOp (CVPR-23) 81.63 39.50 64.72 89.16 64.50 76.53

RETFound (Nature-23) 88.09 49.00 72.55 92.83 69.50 81.36
FLAIR (MedIA-25) 84.24 43.50 67.17 89.85 66.00 77.14

KeepFIT (MICCAI-24) 82.31 41.00 64.98 90.62 67.00 77.96
RET-CLIP (MICCAI-24) 86.74 47.50 69.35 92.04 68.50 79.89
UniMed-CLIP (arXiv-24) 82.75 41.50 65.46 91.59 68.00 79.23
VisionFM (NEJM AI-24) 85.98 45.00 68.73 93.11 70.50 82.76

MGLL 89.73 52.00 75.32 94.98 72.00 86.34
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Table 16: The performance evaluation on IDRiD (DR). Bold indicates best performance and
underline shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 70.83 35.92 34.44 76.74 44.66 44.01
KgCoOp (CVPR-23) 72.34 40.78 36.29 76.81 46.60 44.86

RETFound (Nature-23) 73.51 43.69 37.48 78.14 53.40 47.05
FLAIR (MedIA-25) 74.62 45.63 39.16 78.82 55.34 48.54

KeepFIT (MICCAI-24) 71.81 37.86 35.37 77.13 48.54 45.32
RET-CLIP (MICCAI-24) 78.18 52.43 47.42 79.32 56.31 49.42
UniMed-CLIP (arXiv-24) 77.39 49.51 45.75 80.72 58.25 52.84
VisionFM (NEJM AI-24) 77.52 51.46 46.22 79.95 57.28 51.38

MGLL 80.28 58.25 51.19 82.57 60.19 54.30

Table 17: The performance evaluation on IDRiD (DME). Bold indicates best performance and
underline shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 71.81 77.67 56.67 73.34 76.70 57.87
KgCoOp (CVPR-23) 60.33 65.05 48.86 62.78 66.02 50.11

RETFound (Nature-23) 65.92 69.90 52.05 69.26 72.82 55.39
FLAIR (MedIA-25) 62.85 66.99 50.31 64.52 68.93 51.83

KeepFIT (MICCAI-24) 68.71 70.87 54.76 69.03 71.84 54.97
RET-CLIP (MICCAI-24) 64.13 67.96 51.28 70.14 73.79 55.75
UniMed-CLIP (arXiv-24) 70.59 74.76 56.04 71.81 75.73 56.85
VisionFM (NEJM AI-24) 73.53 78.64 59.98 77.95 79.61 62.23

MGLL 78.41 79.61 64.72 86.17 80.58 67.80

Table 18: The performance evaluation on OIA-DDR. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 73.30 55.41 39.21 85.29 71.75 49.91
KgCoOp (CVPR-23) 72.09 53.68 37.87 80.39 65.47 45.92

RETFound (Nature-23) 80.77 61.13 46.94 85.96 72.12 52.21
FLAIR (MedIA-25) 82.48 63.36 48.09 85.54 70.63 50.27

KeepFIT (MICCAI-24) 72.68 54.46 38.72 79.42 64.03 44.53
RET-CLIP (MICCAI-24) 77.43 58.18 43.31 83.68 68.82 48.05
UniMed-CLIP (arXiv-24) 74.67 56.19 40.18 81.23 66.69 46.88
VisionFM (NEJM AI-24) 78.85 59.35 44.27 84.25 69.46 48.77

MGLL 86.28 72.09 50.92 88.85 73.13 56.67

Table 19: The performance evaluation on ADAM. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 52.41 76.50 25.05 86.70 83.00 65.48
KgCoOp (CVPR-23) 52.13 74.75 24.36 84.42 82.75 60.54

RETFound (Nature-23) 59.34 78.25 33.53 88.02 83.50 65.86
FLAIR (MedIA-25) 63.82 79.50 39.27 90.16 84.75 66.91

KeepFIT (MICCAI-24) 56.97 77.75 29.88 74.88 82.00 52.26
RET-CLIP (MICCAI-24) 77.48 82.25 53.76 93.27 86.25 79.92
UniMed-CLIP (arXiv-24) 79.33 82.50 55.63 90.64 85.25 69.22
VisionFM (NEJM AI-24) 73.56 81.75 51.42 92.43 85.50 75.89

MGLL 90.02 85.00 62.40 96.30 90.00 90.08
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Table 20: The performance evaluation on PALM. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 93.94 91.75 94.62 99.51 96.00 99.58
KgCoOp (CVPR-23) 87.94 88.25 88.11 94.21 92.00 94.81

RETFound (Nature-23) 92.02 90.50 92.87 95.75 93.00 96.39
FLAIR (MedIA-25) 89.42 89.25 90.03 94.88 92.25 95.24

KeepFIT (MICCAI-24) 88.21 88.50 88.46 93.34 91.50 94.18
RET-CLIP (MICCAI-24) 95.25 92.50 95.89 98.67 95.25 98.42
UniMed-CLIP (arXiv-24) 90.31 89.75 91.12 96.82 93.75 97.02
VisionFM (NEJM AI-24) 97.12 94.25 97.45 97.73 94.50 97.84

MGLL 99.66 96.00 99.72 99.72 95.75 99.76

Table 21: The performance evaluation on REFUGE. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 65.33 88.75 15.68 86.96 93.00 58.37
KgCoOp (CVPR-23) 60.69 86.25 11.52 81.45 90.75 49.07

RETFound (Nature-23) 79.67 90.50 45.39 89.02 93.50 63.84
FLAIR (MedIA-25) 70.59 89.25 27.82 85.67 92.25 56.82

KeepFIT (MICCAI-24) 63.04 88.25 14.15 84.89 91.50 55.78
RET-CLIP (MICCAI-24) 84.59 91.25 55.06 90.46 93.75 70.45
UniMed-CLIP (arXiv-24) 61.25 87.50 12.87 83.11 91.00 52.84
VisionFM (NEJM AI-24) 73.21 89.50 33.42 86.13 92.50 57.68

MGLL 92.42 94.50 75.65 93.90 94.75 80.99

Table 22: The performance evaluation on RIM-ONE. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 65.96 66.44 54.11 88.38 82.88 84.00
KgCoOp (CVPR-23) 74.34 73.97 63.45 90.39 84.25 85.88

RETFound (Nature-23) 89.79 83.56 83.92 94.22 86.99 90.35
FLAIR (MedIA-25) 81.83 79.45 70.14 94.93 88.36 92.41

KeepFIT (MICCAI-24) 67.35 67.81 55.24 89.91 83.56 85.22
RET-CLIP (MICCAI-24) 84.42 82.19 79.85 92.58 86.30 89.19
UniMed-CLIP (arXiv-24) 69.87 70.55 58.43 83.37 81.51 78.14
VisionFM (NEJM AI-24) 72.97 72.60 61.86 91.27 84.93 87.21

MGLL 94.39 87.67 86.68 97.05 89.73 94.97

Table 23: The performance evaluation on RFMiD. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP (ICML-21) 44.66 92.53 7.28 65.10 92.86 17.31
KgCoOp (CVPR-23) 50.82 92.21 7.96 70.36 92.28 21.49

RETFound (Nature-23) 60.16 92.55 16.37 84.62 93.48 50.21
FLAIR (MedIA-25) 56.11 92.38 14.85 75.43 92.62 23.24

KeepFIT (MICCAI-24) 51.48 92.19 10.24 81.52 93.09 42.39
RET-CLIP (MICCAI-24) 58.94 92.46 16.02 86.12 93.92 51.27
UniMed-CLIP (arXiv-24) 53.44 92.25 13.68 72.59 92.57 22.54

VisionFM (arXiv-24) 63.38 92.59 17.84 82.78 93.17 48.92
MGLL 79.62 92.84 34.08 92.83 95.48 64.99
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D.2 ZERO-SHOT COMPARISONS ACROSS MEDICAL AND NATURAL DOMAINS

As summarized in Table 24, we evaluate the zero-shot classification performance of MGLL across
three representative datasets to demonstrate its strong generalization ability across diverse modal-
ities. On the COVIDx dataset Wang et al. (2020), MGLL achieves 39.0% accuracy, outperform-
ing strong medical vision-language baselines such as CheXAgent Chen et al. (2024b) (34.3%)
and MedVersa Zhou et al. (2024) (35.5%), as well as recent contrastive methods including FG-
CLIP Xie et al. (2025), MGCA Wang et al. (2022a), RetiZero Wang et al. (2025), MAVL Phan et al.
(2024), and Ark+ Ma et al. (2025). For anatomical recognition on the CT-based OrganAMNIST
dataset Yang et al. (2023), MGLL again surpasses FG-CLIP Xie et al. (2025) with a significant
margin (52.7% vs. 47.9%). Moreover, MGLL achieves the best performance on the natural image
dataset CC3M Sharma et al. (2018) (evaluated on ImageNet), outperforming FG-CLIP Xie et al.
(2025) with an accuracy of 23.5%. These results collectively highlight MGLL’s flexibility and uni-
versal applicability across both medical and natural image domains in zero-shot settings.

Table 24: Comparisons of Zero-Shot classification on MGLL and others methods. * denotes using
published pretrained model.

Method Pretrain Data Downstream Data ACC (%)
FG-CLIP (ICML-25) CC3M ImageNet 21.4

MGLL CC3M ImageNet 23.5
FG-CLIP (ICML-25) PMC-OA OrganAMNIST 47.9

MGLL PMC-OA OrganAMNIST 52.7
CheXAgent (Arxiv-24) * COVIDx 34.3
MedVersa (Arxiv-24) * COVIDx 35.5
FG-CLIP (ICML-25) MIMIC-CXR COVIDx 36.3

MGCA (NIPS-22) MIMIC-CXR COVIDx 37.3
RetiZero (Nat. Com-25) MIMIC-CXR COVIDx 35.8

MAVL (CVPR-24) MIMIC-CXR COVIDx 37.0
Ark+ (Nature-25) MIMIC-CXR COVIDx 37.8

MGLL MIMIC-CXR COVIDx 39.0

D.3 PERFORMANCE EVALUATION ON REGION SEGMENTATION

We have evaluated MGLL on region segmentation tasks, and the results are reported in Table 25.
Medical image segmentation is inherently challenging due to the subtle differences between adja-
cent pixels of heterogeneous classes. We compared our MGLL with several excellent methods such
as GLoRIAHuang et al. (2021), CLIPRadford et al. (2021), LAVTYang et al. (2022), UniLSegLiu
et al. (2024b), and STPNetShan et al. (2025). By incorporating multi-level semantic alignment,
MGLL enhances the model’s language-guided spatial understanding and achieves the best perfor-
mance among compared methods.

Table 25: Comparisons of COVID-19 lesion segmentation between MGLL and others methods on
COVID-Xray dataset Degerli et al. (2021).

Method Dataset Dice (%) IoU(%)

GLoRIA (ICCV-21) COVID-Xray 79.94 70.68
CLIP (ICML-21) COVID-Xray 79.81 70.66
LAVT (CVPR-22) COVID-Xray 79.28 69.89

UniLSeg (CVPR-24) COVID-Xray 79.99 70.29
STPNet (TIP-25) COVID-Xray 80.63 71.42

MGLL COVID-Xray 81.69 73.06
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D.4 MORE DETAILED RESULTS OF MGLL IN MLLMS

To evaluate MGLL’s impact on multimodal large language models’ diagnostic capabilities, we con-
duct comprehensive multiple-choice evaluations across 25 distinct ophthalmological conditions as
shown in Table 27 to Table 34. This expanded analysis provides more insights into MGLL’s perfor-
mance beyond the ten primary conditions highlighted in previous experiments.

Table 26: Brief summary of recent vision-language models.
Model Name Key Features and Description

InstructBLIPDai et al. (2023) Combines vision and language with instruction tuning to enable versatile zero-shot performance across tasks.
Mini-GeminiLi et al. (2024b) A lightweight and efficient multimodal model designed for fast inference and strong performance.

Qwen-VLBai et al. (2023) Supports multimodal reasoning with a strong focus on Chinese vision-language understanding.
InternVLChen et al. (2024a) Achieves strong cross-modal alignment and generalization across image-text benchmarks.

LLaVALiu et al. (2024a) Integrates CLIP and LLaMA for open-ended visual question answering and dialogue.
LLaVA-MedLi et al. (2024a) Adapts LLaVA for medical vision-language tasks including medical image question answering.

Med-FlamingoMoor et al. (2023) Extends Flamingo to the medical domain with few-shot learning capabilities.
Janus-ProChen et al. (2025) Uses bidirectional multimodal modeling to enhance multi-turn visual-language interactions.

Our detailed analysis reveals that MGLL integration yields significant improvements across all
seven multimodal architectures. InstructBLIP demonstrates a 9.76% overall accuracy improve-
ment (55.17% to 64.94%), with particularly notable enhancements in challenging conditions such
as Retinitis (11.11% to 44.44%) and Media Haze (16.13% to 45.16%). These improvements high-
light MGLL’s capacity to enhance feature extraction for complex ophthalmological pathologies.
MGLL integration showcases substantial performance gains across multiple diagnostic tasks and
architectures. Qwen-VL with MGLL integration exhibits a 6.58% overall improvement (76.80% to
83.39%), with remarkable advances in low-prevalence conditions including Astigmatic Refractive
Error (0.00% to 50.00%) and Hypertensive Retinopathy (0.00% to 66.67%). Even high-performing
models benefit significantly, InternVL achieves a 5.19% improvement with MGLL integration,
enhancing diagnostic accuracy particularly for conditions such as Optic Disc Edema (45.45% to
63.64%) and Central Retinal Vein Occlusion (36.36% to 63.64%). LLaVA exhibits similarly ro-
bust baseline performance (85.22%), yet MGLL integration yields a 5.55% improvement, achiev-
ing near-perfect accuracy in several categories including No Diabetic Macular Edema (90.91% to
100.00%) and miscellaneous conditions (90.00% to 100.00%). The most dramatic improvements
occur in medical-specialized models. Med-Flamingo demonstrates a substantial 21.76% improve-
ment (49.17% to 70.94%), with particularly significant gains in Glaucoma (24.07% to 61.11%) and
Diabetic Retinopathy (36.91% to 80.54%). Similarly, LLaVA-Med shows a 20.78% improvement
(56.47% to 77.25%), with exceptional gains in AMD (16.37% to 58.48%) and Diabetic Retinopathy
(26.85% to 77.18%). Across all evaluated models, we observe consistent patterns of improvement
that highlight MGLL’s particular efficacy with complex retinal conditions, vascular pathologies, and
conditions requiring fine-grained feature discrimination. The results demonstrate that MGLL pro-
vides substantial benefits regardless of the underlying model architecture. The multiple-choice eval-
uation framework presented models with standardized diagnostic queries. Some prompt examples
of the multiple-choice evaluation benchmark are as follows:

Question 1: “What is the most reasonable diagnosis? A. Glaucoma B. Drusen C. Chorioretinitis D.
Hypertensive Retinopathy Answer with the option’s letter from the given choices directly.”

Answer 1: A.

Question 2: “What diagnosis is most likely? A. Central Serous Retinopathy B. Media Haze C.
Diabetic Retinopathy D. Age-related Macular degeneration Answer with the option’s letter from the
given choices directly.”

Answer 2: D.

Question 3: “What diagnosis is most probable? A. Optic Disk Cupping B. Mild Non-Proliferative
Diabetic Retinopathy C. Central Serous Retinopathy D. Central Retinal Vein Occlusion Answer with
the option’s letter from the given choices directly.”

Answer 3: B.
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Table 27: Comparison of multiple-choice accuracy with MGLL in InstructBLIP on the multiple-
choice evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
InstructBLIP Dai et al. (2023) 80.17% 0.00% 50.00% 80.00% 0.00% 75.00% 45.45% 0.00%

+ MGLL 83.63% 50.00% 62.50% 85.00% 33.33% 75.00% 63.64% 28.57%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
76.51% 36.67% 59.30% 51.57% 0.00% 63.79% 16.13% 44.25% 54.34%
82.55% 50.00% 65.43% 60.22% 33.33% 74.14% 45.16% 52.65% 70.10%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
41.67% 63.64% 65.63% 27.27% 50.00% 58.00% 11.11% 41.67% 55.17%
58.33% 72.73% 75.00% 45.45% 50.00% 70.00% 44.44% 58.33% 64.94% (9.76% ↑)

Table 28: Comparison of multiple-choice accuracy with MGLL in Mini-Gemini on the multiple-
choice evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
Mini-Gemini Li et al. (2024b) 76.61% 0.00% 43.75% 85.00% 0.00% 25.00% 27.27% 14.29%

+ MGLL 82.46% 0.00% 56.25% 85.00% 66.67% 50.00% 54.55% 42.86%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
79.87% 23.33% 67.90% 61.46% 0.00% 60.34% 38.71% 58.41% 63.02%
84.56% 46.67% 72.22% 68.99% 33.33% 65.52% 58.06% 64.16% 72.99%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
66.67% 72.73% 62.50% 36.36% 50.00% 66.00% 33.33% 33.33% 62.65%
75.00% 81.82% 78.13% 45.45% 50.00% 74.00% 55.56% 41.67% 70.58% (7.93% ↑)

Table 29: Comparison of multiple-choice accuracy with MGLL in Qwen-VL on the multiple-choice
evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
Qwen-VL Bai et al. (2023) 81.87% 0.00% 43.75% 75.00% 0.00% 25.00% 9.09% 28.57%

+ MGLL 85.96% 50.00% 62.50% 80.00% 33.33% 75.00% 36.36% 42.86%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
80.54% 26.67% 78.40% 79.89% 0.00% 84.48% 54.84% 76.55% 82.96%
89.93% 43.33% 87.04% 85.39% 66.67% 89.66% 70.97% 80.97% 87.14%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
75.00% 72.73% 56.25% 27.27% 50.00% 84.00% 22.22% 25.00% 76.80%
83.33% 72.73% 68.75% 54.55% 100.00% 86.00% 33.33% 41.67% 83.39% (6.58% ↑)

Table 30: Comparison of multiple-choice accuracy with MGLL in InternVL on the multiple-choice
evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
InternVL Chen et al. (2024a) 81.29% 0.00% 37.50% 85.00% 0.00% 25.00% 36.36% 71.43%

+ MGLL 86.55% 50.00% 56.25% 90.00% 0.00% 50.00% 63.64% 71.43%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
94.63% 43.33% 89.51% 85.73% 33.33% 87.93% 64.52% 88.05% 85.85%
96.64% 53.33% 90.74% 91.46% 66.67% 94.83% 67.74% 91.15% 90.68%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
91.67% 81.82% 87.50% 45.45% 50.00% 90.00% 44.44% 66.67% 84.33%
100.00% 90.91% 93.75% 63.64% 50.00% 96.00% 55.56% 75.00% 89.52% (5.19% ↑)

Table 31: Comparison of multiple-choice accuracy with MGLL in LLaVA on the multiple-choice
evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
LLaVA Liu et al. (2024a) 83.04% 0.00% 50.00% 90.00% 0.00% 25.00% 9.09% 42.86%

+ MGLL 84.80% 100.00% 68.75% 90.00% 33.33% 25.00% 45.45% 57.14%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
87.25% 36.67% 91.36% 88.65% 0.00% 93.10% 48.39% 88.50% 90.68%
93.96% 50.00% 91.98% 94.38% 33.33% 96.55% 61.29% 90.71% 96.78%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
100.00% 90.91% 62.50% 18.18% 50.00% 90.00% 44.44% 58.33% 85.22%
100.00% 100.00% 62.50% 45.45% 100.00% 100.00% 66.67% 66.67% 90.77% (5.55% ↑)
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Table 32: Comparison of multiple-choice accuracy with MGLL in LLaVA-Med on the multiple-
choice evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
LLaVA-Med Li et al. (2024a) 16.37% 100.00% 31.25% 15.00% 0.00% 0.00% 45.45% 42.86%

+ MGLL 58.48% 100.00% 50.00% 65.00% 66.67% 25.00% 63.64% 57.14%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
26.85% 16.67% 25.31% 91.46% 33.33% 16.67% 25.81% 23.89% 66.56%
77.18% 40.00% 59.26% 97.42% 33.33% 55.17% 51.61% 57.08% 78.46%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
16.67% 36.36% 21.88% 27.27% 0.00% 28.00% 33.33% 16.67% 56.47%
41.67% 72.73% 40.63% 63.64% 50.00% 62.00% 44.44% 58.33% 77.25% (20.78% ↑)

Table 33: Comparison of multiple-choice accuracy with MGLL in Med-Flamingo on the multiple-
choice evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
Med-Flamingo Moor et al. (2023) 25.73% 100.00% 31.25% 30.00% 0.00% 25.00% 63.64% 57.14%

+ MGLL 69.01% 100.00% 56.25% 75.00% 33.33% 50.00% 72.73% 71.43%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
36.91% 20.00% 24.07% 74.16% 33.33% 24.14% 22.58% 18.58% 52.73%
80.54% 43.33% 61.11% 83.37% 66.67% 51.72% 54.84% 45.58% 69.13%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
16.67% 36.36% 43.75% 36.36% 0.00% 28.00% 22.22% 8.33% 49.17%
50.00% 63.64% 59.38% 63.64% 50.00% 70.00% 44.44% 33.33% 70.94% (21.76% ↑)

Table 34: Comparison of multiple-choice accuracy with MGLL in Janus-Pro on the multiple-choice
evaluation benchmark.
Label Name AMD AR BRVO Cataract Chorioretinitis CN CRVO CSR
Janus-Pro Chen et al. (2025) 88.30% 50.00% 56.25% 75.00% 33.33% 25.00% 36.36% 42.86%

+ MGLL 90.64% 100.00% 62.50% 85.00% 66.67% 75.00% 63.64% 71.43%
Diabetic Retinopathy Drusen Glaucoma Health HR DME MH Myopia No AMD
93.29% 40.00% 90.74% 96.40% 33.33% 62.07% 58.06% 87.17% 92.28%
96.64% 53.33% 95.06% 96.63% 66.67% 70.69% 67.74% 90.27% 94.21%
No Glaucoma No DME ODC ODE ODP Other Retinitis Tessellation Overall ↑
58.33% 72.73% 81.25% 36.36% 50.00% 82.00% 33.33% 58.33% 88.54%
83.33% 90.91% 87.50% 54.55% 50.00% 92.00% 55.56% 75.00% 91.85% (3.31% ↑)
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What is the probable diagnosis?
A. Hypertensive Retinopathy
B. Optic Disc Pallor
C. Central Serous Retinopathy
D. Choroidal Neovascularization
Answer with the option's letter from the given choices directly.
Ground Truth: D

InstructBLIP: D
InstructBLIP + MGLL: D

Mini-Gemini: C 
Mini-Gemini + MGLL: D

Qwen-VL: C 
Qwen-VL + MGLL: D 

InternVL: C
InternVL + MGLL: D 

LLaVA: C
LLaVA + MGLL: A 

Med-Flamingo: A
Med-Flamingo + MGLL: D

LLaVA-Med: A 
LLaVA-Med + MGLL: D

What diagnosis is most probable?
A. Arteriosclerotic Retinopathy
B. Chorioretinitis
C. Retinitis
D. Healthy
Answer with the option's letter from the given choices directly.
Ground Truth: B

InstructBLIP: A
InstructBLIP + MGLL: B

Mini-Gemini: A
Mini-Gemini + MGLL: B

Qwen-VL: D
Qwen-VL + MGLL: B  

InternVL: D
InternVL + MGLL: C  

LLaVA: D
LLaVA + MGLL: B 

Med-Flamingo: C
Med-Flamingo + MGLL: B

LLaVA-Med: C 
LLaVA-Med + MGLL: B

Janus-Pro: C
Janus-Pro + MGLL: D 

Janus-Pro: D
Janus-Pro + MGLL: B 

Figure 5: Case Studies (Top: Case 1, Bottom: Case 2) Demonstrating MGLL Integration Impact on
Diagnostic Accuracy of Different Multimodal Large Langue Models (MLLMs).
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The Fig. 5 presents two representative case studies demonstrating the diagnostic impact of MGLL
integration across multiple MLLMs.

Case 1 displays a fundus image with characteristic features of choroidal neovascularization (CNV),
including a well-defined yellowish lesion with surrounding subretinal hemorrhage in the macula.
Only InstructBLIP correctly identifies this pathology in its baseline configuration, whereas five mod-
els with MGLL integration provide accurate diagnoses, demonstrating MGLL’s capacity to enhance
the detection of vascular abnormalities.

Case 2 exhibits subtle inflammatory changes consistent with chorioretinitis, characterized by chori-
oretinal infiltrates against a background of mild vitreous haze, which is a condition none of the base-
line models correctly identify. Following MGLL integration, six models accurately diagnose this in-
flammatory condition, with responses shifting from incorrect options (Arteriosclerotic Retinopathy,
Retinitis, or Healthy) to the correct identification.

D.5 MORE CAMS ON RETINAL FUNDUS DATASETS

We present additional class activation maps (CAMs) from CLIP and MGLL on downstream retinal
datasets in Fig. 6. These images include cases of diabetic retinopathy, diabetic macular edema, and
glaucoma. Through both linear probing and full fine-tuning approaches, MGLL consistently demon-
strates more precise lesion localization than CLIP, specifically highlighting pathological features
rather than producing diffuse, non-specific activations. In diabetic retinopathy cases spanning mild
to proliferative stages, MGLL accurately identifies microaneurysms, hemorrhages, venous bead-
ing, and neovascularization sites. While in diabetic macular edema, it effectively localizes retinal
thickening and exudate formation with activation intensity proportional to disease severity. For glau-
coma, MGLL appropriately focuses on optic disc abnormalities, cup enlargement, and neural rim
thinning—critical diagnostic markers often missed by CLIP, which tends to highlight anatomical
landmarks regardless of pathological relevance. These findings demonstrate MGLL’s advantages
for ophthalmological applications, offering more robust performance for clinical feature detection
that supports diagnostic confidence.

D.6 ABLATION STUDY ON WEIGHT FACTORS OF LOSS

To investigate the impact of different weight factors in our composite loss function, we conducted
an extensive ablation study using the RFMiD dataset as shown in Table 35. Our loss function in-
corporates three components with corresponding weight factors (α1, α2, and α3), and the results
demonstrate that weight selection significantly influences model performance across all metrics.
Compared to the baseline CLIP model, all our weight configurations show substantial improve-
ments, with the optimal configuration (α1 = 0.5, α2 = 1.0, and α3 = 1.0) achieving the best
performance in both linear probing (79.62% AUC, 92.84% ACC, 34.08% mAP) and full fine-tuning
(92.83% AUC, 95.48% ACC, 64.99% mAP) scenarios. Notably, reducing the weight of the first
component improved performance, while reducing either the second or third component weights
resulted in performance degradation, suggesting that the information captured by these components
is particularly valuable for medical image classification tasks and should be emphasized during
training. These findings highlight the importance of appropriate loss weighting in multi-component
objective functions and provide empirical evidence for the optimal configuration selection.

Table 35: Ablations of Weight Factors on RFMiD. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP Radford et al. (2021) 44.66 92.53 7.28 65.10 92.86 17.31
α1: 1.0, α2: 1.0, α3: 1.0 79.29 92.83 33.82 92.51 95.35 64.57
α1: 0.5, α2: 1.0, α3: 1.0 79.62 92.84 34.08 92.83 95.48 64.99
α1: 1.0, α2: 0.5, α3: 1.0 78.11 92.79 32.42 91.46 94.99 63.28
α1: 1.0, α2: 1.0, α3: 0.5 78.85 92.80 33.39 92.01 95.18 63.77
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D.7 ABLATION STUDIES ON THE TEMPERATURE COEFFICIENT (τ )

We have conducted the ablation studies of temperature coefficient and observe that the performance
first improves and then drops as the temperature coefficient τ increases, as shown in Table 36. A
smaller τ sharpens the similarity distribution, enhancing discrimination but causing training insta-
bility. Conversely, a larger τ produces smoother gradients but weakens alignment. The best results
are achieved when τ = 0.07, which provides a good balance between discriminative alignment and
stable optimization.

Table 36: Ablations of temperature coefficient (τ ) on MIDRC-XR-Portable.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP, τ = 0.07 71.43 78.22 22.31 91.83 90.08 83.94
MGLL, τ = 0.05 83.55 88.91 30.49 99.60 98.67 89.71
MGLL, τ = 0.20 81.89 87.02 28.93 97.89 97.26 87.92
MGLL, τ = 0.50 79.52 86.19 27.74 95.53 94.57 85.95
MGLL, τ = 0.07 83.86 89.06 30.62 99.75 98.80 89.87

D.8 PERFORMANCE ON DATASETS WITH ARTIFICIALLY INTRODUCED NOISE

We evaluated the robustness of MGLL under varying levels of artificially introduced noise, where
10%–30% of granularity labels were randomly removed. As shown in Table 37, even with 30%
missing labels, MGLL achieves AUCs of 79.61% (linear probing) and 96.74% (full fine-tuning),
which remain substantially higher than CLIP trained with complete labels (71.43% and 91.83%,
respectively). These results demonstrate that MGLL maintains strong robustness against incomplete
or noisy granularity supervision.

Table 37: Ablations of missing granularity labels on MIDRC-XR-Portable.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

CLIP, No Missing 71.43 78.22 22.31 91.83 90.08 83.94
MGLL, 10% Missing 82.58 88.15 29.97 99.31 98.39 89.30
MGLL, 20% Missing 81.14 87.25 28.86 98.62 97.95 88.74
MGLL, 30% Missing 79.61 86.23 27.75 96.74 96.02 87.28
MGLL, No Missing 83.86 89.06 30.62 99.75 98.80 89.87

D.9 PERFORMANCE ON DATASETS WITH MIXING GRANULARITY LEVELS

We have evaluated MGLL on datasets with mixed granularity levels, and the results are reported in
Table 38. Specifically, the pretraining dataset was randomly divided into two subsets of equal size:
Set A with two levels of granularity and Set B with a single level. MGLL achieves comparable per-
formance across both subsets and their combination, demonstrating its robustness to heterogeneous
annotation structures and its applicability to real-world scenarios with mixed-granularity data.

Table 38: Ablations of mixing granularity levels on MIDRC-XR-Portable. The dataset is randomly
divided into two subsets of equal size for the ablation study, Set A (50% data) and Set B (50% data).

Study Desc. Series Desc. Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP AUC ACC mAP

Set A Set B 78.93 85.47 27.04 94.81 93.58 85.14
Set A Set A + Set B 80.25 86.46 27.97 96.21 94.87 86.72

Set A + Set B Set B 80.92 87.07 28.63 97.03 96.56 87.45
MGLL (Ours) 83.86 89.06 30.62 99.75 98.80 89.87
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E DISCUSSION AND FUTURE WORK

Our investigation into Multi-Granular Language Learning (MGLL) reveals several important in-
sights about vision-language alignment in complex domains. The consistent performance improve-
ments across various medical imaging datasets demonstrate that hierarchical textual information
substantially enhances visual understanding, particularly when images correspond to multiple clin-
ical findings at different levels of specificity. The ablation studies confirm that performance gains
scale with both the number of granularity levels and the quality of input data, suggesting that MGLL
effectively leverages the complementary information contained in multi-granular textual descrip-
tions.

While MGLL achieves simultaneous multi-label and cross-granularity alignment without additional
computational cost, further optimization could potentially improve its generality. Future work
should explore several directions: (1) extending MGLL to incorporate multimodal inputs beyond
images and text, such as patient metadata or temporal information; (2) investigating domain adap-
tation techniques to improve generalization to unseen medical conditions or imaging modalities;
and (3) exploring the integration of MGLL with large language models to generate more nuanced
textual descriptions at multiple granularities. Additionally, applying MGLL to other domains with
inherently hierarchical structures, such as satellite imagery or scientific visualization, could fur-
ther validate its broader applicability beyond medical imaging. These extensions would strengthen
MGLL’s position as a generalizable framework for improved multimodal understanding.
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Figure 6: More Class Activation Maps from CLIP and Proposed MGLL.
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