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ABSTRACT

Recent advances in image-text pretraining have significantly enhanced visual un-
derstanding by aligning visual and textual representations. Contrastive Language-
Image Pretraining (CLIP) has played a pivotal role in multimodal learning. How-
ever, its focus on single-label, single-granularity alignment limits its effective-
ness in complex domains such as medical imaging, where images often corre-
spond to multiple high-level labels (e.g., disease categories) across different an-
notation granularities (e.g., diagnostic description, clinical explanation). To ad-
dress this, we propose Multi-Granular Language Learning (MGLL), a contrastive
learning framework designed to improve both multi-label and cross-granularity
alignment. MGLL leverages structured multi-label supervision, integrates textual
descriptions across granularities, and introduces soft-label supervision with point-
wise constraints to enhance alignment. MGLL employs smooth Kullback-Leibler
(KL) divergence to ensure cross-granularity consistency while maintaining com-
putational efficiency as a plug-and-play module for vision-language models. Pre-
trained on our constructed large-scale multi-granular datasets and evaluated across
multiple datasets, MGLL outperforms other state-of-the-art methods in down-
stream tasks. The code will be available on GitHub.

1 INTRODUCTION

In recent years, the large-scale image-text pretraining has significantly improved the performance of
downstream computer vision tasks. Among these approaches, Contrastive Language-Image Pre-
training (CLIP) Radford et al.| (2021) has gained widespread popularity for its ability to learn
aligned visual and textual representations from paired data. CLIP has been extensively utilized
in multimodal learning, ensuring that representations from different modalities remain semantically
consistent. Consequently, CLIP has been employed for pretraining vision foundation models and
fine-tuning on various downstream tasks, such as classification, image segmentation, and object
detection. Despite the success of CLIP and related pretraining methods in aligning images with
textual categories, simple image-text pair matching remains inadequate in medical domains such
as imaging, biosignal analysis, and genomics. A single medical image or signal often maps to
multiple target categories, requiring both multi-label and multi-granularity alignment. As shown in
Fig.[I] a retinal fundus image may present both Diabetic Macular Edema and Diabetic Retinopathy,
along with finer-grained labels like Severe Diabetic Macular Edema and Moderate Non-Proliferative
Diabetic Retinopathy. This calls for alignment across multiple semantic levels. Existing multi-
label contrastive methods [Wang et al.| (2022b)); [Saporta et al.| (2024); Naeem et al.| (2024) focus on
instance-label correlations but struggle with cross-granular semantics and generalization. Compared
to natural images, medical images encode more complex, hierarchical information—spanning diag-
noses, structures, lesions, and textures—yet suffer from data scarcity due to privacy and annotation
costs, further compounding the challenge.

In this study, we aim to address the challenges of multi-label alignment and cross-granularity
alignment through a generalizable image-text contrastive learning framework simultaneously. Here,
we define “label” as a high-level disease category that an image belongs to, whereas “granularity”
represents different levels or aspects of medical annotations, such as diagnostic attributes or clinical
explanations. Unlike previous image-text contrastive pretraining approaches, which rely on single-
granular, single-label supervision, we construct a multi-granular, multi-label datasets by collecting
rich textual descriptions associated with the labels. Furthermore, we extend the original CLIP image
and text loss [Radford et al| (2021) to incorporate soft-label supervision and introduce point-wise
constraints to enhance multi-label alignment. At the same time, we define contrastive learning ob-
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Figure 1: The illustrative comparison of input and outcome between CLIP and MGLL.

jectives for each granularity level and employ smooth Kullback—Leibler (KL) divergence to achieve
cross-granularity alignment. By jointly optimizing these learning objectives, our proposed MGLL
(Multi-Granular Language Learning) effectively aligns image-text pairs across both multiple la-
bels and multiple granularities. Notably, our method does not introduce any granularity-sensitive
encoders, ensuring no additional computational cost. This allows MGLL to function as a plug-
and-play module that can be integrated into any vision foundation model or large vision-language
model Touvron et al.| (2023). We hope our method and experiments can provide new insights into
medical vision-language pretraining and facilitate more effective visual representation learning. Our
contributions are as follows:

* We propose MGLL, a novel contrastive learning framework using multi-granular language
that enables simultaneous multi-label and cross-granularity alignment.

* We provide a set of architecture-agnostic, multi-label, multi-granularity learning objectives
that can be seamlessly integrated into vision-language models and foundation models to
enhance medical visual understanding.

* We design a structured multi-granular, multi-label system and construct large-scale multi-
granular retinal and X-ray image-text datasets. Extensive experiments on over ten down-
stream datasets demonstrate that MGLL consistently outperforms other state-of-the-art
(SOTA) methods, exhibiting superior generalization ability.

2 RELATED WORK

2.1 IMAGE-TEXT CONTRASTIVE LEARNING

Large-scale image-text pretraining underpins modern multimodal learning. Contrastive methods
like CLIP |[Radford et al.| (2021) align visual and textual features via paired data. Variants such as
SILCNaeem et al.|(2024) use local-to-global pairwise learning, Symile Saporta et al.[(2024) models
higher-order multimodal relations, and Long-CLIP [Zhang et al| (2024) handles extended text via
stretched embeddings. MedCLIP [Wang et al.| (2022b) addresses false negatives in medical data
by semantic matching. Recent foundation models Silva-Rodriguez et al.| (2025)); |Du et al.| (2024);
[Ci et al| (2025)); [Zhang et al.| (2023) tailor contrastive learning to specific domains. Still, standard

frameworks often underperform in medical settings due to data scarcity and complex semantics.
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Figure 2: The overview of MGLL (Multi-Granular Language Learning) pretraining pipeline.

2.2 MULTI-LABEL LEARNING

While conventional deep networks perform well in single-label classification, real-world objects
often carry multiple labels across entities, actions, and attributes Zhang et al.| (2022); [Khattak et al.
(2024); Dai et al|(2024). Early work by Wang et al. Wang et al.| (2016) learned joint image-
label embeddings, and later introduced a recurrent attention module for interpretability [Wang et al.
(2017b). SupCon Khosla et al| (2020) extended contrastive learning to supervised settings using
label structures, while Zhang et al. [Zhang et al.[(2022) proposed a hierarchy-preserving loss. Yet,
these methods remain limited in vision-language integration, with fixed label spaces constraining
semantic flexibility.

2.3 MULTI-GRANULARITY LEARNING

Visual and textual data convey semantics across multiple granularities. Recent work explores this via
diverse frameworks Zhao et al.|(2024); [Li et al.| (2024a); [Liu et al.| (2024a). Wang et al. [Wang et al.
(2022a) use bidirectional cross-attention for fine-grained alignment, Zhao et al. [Zhao et al.| (2024)
propose a multi-granularity vision flow, and Xiong et al. | Xiong et al.|(2022) align inter-/intra-modal
features with decision fusion. Du et al. Du et al.|(2022) capture cross-modal multi-granular seman-
tics for retrieval. Most of the these approaches rely on fixed training pipelines that limit their ability
to incorporate heterogeneous or hierarchical annotations. Our MGLL provides a more flexible and
generalizable framework for learning both multi-label and cross-granularity visual-language repre-
sentations. MGLL can effectively utilize different types of granularity information across diverse
datasets without requiring specific annotation formats or model architectures. MGLL also displays
robust performance under complex scenarios such as mixed granularity and noised annotations.

3 MULTI-GRANULAR LANGUAGE LEARNING

3.1 OVERVIEW

To achieve multi-label and cross-granularity matching between images and text, we propose MGLL,
a multi-granularity language-based contrastive learning framework. As shown in Fig. 2} our frame-
work consists of an image encoder and a text encoder, where we use Vision Transformer Doso-
vitskiy et al.| (2020) and BERT Devlin et al.| (2019) as the default choices. First, we collect rich
textual descriptions for both fundus and X-ray images, constructing two multi-granularity datasets:
MGLL-Fundus and MGLL-Xray. Next, we leverage the encoded image representations and multi-
granularity text representations for multi-label contrastive learning, employing smoothed KL di-
vergence to align cross-granularity representations. We then describe how to transform multi-
granularity text into hierarchical representations and detail the MGLL objective. Furthermore, we
provide both empirical and theoretical analyses, demonstrating that MGLL captures richer image-
text correlations than CLIP without additional parameters. This enables the learning of more dis-
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criminative visual features, improving downstream vision tasks. Finally, we introduce the construc-
tion of large-scale multi-granular datasets: MGLL-Fundus and MGLL-Xray.

3.2 THE MGLL OBIJECTIVES

Most contrastive learning methods rely on the traditional CLIP loss, but our primary goal is to
achieve simultaneous multi-label and cross-granularity alignment between image-text pairs. To this
end, we improve the standard CLIP loss by introducing the soft CLIP loss, the point-wise loss, and
the smooth KL (Kullback-Leibler) divergence loss in our proposed multi-granularity language
learning objective. The soft CLIP loss Lycpp enhances the visual encoder by enabling better align-
ment with multi-label features. The point-wise loss optimizes the alignment of visual features with
specific text features at a given granularity, further improving multi-label alignment. The smooth
KL divergence loss helps different granularity features converge toward a unified feature space, fa-
cilitating cross-granularity alignment of visual representations. To quantify the similarity between
image and text features, we adopt a soft alignment strategy, allowing an image V; to align not only
with a single label T; but also with multiple related labels T;;, k € {1,2,...,M;} as Egs.
and @ where N is the total number of images, M; is the number of text labels associated with
the i-th image, V; and Tj; represent the encoded features of the i-th image and its corresponding
k-th text label, respectively. sim(V;, T;x) is the similarity function measuring their alignment. The
temperature parameter 7 controls the sharpness of the probability distribution, while the weight fac-
tor w;y, determines the contribution of the k-th text label to the alignment of the i-th image. The
text-to-image loss l; can be obtained simply by swapping the roles of the image and text terms of
the image-to-text loss l;;, in Eq. (2).

exp(sim(V;, Tik)/T)
Zn ) Zm 1exp(51m( nm)/T)

Ly = ZZ ik + Uii) 2
221 M5

Each image feature V; is treated as multiple pairs (V;, Ti1), (Vi, Ti2), .o, (Vi Ting, ), and w;y, is the
probability of selecting 7}, as a valid label for V;. w;j is derived from the co-occurrence matrix
normalization as Eq. (3). Instead of forcing the model to align strictly with one label like CLIP,
MGLL allows multi-label optimization and prevents the model from being biased toward a single
label.

(D
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coocurrence(V;, T;1,)

3)

To further optimize the alignment between visual and textual features, we employ binary cross
entropy as point-wise loss Lp to refine multi-label alignment as Eq. @) where xl ;= = o(x;j), x5 =
sim(V;, T;) represents the similarity logits between the encoded image feature V; and text feature
T;; before applying activation. The binary label y;; € {0, 1} indicates whether the image-text pair is
a valid match. o(z) is the Sigmoid activation function, defined as o (z) = H%, which normalizes
the logits into a probability range. 7; denotes the annotation corresponding to a single label at a
specific granularity level. M denotes the total number of annotations, and /N represents the total
number of images. These annotations are consistent with those defined in Eq. (I). Since the point-
wise loss does not explicitly model the relationships among annotations, we omit the label subscripts
of M and T} for simplicity. By explicitly supervising individual image-text pairs, this loss enhances
fine- gralned multi-label alignment and improves the discriminability of visual representations.

Wik = >~ coocurrence(V;, Tjr)

AL Ing;j + (1 — y45) log(1 — x;j)

-3y 5 @
i=1 j=1

To achieve cross-granularity alignment, we employ the smooth Kullback—Leibler (KL) divergence

loss L1, formulated as follows. Given m similarity logits between the encoded image feature and

the text feature { P, }7* ,, we define the mean distribution as the average of all predicted distributions:

M = % >_i%, P;. Then, we compute the KL divergence between each predicted distribution and
the mean distribution as Eqgs. (5) and @, where Pi('j) represents the predicted probability of the i-th
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model for category j. This loss encourages consistency across different granularity levels by align-
ing their predicted distributions toward the mean distribution M, which achieves cross-granularity
alignment.

1) 140 P2
Do (PilIM) =3 P log 155 (5)
m J
Lk = Z Dy (55| M) (6)

i=1

The final loss with weight factors is as Eq. , where o is 0.5, ais is 1, and a3 is 1 by experimental
setting.

Ly = a1Lgcup + a2 L, + az Lkt @)

3.3 EMPIRICAL AND THEORETICAL ANALYSIS OF MGLL
3.3.1 EMPIRICAL ANALYSIS

CLIP aligns each image with a single text label, limiting its effectiveness in multi-label scenarios.
MGLL addresses this by using soft CLIP loss and point-wise loss to align visual features with mul-
tiple correlated text labels on a shared manifold. For multi-granularity alignment, MGLL encodes
each granularity in separate spaces and aligns image features accordingly. A smooth KL divergence
loss further promotes consistency by aligning features across granularities with their mean distri-
bution, preventing overfitting to any single level. This enables MGLL to distinguish both coarse
and fine-grained categories (e.g., Glaucoma vs. Diabetic Macular Edema, and Severe vs. Moderate
Diabetic Macular Edema), where CLIP typically fails.

3.3.2 THEORETICAL ANALYSIS

We provide a theoretical comparison between MGLL and CLIP. CLIP maximizes similarity between
image and corresponding text features while minimizing contrastive loss for mismatched pairs, as
defined in Eq. , where V; and T; are image and text features, sim(I,T) = I _ s cosine

[RAITEal
similarity, and 7 1s a temperature parameter.

N exp(sim(V;, T;)/7)

= XL e(sim(V, T)/7)
However, CLIP only aligns an image V; with a single text label 7;, limiting its effectiveness in
multi-label settings. It also projects text features of different granularities into the same space,
which is suboptimal when finer semantic distinctions are needed. MGLL overcomes these issues by
introducing Soft CLIP Loss, Point-wise Loss, and Smooth KL Divergence Loss to support multi-
label and cross-granularity alignment in appropriate feature subspaces.

(®)

1
Lcup = N

(1) Soft CLIP Loss: MGLL allows an image feature V; to align with multiple text features
{T;1,Tia, ..., Tin, }- At optimality, this leads to the condition in Eq. @]) implying Eq. , where
V; converges to the weighted center of its associated text features. This contrasts with CLIP, which
aligns each image to a single text feature, highlighting MGLL’s advantage in multi-label learning.

M;
> wi Vysim(V, Tig) = 0 )
k=1 M,
. Tk Vi
> Wik = T (10)
— Tl Vil

(2) Point-wise Loss: To enhance image-text alignment, we introduce a point-wise binary cross-
entropy loss £, with its gradient shown in Eq. . If y;; = 1, the objective is to maximize
o(x;;), strengthening similarity between V; and 7. If y;; = 0, it minimizes o(x;;), suppressing
similarity with irrelevant text. This encourages alignment with all valid labels while filtering out
noise, improving over CLIP’s single-label constraint.
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oL,

a(L'ij
(3) Smooth KL Divergence Loss: To enforce cross-granularity consistency, we introduce Smooth
KL Divergence Loss. The mean distribution is defined as M = -1 3™ P; where {P;}7, are
predicted distributions. By the non-negativity of KL divergence, Eq. (12) achieves equality only
when P; = M. Minimizing Ly thus enforces P, = P, = --- = P,, = M, encouraging consistent
representations across granularities and improving alignment in feature space.

:a(xij)—yij (11)

Dy (Pi||M) =0, Vi (12)

While CLIP optimizes image-text alignment, it overlooks feature variability across granularities and
lacks consistency in visual alignment. By aligning each image feature V; with a single text feature
T;, it risks biased representations. In contrast, MGLL drives text features of different granularities
toward a shared mean distribution M, promoting common semantic grounding and aligning visual
features with all granularity levels, not just one.

3.4 LARGE-SCALE MULTI-GRANULAR DATASETS
3.4.1 MGLL-FUNDUS DATASET

In this study, we construct a large-scale multi-granularity fundus image-text dataset, MGLL-Fundus,
consisting of 246,389 pairs of fundus images and corresponding multi-granularity textual descrip-
tions. The image data in MGLL-Fundus originates from 49 public datasets, covering more than
50 disease categories (details are provided in the supplementary material). The multi-granularity
textual descriptions mainly include two levels of granularity: disease category and clinical expla-
nation. The disease-level granularity comprises normal/abnormal labels along with specific dis-
ease categories. The clinical explanation granularity provides detailed textual descriptions derived
from label explanations in datasets and EyeWiki [EyeWikil (2024). As shown in Fig.[2] the disease-
level description is “Abnormal, Age-related Macular Degeneration”, while its corresponding clini-
cal explanation is “Changes in the retinal pigment epithelium.” By incorporating multi-granularity
textual descriptions, we establish a hierarchical labeling system for fundus images, including nor-
mal/abnormal classification, disease categorization, and detailed clinical descriptions, which enable
cross-granularity image-text alignment and enhance performance across different granularity levels.
Our multi-granularity approach can also be adopted to other modalities.

3.4.2 MGLL-XRAY DATASET

In radiology research, the heterogeneity of study descriptions in DICOM (Digital Imaging and
Communications in Medicine) headers complicates patient cohort selection, especially with man-
ual methods. MIDRC (Medical Imaging and Data Resource Center) MIDRC]| (2024) highlight this
challenge, where over 138,000 studies are categorized into only 97 unique descriptions, while the
rest are described by 1,300 different descriptions. Therefore, we need LOINC (Logical Observation
Identifiers Names and Codes), which provides a standardized coding system to enhance data shar-
ing and analysis. To facilitate data coordination with, we collect 190,882 X-ray images from the
MIDRC repository MIDRC|(2024). We convert the images from DICOM to PNG format while ex-
tracting key metadata. The extracted multi-granularity textual information includes modality, study
description, and series description. Modality includes CR (Computed Radiography), which has a
lower resolution and signal-to-noise ratio (SNR), and DX (Digital Radiography), which uses flat-
panel detectors for higher-quality imaging. Study Description provides an exam-level overview,
such as "Chest X-ray”, while Series Description details specific imaging sequences like "PA View”
(posteroanterior) or “Lateral View”. These multi-granularity textual features serve as the textual
component of MGLL-Xray dataset.

4 EXPERIMENTS

4.1 SETUP

We construct a large-scale multi-granularity fundus image-text dataset for pre-training, with further
details provided in the supplementary material. To evaluate our model’s performance, we conduct
experiments on eleven downstream datasets: FIVES Jin et al|(2022), IDRiD |Porwal et al.| (2018),
OIA-DDRLi et al.| (2019b), ADAM [Fang et al.|(2022)), PALM Fang et al.{(2024), REFUGE Orlando
et al.| (2020), RIM-ONE Batista et al.| (2020), REMiD |Pachade et al.| (2021), MIDRC-XR MIDRC
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Figure 3: The quantitative comparison (AUC) between baseline methods and proposed MGLL on
nine fundus downstream datasets.

(2024), MIDRC-XR-Portable MIDRC]| (2024), ChestX-ray14|Wang et al. (2017a)) under both linear
probing and full fine-tuning settings. In our quantitative evaluation, we employ AUC (Area Under
the receiver operating characteristic Curve), mAP (mean Average Precision), and ACC (Accuracy)
as assessment metrics. As for the multi-label setting, we report the category-wise average accuracy
as ACC. We adopt ViT-L/14 |Dosovitskiy et al.| (2020) as the image encoder and BiomedicalBERT
Alsentzer et al.|(2019)) as the text encoder by default. All experiments were conducted under iden-
tical settings, with baselines pre-trained on our self-constructed multi-granularity datasets to ensure
fair comparison. We strictly followed the official data splits of all downstream datasets. During
pretraining, we only used the training sets for model training and the validation sets for pretraining
evaluation, while the test sets were never accessed.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS
4.2.1 EVALUATION ON RETINAL FUNDUS DATASETS

Utilizing the multi-granularity image-text fundus dataset we constructed, we pretrain our model
within the Multi-Granular Language Learning (MGLL) framework to enhance its capability in fea-
ture representation for retinal fundus images. We conduct comprehensive experiments to compare
the performance of MGLL against several state-of-the-art (SOTA) baseline methods across nine
downstream datasets, covering a wide range of retinal diseases. The AUC results for both linear
probing and full fine-tuning are presented in Fig. [3] while more detailed results can be found in
the supplementary material (Tables [T5]to[23). MGLL consistently achieves significant performance
improvements across all nine datasets, with particularly strong gains in the linear probing setting.
Notably, on the multi-label dataset REMiD [Pachade et al.[(2021), MGLL outperforms other methods
by at least 16.6% in linear probing and 6.7% in full fine-tuning, demonstrating its superior capabil-
ity in handling imbalanced data distributions. Fig. ] visualizes class activation maps (CAMs) from
CLIP and MGLL on two cases with different retinal diseases. It is evident that CLIP fails to extract
meaningful features, instead assigning nearly uniform attention weights across the entire fundus im-
age. In contrast, MGLL effectively localizes key regions of interest (ROIs) for different diseases.
Specifically, MGLL accurately highlights hard exudates for chorioretinitis and the retinal pigment
epithelium for age-related macular degeneration. These quantitative and qualitative evaluations col-
lectively indicate that MGLL possesses extraordinary capability in effective feature extraction and
performance enhancement across diverse retinal diseases.

4.2.2 EVALUATION ON X-RAY DATASETS

We pretrain MGLL on the MGLL-Xray dataset and conduct experiments on MGLL and other SOTA
baseline methods (Radford et al.[(2021)); Tiu et al.| (2022); Zhang et al.| (2023);|Zhou et al.| (2023a));
Dai et al.| (2024); [Khattak et al.| (2024)); [La1 et al.| (2024)); | Xie et al.| (2025)) on the MIDRC-XR
and MIDRC-XR-Portable datasets, which are shown in the Table [T} In the linear probe setting,
MGLL achieves significant advancements over the second-best method (UniChest|Dai et al.| (2024)
on MIDRC-XR and UniMed-CLIP [Khattak et al.| (2024) on MIDRC-XR-Portable), with improve-
ments of 2.23% and 3.81% in AUC, respectively, indicating superior representation learning capa-
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Table 1: The performance evaluation on MIDRC-XR, MIDRC-XR-Portable, and ChestX-ray14.
Bold indicates best performance and underline shows second-best.

MIDRC-XR MIDRC-XR-Portable ChestX-rayl4
Method Linear Probe (%) | Fully Fine-tune (%) | Linear Probe (%) |Fully Fine-tune (%) | Linear Probe (%) |Fully Fine-tune (%)
AUC ACC mAP| AUC ACC mAP | AUC ACC mAP | AUC ACC mAP | AUC ACC mAP | AUC ACC mAP
CLIP (ICML-21) 5472 51.18 16.62[88.52 80.83 62.04 [71.43 78.22 22.3191.83 90.08 83.94 [69.75 78.09 18.33|82.05 87.58 31.79

CheXzero (Nat. BME-22) | 51.31 43.85 12.71|80.11 73.26 55.46 |72.84 80.13 23.56|92.47 9242 8523 |68.72 76.98 15.97|81.81 87.39 31.52
KAD (Nat. Com-23) | 53.44 47.13 14.86|85.74 78.39 60.12 |73.53 80.71 23.88|93.41 92.98 8596 |73.72 78.95 21.87|83.80 89.13 34.01
MRM (ICLR-23) 5623 53.61 17.73|90.67 83.95 64.76 | 79.38 86.05 27.72|96.52 95.07 86.95 |74.63 79.87 23.23|84.28 89.57 35.62
UniChest (TMI-24)  |59.02 54.78 19.32|92.51 86.32 66.93 |78.49 85.28 27.37|95.44 9432 8638 [76.15 81.72 25.52|85.84 89.99 37.97
UniMed-CLIP (arXiv-24) [ 57.33 54.07 18.06|94.15 87.47 68.49 |80.05 86.63 28.16 |94.31 93.55 86.19 |75.54 81.21 24.96|82.59 88.36 32.19
CARZero (CVPR-24) [57.92 5443 1879|9348 86.94 67.62 |75.24 82.67 25.65|92.94 92.66 85.67 |77.32 83.94 26.88 |82.95 88.65 32.86
FG-CLIP (ICML-25) |58.31 54.59 19.03|93.29 86.71 67.44 |80.31 86.77 28.27|96.93 9574 87.42 |76.62 8235 25.98|85.10 89.73 37.02
MGLL 61.25 56.57 21.19]99.08 90.06 73.33 |83.86 89.06 30.62|99.75 98.80 89.87 |82.94 90.41 28.53|87.37 92.71 39.17

Linear Probing Fully Finetuning

Chorioretinitis

Age-related
Macular Degeneration

Figure 4: The Class Activation Maps of different diseases from CLIP and MGLL.

bilities. The performance gap becomes even more significant in the fully fine-tuned setting. To
demonstrate its generalization capability, we conduct additional experiments using multi-granular
labels constructed from the MIMIC-CXR dataset Johnson et al (2019), evaluating performance on
the ChestX-ray 14 benchmark Wang et al.| (2017a)). The results reveal its exceptional transferability,
with substantial performance advantages across all other baseline methods. In the linear probe set-
ting, MGLL achieves 82.94% AUC, 90.41% accuracy, and 28.53% mAP, surpassing the second-best
method (CARZero (2024)) by 5.62%, 6.47%, and 1.65% respectively. The improvement
highlights its superior representation learning capacity, suggesting that its multi-granular approach
captures more generalizable features that transfer effectively across datasets. These consistent and
substantial improvements also demonstrate that MGLL enables more robust feature extraction.

4.3 PERFORMANCE WITH MGLL IN MLLMS

To evaluate MGLL’s impact as a specialized vision encoder within multimodal large language mod-
els (MLLMs) for ophthalmological diagnostics, we design a multiple-choice benchmark involving
2,233 clinical cases over ten ophthalmological conditions, where each fundus image prompted mod-
els to select the correct diagnosis from four options (one correct, three random alternatives). We
replace the standard vision encoders in seven advanced MLLMs with our pretrained MGLL: In-
structBLIP [Dai et al| (2023), Mini-Gemini [Li et al| (2024b), Qwen-VL Bai et al (2023), InternVL
Chen et al|(2024a), LLaVA [Liu et al.| (2024a), LLaVA-Med Li et al.|(2024a), Med-Flamingo [Moor|
et al.| (2023), and Janus-Pro [Chen et al|(2025). All MLLMs were fine-tuned on the target dataset
to ensure a fair comparison. Results demonstrate consistent and substantial improvements across all
tested MLLMs, with average accuracy gains ranging from 4.6% (InternVL) to 34.1% (LLaVA-Med)
as shown in Table 2] Notably, medically-specialized models exhibited the most dramatic enhance-
ments, with Med-Flamingo and LLaVA-Med showing 31.7% and 34.1% increases respectively.
This dramatic improvement can be attributed to the alignment between MGLL'’s ophthalmology-
specific visual feature extraction capabilities and the medical reasoning frameworks already embed-
ded within these models. Even the high-performing general-purpose MLLMs like LLaVA (72.73%
to 79.98%) also achieve significant gains with MGLL. The improvements across challenging condi-
tions like Tessellation and Retinitis underscore MGLL’s capacity to extract clinically relevant visual
features from fundus images, highlighting its robust adaptability across models.
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Table 2: Comparison of multiple-choice accuracy with MGLL in multimodal large language models
on selected ten representative diseases.

Method | AMD | Cataract| CSR DR | Glaucoma | Media Haze | Myopia | Retinitis | DME | Tessellation Average T
InstructBLIP|Dai et al|(2023] | 80.17% | 80.00% | 0.00% | 76.51% | 5930% | 16.13% | 4425% | 11.11% | 63.79% | 41.67% 7.29%
+MGLL 83.63% | 85.00% 28.57% |82.55% 65.43% 45.16%  52.65% | 44.44% | 74.14%  58.33% 61.99% (14.7% 1)
Mini-Gemini[Li ot al.| (2024b] | 76.61% | 85.00% | 14.29% | 79.87% | 67.90% | 38.71% | 5841% | 33.33% | 60.34% | 3333% 54.78%
+MGLL 82.46% | 85.00% 42.86% |84.56% 72.22% 58.06% 64.16% | 55.56% | 65.52%  41.67% 65.21% (10.4% 1)
Qwen-VL[Bai et al|{2023) | 81.87% | 75.00% | 28.57% | 80.54% | 78.40% | 54.84% |76.55% | 22.22% | 84.48% | 25.00% 60.75%
+MGLL 85.96% | 80.00% 42.86% |89.93% 87.04% 70.97%  80.97% | 33.33% | 89.66%  41.67% 70.24% (9.5% 1)
InternVL[Chen et al|(2024a) | 81.20% | 85.00% | 71.43% | 94.63% | 89.51% | 64.52% |88.05% | 44.44% | 87.93% | 66.67% 77.35%
+MGLL 86.55% | 90.00% 71.43% | 96.64% 90.74% 67.74% 91.15% | 55.56% | 94.83%  75.00% 81.96% (4.6% 1)
LLaVA|Liu et al.|(2024a) | 83.04% | 90.00% | 42.86% | 87.25% | 91.36% | 4839% |88.50% | 44.44% | 93.10% | 58.33% 72.73%
+MGLL 84.80% | 90.00% 57.14% | 93.96% 91.98% 6129% 90.71% | 66.67% | 96.55%  66.67 % 79.98% (7.3% 1)
LLaVA-Med[Li et al|(2024a) | 1637% | 15.00% | 42.86% | 26.85% | 2531% | 25.81% |23.89% | 33.33% | 1667% | 1661% 24.28%
+MGLL 58.48% | 65.00% 57.14% |77.18% 59.26% 51.61% 57.08% | 44.44% |5517%  58.33% 58.37% (34.1% 1)
Med-Flamingo|[Moor et al | (2023] | 25.73% | 30.00% | 57.14% | 36.91% | 24.07% | 22.58% | 18.58% | 22.22% | 24.14% | 8.33% 26.97%
+MGLL 69.01% | 75.00% 71.43% | 80.54% 61.11% 54.84%  45.58% | 44.44% | 51.72%  33.33% 58.70% (31.7% 1)
Janus-Pro|Chen et al.|(2025) ‘ 88.30% | 75.00% ‘ 42.86% | 93.29% ‘ 90.74% 58.06% ‘ 87.17% | 33.33% | 62.07% ‘ 58.33% 68.92%
+MGLL 90.64% | 85.00% 71.43% | 96.64% 95.06% 67.74%  90.27% | 55.56% | 70.69%  75.00% |79.80% (10.88% 1)

4.4 ABLATION STUDIES

4.4.1 ABLATION STUDY ON MGLL OBJECTIVES

We conduct an ablation study to analyze the effectiveness of each objective in MGLL on the RFMiD
dataset, as shown in Table|3] The standard CLIP model performs the worst, highlighting its limita-
tions in medical image understanding. Incorporating the point-wise Loss Lp significantly improves
performance, demonstrating its ability to enhance feature extraction. The soft CLIP loss Lcpip also
improves over CLIP, which enables soft alignment with multiple labels. Combining both losses
(LscLe + Lp) further boosts performance, indicating their complementary effects. Finally, adding
the soft-KL loss Lk leads to the best performance, demonstrating its role in refining feature consis-
tency across different learning objectives. These results validate the effectiveness of each objective.

Table 3: Ablations of different MGLL objectives Table 4: Ablations of granularity count on
on RFMiD. MIDRC-XR-Portable.

Method /flijncear:égbe(‘@ l:;}lg Fxlé-éune (Z;) Method | 1inear Probe (%) | Fully Fine-tune (%)
CLIP 44.66 92.53 I;128 65.10 92.86 ?;31 AUC_ACC_ mAP | AUC ACC mAP
s 2034 9269 3383 8825 9431 S6ag  CLIP |71.43 7822 223191.83 90.08 83.94
Lacuip 67.86 92.63 2052 |85.13 93.58 50.67 MGLL; | 80.54 86.97 28.32|95.96 94.66 86.54

Loup+Lp | 7573 9277 30.16|90.31 9487 6227 MGLL, |82.92 88.35 29.43|97.26 96.84 87.68

Lycup + Lp + Lok | 79.62 92.84 34.08|92.83 9548 64.99  MGLL; | 83.86 89.06 30.62|99.75 98.80 89.87

Table 5: Ablations of image encoder on REMiD. Table 6: Ablations of text encoder on RFMiD.

Linear Probe (%) | Fully Fine-tune (%) Method Linear Probe (%) | Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP M4l \yc AcC mAP | AUC ACC mAP
. CLIP 4122 g?g 27298 gglg 3226 ;72 CLIP |44.66 92.53 7.28 |65.10 92.86 17.31
e T ooty aao8 o100 o4os vy "CLIP,, | 6893 92.66 22.14|8876 9458 58.14
onvNext-Large | 78.34 92.80 32.0391.29 94.95 62.93

VITB/I6 - 17553 9276 301118946 9483 614  BERT |79.62 92.84 34.08|92.83 9548 64.99

VIT-L/14  |79.62 92.84 34.08|92.83 9548 64.99 LLaMA |74.89 92.75 29.3890.97 95.04 62.86

ViT-H/14 79.18 92.81 33.42]92.07 9529 63.85

Method

4.4.2 ABLATION STUDY ON GRANULARITY COUNT

The ablation study on granularity count demonstrates the significant impact of multi-granular lan-
guage supervision on model performance. As shown in Table[d] incrementally increasing the num-
ber of granularity levels consistently improves performance across all evaluation metrics. MGLL3,
which utilizes three distinct granularity levels (modality, study description, and series description),
achieves superior results compared to both MGLL; (all textual information combined into a sin-
gle granularity) and MGLLy (two granularity levels). Specifically, under linear probe evaluation,
MGLLj3 outperforms the baseline CLIP by substantial margins (+12.43% AUC, +10.84% ACC,
+8.31% mAP) and shows marked improvement over MGLL; (+3.32% AUC, +2.09% ACC, +2.30%
mAP). The similar trend persists in fully fine-tuned scenarios. These results confirm that preserv-
ing the hierarchical structure of medical imaging information enables more comprehensive vision-
language alignment than flattened representations, validating the core idea of the Multi-Granular
Language Learning framework.
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4.4.3 SELECTION OF IMAGE ENCODER AND TEXT ENCODER

The ablation study on image encoders reveals significant performance variations across different
architectural choices when evaluated on the RFMiD dataset as shown in Table [5l Vision Trans-
former (ViT) [Dosovitskiy et al.| (2020) generally outperforms CNN counterparts (ConvNeXt |[Liu
et al.| (2022b))), with ViT-L/14 achieving optimal results across all metrics. Interestingly, the larger
ViT-H/14 model shows slightly diminished performance compared to ViT-L/14, suggesting a poten-
tial overfitting scenario or diminishing returns with increased model complexity in this domain.

The comparative analysis of text encoders demonstrates that the choice of language model signif-
icantly impacts the model’s ability to align textual and visual representations. BERT emerges as
the optimal text encoder, achieving the highest performance across all evaluation metrics as shown
in Table @ The standard CLIP text encoder (denoted as CLIP;;;) shows the limited performance
among the tested alternatives, though it still substantially improves upon the baseline CLIP model.
These findings suggest that the bidirectional attention mechanisms are suitable for the structured,
hierarchical medical terminology utilized in MGLL.

4.4.4 ABLATION STUDY ON IMAGE QUALITY AND TEXT QUALITY

Image resolution is a critical factor in the performance of MGLL as evidenced by the ablation exper-
iments on the MIDRC-XR-Portable dataset. The performance exhibits a clear monotonic relation-
ship with image resolution, with Standard-Resolution (512x512) significantly outperforming both
Low-Resolution (128x128) and Ultra Low-Resolution (64x64) configurations across all evaluation
metrics as shown in Table [/l These findings underscore the importance of preserving fine-grained
visual details in medical imaging applications, as higher resolution allows the model to capture sub-
tle radiological features. However, MGLL substantially outperforms the baseline CLIP even at Ultra
Low-Resolution, suggesting that MGLL provides robust improvements regardless of image quality.

The integrity of textual information significantly impacts model performance, as demonstrated
through controlled degradation experiments on the MIDRC-XR-Portable dataset. The analysis con-
trasts standard textual descriptions against two degraded conditions: “Error” (20% partial errors in
modality, study, or series descriptions) and “Missing” (20% partial omissions in these same fields).
Standard textual descriptions yield superior performance across all metrics as show in Table[§] The
“Missing” condition demonstrates intermediate performance, while the “Error” condition shows
more performance degradation, suggesting that incorrect information is more detrimental than in-
complete information. Nevertheless, both degraded conditions still significantly outperform the
baseline CLIP model, indicating the robustness of MGLL to textual noise. These findings have
important practical implications for clinical deployment scenarios, where reporting systems may
contain documentation gaps or transcription errors, and suggest that MGLL maintains considerable
diagnostic utility even under suboptimal documentation conditions.

Table 7: Ablations of image quality on MIDRC- Table 8: Ablations of text quality on MIDRC-
XR-Portable. XR-Portable.

Linear Probe (%) | Fully Fine-tune (%) Linear Probe (%) | Fully Fine-tune (%)

Method | Auc ACC mAP | AUC ACC maP  Method |\ e AP | AUC ACC mAP
CLIP__ [7143 7822 2231|9183 90.08 8394 ~ CLIP [7143 78.22 2231 91.83 90.08 83.04
Ultra Low-Res | 78.82 85.68 27.49|94.48 93.69 86.22 Error |80.02 86.48 28.0197.71 97.22 87.96

SLOJV‘ISCIQ gggg g;gé gﬁig gg;g gggg ggg‘; Missing | 81.14 87.25 28.86 |98.62 97.95 88.74
tandard-Res | 83, : - : - . Standard | 83.86 89.06 30.62|99.75 98.80 89.87

5 CONCLUSION

This study introduces Multi-Granular Language Learning (MGLL), a novel contrastive learning
framework that addresses limitations in existing vision-language pretraining methods. MGLL uti-
lizes textual information on different granular levels while employing soft-label supervision with
point-wise constraints to enhance representation quality, which advances multi-label and cross-
granularity alignment capabilities simultaneously. The implementation of smooth Kullback—Leibler
divergence also ensures cross-granularity consistency. Our evaluations across multiple downstream
datasets demonstrate that MGLL consistently outperforms state-of-the-art methods in downstream
tasks, particularly in domains requiring multi-label understanding at various granular levels. The
results validate its ability to capture complex semantics in visual data, establishing MGLL as an
advancement in developing future vision-language models.
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Ethics statement This research uses exclusively publicly available medical imaging datasets and
does not require Institutional Review Board (IRB) approval. All datasets utilized in this study, in-
cluding the 49 public fundus imaging datasets comprising MGLL-Fundus, the MIDRC repository
for X-ray images, MIMIC-CXR, and other evaluation datasets, have been previously released for
research purposes with appropriate ethical clearances and patient consent procedures handled by
the original data providers. All patient identifiers have been removed from the datasets prior to our
access, ensuring full de-identification in compliance with HIPAA and other relevant privacy regula-
tions. We have strictly adhered to the usage terms and conditions specified by each dataset provider
and have not attempted to re-identify any individuals. Our multi-granularity learning approach is
designed to improve automated medical image analysis, particularly for diabetic retinopathy, glau-
coma, age-related macular degeneration, and chest X-ray interpretation. The MIDRC dataset ap-
plications focus on enhancing radiological assessment capabilities, which could potentially assist
healthcare providers in resource-limited settings and improve diagnostic consistency. However, we
emphasize that our models are intended as diagnostic support tools and should not replace clinical
judgment. We commit to responsible Al development by ensuring transparent reporting of model
limitations, encouraging rigorous clinical validation before any real-world deployment, and advo-
cating for appropriate human oversight in all clinical applications. We do not claim our models are
ready for direct clinical use without further validation and regulatory approval.

Reproducibility statement We have made extensive efforts to ensure the reproducibility of our
work. The complete implementation, including the original source code and a README file with
detailed instructions, is provided in the supplementary materials. Training configurations and hyper-
parameters are fully documented in both the source code and Section[4.1] Step-by-step mathematical
derivations of the proposed methodology are presented in Section and Appendix Al All datasets
employed in this study are publicly available, with references and preprocessing procedures de-
scribed in Section[3.4]and Appendix [B] The experimental setup is described in Section[4.1]and more
details are described in Appendix [C] To ensure fair comparison and reproducibility, all experiments
used identical settings with baseline models pre-trained on our custom multi-granularity datasets.
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A DETAILED THEORETICAL ANALYSIS OF MGLL

A.1 Sort CLIP Loss

Formulation of the Soft CLIP Loss In contrast to standard CLIP, which forces an image represen-
tation V; to align with a single text label 7;. MGLL uses the Soft CLIP Loss to allow an image to
align with multiple text features {71, T2, ..., Tin, }- In doing so, the loss is designed so that the
optimal image feature becomes the weighted “center” of its associated text features. This mitigates
bias toward any single label and better captures the multi-label nature of the data. The loss for an
image-label pair is defined as the following formula:

sim(Vi, Tii) /T
‘ (13)

lix = —wj, log
N Mn  sim(Vi, Tpm) /T
anl Zm:l e ( )/

where w;y, is the weight assigned to the k-th text label for image 7, derived via the following formula:

cooccurrence(V;, Tiy) (14)

Wik = > cooccurrence(V;, Ti)

where sim(V;, T;x) measures the similarity between image and text features (typically cosine simi-
larity). 7 is the temperature parameter controlling the sharpness of the resulting probability distri-
bution. The overall loss is given by

1 N M,
LscLp = CSSANTA > (lik + lki) (15)

i =1 k=1
Derivation of the Optimality Condition
(a) The Goal of the Optimization

For the purposes of our analysis, we focus on how the loss aligns V; with its multiple text features
Tr. At an optimum, the gradient of the loss with respect to the image feature V; must vanish. That
is, we require

Vv, Lscip = 0. (16)

Focusing on the part of the loss involving the alignment between V; and its labels, we can write a
simplified optimality condition (ignoring symmetric contributions from text-to-image terms):

M;

> wik Vy,sim(V;, Tig) = 0. (17)
k=1

(b) Computing the Gradient

Assume for simplicity that both image and text features are normalized to unit norm:

Vil =1 and [[Tix]| = 1. (18)

Under this assumption, the cosine similarity reduces to a dot product:

sim(V;, Tix) = Vi - Ty, - 19)

The derivative with respect to V; is then straightforward:

Vv, (Vi - Tir) = Tig, (20)

Thus, the optimality condition becomes
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M;
> wi T = A Vi, 1)
k=1
where A is a scalar (a Lagrange multiplier that arises from the normalization constraint on V;).
Because V; is unit norm, this equation can be re-arranged to yield

M;
Y wik Ty
‘/i _ Zk’:l Wik k (22)

= m .

szzl wik Tik ‘
This result shows that at the optimal solution, the visual feature V; is aligned with the weighted
average (or the “center”) of its associated text features.

(c) Rewriting in Normalized Form

More generally, even when the features are not explicitly normalized in the network, one can express
the optimality condition in terms of normalized vectors:

M;

T; Vi
Wik 7 = T (23)
N T

This is equivalent to the expression provided earlier, emphasizing that V; converges to the weighted
centroid of the normalized text features.

Interpretation and Discussion Unlike CLIP, which uses a one-to-one image—text matching—the
Soft CLIP Loss allows each image to be simultaneously aligned with multiple text descriptions. The
weighting w;;; (derived from the co-occurrence matrix) ensures that each text label contributes to
the final image representation in proportion to its relevance. The optimality condition guarantees
that the image representation V; is not overly biased by any single text feature but is instead the
“center” of all its semantic descriptors. This is crucial in multi-label settings where an image may
contain several objects or concepts. In standard CLIP, the loss encourages V; to align closely with
a single text label T;. Here, the Soft CLIP Loss’s optimality condition shows that the ideal V; is
instead a weighted aggregate of multiple text labels, overcoming the limitation of forcing one-to-
one alignment in a multi-label context. The detailed derivation shows that under the Soft CLIP Loss,
the following gradient condition

M;

> wik Vysim(V;, Tig) = 0 (24)
k=1

leads directly to the interpretation that the optimal image feature V; is the normalized weighted sum
of its associated text features. This theoretical result underpins MGLL’s capability to perform multi-
label alignment, ensuring that image representations capture the combined semantic information
provided by multiple labels.

A.2 POINT-WISE LOSS

Formulation of the Point-wise Loss The point-wise loss Lp is designed to refine the alignment be-
tween visual and textual features on a per-pair basis. Unlike global or batch-level losses, this loss
explicitly supervises each image—text pair, ensuring that every valid pair (where y;; = 1) is pulled
closer together in the feature space while non-matching pairs (where y;; = 0) are pushed apart.
This detailed supervision is achieved via a binary cross-entropy formulation applied to the similarity
logits between an image feature V; and a text feature 7T);. The point-wise loss is defined as

N M ’ ’
ijloga,: + (1 —y;;) log(l — a,;
EP:ZZy] gi; + (1 —yi5) log(1 — ;)

—1x N 25

i=1j=1

where z;; = sim(V;, T}) are the similarity logits (before activation) between the i-th image and the
j-th text. x;j = o(xi;) = HC%I? is the probability computed by the Sigmoid activation. y;; €
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{0, 1} is the binary label indicating whether the image-text pair is a valid match. This formulation
is typical for binary classification tasks and allows the network to learn to distinguish relevant from
irrelevant image—text pairs.

Derivation of the Gradient To understand how the loss drives the optimization, we derive the gradi-
ent with respect to the logits x;;.

(a) Loss for a Single Pair

Consider the binary cross-entropy loss for a single image—text pair (%, j):
lij = —[yijlogo(zi;) + (1 — yiz) log(1 — o(zy;))] (26)

(b) Derivative with Respect to z;;

We can let p;; = o(x;;). Using the chain rule, the derivative of ¢;; with respect to x;; is:

8&-]- - 88” . dpij

= 27
8l‘ij 8pij dl‘ij ( )
Step 1. Compute %. We can differentiate £;; with respect to p;; as follows:
i
ol i 1 — 1y
J:_(yﬂ_yﬂ) (28)
Opij pij 1 —pij
Step 2. Compute Zi L. Since p;; = o(x;;) and the derivative of the sigmoid function is as follows:
do Tiq
4 o)1~ o)) = (1~ pi) 29
!L‘ij
So we have p
Pij
=pii(1 — pi; 30
dl‘ij p ]( p ]) (30)

Step 3. Combine the Derivatives. We can multiply the two derivatives gives as follow:

Olsj <yij 1- yij>
= (=) py(l—py 31
O0x;j pij 1 —pij i 2
Expanding and simplifying, we have:
0l
P L= — (yi; (1 = pi) — (1 = ij)pij) (32)
Tij
Distributing the negative sign results in:
0y
= Dij — Yij 33
8371‘]‘ Dij — Yij (33)
Thus, for each image—text pair, the gradient is:
0l
axé = o(zij) — Yij (34)

Since the overall point-wise loss Lp is the average over all pairs, the gradient with respect to each
2;; remains the same:
OLp

3:17ij

= 0(xij) — Yij (35)

Interpretation and Discussion This gradient expression, o(x;;) — v;;, provides clear insights into
the optimization dynamics:
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For a Positive Pair (y;; = 1): The gradient becomes o (z;;) — 1. If the predicted probability o (x;;)
is less than 1, the gradient is negative, prompting an increase in x;; (and hence o (z;;)). This drives
the features V; and T closer together.

For a Negative Pair (y;; = 0): The gradient simplifies to o(x;;). If o(x;;) is positive (which it
always is, since o(z) € (0, 1)), the gradient is positive, pushing x;; downward. This reduces the
similarity, ensuring that irrelevant image—text pairs are further separated.

Thus, the gradient directs the model to increase similarity for valid pairs (driving o (z;;) towards
1). And it also decreases similarity for invalid pairs (driving o(z;;) towards 0). In contrast to the
standard CLIP framework, which optimizes a global alignment between an image and a single text
description, the point-wise loss enables the model to adjust each image—text pair individually, lead-
ing to a more discriminative and robust feature space. Every potential image—text pair is evaluated,
allowing the model to learn subtle distinctions. By penalizing both false positives and false negatives
at the individual pair level, the loss helps to create a more separable and robust embedding space.

The derivation of its gradient, g f‘f = o(x;j) — yij, clearly shows that the optimization encourages
ij

high similarity for valid pairs and low similarity for invalid pairs. Point-wise Loss not only enhances
the discriminability of the visual representations but also supports the multi-label learning methods.

A.3 SMOOTH KL DIVERGENCE LOSS

Overview and Motivation The Smooth KL Divergence Loss is introduced to enforce consistency
across predictions obtained at different granularities. In scenarios where multiple predicted logits
{z;}1 are available (each corresponding to a different granularity or viewpoint), we wish to align
their probability distributions so that they all “agree” on the prediction. This is achieved by first
converting the logits into probability distributions via the Softmax function:

P, = Softmax(z;) (36)

and then encouraging each P; to be close to the average (mean) distribution:

m

1
M=— ; P, (37)
The overall loss is given by
L= Dx(P||M) (38)
i=1

where for each ¢ the KL divergence is defined as

Dy (P|[M) =" PP log L (39)

Properties of KL Divergence There are two key properties of the KL divergence:
1. Non-negativity (Gibbs’ Inequality):
Dy(P[Q) =0 (40)
for any two probability distributions P and Q).
2. Zero if and Only if Equality:
Dy (P||Q) =0 ifandonlyif P=Q 41)

These properties imply that the divergence is minimized (and equals zero) when the two distributions
are identical.

Detailed Derivation and Proof

(a) Expressing the Loss
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Given the predicted distributions { P; }!™ ; and the mean distribution M, the loss is

m i)

, pli
b =3 [ S P00 2 @

i=1 | j

Dy (Pi || M)
Because each Dy (P;||M) > 0, it follows that
L >0 (43)

(b) Conditions for Zero Loss
The loss for a single term, Dgy (P;|| M), equals zero if and only if
Pi(j )= M@ for every category j 44)
Since this must hold for every ¢, we have:
P=FP=---=P,=M (45)
This is the necessary and sufficient condition for minimizing the loss:
Lk =0 <— P =PFP=---=P, (46)

Thus, by minimizing L, the model is encouraged to produce consistent predictions across differ-
ent granularities. So the mean distribution is defined as

1 m
M=—=) P 47
m; (47)

If all P; are equal, then it is trivial to see that
M=P, Yi (48)

Therefore, the minimization process pushes each individual P; toward the common distribution M,
ensuring consistency across different predictions.

(¢) Gradient Considerations

While the explicit gradient derivation is more involved due to the dependency of M on every P;, we
can outline the intuition of individual KL divergence and the intuition of coupled optimization.

1. Individual KL Divergence: For each ¢, consider the derivative of
] p@)
Dy (P;|[M) = >~ P log — (49)
J

M)

with respect to Pi(j ) If we ignore the dependence of M on P; (as an approximation), the derivative
is

ODxu(Pi|M) _ | pY

apd NG

The condition for a minimum (when this derivative is zero for all 7) is then

+1 (50)

pl) pl) .
log UD +1=0 = YD =e 51

which e_llone does not yield P, = M; however, when accounting for the normalization constraint
> j Pfj ) = 1 and the simultaneous optimization across all P;, the equilibrium is reached only when
P9 = M) for every i and j.

2. Coupled Optimization: Since M is the average of all P;, any deviation in one P; from the others

will increase its corresponding KL divergence. Thus, the overall optimization drives all predictions
to align with each other.
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Interpretation and Discussion By minimizing L., we force the different predictions (from various
granularities) to become consistent. Every P; is toward the common mean M, ensuring that the
predictions from different parts of the model or from different feature granularities agree with each
other. This consistency also contributes to a more stable and robust feature space, as the model learns
to reconcile variations in prediction across granularities. The Smooth KL Divergence Loss Lk, =
>t Do (P;]| M) is fundamentally designed to enforce that all predicted probability distributions
P; (across different granularities) become identical by driving them toward the mean distribution
M.

B DATASET DETAILS

B.1 PRETRAIN DATASETS

MGLL-Fundus: We develop MGLL-Fundus, a comprehensive multi-granularity fundus image-text
dataset comprising 246,389 image-text pairs. This dataset integrates fundus images from 49 public
datasets, encompassing more than 50 disease categories. The data distribution of the MGLL-Fundus
dataset is presented in Table 9] The textual descriptions in MGLL-Fundus are structured across two
distinct granularity levels: disease category and clinical explanation. The disease-level granularity
includes normal/abnormal classification and specific disease categorization, while the clinical expla-
nation granularity provides detailed textual descriptions derived from dataset label explanations and
EyeWiki EyeWiki| (2024). Some multi-granularity textual description examples from the dataset are
illustrated in Table[10]

Table 9: The data distribution of MGLL-Fundus dataset.

Dataset Num Dataset Num Dataset Num
HRF|Budai et al.|(2013) 45 | INSPIRE-AVR Niemeijer et al.|(2011) | 40 IOSTAR |Zhang et al.|(2016) 30
RITE|Hu et al.|(2013) 40 G1020Bajwa et al.|(2020) 1020 GAMMA [Wu et al.|(2023) 100
ORIGA |[Zhang et al.|(2010) 650 REFUGE |Orlando et al.|(2020) 1200 ODIR |Larxel|(2021) 7000
PALM |Fang et al.|(2024) 1200 RFEMiD [Pachade et al.|(2021) 3200 | RFMiDv2[Panchal et al.|(2023) 860
APTOS [Karthik et al.[(2019) 3662 DeepDRiD |Liu et al.|(2022a) 1600 EyePACS Dugas et al.|(2015) 35126
IDRID [Porwal et al.[(2018) 516 ADAM [Fang et al.[(2022) 1200 | ACRIMA Diaz-Pinto et al.[(2019) | 705
MESSIDOR-2|Abramoff et al.|(2013) | 1748 JSIEC|Cen et al.|(2021) 1000 | AIROGS|De Vente et al.|(2023) | 101442
LAGI|Li et al.|(2019a) 4854 PARAGUAY [Benitez et al.|(2021) 757 PAPILA [Kovalyk et al.[(2022) 488
BiDR |Darabi|(2024) 2838 FIVES Jin et al.|(2022) 800 FUND [Hassan et al.|(2022) 179
E-ophta|Decenciere et al.|(2013) 463 BRSET |Nakayama et al.|(2023) 16266 | MuReD|Rodriguez et al.[(2022) | 2208
OIA-DDR|Li et al.|(2019b) 12522 |  SUSTech-SYSU |Lin et al.|(2020) 1219 Cataract|202((2020) 601
DGOCF |Takahashi et al.|(2017) 9939 BoVW |Pires et al.|[(2014) 2013 | HarvardGlaucoma|Kim|(2018a) 1544
RIM-ONE [Batista et al.|(2020) 485 CHAKSU Kumar et al.|(2023) 1345 | DiaRetDB Kauppi et al.|(2007) 89
LSD|Wei et al.|(2019) 175 GNG |Nandi|(2022) 400 AOD|202/(2021) 14813
DHRF|202{(2022) 2757 VietAlvie|(2020) 3435 | ToxoFundus|Alam et al.|(2024) 411
Papilledema |Kim|(2018b) 1369 BEH [Islam et al.|(2021) 634 ROD Binu|(2023) 281
ROI|Adal et al.[(2015) 1120
Summary 246,389 images

MGLL-Xray: To enhance data compatibility, we assembled 190,882 X-ray images from the MIDRC
repository MIDRC, (2024)). We transformed these images from DICOM to PNG format while pre-
serving essential metadata. The extracted multi-granularity textual information encompasses three
levels: modality, study description, and series description. The modality category distinguishes
between CR (Computed Radiography), characterized by relatively lower resolution and signal-to-
noise ratio (SNR), and DX (Digital Radiography), which employs flat-panel detectors to achieve
superior image quality. Study Description provides examination-level context (e.g., "Chest X-ray”),
while Series Description specifies imaging protocols such as ”PA View” (posteroanterior) or Lat-
eral View.” These hierarchical textual elements constitute the textual component of our MGLL-Xray
dataset. Some multi-granularity textual description examples from this dataset are presented in Ta-

ble[l1]

MIMIC-CXR: To further evaluate the generalization capability of our approach, we conducted
supplementary experiments using multi-granular labels from MIMIC-CXR dataset Johnson et al.
(2019), with performance assessed on the ChestX-rayl4 benchmark |Wang et al.| (2017a). The
MIMIC-CXR dataset represents one of the largest publicly available collections of chest radio-
graphs, comprising 377,110 images associated with 227,835 imaging studies. This dataset encom-
passes 14 common thoracic pathologies, including atelectasis, cardiomegaly, consolidation, edema,
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Table 10: The multi-granularity textual descrip

tion examples of MGLL-Fundus dataset.

Disease Category |

Clinical Explanation

Abnormal, Mild Non-Proliferative Diabetic Retinopathy
Abnormal, Moderate Non-Proliferative Diabetic Retinopathy

Only microaneurysms observed
Retinal hemorrhages or hard exudates observed

Abnormal, Severe Non-Proliferative Diabetic Retinopathy

Many intraretinal hemorrhages or definite venous beading observed

Abnormal, Proliferative Diabetic Retinopathy
Abnormal, Cataract
Abnormal, Myopia
Abnormal, Media Haze
Abnormal, Branch Retinal Vein Occlusion
Abnormal, Tessellation
Abnormal, Laser Scars
Abnormal, Central Serous Retinopathy
Abnormal, Optic Disk Cupping
Abnormal, Central Retinal Vein Occlusion
Abnormal, Tortuous Vessels
Abnormal, Asteroid Hyalosis
Abnormal, Optic Disc Pallor
Abnormal, Optic Disc Edema
Abnormal, Optociliary Shunt
Abnormal, Anterior Ischemic Optic Neuropathy
Abnormal, Parafoveal Telangiectasia
Abnormal, Retinal Traction
Abnormal, Retinitis
Abnormal, Chorioretinitis
Abnormal, Macular Hole
Abnormal, Retinitis Pigmentosa
Abnormal, Cotton Wool Spots
Abnormal, Coloboma
Abnormal, Preretinal Hemorrhage
Abnormal, Myelinated Nerve Fibers
Abnormal, Hemorrhagic Retinopathy
Abnormal, Central Retinal Artery Occlusion
Abnormal, Tilted Disk
Abnormal, Cystoid Macular Edema
Abnormal, Post-traumatic Choroidal Rupture
Abnormal, Choroidal Folds
Abnormal, Vitreous Hemorrhage
Abnormal, Macroaneurysm
Abnormal, Vasculitis
Normal, Healthy

Neovascularization or vitreous/preretinal hemorrhage
Opacification of crystalline lens observed
Leopard fundus observed
Opacity of media observed
Occlusion of the central retinal vein
The choroidal vessels are visible due to the reduced density of the pigments
Circular or irregular shaped scars on the retinal surface observed
Fluid accumulation under the retina observed
The thinning of neuroretinal rim such that optic disc appears excavated
Occlusion of the central retinal vein and the presence of flame-shaped hemorrhages
Marked tortuosity of the retinal blood vessels
Numerous astroid bodies are dispersed in vitreous
Pale yellow discoloration of the optic disc
Swelling of the optic disc
Presence of prepapillary vascular loops or optociliary shunt vessels
Optic disc swelling and pallor
Yellow, lipid-rich exudation or parafoveal graying or tortuous blood vessels
Presence of traction and retinal traction detachment
Presence of vitreous inflammation or intraretinal hemorrhage
The hard exudates observed
A small retinal break located in the center of the fovea observed
The presence of bone-spicule deposits and arterial narrowing
The presence of soft exudates
The missing of portion of tissue in both the choroid and retina
Boat-shaped hemorrhage which obscures the underlying retina
Gray-white opaque lesions with feathery edges observed
The presence of flame-shaped hemorrhages
The presence of pale, whitening, and retinal swelling
The tilting presence of the oval optic disc
The presence of multiple cystoid areas in the macula and causes retinal edema
The breaks in the choroid, Bruch’s membrane, and RPE
The presence of folds in the choroid
The presence of extravasated blood in one of the spaces created around the vitreous body

Fusiform or round dilation of the retinal arterioles which occur in the temporal retina observed

The presence of inflammation of retinal blood vessels
Clear optic disk boundaries, Normal fundus color, No apparent retinopathy

Table 11: The multi-granularity textual description exam

ples of MGLL-Xray dataset.

Modality Study Description Series Description
CR CHEST PORT 1 VIEW (RAD)-CS AP(shutter)
CR XR CHEST AP PORTABLE AP
CR XR RIBS RIGHT WITH CHEST AP OR PA - SINGLE VIEW PA Ribs LOWER
CR XR PORT CHEST 1V CXR AP GRID
CR XR CHEST 2 VIEWS W Chest Lat.
CR XR CHEST AP PA LATERAL 2 VW Lateral
CR XR PORT CHEST 1V ClearRead Bone Suppression
CR XRAY CHEST ONE VIEW XRAY CHEST FRONTAL AND LATERAL VIEWS
CR XR RIGHT HIP 2+ VIEWS ORTHOPEDICS PRE OPERATIVE X HIP X-Table Lat
CR XR CHEST PA AND LATERAL X Chest a.p.
DX XR CHEST 2 VIEWS, FRONTAL AND LATERAL PA
DX XR WRIST LEFT (ROUTINE: AP LAT,OBL) XR WRIST LEFT (ROUTINE: APLAT,OBL)
DX XR CHEST 2 VIEWS PA AND LATERAL Chest
DX XR THORACOLUMBAR SPINE STANDING 2 OR 3 VIEWS Thoraco Lumbar
DX XR THORACIC SPINE AP AND LATERAL Thoracic-spine
DX XR SCOLIOSIS STUDY 2 OR 3 VIEWS (NEURO INTERPRETATION) DR Long Spine
DX XR RIGHT RIBS 2 VIEWS UNILATERAL Rib
DX XR RIGHT SHOULDER 1 VIEW AP Ext Rot(shutter)
DX XR RIGHT KNEE 4+ VIEWS (NON-TRAUMA, PAIN/ARTHRITIS) Patella
DX XR RIGHT HIP 2-3 VIEWS (UNILATERAL) WITH PELVIS WHEN PERFORMED Hip-joint
DX XR CHEST 1 VW, FRONTAL PA CHEST LANDSCAPE

effusion, emphysema, fibrosis, hernia, infiltration, mass, nodule, pleural thickening, pneumonia,
and pneumothorax, along with a ”’No Finding” category for normal cases. For our multi-granularity
framework, we leveraged two distinct levels of textual information available in MIMIC-CXR: the
structured disease labels (coarse granularity) and the detailed radiology reports (fine granularity).
The disease labels provide categorical classification, while the reports offer comprehensive clinical
interpretations with anatomical specificity, disease progression details, and differential diagnoses.
This hierarchical representation allows our model to simultaneously process high-level disease cat-
egorization and nuanced clinical descriptions. Some examples of these multi-granularity textual
descriptions are presented in Table [I2}
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Table 12: The multi-granularity textual description examples of MIMIC-CXR dataset.
Disease Labels | Radiology Reports

Pleural Effusion | New tracheostomy is midline. The approximate diameter of the tube, 11 mm, compares to the diameter of the
trachea, 27 mm. This sizing should be evaluated clinically. Pneumomediastinum outlines the tracheal wall and
extends into deep subcutaneous emphysema in the neck, presumably a function of tracheostomy. Followup
advised. There is no pneumothorax or pleural effusion. Lungs are clear. Heart size is normal.

Edema The small right apical pneumothorax is stable and unchanged. The right chest tube is in stable position.
Unchanged parenchymal opacity at the left lung base. Unchanged size of the cardiac silhouette and stable
position of the right internal jugular vein catheter.

Atelectasis Monitoring and support devices are in stable position. Stable left retrocardiac atelectasis and right basal
parenchymal opacity. No pulmonary edema. No larger pleural effusions. No pneumothorax.
Cardiomegaly Support lines and tubes are unchanged in position. The left-sided pleural effusion continues to decrease in

size. There is improved aeration at the left base. Partially layering right-sided pleural effusion is again seen.
There is a new small left-sided apical pneumothorax.

Lung Opacity Slight worsening of cardiomegaly and mild-to-moderate pulmonary edema, accompanied by increasing
moderate left pleural effusion and persistent small right pleural effusion. Indwelling support and monitoring
devices are unchanged in position, including a proximally located left PICC, terminating at the junction of the
left axillary and subclavian veins.

Lung Lesion Single portable upright AP image of the chest. There are low lung volumes. There is an interval increase in
the alveolar opacities bilaterally, consistent with moderate to severe new onset pulmonary edema. The
cardiomediastinal silhouette appears to be somewhat enlarged from prior exam, particularly in the right

mediastinum. There is no large pleural effusion or pneumothorax. A pacer is seen overlying the left anterior

chest with intact leads in appropriate position.

Pneumonia Portable AP radiograph of the chest was reviewed with no prior studies available for comparison. Heart size is

top normal. Mediastinum is grossly unremarkable. Lungs are essentially clear except for right basal opacity

which unclear if represents a true lesion or summation of shadows. Repeated radiograph preferably with full

inspiration is required. If finding is persistent, assessment with chest CT would be necessary.

No Finding Tracheostomy tube is in satisfactory position with the tip 4.5 cm above the carina. The right internal jugular
central line and nasogastric tube are unchanged in position. The heart remains stably enlarged. Lung volumes
are markedly reduced and there is a small layering left effusion with persistent retrocardiac consolidation
likely reflecting partial lower lobe atelectasis. No pulmonary edema. No obvious pneumothorax.

B.2 DOWNSTREAM DATASETS

We evaluate our proposed MGLL alongside several baseline methods on multiple downstream
datasets. The details of these datasets are presented in Table [[3] The multiple-choice evaluation
benchmark details are in Table [[4l

Fundus Imaging Datasets:

FIVES Jin et al.[(2022): A collection of 800 retinal images categorized into four diagnostic classes:
normal, age-related macular degeneration, diabetic retinopathy, and glaucoma.

IDRID |Porwal et al.|(2018): Contains 516 retinal images with annotated severity grades for diabetic
retinopathy (DR) and diabetic macular edema (DME).

OIA-DDR [Li et al.| (2019b): Comprises 12,523 fundus images labeled with diabetic retinopathy
severity classifications.

ADAM Fang et al.| (2022): A dataset of 1,200 fundus images specifically designed for age-related
macular degeneration detection.

PALM [Fang et al| (2024): Consists of 1,200 fundus images annotated for pathological myopia
diagnosis.

REFUGE [Orlando et al.|(2020): Includes 1,200 retinal images with binary classification for glau-
comatous and non-glaucomatous.

RIM-ONE Batista et al.| (2020): A retinography collection of 485 images developed for glaucoma
evaluation.

RFMiD Pachade et al.| (2021): Encompasses 3,200 retinal images with multi-label annotations
across 45 categories. Our evaluation focuses on 12 labels where positive cases exceed 2% preva-
lence.

Radiographic Imaging Datasets:

MIDRC-XR MIDRC] (2024): A dataset contains 111,816 X-ray images across 14 LOINC-coded
categories (including XR Chest AP views).
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Table 13: The details of downstream datasets.

Name

| Numer (Train : Val : Test) |

Label Categories

FIVES Jin et al.|(2022)

IDRiD |Porwal et al.|(2018)

OIA-DDR|Li et al.|(2019b)

ADAM |Fang et al.|(2022)

PALM [Fang et al.[(2024)
REFUGE (Orlando et al.|(2020)
RIM-ONE Batista et al.|(2020)

RFMIiD |Pachade et al.|(2021)

MIDRC-XR MIDRC{(2024)

MIDRC-XR-Portable MIDRC]|(2024)

ChestX-ray14 Wang et al.|(2017a)

480 : 120 : 200

319:94:103

6260 : 2503 : 3759

400 : 400 : 400

400 : 400 : 400
400 : 400 : 400
270: 69 : 146

1920 : 640 : 640

89453 : 11182 : 11181

63253 : 7906 : 7907

77872 : 8652 : 25596

Normal, Age-related Macular
Degeneration, Diabetic retinopathy, and
Glaucoma
Severity levels of Diabetic Retinopathy
(no apparent, mild non-proliferative,
moderate non-proliferate, severe
non-proliferate, proliferative) and
Diabetic Macular Edema (no apparent,
mild, moderate, severe)
Severity levels of Diabetic Retinopathy
(no apparent, mild non-proliferative,
moderate non-proliferate, severe
non-proliferate, proliferative)
Age-related Macular Degeneration and
no Age-relatedd Macular Degeneration
Pathological myopia and Healthy
Glaucoma and Healthy
Glaucoma and Healthy
Diabetic Retinopathy, Age-related
Macular Degeneration, Media haze,
drusens, Myopia, Branch Retinal Vein
Occlusion, Tessellation, Laser scars,
Optic disc cupping, Optic disc pallor,
Optic disc edema, and Retinitis
XR Chest AP, XR Chest 2 Views, XR
Unspecified body region Views, XR
Chest Single view, XR Chest PA and
Lateral, XR Chest Views, XR Chest AP
and Lateral, XR Chest and Abdomen
Single view, XR Ribs Views, XR
Abdomen AP, XR Abdomen Single
view, XR Chest View and Abdomen
Supine and Upright, XR Abdomen
Supine and Upright, XR Ribs Views and
Chest PA
Portable XR Chest AP single view,
Portable XR Chest Views AP, Portable
XR Abdomen AP, Portable XR Chest
Views, Portable XR Chest Views W
inspiration and expiration, Portable XR
Abdomen Supine and Upright
Atelectasis, Cardiomegaly, Effusion,
Infiltration, Mass, Nodule, Pneumonia,
Pneumothorax, Consolidation, Edema,
Emphysema, Fibrosis, Pleural
Thickening, Hernia
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MIDRC-XR-Portable MIDRC|(2024)): Focuses on portable radiography with 79,066 X-ray images
across 6 LOINC-coded categories (including Portable XR Chest AP single views).

ChestX-ray14|Wang et al.|(2017a): A comprehensive medical imaging repository contains 112,120
frontal-view chest radiographs annotated with 14 labels. Labels are extracted from corresponding
radiological reports.

Evaluation Benchmark on MLLMs (Multiple-choice Benchmark): A comprehensive ophthalmic
evaluation dataset comprising 2,233 images across 25 distinct diagnostic categories. The label dis-
tribution of the multiple-choice evaluation benchmark is in Table

Table 14: The label distribution of the multiple-choice evaluation benchmark.

Label ‘ Num ‘ Label ‘ Num
Health 890 Other disease (Other) 50
Myopia 226 Tessellation 12
Retinitis 9 Chorioretinitis 3
Diabetic Retinopathy (DR) 149 Drusen 30
Media Haze (MH) 31 Central Serous Retinopathy (CSR) 7
Cataract 20 Arteriosclerotic Retinopathy (AR) 2
Optic Disk Cupping (ODC) 32 Optic Disc Edema (ODE) 11
Optic Disc Pallor (ODP) 2 Hypertensive Retinopathy (HR) 3
Branch Retinal Vein Occlusion (BRVO) 16 Central Retinal Vein Occlusion (CRVO) 11
Age-related Macular Degeneration (AMD) | 171 | No Age-related Macular Degeneration (No AMD) 311
Diabetic Macular Edema (DME) 58 No Diabetic Macular Edema (No DME) 11
Glaucoma 162 No Glaucoma 12
Choroidal Neovascularization (CN) 4 Summary 2233 images

C SETUP DETAILS

C.1 EVALUATION METRICS

In our quantitative evaluation, we employ Area Under the Receiver Operating Characteristic Curve
(AUC), mean Average Precision (MAP), and Accuracy (ACC) as assessment metrics. Among these,
AUC serves as our primary evaluation metric, as it reflects overall model performance. MAP is
particularly useful for handling long-tailed label distributions. To better assess performance on the
imbalanced multi-label dataset such as REMiD [Pachade et al.| (2021)), we report the category-wise
average accuracy instead of overall accuracy. As for the accuracy on the multiple-choice bench-
mark, we implement a four-option forced-choice classification approach utilizing the MGLL-Fundus
dataset. For each fundus image presented, the model must select the most probable diagnostic clas-
sification from among four distinct disease labels. These options comprise the correct diagnostic
label along with three additional labels randomly sampled from the complete disease names avail-
able in the dataset. The randomized inclusion of incorrect options helps evaluate model performance
in distinguishing the correct diagnosis from plausible alternatives, which also enables quantitative
assessment of diagnostic accuracy.

C.2 IMPLEMENTATION DETAILS

We adopt ViT-L/14 |Dosovitskiy et al.[ (2020) as the image encoder and Biomedical BERT Alsentzer,
et al.|(2019) as the text encoder. All images are resized to 224 x 224, and data preprocessing includes
random flipping (probability = 0.5) and color jittering (factor = 0.1). We set the batch size to 32, the
feature vector dimension to 768, and the temperature coefficient to 0.07. Optimization is performed
using AdamW |[Loshchilov & Hutter| (2017) with a learning rate of le-4, weight decay of 0.0001,
and hyperparameters 51 = 0.9, f2 = 0.98, and € = 1e — 6. All experiments are conducted with the
NVIDIA RTX A6000 GPU.
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D MORE DETAILED EXPERIMENTAL RESULTS

D.1 DETAILED RESULTS ON RETINAL FUNDUS DATASETS

We present the complete experimental results for performance comparison with eight baselines
(Radford et al.| (2021); [Yao et al.| (2023); |[Zhou et al.| (2023b); |Silva-Rodriguez et al.[ (2025); [Wu
et al.|(2024); Du et al.|(2024); [Khattak et al.|(2024);|Q1u et al. (2024))) on downstream retinal fundus
datasets in Table [T5] to Table 23] The experimental results demonstrate that the MGLL consis-
tently outperforms existing approaches across nine retinal fundus datasets in both linear probing and
full fine-tuning evaluation settings. Notably, MGLL demonstrates particularly strong gains in the
linear probing setting, where it demonstrates substantial improvements over second-best methods
(e.g., achieving 90.02% AUC in ADAM compared to UniMed-CLIP’s 79.33%, and 92.42% AUC
in REFUGE versus RET-CLIP’s 84.59%). To further analyze these results, we observe consistent
performance improvements across multiple evaluation metrics. For instance, in the FIVES dataset,
MGLL achieved 89.73% AUC, 52.00% ACC, and 75.32% mAP in linear probing, significantly out-
performing RETFound (88.09% AUC, 49.00% ACC, 72.55% mAP). When fully fine-tuned on this
dataset, MGLL maintained its advantage with 94.98% AUC, 72.00% ACC, and 86.34% mAP.

The robust performance of MGLL can be attributed to its multi-granularity learning approach, which
effectively captures both local and global features in retinal fundus images. This architectural advan-
tage enables MGLL to identify subtle pathological patterns that may be overlooked by conventional
methods. For example, in the REFUGE dataset (glaucoma detection), MGLL achieved a 7.83%
improvement in AUC over the second-best method in linear probing setting.

Additionally, the exceptional performance on the PALM dataset (99.66% AUC, 96.00% ACC, and
99.72% mAP in linear probing) demonstrates MGLL'’s capacity to achieve near-perfect diagnostic
accuracy in certain retinal conditions. When compared to previous state-of-the-art methods such as
VisionFM (97.12% AUC) and RET-CLIP (95.25% AUC), MGLL offers clinically significant im-
provements in detection reliability. This superior performance indicates excellent feature represen-
tation quality and transferability of our pretrained MGLL, enabling effective adaptation to diverse
diagnostic tasks with fine-tuning.

Table 15: The performance evaluation on FIVES. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP
CLIP (ICML-21) 81.25 37.00 64.21 | 88.96 64.00 76.22
KgCoOp (CVPR-23) 81.63 3950 64.72 | 89.16 64.50 76.53
RETFound (Nature-23) 88.09 49.00 72.55 | 92.83 69.50 81.36
FLAIR (MedIA-25) 84.24 4350 67.17 | 89.85 66.00 77.14
KeepFIT (MICCAI-24) 8231 41.00 6498 | 90.62 67.00 77.96
RET-CLIP (MICCAI-24) | 86.74 47.50 69.35 | 92.04 68.50 79.89
UniMed-CLIP (arXiv-24) | 82.75 41.50 65.46 | 91.59 68.00 79.23
VisionFM (NEJM AI-24) | 8598 45.00 68.73 | 93.11 70.50 82.76
MGLL 89.73 52.00 75.32 | 9498 72.00 86.34
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Table 16: The performance evaluation on IDRiD (DR). Bold indicates best performance and

underline shows second-best.
Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP
CLIP (ICML-21) 70.83 3592 3444 | 76.74 44.66 44.01
KgCoOp (CVPR-23) 7234  40.78 36.29 | 76.81 46.60 44.86
RETFound (Nature-23) 73.51 43.69 3748 | 78.14 53.40 47.05
FLAIR (MedIA-25) 74.62 4563 39.16 | 78.82 5534 48.54
KeepFIT (MICCAI-24) 71.81 37.86 3537 | 77.13 4854 4532
RET-CLIP (MICCAI-24) | 78.18 5243 4742 | 7932 5631 4942
UniMed-CLIP (arXiv-24) | 77.39 49.51 45.75 | 80.72 5825 52.84
VisionFM (NEJM Al-24) | 77.52 51.46 4622 | 7995 57.28 51.38
MGLL 80.28 58.25 51.19 | 82.57 60.19 54.30

Table 17: The performance evaluation on IDRiD (DME). Bold indicates best performance and

underline shows second-best.
Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP
CLIP (ICML-21) 71.81 77.67 56.67 | 73.34 76.70 57.87
KgCoOp (CVPR-23) 60.33 65.05 48.86 | 62.78 66.02 50.11
RETFound (Nature-23) 65.92 69.90 52.05 | 69.26 72.82 55.39
FLAIR (MedIA-25) 62.85 6699 50.31 | 6452 6893 51.83
KeepFIT (MICCAI-24) 68.71 70.87 54.76 | 69.03 71.84 5497
RET-CLIP (MICCAI-24) | 64.13 67.96 51.28 | 70.14 73.79 55.75
UniMed-CLIP (arXiv-24) | 70.59 74.76 56.04 | 71.81 75.73 56.85
VisionFM (NEJM AI-24) | 73.53 78.64 5998 | 77.95 79.61 62.23
MGLL 7841 79.61 64.72 | 86.17 80.58 67.80

Table 18: The performance evaluation on OIA-DDR. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP (ICML-21) 73.30 5541 39.21 | 85.29 71.75 4991
KgCoOp (CVPR-23) 72.09 53.68 37.87 | 80.39 6547 45.92
RETFound (Nature-23) | 80.77 61.13 4694 | 8596 72.12 52.21
FLAIR (MedIA-25) 82.48 63.36 48.09 | 85.54 70.63 50.27
KeepFIT (MICCAI-24) | 72.68 5446 3872 | 79.42 64.03 44.53
RET-CLIP (MICCAI-24) | 77.43 58.18 43.31 | 83.68 68.82 48.05
UniMed-CLIP (arXiv-24) | 74.67 56.19 40.18 | 81.23 66.69 46.88
VisionFM (NEJM Al-24) | 78.85 59.35 44.27 | 84.25 69.46 48.77
MGLL 86.28 72.09 50.92 | 88.85 73.13 56.67

Table 19: The performance evaluation on ADAM. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP (ICML-21) 5241 7650 25.05 | 86.70 83.00 65.48
KgCoOp (CVPR-23) 52.13 74775 2436 | 84.42 8275 60.54
RETFound (Nature-23) | 59.34 78.25 33.53 | 88.02 83.50 65.86
FLAIR (MedIA-25) 63.82 79.50 39.27 | 90.16 84.75 6691
KeepFIT (MICCAI-24) | 56.97 77.75 29.88 | 74.88 82.00 52.26
RET-CLIP (MICCAI-24) | 77.48 82.25 53.76 | 93.27 86.25 79.92
UniMed-CLIP (arXiv-24) | 79.33 82.50 55.63 | 90.64 85.25 69.22
VisionFM (NEJM Al-24) | 73.56 81.75 51.42 | 92.43 8550 75.89
MGLL 90.02 85.00 62.40 | 96.30 90.00 90.08
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Table 20: The performance evaluation on PALM. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP (ICML-21) 93.94 9175 94.62 | 99.51 96.00 99.58
KgCoOp (CVPR-23) 87.94 8825 88.11 | 9421 92.00 94.81
RETFound (Nature-23) | 92.02 90.50 92.87 | 95.75 93.00 96.39
FLAIR (MedIA-25) 89.42 89.25 90.03 | 94.88 9225 9524
KeepFIT (MICCAI-24) | 88.21 88.50 88.46 | 93.34 91.50 94.18
RET-CLIP (MICCAI-24) | 9525 9250 95.89 | 98.67 95.25 98.42
UniMed-CLIP (arXiv-24) | 90.31 89.75 91.12 | 96.82 93.75 97.02
VisionFM (NEJM Al-24) | 97.12 94.25 97.45 | 97.73 94.50 97.84
MGLL 99.66 96.00 99.72 | 99.72 95.75 99.76

Table 21: The performance evaluation on REFUGE. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP (ICML-21) 65.33 88.75 15.68 | 86.96 93.00 58.37
KgCoOp (CVPR-23) 60.69 86.25 11.52 | 81.45 90.75 49.07
RETFound (Nature-23) 79.67 90.50 45.39 | 89.02 93.50 63.84
FLAIR (MedIA-25) 70.59 89.25 27.82 | 85.67 9225 56.82
KeepFIT (MICCAI-24) 63.04 88.25 14.15 | 84.89 9150 55.78
RET-CLIP (MICCAI-24) | 84.59 91.25 55.06 | 90.46 93.75 70.45
UniMed-CLIP (arXiv-24) | 61.25 87.50 12.87 | 83.11 91.00 52.84
VisionFM (NEJM AI-24) | 73.21 89.50 33.42 | 86.13 92.50 57.68
MGLL 9242 9450 75.65 | 93.90 94.75 80.99

Table 22: The performance evaluation on RIM-ONE. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP
CLIP (ICML-21) 6596 6644 54.11 | 88.38 82.88 84.00
KgCoOp (CVPR-23) 7434 7397 6345 | 90.39 84.25 85.88
RETFound (Nature-23) | 89.79 83.56 83.92 | 94.22 86.99 90.35
FLAIR (MedIA-25) 81.83 79.45 70.14 | 9493 88.36 9241
KeepFIT (MICCAI-24) | 67.35 67.81 5524 | 8991 83.56 85.22
RET-CLIP (MICCAI-24) | 84.42 82.19 79.85 | 92.58 86.30 89.19
UniMed-CLIP (arXiv-24) | 69.87 70.55 5843 | 83.37 81.51 78.14
VisionFM (NEJM AI-24) | 7297 72.60 61.86 | 91.27 84.93 87.21
MGLL 94.39 87.67 86.68 | 97.05 89.73 94.97

Table 23: The performance evaluation on RFMiD. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP (ICML-21) 44,66 9253 7.28 | 65.10 92.86 17.31
KgCoOp (CVPR-23) 50.82 9221 796 | 70.36 9228 21.49
RETFound (Nature-23) 60.16 92.55 16.37 | 84.62 9348 50.21
FLAIR (MedIA-25) 56.11 9238 14.85 | 7543 92.62 23.24
KeepFIT (MICCAI-24) | 51.48 92.19 10.24 | 81.52 93.09 42.39
RET-CLIP (MICCAI-24) | 5894 9246 16.02 | 86.12 93.92 51.27
UniMed-CLIP (arXiv-24) | 53.44 9225 13.68 | 72.59 92.57 22.54
VisionFM (arXiv-24) 63.38 9259 17.84 | 82.78 93.17 48.92
MGLL 79.62 92.84 34.08 | 92.83 95.48 64.99
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D.2 ZERO-SHOT COMPARISONS ACROSS MEDICAL AND NATURAL DOMAINS

As summarized in Table 24] we evaluate the zero-shot classification performance of MGLL across
three representative datasets to demonstrate its strong generalization ability across diverse modal-
ities. On the COVIDx dataset |[Wang et al.| (2020), MGLL achieves 39.0% accuracy, outperform-
ing strong medical vision-language baselines such as CheXAgent [Chen et al.| (2024b) (34.3%)
and MedVersa |Zhou et al.| (2024) (35.5%), as well as recent contrastive methods including FG-
CLIP Xie et al.|(2025), MGCA |Wang et al.[(2022a), RetiZero|Wang et al.|(2025)), MAVL Phan et al.
(2024), and Ark+ |Ma et al.| (2025). For anatomical recognition on the CT-based OrganAMNIST
dataset |[Yang et al.| (2023), MGLL again surpasses FG-CLIP Xie et al.| (2025) with a significant
margin (52.7% vs. 47.9%). Moreover, MGLL achieves the best performance on the natural image
dataset CC3M |Sharma et al.| (2018) (evaluated on ImageNet), outperforming FG-CLIP Xie et al.
(2025) with an accuracy of 23.5%. These results collectively highlight MGLL’s flexibility and uni-
versal applicability across both medical and natural image domains in zero-shot settings.

Table 24: Comparisons of Zero-Shot classification on MGLL and others methods. * denotes using
published pretrained model.

Method Pretrain Data Downstream Data ACC (%)
FG-CLIP (ICML-25) CC3M ImageNet 21.4
MGLL CC3M ImageNet 23.5
FG-CLIP (ICML-25) PMC-OA OrganAMNIST 47.9
MGLL PMC-OA OrganAMNIST 52.7
CheXAgent (Arxiv-24) * COVIDx 34.3
MedVersa (Arxiv-24) * COVIDx 35.5
FG-CLIP (ICML-25) MIMIC-CXR COVIDx 36.3
MGCA (NIPS-22) MIMIC-CXR COVIDx 37.3
RetiZero (Nat. Com-25) MIMIC-CXR COVIDx 35.8
MAVL (CVPR-24) MIMIC-CXR COVIDx 37.0
Ark+ (Nature-25) MIMIC-CXR COVIDx 37.8
MGLL MIMIC-CXR COVIDx 39.0

D.3 PERFORMANCE EVALUATION ON REGION SEGMENTATION

We have evaluated MGLL on region segmentation tasks, and the results are reported in Table 23]
Medical image segmentation is inherently challenging due to the subtle differences between adja-
cent pixels of heterogeneous classes. We compared our MGLL with several excellent methods such
as GLoRIAHuang et al.[(2021]), CLIPRadford et al.| (2021), LAVTYang et al.| (2022), UniLSegLiu
et al| (2024b), and STPNetShan et al| (2025). By incorporating multi-level semantic alignment,
MGLL enhances the model’s language-guided spatial understanding and achieves the best perfor-
mance among compared methods.

Table 25: Comparisons of COVID-19 lesion segmentation between MGLL and others methods on
COVID-Xray dataset Degerli et al.| (2021)).

Method Dataset Dice (%) IoU(%)
GLoRIA (ICCV-21) COVID-Xray 79.94 70.68
CLIP (ICML-21) COVID-Xray 79.81 70.66
LAVT (CVPR-22) COVID-Xray 79.28 69.89
UniLSeg (CVPR-24) COVID-Xray 79.99 70.29
STPNet (TIP-25) COVID-Xray 80.63 71.42
MGLL COVID-Xray 81.69 73.06
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D.4 MORE DETAILED RESULTS OF MGLL IN MLLMsSs

To evaluate MGLL’s impact on multimodal large language models’ diagnostic capabilities, we con-
duct comprehensive multiple-choice evaluations across 25 distinct ophthalmological conditions as
shown in Table 27)to Table[34] This expanded analysis provides more insights into MGLL’s perfor-
mance beyond the ten primary conditions highlighted in previous experiments.

Table 26: Brief summary of recent vision-language models.

Model Name Key Features and Description
InstructBLIEDai et al.|(2023) | Combines vision and language with instruction tuning to enable versatile zero-shot performance across tasks.
Mini-GeminiLi et al.|(2024b) A lightweight and efficient multimodal model designed for fast inference and strong performance.
Qwen-VLBai et al.|(2023) Supports multimodal reasoning with a strong focus on Chinese vision-language understanding.
InternVLIChen et al.|(2024a) Achieves strong cross-modal alignment and generalization across image-text benchmarks.
LLaVALiu et al.|(2024a) Integrates CLIP and LLaMA for open-ended visual question answering and dialogue.
LLaVA-MedLi et al.|(2024a) Adapts LLaVA for medical vision-language tasks including medical image question answering.
Med-FlamingdMoor et al.|(2023) Extends Flamingo to the medical domain with few-shot learning capabilities.
Janus-PrdChen et al.|(2025) Uses bidirectional multimodal modeling to enhance multi-turn visual-language interactions.

Our detailed analysis reveals that MGLL integration yields significant improvements across all
seven multimodal architectures. InstructBLIP demonstrates a 9.76% overall accuracy improve-
ment (55.17% to 64.94%), with particularly notable enhancements in challenging conditions such
as Retinitis (11.11% to 44.44%) and Media Haze (16.13% to 45.16%). These improvements high-
light MGLL’s capacity to enhance feature extraction for complex ophthalmological pathologies.
MGLL integration showcases substantial performance gains across multiple diagnostic tasks and
architectures. Qwen-VL with MGLL integration exhibits a 6.58% overall improvement (76.80% to
83.39%), with remarkable advances in low-prevalence conditions including Astigmatic Refractive
Error (0.00% to 50.00%) and Hypertensive Retinopathy (0.00% to 66.67%). Even high-performing
models benefit significantly, InternVL achieves a 5.19% improvement with MGLL integration,
enhancing diagnostic accuracy particularly for conditions such as Optic Disc Edema (45.45% to
63.64%) and Central Retinal Vein Occlusion (36.36% to 63.64%). LLaVA exhibits similarly ro-
bust baseline performance (85.22%), yet MGLL integration yields a 5.55% improvement, achiev-
ing near-perfect accuracy in several categories including No Diabetic Macular Edema (90.91% to
100.00%) and miscellaneous conditions (90.00% to 100.00%). The most dramatic improvements
occur in medical-specialized models. Med-Flamingo demonstrates a substantial 21.76% improve-
ment (49.17% to 70.94%), with particularly significant gains in Glaucoma (24.07% to 61.11%) and
Diabetic Retinopathy (36.91% to 80.54%). Similarly, LLaVA-Med shows a 20.78% improvement
(56.47% to 77.25%), with exceptional gains in AMD (16.37% to 58.48%) and Diabetic Retinopathy
(26.85% to 77.18%). Across all evaluated models, we observe consistent patterns of improvement
that highlight MGLL’s particular efficacy with complex retinal conditions, vascular pathologies, and
conditions requiring fine-grained feature discrimination. The results demonstrate that MGLL pro-
vides substantial benefits regardless of the underlying model architecture. The multiple-choice eval-
uation framework presented models with standardized diagnostic queries. Some prompt examples
of the multiple-choice evaluation benchmark are as follows:

Question 1: “What is the most reasonable diagnosis? A. Glaucoma B. Drusen C. Chorioretinitis D.
Hypertensive Retinopathy Answer with the option’s letter from the given choices directly.”

Answer 1: A.

Question 2: “What diagnosis is most likely? A. Central Serous Retinopathy B. Media Haze C.
Diabetic Retinopathy D. Age-related Macular degeneration Answer with the option’s letter from the
given choices directly.”

Answer 2: D.

Question 3: “What diagnosis is most probable? A. Optic Disk Cupping B. Mild Non-Proliferative
Diabetic Retinopathy C. Central Serous Retinopathy D. Central Retinal Vein Occlusion Answer with
the option’s letter from the given choices directly.”

Answer 3: B.

33



Under review as a conference paper at ICLR 2026

Table 27: Comparison of multiple-choice accuracy with MGLL in InstructBLIP on the multiple-
choice evaluation benchmark.

Label Name | AMD | AR | BRVO |Cataract | Chorioretinitis| CN | CRVO | CSR
InstructBLIP|Dai et al.|(2023) | 80.17% | 0.00% | 50.00% | 80.00% 0.00% 75.00% | 45.45% 0.00%

+ MGLL 83.63% 50.00% 62.50% 85.00% 33.33% 75.00% | 63.64% 28.57%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
76.51% 36.67% | 59.30% |51.57% | 0.00% 63.79% 16.13% | 44.25% 54.34%
82.55% 50.00% 65.43% 60.22% 33.33% 74.14% 45.16% | 52.65% 70.10%

No Glaucoma NoDME | ODC ODE ODP Other Retinitis | Tessellation Overall T
41.67% 63.64% | 65.63% |27.27% | 50.00% 58.00% 11.11% | 41.67% 55.17%
58.33% 7273% 75.00% 45.45% 50.00% 70.00 % 44.44% | 58.33% |64.94% (9.76% 1)

Table 28: Comparison of multiple-choice accuracy with MGLL in Mini-Gemini on the multiple-
choice evaluation benchmark.

Label Name AMD AR BRVO | Cataract | Chorioretinitis | CN CRVO CSR
Mini-Gemini |Li et al.|(2024b) | 76.61% 0.00% | 43.75% | 85.00% 0.00% 25.00% | 27.27% 14.29%

+ MGLL 82.46% 0.00% 56.25% 85.00% 66.67 % 50.00% | 54.55% 42.86%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
79.87% 2333% | 67.90% |61.46% | 0.00% 60.34% 38.71% | 58.41% 63.02%
84.56 % 46.67% 72.22% 68.99% 33.33% 65.52% 58.06% | 64.16% 72.99 %

No Glaucoma No DME ODC ODE ODP Other Retinitis | Tessellation Overall T
66.67% 72.73% | 62.50% | 36.36% | 50.00% 66.00% 3333% | 33.33% 62.65%
75.00% 81.82% 78.13% 45.45% 50.00% 74.00% 55.56% | 41.67% |70.58% (7.93% 1)

Table 29: Comparison of multiple-choice accuracy with MGLL in Qwen-VL on the multiple-choice

evaluation benchmark.

Label Name ‘ AMD ‘ AR ‘ BRVO ‘ Cataract ‘ Chorioretinitis ‘ CN ‘ CRVO ‘ CSR
Qwen-VL |Bai et al.|(2023) | 81.87% | 0.00% |43.75% | 75.00% | 0.00% | 25.00% 9.09% 28.57%
+MGLL 85.96% | 50.00% |62.50% 80.00% 33.33% 75.00% | 36.36% 42.86%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
80.54% 26.67% | 78.40% | 79.89% | 0.00% 84.48% 54.84% | 76.55% 82.96%
89.93% 43.33% | 87.04% |85.39% 66.67% 89.66% 70.97% | 80.97% 87.14%
No Glaucoma NoDME | ODC ODE ODP Other Retinitis | Tessellation Overall 1
75.00% 72.73% | 56.25% |27.27% | 50.00% 84.00% 22.22% | 25.00% 76.80%
83.33% 72.73% | 68.75% |54.55% 100.00% 86.00 % 3333% | 41.67% |83.39% (6.58% 1)

Table 30: Comparison of multiple-choice accuracy with MGLL in InternVL on the multiple-choice

evaluation benchmark.

Label Name AMD AR BRVO | Cataract | Chorioretinitis CN CRVO CSR
InternVL|Chen et al.|(2024a) | 81.29% | 0.00% | 37.50% | 85.00% 0.00% 25.00% | 36.36% 71.43%

+ MGLL 86.55% 50.00% 56.25% | 90.00% 0.00% 50.00% | 63.64% 71.43%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
94.63% 43.33% | 89.51% |85.73% | 33.33% 87.93% 64.52% | 88.05% 85.85%
96.64 % 53.33% 90.74% 91.46% | 66.67 % 94.83 % 67.74% | 91.15% 90.68 %

No Glaucoma [NoDME| ODC | ODE | ODP | Other | Retinitis | Tessellation | Overall
91.67% 81.82% | 87.50% |45.45% | 50.00% |  90.00% 44.44% | 66.67% 84.33%
100.00% 9091% 93.75% 63.64% | 50.00 % 96.00 % 55.56% | 75.00% |89.52% (5.19% 1)

Table 31: Comparison of multiple-choice accuracy with MGLL in LLaVA on the multiple-choice

evaluation benchmark.

Label Name | AMD | AR | BRVO | Cataract | Chorioretinitis| CN | CRVO | CSR
LLaVA|Liu et al.[(2024a) | 83.04% 0.00% | 50.00% | 90.00% | 0.00% | 25.00% 9.09% 42.86%
+MGLL 84.80% | 100.00% | 68.75% | 90.00% 33.33% 25.00% | 45.45% 57.14%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
87.25% 36.67% | 91.36% | 88.65% | 0.00% 93.10% 48.39% | 88.50% 90.68%
93.96 % 50.00% | 91.98% |94.38% | 33.33% 96.55% 61.29% | 90.71% 96.78 %
No Glaucoma No DME ODC ODE ODP Other Retinitis | Tessellation Overall
100.00% 90.91% | 62.50% | 18.18% | 50.00% 90.00% 44.44% | 58.33% 85.22%
100.00 % 100.00% | 62.50% |45.45% |100.00% 100.00 % 66.67% | 66.67% |90.77% (5.55% 1)
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Table 32: Comparison of multiple-choice accuracy with MGLL in LLaVA-Med on the multiple-
choice evaluation benchmark

Label Name AMD AR BRVO | Cataract | Chorioretinitis | CN CRVO CSR
LLaVA-Med Li et al.|(2024a) | 16.37% | 100.00% | 31.25% | 15.00% 0.00% 0.00% 45.45% 42.86%
+MGLL 58.48% | 100.00% | 50.00% | 65.00% 66.67 % 25.00%  63.64% 57.14%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
26.85% 16.67% | 25.31% |91.46% | 33.33% 16.67% 25.81% | 23.89% 66.56%
77.18% 40.00% | 59.26% |97.42% | 33.33% 55.17% 51.61% 57.08% 78.46 %
No Glaucoma NoDME| ODC ODE ODP Other Retinitis | Tessellation Overall T
16.67% 36.36% | 21.88% |27.27% | 0.00% 28.00% 33.33% 16.67% 56.47%
41.67% 72.73% | 40.63% |63.64% | 50.00% 62.00% 44.44%  58.33% | 77.25% (20.78% 1)

Table 33: Comparison of multiple-choice accuracy with MGLL in Med-Flamingo on the multiple-
choice evaluation benchmark.

Label Name | AMD | AR | BRVO | Cataract | Chorioretinitis| CN | CRVO | CSR
Med-Flamingo Moor et al.|(2023) \ 25.73% | 100.00% \ 31.25% ‘ 30.00% 0.00% ‘ 25.00% ‘ 63.64% \ 57.14%

+ MGLL 69.01% | 100.00% 56.25% | 75.00% 33.33% 50.00% | 72.73% 71.43%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
36.91% 20.00% | 24.07% |74.16% | 33.33% 24.14% 22.58% 18.58% 52.73%
80.54% 43.33% | 61.11% 83.37% | 66.67 % 51.72% 54.84% | 45.58% 69.13%

No Glaucoma No DME ODC ODE ODP Other Retinitis | Tessellation Overall T
16.67% 36.36% | 43.75% |36.36% | 0.00% 28.00% 22.22% 8.33% 49.17%
50.00% 63.64% | 59.38% 63.64% | 50.00% 70.00 % 44.44% | 3333% 70.94% (21.76% 1)

Table 34: Comparison of multiple-choice accuracy with MGLL in Janus-Pro on the multiple-choice

evaluation benchmark.

Label Name AMD AR BRVO | Cataract | Chorioretinitis CN CRVO CSR
Janus-Pro|Chen et al.|(2025) | 88.30% | 50.00% | 56.25% | 75.00% 33.33% 25.00% | 36.36% 42.86%
+MGLL 90.64% | 100.00% 62.50% 85.00% 66.67 % 75.00% | 63.64% 71.43%
Diabetic Retinopathy Drusen | Glaucoma | Health HR DME MH Myopia No AMD
93.29% 40.00% | 90.74% | 96.40% | 33.33% 62.07% 58.06% | 87.17% 92.28%
96.64 % 53.33% | 95.06% 96.63% 66.67% 70.69 % 67.74% | 90.27% 94.21%
No Glaucoma NoDME| ODC ODE ODP Other Retinitis | Tessellation Overall
58.33% 72.73% | 81.25% | 36.36% | 50.00% 82.00% 33.33% | 58.33% 88.54%
83.33% 9091% | 87.50% 54.55% 50.00% 92.00% 55.56% | 75.00% |91.85% (3.31% 1)
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What is the probable diagnosis?

A. Hypertensive Retinopathy

B. Optic Disc Pallor

C. Central Serous Retinopathy

D. Choroidal Neovascularization

Answer with the option's letter from the given choices directly.
Ground Truth: D

InstructBLIP: D Mini-Gemini: C Qwen-VL: C InternVL: C
InstructBLIP + MGLL: D Mini-Gemini+ MGLL: D  Qwen-VL + MGLL: D InternVL + MGLL: D
Med-Flamingo: A LLaVA-Med: A LLaVA: C Janus-Pro: C
Med-Flamingo + MGLL: D LLaVA-Med + MGLL: D LLaVA + MGLL: A Janus-Pro + MGLL: D

What diagnosis is most probable?

A. Arteriosclerotic Retinopathy

B. Chorioretinitis

C. Retinitis

D. Healthy

Answer with the option's letter from the given choices directly.
Ground Truth: B

InstructBLIP: A Mini-Gemini: A Qwen-VL: D InternVL: D
InstructBLIP + MGLL: B Mini-Gemini + MGLL: B Qwen-VL + MGLL: B InternVL + MGLL: C
Med-Flamingo: C LLaVA-Med: C LLaVA: D Janus-Pro: D
Med-Flamingo + MGLL: B LLaVA-Med + MGLL: B LLaVA + MGLL: B Janus-Pro + MGLL: B

Figure 5: Case Studies (Top: Case 1, Bottom: Case 2) Demonstrating MGLL Integration Impact on
Diagnostic Accuracy of Different Multimodal Large Langue Models (MLLMs).

36



Under review as a conference paper at ICLR 2026

The Fig. [5] presents two representative case studies demonstrating the diagnostic impact of MGLL
integration across multiple MLLM:s.

Case 1 displays a fundus image with characteristic features of choroidal neovascularization (CNV),
including a well-defined yellowish lesion with surrounding subretinal hemorrhage in the macula.
Only InstructBLIP correctly identifies this pathology in its baseline configuration, whereas five mod-
els with MGLL integration provide accurate diagnoses, demonstrating MGLL’s capacity to enhance
the detection of vascular abnormalities.

Case 2 exhibits subtle inflammatory changes consistent with chorioretinitis, characterized by chori-
oretinal infiltrates against a background of mild vitreous haze, which is a condition none of the base-
line models correctly identify. Following MGLL integration, six models accurately diagnose this in-
flammatory condition, with responses shifting from incorrect options (Arteriosclerotic Retinopathy,
Retinitis, or Healthy) to the correct identification.

D.5 MORE CAMS ON RETINAL FUNDUS DATASETS

We present additional class activation maps (CAMs) from CLIP and MGLL on downstream retinal
datasets in Fig.[6] These images include cases of diabetic retinopathy, diabetic macular edema, and
glaucoma. Through both linear probing and full fine-tuning approaches, MGLL consistently demon-
strates more precise lesion localization than CLIP, specifically highlighting pathological features
rather than producing diffuse, non-specific activations. In diabetic retinopathy cases spanning mild
to proliferative stages, MGLL accurately identifies microaneurysms, hemorrhages, venous bead-
ing, and neovascularization sites. While in diabetic macular edema, it effectively localizes retinal
thickening and exudate formation with activation intensity proportional to disease severity. For glau-
coma, MGLL appropriately focuses on optic disc abnormalities, cup enlargement, and neural rim
thinning—critical diagnostic markers often missed by CLIP, which tends to highlight anatomical
landmarks regardless of pathological relevance. These findings demonstrate MGLL’s advantages
for ophthalmological applications, offering more robust performance for clinical feature detection
that supports diagnostic confidence.

D.6 ABLATION STUDY ON WEIGHT FACTORS OF LOSS

To investigate the impact of different weight factors in our composite loss function, we conducted
an extensive ablation study using the REMiD dataset as shown in Table Our loss function in-
corporates three components with corresponding weight factors (o, ae, and «3), and the results
demonstrate that weight selection significantly influences model performance across all metrics.
Compared to the baseline CLIP model, all our weight configurations show substantial improve-
ments, with the optimal configuration (av; = 0.5, @ = 1.0, and a3 = 1.0) achieving the best
performance in both linear probing (79.62% AUC, 92.84% ACC, 34.08% mAP) and full fine-tuning
(92.83% AUC, 95.48% ACC, 64.99% mAP) scenarios. Notably, reducing the weight of the first
component improved performance, while reducing either the second or third component weights
resulted in performance degradation, suggesting that the information captured by these components
is particularly valuable for medical image classification tasks and should be emphasized during
training. These findings highlight the importance of appropriate loss weighting in multi-component
objective functions and provide empirical evidence for the optimal configuration selection.

Table 35: Ablations of Weight Factors on RFMiD. Bold indicates best performance and underline
shows second-best.

Method Linear Probe (%) | Fully Fine-tune (%)
AUC ACC mAP | AUC ACC mAP

CLIP Radford et al.|(2021) [ 44.66 92.53 7.28 | 65.10 92.86 17.31
ap: 1.0, ao: 1.0, a3: 1.0 [79.29 92.83 33.82[92.51 95.35 64.57
a1: 0.5, a9: 1.0, a3: 1.0 | 79.62 92.84 34.08  92.83 95.48 64.99
ag: 1.0, ag: 0.5, a3: 1.0 | 78.11 92,79 32.4291.46 94.99 63.28
ar: 1.0, as: 1.0, a3: 0.5 | 78.85 92.80 33.3992.01 95.18 63.77
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D.7 ABLATION STUDIES ON THE TEMPERATURE COEFFICIENT (7)

We have conducted the ablation studies of temperature coefficient and observe that the performance
first improves and then drops as the temperature coefficient 7 increases, as shown in Table 36 A
smaller 7 sharpens the similarity distribution, enhancing discrimination but causing training insta-
bility. Conversely, a larger 7 produces smoother gradients but weakens alignment. The best results
are achieved when 7 = 0.07, which provides a good balance between discriminative alignment and
stable optimization.

Table 36: Ablations of temperature coefficient (7) on MIDRC-XR-Portable.
Method Linear Probe (%) Fully Fine-tune (%)

AUC ACC mAP | AUC ACC mAP

CLIP, 7 = 0.07 7143 7822 2231 | 91.83 90.08 83.94
MGLL, 7=0.05 | 83.55 8891 30.49 | 99.60 98.67 89.71
MGLL, 7=0.20 | 81.89 87.02 28.93 | 97.89 97.26 87.92
MGLL, 7=0.50 | 79.52 86.19 27.74 | 95.53 9457 85.95
MGLL, 7=0.07 | 83.86 89.06 30.62 | 99.75 98.80 89.87

D.8 PERFORMANCE ON DATASETS WITH ARTIFICIALLY INTRODUCED NOISE

We evaluated the robustness of MGLL under varying levels of artificially introduced noise, where
10%-30% of granularity labels were randomly removed. As shown in Table 37] even with 30%
missing labels, MGLL achieves AUCs of 79.61% (linear probing) and 96.74% (full fine-tuning),
which remain substantially higher than CLIP trained with complete labels (71.43% and 91.83%,
respectively). These results demonstrate that MGLL maintains strong robustness against incomplete
or noisy granularity supervision.

Table 37: Ablations of missing granularity labels on MIDRC-XR-Portable.
Method Linear Probe (%) Fully Fine-tune (%)

AUC ACC mAP | AUC ACC mAP

CLIP, No Missing 7143 78.22 2231 | 91.83 90.08 83.94
MGLL, 10% Missing | 82.58 88.15 29.97 | 9931 9839 89.30
MGLL, 20% Missing | 81.14 87.25 28.86 | 98.62 9795 88.74
MGLL, 30% Missing | 79.61 86.23 27.75 | 96.74 96.02 87.28
MGLL, No Missing | 83.86 89.06 30.62 | 99.75 98.80 89.87

D.9 PERFORMANCE ON DATASETS WITH MIXING GRANULARITY LEVELS

We have evaluated MGLL on datasets with mixed granularity levels, and the results are reported in
Table[38] Specifically, the pretraining dataset was randomly divided into two subsets of equal size:
Set A with two levels of granularity and Set B with a single level. MGLL achieves comparable per-
formance across both subsets and their combination, demonstrating its robustness to heterogeneous
annotation structures and its applicability to real-world scenarios with mixed-granularity data.

Table 38: Ablations of mixing granularity levels on MIDRC-XR-Portable. The dataset is randomly
divided into two subsets of equal size for the ablation study, Set A (50% data) and Set B (50% data).

. Linear Probe (%) Fully Fine-tune (%)
Study Desc. Series Desc. AUC  ACC  mAP | AUC ACC  mAP
Set A Set B 78.93 8547 27.04 | 9481 93.58 85.14
Set A Set A+SetB | 80.25 86.46 2797 | 96.21 94.87 86.72
Set A + Set B Set B 80.92 87.07 28.63 | 97.03 96.56 87.45
MGLL (Ours) 83.806 89.06 30.62 | 99.75 98.80 89.87
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E DISCUSSION AND FUTURE WORK

Our investigation into Multi-Granular Language Learning (MGLL) reveals several important in-
sights about vision-language alignment in complex domains. The consistent performance improve-
ments across various medical imaging datasets demonstrate that hierarchical textual information
substantially enhances visual understanding, particularly when images correspond to multiple clin-
ical findings at different levels of specificity. The ablation studies confirm that performance gains
scale with both the number of granularity levels and the quality of input data, suggesting that MGLL
effectively leverages the complementary information contained in multi-granular textual descrip-
tions.

While MGLL achieves simultaneous multi-label and cross-granularity alignment without additional
computational cost, further optimization could potentially improve its generality. Future work
should explore several directions: (1) extending MGLL to incorporate multimodal inputs beyond
images and text, such as patient metadata or temporal information; (2) investigating domain adap-
tation techniques to improve generalization to unseen medical conditions or imaging modalities;
and (3) exploring the integration of MGLL with large language models to generate more nuanced
textual descriptions at multiple granularities. Additionally, applying MGLL to other domains with
inherently hierarchical structures, such as satellite imagery or scientific visualization, could fur-
ther validate its broader applicability beyond medical imaging. These extensions would strengthen
MGLL’s position as a generalizable framework for improved multimodal understanding.
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Figure 6: More Class Activation Maps from CLIP and Proposed MGLL.
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