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ABSTRACT
Large deep learning models have achieved state-of-the-art performance in a wide range of tasks. These models
often necessitate distributed systems for efficient training and inference. The fundamental building blocks
for distributed model execution are intra-layer parallel operators. The most effective approach to enhancing
the performance of intra-layer parallel operators involves overlapping computation with communication. The
overlapping can be achieved through either operator decomposition or kernel fusion. While decomposing
operators is straightforward to implement, it often results in suboptimal performance. On the other hand, fusing
communication kernels with compute kernels demands significant expertise and is error-prone.

In this paper, we propose TILELINK to enable efficient compilation and generation of overlapped compute-
communication kernels. TILELINK is composed of frontend and backend. In the frontend, TILELINK decouples
the design space of communication and computation, linking these two parts via tile-centric primitives. In
the backend, TILELINK translates these primitives into low-level communication instructions, integrating the
communication and computation components to achieve overlapped execution. In experiments, TILELINK
achieves from 1.17× to 20.76× speedup to non-overlapping baseline and achieves performance comparable to
state-of-the-art overlapping libraries on GPUs.

1 INTRODUCTION

Large deep learning models keep growing in both model
size and performance. These models have achieved state-of-
the-art results in a wide range of domains including natural
language processing (OpenAI, 2023; Rivière et al., 2024;
Dubey et al., 2024; DeepSeek-AI et al., 2024), vision pro-
cessing (Radford et al., 2021; Ataallah et al., 2024; Bai et al.,
2023; Lu et al., 2024), and reasoning (OpenAI, 2024; Shao
et al., 2024). The substantial sizes of these models, coupled
with their immense computational demands, necessitate
parallel execution across distributed systems. Various par-
allel methods have been proposed to accelerate distributed
processing by exploiting both intra-layer and inter-layer par-
allelism (Rajbhandari et al., 2020; Narayanan et al., 2021;
Huang et al., 2019; Rasley et al., 2020).

Since intra-layer parallelism forms the foundation of par-
allel computing, a significant body of work has focused
on exploring it (Narayanan et al., 2021; NVIDIA, 2022b;
Liu et al., 2023). While parallel execution enhances overall
performance, communication between devices still incurs
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significant overhead, limiting further improvements in com-
putational efficiency (Chen et al., 2024; Chang et al., 2024).
Previous work (Chang et al., 2024) indicates that commu-
nication overhead constitutes approximately 10% to 50%
of the total execution overhead even in machines equipped
with high-speed inter-device links.

Overlapping communication with computation is an effec-
tive strategy for enhancing computational efficiency. The
core idea is to map communication and computation to dis-
tinct hardware units, allowing them to operate concurrently.
To handle data dependency between communication and
computation operators, synchronization or barriers are in-
serted into the loop of data transfer and computation. Previ-
ous work on overlapping communication with computation
mainly uses two techniques: operator decomposition and
kernel fusion.

Operator decomposition (NVIDIA, 2022b; Wang et al.,
2023; Chen et al., 2024) involves breaking down both
communication and computation kernels into smaller, ho-
mogeneous kernels. The data dependencies are then dis-
tributed across multiple communication-computation kernel
pairs. The smaller kernels, once split, can be dispatched
to different streams, allowing communication and compu-
tation kernels to operate on separate data shards simul-
taneously. Operator decomposition can be easily imple-
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mented on modern deep learning frameworks such as Py-
Torch (Ansel et al., 2024) or TensorFlow (Abadi et al., 2016),
enabling systematic exploration of the entire design space
for communication-computation overlap, including model-
level, layer-level, and operation-level as pointed out in pre-
vious work (Chen et al., 2024). However, synchronization
between these decomposed kernels necessitates host inter-
vention, introducing non-negligible overhead at runtime.
Furthermore, the performance of decomposed kernels may
be degraded due to low cache utilization and resource quan-
tization inefficiency.

On the other hand, the kernel fusion method (Jangda et al.,
2022; Chang et al., 2024) combines communication and
computation kernels into one fused kernel to overcome the
above disadvantages. Within fused kernels, communication
is mapped to either DMA (Direct Memory Access) engines
or processing cores (e.g., streaming multiprocessors on a
GPU), while computation is executed simultaneously on
other processing cores. Data dependencies are managed us-
ing on-device barriers, and processing cores responsible for
data transfer communicate with computation cores through
atomic or communication instructions. This method is effi-
cient in terms of performance but often requires high-level
hardware expertise to implement efficient kernels, and it
struggles to keep pace with rapid algorithm development.

To address the challenges inherent in existing approaches,
we propose TILELINK, a framework designed to enhance
the development efficiency of overlapping kernels through
compilation. TILELINK consists of two main components:
a frontend and a backend. In the frontend, TILELINK de-
couples the design space of communication and compu-
tation kernels, enabling each to utilize distinct optimiza-
tion strategies and tiling methods. To allow the commu-
nication and computation kernels to operate with different
tile sizes, it relies on tailored barrier controls to maintain
producer-consumer dependencies, ensuring correct and effi-
cient execution. Typically, this fusion is achieved by directly
programming in assembly. To automate the fusion of com-
munication and computation kernels without requiring low-
level assembly code, TILELINK offers a set of tile-centric
primitives. These primitives provide abstract semantics for
signaling and data communication between devices, while
concealing low-level details such as pointer management
and barrier control.

In the backend, TILELINK compiles tile-centric primitives
into low-level hardware instructions, integrating them with
the communication and computation kernels. To ensure
correct data exchange and barrier manipulation operations,
TILELINK employs a tile-centric mapping strategy, which
includes shape mapping, rank mapping, and channel map-
ping. This tile-centric mapping can be either static or dy-
namic. Static mapping uses affine transformations at com-
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Figure 1. Intra-layer parallel FFN example.

pile time to map tile IDs to shape ranges, rank IDs, and
communication channels. In contrast, dynamic mapping
computes these mappings on-the-fly at runtime, allowing
greater flexibility. To show the flexibility and generality of
TILELINK, we implement a broad range of overlapped work-
loads using TILELINK, including self-attention, MLP (mul-
tilayer perceptron), and MoE (mixture of experts). In ad-
dition to programming efficiency, TILELINK also achieves
high performance on GPUs. Evaluation on 8×H800 GPUs
shows that TILELINK can achieve from 1.17× to 20.76×
speedups over non-overlapping baselines, achieving compa-
rable or better performance to overlapping libraries, such as
FLUX (Chang et al., 2024) and RingAttention (Liu et al.,
2023). For end-to-end evaluation, we test eight different lan-
guage models on 8×H800 GPUs and the average speedup of
TILELINK is 1.32× compared to PyTorch. We also bench-
mark TILELINK on two nodes of 8×H800 (totally 16 GPUs)
and the average speedup to PyTorch is 1.29×.

2 BACKGROUND

2.1 Communication and Intra-Layer Parallelism

Operator-Centric Communication Primitives: Collective
communications are frequently used in parallel execution
of large models. Existing libraries (NVIDIA, 2024) and
frameworks (Ansel et al., 2024; Abadi et al., 2016) employ
operator-level primitives for common communication pat-
terns, such as AllReduce, ReduceScatter, AllGather, and
All2All. These primitives need to perform system synchro-
nization before and after data transfer to follow the SPMD
(Single Program, Multiple Data) programming model and
integrate seamlessly with other operators. However, coarse-
grained synchronization can cause computational units to be
idle during communication, thus reducing computational ef-
ficiency. We call these communication primitives operator-
centric primitives.

Intra-Layer Parallelism with Operator-Centric Primi-
tives: For large models (i.e., Transformer-based models),
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intra-layer parallelism is primarily applied to two compo-
nents: the attention part and the FFN (feed-forward network)
part, which is composed of MLP (multilayer perceptron)
layers or MoE (mixture of experts) layers. For the attention
part, the context (key and value) is sharded across devices.
Before computation, these context shards are gathered to
form a complete context for self-attention. This parallel
algorithm is referred to as sequence-parallel (Narayanan
et al., 2021; Liu et al., 2023).

For the FFN part, the weights of the two layers in the MLP or
MoE are sharded across devices. First, input data is gathered
from different ranks, followed by local computation using
the corresponding weight shards. Finally, the partial results
are reduced and scattered to the appropriate ranks. This
algorithm, commonly used in previous work (Narayanan
et al., 2021; Jangda et al., 2022; Wang et al., 2023), is
depicted in Figure 1 and is referred to as tensor-parallel FFN.
Using existing communication libraries and frameworks,
tensor-parallel FFN is expressed as AllGather + GEMM (or
GroupGEMM) followed by GEMM (or GroupGEMM) +
ReduceScatter.

2.2 Communication and Computation Overlapping

Overlapping communication and computation has been ex-
tensively explored in prior studies (Chen et al., 2024; Jangda
et al., 2022; Wang et al., 2023; Chang et al., 2024). Cen-
tauri (Chen et al., 2024) introduces a comprehensive three-
level design space encompassing model-level, layer-level,
and operation-level overlapping. Intra-layer parallelism
serves as the foundational element across these levels of
overlapping. TILELINK focuses on intra-layer overlapping;
generalizing TILELINK’s techniques to inter-layer or model-
level overlapping is feasible, but beyond the scope of this
paper. For intra-layer parallelism, there are two main ways
to achieve overlapping: operator decomposition and kernel
fusion. As shown in Table 1, we summarize the features of
representative studies and TILELINK.

Operator Decomposition: This approach splits the origi-
nal communication and computation operators into smaller,
fine-grained units. These smaller operators enable more
precise synchronization control, allowing communication
operators to execute in parallel with computation operators
that do not have data dependencies. Operator decomposition
is advantageous due to its straightforward implementation
and compatibility with existing libraries and frameworks.
However, using smaller operators can lead to inefficiencies,
including low L2 cache utilization (Tillet et al., 2019a) and
resource quantization inefficiency (Osama et al., 2023). Ad-
ditionally, synchronization between kernels requires host
intervention, introducing non-negligible overhead. Repre-
sentative works employing operator decomposition include
Dist-Einsum (Wang et al., 2023), Asynchronous Tensor Par-

Table 1. Feature comparison of TILELINK and previous work.
Name Compile Method Primitive

CoCoNet Yes Fusion No
Dist-Einsum Yes Decompose operator-centric

Centauri No Decompose operator-centric
FLUX No Fusion No

Async-Torch No Decompose operator-centric
TILELINK Yes Fusion tile-centric

Table 2. Motivational example.
Configurations of TP MLP

batch×sequence length hidden dim intermediate size
8192 4096 11008

Performance of Different Overlapping Techniques

Method Performance
AG+GEMM GEMM+RS

Non-Overlap 0.676 ms 0.541 ms
Decomposition 1.301 ms 1.443 ms
Fusion (FLUX) 0.504 ms 0.610 ms

TILELINK (ours) 0.505 ms 0.504 ms

Lines of Code FLUX TILELINK (ours)
≈ 2,000 .cu ≈ 200 .py

allel PyTorch (Ansel et al., 2024), and Centauri (Chen et al.,
2024).

Kernel Fusion: This approach fuses communication and
computation kernels. Typically, the fused kernel allocates
part of the processing cores to communication tasks and
the remaining cores to computation tasks. Cores assigned
to different tasks use on-device barriers to communicate
execution states. The fused kernel eliminates the need for
host intervention during synchronization, improves cache
utilization, and mitigates resource quantization inefficiency,
potentially achieving better performance than the operator
decomposition method. However, developing fused kernels
on modern accelerators, such as GPUs, presents challenges.
On one hand, low-level control over barriers and hardware-
related communication instructions demands a high level of
expertise. On the other hand, improper fusion design may
lead to performance degradation due to resource conflicts
between communication and computation cores. Conse-
quently, only a few highly optimized libraries (Punniya-
murthy et al., 2023; Chang et al., 2024) or domain-specific
compilers (Jangda et al., 2022) support the kernel fusion
method.

2.3 Code Generation Compilers

With the rapid advancement of code generation compil-
ers (Ragan-Kelley et al., 2013; Chen et al., 2018; Tillet et al.,
2019b), generating high-performance code for attention or
FFN has become practical. Although previous overlapping
compilers such as CoCoNet (Jangda et al., 2022) and Dist-
Einsum (Wang et al., 2023) can generate overlapped kernels,
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they are restricted to fixed overlapping patterns without
programming flexibility at the operator level. In contrast,
TILELINK uses tile-centric primitives and enables efficient
compilation for a variety of workloads.

2.4 Motivational Example

To illustrate the benefits of TILELINK, we use a tensor-
parallel MLP layer as a motivational example. The input
shape of the MLP layer, detailed in Table 2, corresponds to
the configuration used in the LLaMA-7B model. This MLP
layer is implemented as AllGather + GEMM (AG + GEMM)
followed by GEMM + ReduceScatter (GEMM + RS), as de-
picted in Figure 1. We compare the performance of different
techniques for these two parts in Table 2. Non-Overlap is to
use cuBLAS (NVIDIA, 2022a) and NCCL (NVIDIA, 2024)
with no overlapping. Decomposition uses the operator de-
composition technique, with performance results taken from
Async-TP PyTorch (Liang et al., 2024). Fusion refers to the
kernel fusion technique, measured using the open-source
library FLUX (Chang et al., 2024).

On one hand, we compare the performance achieved by
different techniques. As shown in the Table 2, the decompo-
sition technique delivers the lowest performance, while the
fusion technique achieves the best results for AG + GEMM.
TILELINK achieves the best performance for GEMM + RS
and comes very close to FLUX for AG + GEMM (about
99%). These findings demonstrate that TILELINK is ca-
pable of delivering performance that is comparable to or
better than previous approaches. On the other hand, we com-
pare the lines of code required by FLUX and TILELINK.
FLUX involves approximately 2,000 lines of CUDA code,
whereas TILELINK achieves similar performance with only
around 200 lines of Python code, resulting in a roughly
10× improvement in programming efficiency. This moti-
vational example highlights the significant advantages of
TILELINK.

3 FRONTEND PRIMITIVES

In this Section, we explain the frontend of TILELINK. We
first explain the decoupled design space. Then, we present
TILELINK’s tile-centric primitives.

3.1 Decoupled Design Space

There are two ways to design compute-communication fu-
sion kernels. One is to tightly couple the optimization
choices of the two parts, including tile size, tile order, and
resource mapping, while the other is to decouple computa-
tion and communication kernel design. TILELINK adopts
the latter one because the decoupled design space enables
more flexibility in kernel design and could result in better
performance.

rank 0

rank 1

communication 
tile size 128x128 computation tile 

size 128x256

communication: ring-order

peer

b. Communication and computation order

rank 0 rank 1 rank 2 rank 3

a. Tile size choices

computation: wait for tiles from two ranks
rank 0,1

c. Resource Mapping

communication

copy
engine

compute 
cores

computation

map to different units

copy
engine

compute 
cores

computation

map to the same units

communication

copy
engine

compute 
cores

computation

hybrid mapping

communication

rank 1,2 rank 2,3 rank 3,0

Figure 2. Examples of the three design sub-spaces of communica-
tion and computation.
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Figure 3. Tile-centric primitives support different signal control
and data transfer directions.

We divide the decoupled design space into three subspaces:
tile size, tile order, and resource mapping. For each of
these subspaces, the communication and computation com-
ponents can make independent choices to optimize their
performance. In the tile size subspace, the communication
and computation components can choose different tile sizes.
For example, as illustrated in Figure 2a, the communica-
tion part transfers a tile of 128 × 128 at a time, while the
computation part consumes a tile of size 128 × 256 at a
time. This differentiation in tile size helps each component
achieve optimal performance by aligning with the number
of processing cores it uses. For instance, given an AllGather
+ GEMM problem with the tensor size of M × N × K,
where the AllGather part binds dimension M,K to process-
ing cores, and the GEMM part binds dimension M,N . If
the communication component uses more cores, a smaller
tile size will be beneficial, because all core resources can be
fully utilized; conversely, if it uses fewer cores, a larger tile
size will be more effective.

In the tile order subspace, the communication component
may utilize a different tile order compared to the compu-
tation component. For instance, communication can adopt
various data transfer orders, such as ring order, full-mesh
all-to-all order, or other patterns, while the computation
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Table 3. Tile-centric primitives in TILELINK
Name Usage Explanation

producer tile notify producer tile nofity(tile id, mode) Mark producer tile done and notify its consumer tile, consumer tile
is marked ready when all the producer tiles it depends on are done

consumer tile wait consumer tile wait(tile id) Consumer tile is blocked until all its dependent producer tiles done
peer tile notify peer tile notify(tile id, rank) Mark current tile done and notify its peer tiles in another rank
peer tile wait peer tile wait(tile id, rank) Block current tile until its peer tile in another rank is done

rank notify rank notify(tile id, rank) Tell another rank that data at tile id is ready
rank wait rank wait(rank) Block current rank until another rank is done

tile push data tile push data(tensors, tile id, data) Send a tile of data to one (p2p) or all the (broadcast) remote tensors
tile pull data data = tile pull data(tensors, tile id) Load one (p2p) or all the (broadcast) tiles of data from remote tensors

rank copy data rank copy data(src, dst) Copy data from src rank to dst rank

component can begin processing data tiles from any rank.
There is a trade-off associated with the choice of tile or-
der. If the computation component waits for data tiles from
multiple ranks, it may achieve better cache efficiency when
operating on larger chunks of data; however, this approach
may result in longer wait time. Conversely, if the compu-
tation component only waits for data tiles from a single
rank, it can start computations earlier, but this may lead to
lower overall computation efficiency. Figure 2b shows an
example, where communication uses ring order and com-
putation waits for data from two ranks at each iteration of
computation.

In the resource binding subspace, the communication and
computation components can be mapped to either different
units or the same unit, as illustrated in Figure 2c. If the
communication component utilizes the copy engine (DMA),
it avoids resource conflicts with the computation compo-
nent. However, this approach involves host interference,
which introduces additional overhead. On the other hand,
if the communication component employs compute cores
for data copying, it may lead to resource conflicts with
the computation component but eliminates host overhead.
This strategy is particularly suitable in scenarios where the
computation component cannot fully utilize all available
processing cores.

3.2 Tile-Centric Primitives

Decoupling the design space of communication and compu-
tation introduces synchronization challenges. Since the
two components utilize different tile sizes, tile orders,
and resource mappings, synchronizing them necessitates
complex low-level programming with communication in-
structions. For example, on GPUs, instructions such as
ld.global.acquire and red.release are required. However, the
programming model for these instructions does not align
with that of code generation compilers (Chen et al., 2018;
Tillet et al., 2019b), as existing compilers lack support for a
memory consistency model.

To address this issue, TILELINK offers a set of tile-centric

primitives. These primitives introduce memory consistency
semantics and adhere to the tile-level abstraction utilized in
the compiler, distinguishing them from the operator-centric
primitives provided by previous frameworks (Ansel et al.,
2024; Abadi et al., 2016) and libraries (NVIDIA, 2024). The
primitives of TILELINK are summarized in Table 3. They
are categorized into two groups: signal primitives and data
primitives. Each group contains both device-side primitives
and host-side primitives.

3.2.1 Signal Primitives

Signal primitives are designed to manage barriers be-
tween communication and computation. They include
producer(peer) tile notify, consumer(peer) tile wait, and
rank notify(wait). For device-side primitives, the pro-
ducer tile notify and consumer tile wait primitives are
applied to producer-consumer relationships, such as
those between the tiles of AllGather and GEMM. The
peer tile notify and peer tile wait primitives are primarily
used for tiles of the same operator across different ranks,
enabling users to construct various tile orders. For host-side
primitives, the rank notify(wait) primitive is used to man-
age barriers between the copy engine and compute cores.
When communication is mapped to the copy engine, these
primitives facilitate the control of tile orders between com-
munication and computation. Figure 3a shows the signal
control between communication and computation parts.

Notify primitives require either mode argument or rank
argument to clarity which remote ranks to notify. TILELINK
provides two choices for mode argument: p2p and broadcast.
p2p means that only one target rank will be notified, which
is calculated by the offset of the given tile id in the global
tensor view; broadcast means that all the ranks will be
notified.

Memory Consistency: In parallel executions, memory oper-
ations performed by different processes/threads may become
visible to others in a non-uniform order. The memory consis-
tency model specifies constraints to prevent contradictions
in the observed order of operations across processes/threads.



TILELINK: Generating Efficient Compute-Communication Overlapping Kernels using Tile-Centric Primitives

The signal primitives provide strict memory consistency
semantics. The notify primitives carry release semantics,
ensuring that any memory access occurring before pro-
ducer(peer) tile notify and rank notify cannot be executed
after these notify primitives. Conversely, the wait primitives
carry acquire semantics, ensuring that any memory access
following consumer(peer) tile wait and rank wait cannot
be executed before these wait primitives. This strict memory
consistency must also be taken into account during backend
compilation, which will be discussed later.

3.2.2 Data Primitives

Data primitives facilitate data transfer and include
tile push(pull) data and rank copy data primitives. These
primitives control the resource mapping and tile sizes of
the transferred data. The device-side tile push(pull) data
primitive maps communication to processing cores, while
the host-side rank copy data primitive maps communica-
tion to the copy engine. There are two modes for data
transfer—pull and push—each suited for different synchro-
nization methods. In the pull mode, the producer reads data
from all other ranks and notifies its consumer using local
barriers. In contrast, the push mode allows the producer to
write local data to all other ranks while notifying its remote
consumers of the data’s arrival. Figure 3b illustrates the
differences between the two modes. The choice between
pull and push modes may impact performance (as pointed
out in FLUX (Chang et al., 2024)), depending on factors
such as data shapes, tiling strategies, and available hardware
resources. Notably, the rank copy data primitive supports
both modes through peer-to-peer copying, with the data
transfer direction indicated by the order of the source and
destination pointers.

4 BACKEND MAPPING

The backend of TILELINK handles the compilation of both
communication and computation components into low-level
device codes. To enable code generation for distributed sys-
tems, TILELINK employs a tile-centric mapping technique
that links parts of the communication and computation. In
this section, we first explain the tile-centric mapping ap-
proach and the compilation process used by TILELINK.
Next, we describe how TILELINK ensures memory consis-
tency. Finally, we briefly summarize additional compilation
techniques applied for single device.

4.1 Tile-Centric Mapping

TILELINK uses a tile-centric mapping approach to compile
frontend primitives into low-level code. Tile-centric map-
ping consists of three components: shape mapping, rank
mapping, and channel mapping. Shape mapping associates
each tile id with a specific tensor shape slice. Rank mapping

links each tile id to a device rank. Channel mapping assigns
each tile id to a communication barrier. We use fS , fR, fC
to represent these three mappings, respectively. Depending
on the workload type, different mapping functions should
be used. We classify the different mappings into two groups:
static mapping and dynamic mapping.

Static mapping refers to mappings that can be decided at
compile time. Static mapping is commonly used when data
sharding strategy is fixed such as tensor-parallel MLP and
sequence-parallel self-attention. We use affine operations to
handle static mapping (fS , fR, fC are affine). For example,
for AllGather (pull mode) + GEMM (problem size M ×
N ×K) on R ranks with C channels per rank (each rank
corresponds to C barriers), the producer AllGather uses tile
size Tmp × Tnp, and the input tensor is sharded along M
dimension. Given producer tile tile idp, the shape range,
source rank, and channel can be computed as follows:

M per rank = ⌈M
R

⌉, M per channel = ⌈ M

R ∗ C ⌉,

rangeM = [tile idp ∗ Tmp, tile idp ∗ Tmp + Tmp),

src rank = ⌊ tile idp

⌊M per rank
Tmp

⌋
⌋, channel = ⌊ tile idp

⌊M per channel
Tmp

⌋
⌋.

Similarly, we can compute the mapping from consumer
tile idc to shape range, rank, and channel.

Dynamic mapping refers to mappings computed at runtime,
which are essential for workloads with dynamic data shard-
ing requirements. For example, in the MoE data sharding
strategy, dynamic routing determines the data distribution,
and each tile may require tokens from any other rank. It is
impossible to determine from which ranks to gather data
or at which channel to wait for a barrier at compile time.
Consequently, the mapping must be computed at runtime.
To support dynamic mapping, TILELINK transforms these
mappings into lookup tables, whose values can be filled
at runtime, while the access operations to these lookup ta-
bles are determined at compile time. Formally, dynamic
mapping is

range = [fS low[tile id], fS high[tild id]),

rank = fR[tile id], channel = fC [tile id],

where fS low, fS high, fR and fC are lookup tables, the
values of them will be filled at runtime by other dynamic
logics (e.g., dynamic routing).

4.2 Compilation for Memory Consistency

In backend compilation, the frontend primitives with mem-
ory consistency semantics are compiled to corresponding
device instructions such as ld.global.acquire and red.release.
However, directly translating these primitives is not enough
to guarantee memory consistency. For most computation
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GEMM Kernel:

Input: local tokens[M,K], weights[K,N]

Output: remote gemm_out[M,N]

Reduce Kernel:

Input: local buffer[rank][M,N]

Output: local out[M_per_rank,N]

  if block_id < SM_id – 20 # GEMM kernel:

    tid_m, tid_n = calc_tid(M, N, BLOCK_M, BLOCK_N)

    acc = zeros(BLOCK_M, BLOCK_N)

    for k in range(K / BLOCK_K):

      data = load(tokens, [tid_m, k])

      weight = load(weights, [k, tid_n])

      acc += dot(data, weight)

    store(gemm_out, [tid_m, tid_n], acc)

    producer_tile_nofity([tid_m, tid_n], “p2p”)

  else: # ring reduce kernel

    to_rank = (rank -1 + WORLD_SIZE) % WORLD_SIZE

    tid_m, tid_n = calc_tid(M_per_rank,N,BLOCK_M’,BLOCK_N’)

    for stage in range(WORLD_SIZE):

      seg = (rank + stage + 1) % WORLD_SIZE

      tid_m_global = tid_m + seg * (M_per_rank / BLOCK_M’)

      consumer_tile_wait(tid_m_global, tid_n)

      data = load(gemm_out, [tid_m_global, tid_n])

      if stage != 0:

        peer_tile_wait([tid_m_global, tid_n], rank)

        data += load(buffers[rank], [tid_m_global, tid_n])

      if stage == WORLD_SIZE – 1:

        store(out, data, [tid_m, tid_n])

      else:

        tile_push_data(

          buffers[to_rank], [tid_m_global, tid_n], data)

        peer_tile_notify([tid_m_global, tid_n], to_rank)
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Figure 4. GEMM+RS overlapping kernel using TILELINK.

kernels, multi-stage pipeline is applied to enhance load-
compute balance and improve overall performance. Compil-
ing original programs into multi-stage version requires op-
erator reordering, during which some memory access opera-
tions may be reordered before or after TILELINK primitives
unexpectedly. To address this issue, TILELINK enforces
strict data dependencies between its primitives and their
following load/store operations so that its primitives can be
correctly reordered and unrolled by pipelining passes.

4.3 Other Compilation Optimizations

Apart from the aforementioned techniques, TILELINK
also leverages strategies for single-device optimization to
achieve high performance, which has been well-studied in
previous work (Chen et al., 2018; Tillet et al., 2019b). The
optimizations primarily include two aspects: memory opti-
mization and pipeline optimization. Memory optimization
involves the automatic allocation of on-chip register buffers
and shared memory buffers for computation. Data access to
global buffers is coalesced, and the access pattern to shared
memory is transformed to avoid bank conflicts. Pipeline
optimization involves rearranging data load/store operations
and computations to form a multi-stage pipeline. Local data
copies are mapped to dedicated asynchronous engines, such
as the Tensor Memory Accelerator (TMA) of GPUs. Com-
putation is mapped to high-performance units, such as the
Tensor Core units of GPUs.

5 KERNEL DESIGN WITH TILELINK

To demonstrate the flexibility and generality of TILELINK,
we present how to design overlapped kernels for GEMM +
ring ReduceScatter, AllGather + MoE, and AllGather KV
+ self-attention. These three examples are representative
because they utilize different tile orders (ring and all-to-
all), different mappings (static and dynamic), and difference
hardware resources (device and host).

Figure 4 shows the pseudo code for the GEMM + ring
ReduceScatter kernel. Both computation and communica-
tion use SMs, we use 20 SMs for communication in this
example (see line 1). The producer GEMM stores partial
outputs in the local tensor and notifies its consumer using
producer tile notify (line 9). The consumer ReduceScatter
waits for its producer at line 16. Once the data from the
producer is ready, the consumer kernel performs a local re-
duction (line 20) and passes the partial results to its previous
rank (line 24). Signal control between peer ranks is man-
aged using the primitives peer tile wait and peer tile notify
at lines 19 and 26, respectively. This example uses static
mapping and demonstrates how to program communications
in two directions: producer-consumer and peer-to-peer.

Figure 5 shows the pseudo code for AllGather + MoE.
Again, both computation and communication use SMs, and
we use 20 SMs for communication (see line 1). Note that
MoE requires dynamic routing (topk ids in inputs) to select
experts for each token, necessitating dynamic mapping. We
use table to denote the lookup tables for shape mapping,
rank mapping, and channel mapping. All the primitives in-
volved should take table as arguments so that TILELINK can
generate correct code using the dynamic mappings. Addi-
tionally, the table is required by the load primitive because
it uses the shape mapping in table to gather the correct
tokens (line 11) and the correct top ids (line 12) for the
corresponding tokens, which are needed by the current tile.

Figure 6 shows the pseduo code for AllGather KV + self-
attention (sequence parallel). In this example, communi-
cation use copy engine. we use host primitives to trigger
copy engines. The communication and computation run
on two different streams. Communication is done using
rank copy data primitive, and the tile size for communi-
cation part is simply divide KVCache sequence length (S)
by the total number of ranks (WORLD SIZE). For compu-
tation part, the tile size is different. Tile-centric mapping
is used to guarantee the correct barrier operations between
communication and computation parts.

These examples show that TILELINK is flexible in overlap-
ping kernel design and reduces programming effort, thanks
to our tile-centric primitives and mappings.
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AllGather Kernel:

Input: remote token_shards[WORLD_SIZE, M_per_rank,H]

        lookup tables: table = <f_S, f_R, f_C>

Output: local tokens[M,H]

MoE Kernel:

Input: local tokens[M,H],topk_ids[M,TOPK],

       local weights[E,H,D]

Output: local out[M*TOPK,H]

  if block_id < 20 # AllGather kernel :

    tid_m, tid_n = calc_tid(M, H, BLOCK_M, BLOCK_N)

    data = tile_pull_data(token_shards,[tid_m,tid_n], table)

    store(tokens, data, [tid_m, tid_n])

    producer_tile_notify([tid_m, tid_n], “p2p”, table)

  else: # MoE kernel

    tid_m, tid_n = calc_tid(M*TOPK, H, BLOCK_M’, BLOCK_N’)

acc = zeros(BLOCK_M’, BLOCK_N’)

    for k in range(K / BLOCK_K):

      consumer_tile_wait([tid_m, tid_n], table)

      a = load(tokens, [tid_m, tid_n], table)

      expert_offs = load(topk_ids, [tid_m], table)

      b = load(weights + expert_offs, [tid_z, tid_n])

      acc += dot(a,b) 

    store(out, [tid_m, tid_n], acc)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 5. AG + MoE overlapping kernel using TILELINK.

AllGather:

Input: remote K_shards,V_shards 

               [WORLD_SIZE, B,H,S_per_rank,D]

Output: local K,V[B,H,S,D]

Self-attention Kernel:

Input: local Q_shard[B,H,S_per_rank,D],local K,V[B,H,S,D]

Output: local O[B,H,S_per_rank,D]

  def compute_func(): # Define Self-attention kernel

    tid_z, tid_m_local = calc_tid(

      B*H, S_per_rank, BLOCK_Z, BLOCK_M)

acc = zeros(BLOCK_Z, BLOCK_M, D)

    q = load(Q_shard, [tid_z, tid_m_local])

    for tid_n in range(S/BLOCK_N):

      consumer_tile_wait([tid_z, tid_n])

      k = load(K, [tid_z, tid_n])

      v = load(V, [tid_z, tid_n])

      acc = tile_flash_attn(q,k,v,acc) # use flash-attn

    store(O, [tid_z, tid_m_local], acc)

  

  with comm_stream(): # AllGather Comm with host primitives:

    for r in range(num_ranks):

      for R, L in zip([K_shards,V_shards],[K,V]):

        if r != rank_id:

          rank_copy_data(

           R[r,:,:,:,:],

           L[:,:,r*S_per_rank:(r+1)*S_per_rank,:])

          rank_notify([r],rank_id)

  with compute_stream():

    compute_func() # Call Self-attention kernel
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Figure 6. AG KV + self-attention overlapping Kernel.

6 IMPLEMENTATION

TILELINK is implemented in Python on top of Triton (Tillet
et al., 2019b). We extend Triton’s language features by im-
plementing tile-centric primitives at the Python level, while
the tile-centric mapping mechanism is realized through
Python Abstract Syntax Tree (AST) transformations. The
current implementation can be readily adapted to other com-
piler frameworks such as TVM (Chen et al., 2018) and
MLIR (Lattner et al., 2020).

As shown in Figure 7, the compiler takes as input a pure
Python program combining TILELINK’s primitives with Tri-
ton’s native primitives. A special parameter BlockChannel
is provided to serve as the tile-centric mapping context for

Python AST with BlockChannel

Python AST with 
mapping and inline assembly

Triton IR

Triton GPU IR Distributed IR

LLVM IR

class BlockChannel:
    local_rank: constexpr
    rank: constexpr

    local_num_ranks: constexpr
    num_ranks: constexpr
    num_barriers: constexpr
    num_producer_blocks
    num_consumer_blocks
    barriers_counter_ptrs
    barriers_ready_ptrs
    producer_threshold

TILELINK Compiler

NVSHMEM init

Alloc SHMEM

ran
k 0

Launch

ran
k 1

ran
k 2

ran
k 3

ran
k 4

ran
k 5

ran
k 6

ran
k 7

Free SHMEM

TILELINK RuntimeTILELINK Special Argument

Figure 7. Compilation and Runtime of TILELINK.
computation and communication. The BlockChannel pa-
rameter encapsulates distributed mapping metadata includ-
ing current process rank, total world size, synchronization
barrier configurations, and producer/consumer block rela-
tionships. The Python program is parsed into an AST and
translated into Triton IR. During translation, the BlockChan-
nel parameter is decomposed to construct the tile-centric
mapping using embedded metadata. TILELINK’s primitives
are converted into Triton’s ElementwiseInlineAsmOp. The
Triton IR is then lowered to both Triton GPU IR and a new
Distributed IR introduced by TILELINK. This Distributed
IR is used to translate the special instructions expressed
via ElementwiseInlineAsmOp into LLVM IR, which is fur-
ther compiled into PTX for NVIDIA GPUs. Support for
additional backend architectures can be achieved by trans-
lating the LLVM IR into target-specific low-level assembly.
At runtime, NVSHMEM (NVIDIA, 2025) is used to ini-
tialize the distributed execution environment and allocate
shared memory. The generated code is launched across all
processes to perform concurrent computation and commu-
nication, followed by proper shared memory deallocation
after completion.

7 EVALUATION

7.1 Experiment Setup

In the evaluation, we use three benchmarks: MLP layer,
MoE layer, and self-attention. The input shapes for these
layers are listed in Table 4. We use input configurations
derived from real workloads such as LLaMA (Dubey et al.,
2024), Gemma (Rivière et al., 2024), and Qwen (Yang et al.,
2024). We use Async-TP PyTorch as the baseline for the
decomposition method (Centauri (Chen et al., 2024) and
Dist-Einsum (Wang et al., 2023) are not publicly available),
FLUX (Chang et al., 2024) as the baseline for the fusion
technique (CoCoNet (Jangda et al., 2022) is available but
its source code has been deprecated), and cuBLAS+NCCL
as the baseline for non-overlap. We use consistent parallel
configurations for all the baselines.

7.2 Single Layer Performance

MLP Layer: the MLP layer is composed of two parts, the
first part is mainly composed of AllGather + GEMM, the
second part is mainly composed of GEMM + ReduceScatter,
there is one activation layer (e.g., SiLUMul or GeLUMul)
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Table 4. Benchmark Shapes. S is sequence length, H is hidden
dimension length, I is intermediate size, E is number of experts.

Configurations of MLP
Name S H I Source Model
MLP-1 8192 4096 11008 LLaMA-7B
MLP-2 8192 4096 14336 LLaMA-3.1-8B
MLP-3 8192 3584 14336 Gemma-2-9B
MLP-4 8192 4608 36864 Gemma-2-27B
MLP-5 8192 8192 28672 LLaMA-3.1-70B
MLP-6 8192 8192 29568 Qwen-2-72B

Configuration of MoE
Name S H I E topk
MoE-1 8192 2048 1536 8 2
MoE-2 8192 2048 1536 32 2
MoE-3 8192 2048 1536 32 5
MoE-4 8192 4096 2048 8 2
MoE-5 8192 4096 2048 32 2
MoE-6 8192 4096 2048 32 5

Configuration of self-attention
Name heads head dim sequence length choices
Attn-1 32 128 16k, 32k, 64k, 128k
Attn-2 64 128 16k, 32k, 64k, 128k

between these two parts. We evaluate the two parts sepa-
rately and also evaluate the full performance of the MLP
layer. The results on 8×H800 cluster are shown in Figure 8.
For AG + GEMM, Async-TP PyTorch cannot produce a
speedup because the decomposed GEMMs are too small
to fully utilize the device. Also, according to our tracing
results, Async-TP PyTorch uses too many host-driven syn-
chronizations and thus incurs non-negligible overhead to
the overlapped kernel. FLUX achieves the highest speedup
(1.34× over cuBLAS+NCCL) due to its highly optimized
implementation. TILELINK also achieves a speedup over
cuBLAS+NCCL (1.27×), reaching 94.5% of FLUX’s per-
formance. Note that TILELINK only requires hundreds of
lines of Python code, while FLUX requires thousands of
lines of CUDA code. The overlapped kernel generated by
TILELINK maps AllGather to the DMA engine.

As for GEMM + ReduceScatter, TILELINK gives the best
performance: 1.25× over cuBLAS+NCCL, 2.22× over
Async-TP PyTorch, and 1.28× over FLUX. TILELINK de-
couples the design space of GEMM and ReduceScatter, en-
abling each part to find their best optimizations, while FLUX
uses a tightly coupled fusion kernel for this case, which per-
forms sub-optimally in evaluation. The overlapped kernel
generated by TILELINK maps the ReduceScatter to both
DMA engine and SMs (streaming multiprocessors), which
is a hybrid resource mapping: scatter is done using DMA,
and reduction is done on SMs. Combining both parts with
intermediate activation, TILELINK achieves performance
comparable to FLUX (101.4%) and a 1.24× speedup over
cuBLAS+NCCL. These results show that TILELINK can
achieve performance comparable to state-of-the-art fusion
libraries with significantly less code (as pointed out in the
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motivational example of this paper).

MoE Layer: The MoE layer is much more complex than
MLP layers and requires dynamic mapping during compi-
lation. The MoE layer can also be divided into two parts:
AG + Gather + Group GEMM and Group GEMM + Scat-
ter + Topk Reduce + RS. There is a Gather operator in the
first part and a Scatter + Topk Reduce operator in the sec-
ond part because the dynamic routing shuffles tokens to
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different experts. These two operators can be fused into
Group GEMM kernels. vLLM (Kwon et al., 2023) provides
implementations for such fused Group GEMM operations.

For the first part, Figure 9 shows the evaluation results. The
cuBLAS and CUTLASS baseline implementations do not
fuse the gather and scatter operations into Group GEMM,
resulting in a performance bottleneck. The results from
vLLM show that such fusion can improve performance by
9.82×. TILELINK achieves even better performance than
vLLM (an average of 1.51× improvement) because, in ad-
dition to the gather-scatter fusion, TILELINK also overlaps
communication with computation. In the code generated by
TILELINK, AllGather is mapped to the DMA engine.

For the second part, TILELINK achieves an average speedup
of 1.31× over vLLM and 10.56× speedup over CUT-
LASS+NCCL. This part of MoE has two epilogues: Topk
Reduce and RS. TILELINK overlaps three kernels using
the tile-centric primitives, demonstrating that the primitives
are versatile enough to create extended producer-consumer
chains in practice. TILELINK maps Topk Reduce to SMs,
and maps ReduceScatter to both the DMA engine and SMs.
The full MoE performance is also shown in Figure 9, on aver-
age, TILELINK achieves a 1.14× speedup over vLLM. The
maximal speedup over cuBLAS+NCCL is 20.76×. Note
that existing libraries such as FLUX and Async-TP PyTorch
do not support overlapping MoE layers. TILELINK sup-
ports MoE thanks to its flexible primitives and dynamic
mappings.

Self-Attention Layer: Self-attention is composed of two
batch GEMMs and one softmax, which are often fused

together using Flash-Attention techniques (Dao, 2024).
Sequence-parallel self-attention consists of an AllGather
component and a self-attention computation component.
We first implement Flash-Attention in TILELINK on Hop-
per GPUs and then use TILELINK primitives to overlap
AllGather and Flash-Attention. The performance results are
shown in Figure 10. We test self-attention with different
sequence lengths, from 16k to 128k, covering both short and
long contexts. TILELINK shows consistent speedups over
both the PyTorch non-overlap implementation (Torch) and
RingAttention (Liu et al., 2023) (RingAttn) across all the
sequence lengths. On average, TILELINK achieves a 5.04×
speedup over Torch and a 1.97× speedup over RingAttn.

We also plot the overlap ratio for self-attention, where over-
lap ratio is defined as

ratio =
comp only time+ comm only time− overlap time

comm only time
.

Overlap ratio can be used to measure how much commu-
nication overhead is hidden after overlapping. The results
in Figure 10 shows that TILELINK can effectively overlap
43.9% communication overhead on average.

7.3 End-to-End Evaluation

We integrate TILELINK into PyTorch and evaluate end-to-
end performance for 8 different LLMs on H800 clusters.
We first evaluate the performance on a single node with
8×H800 GPUs. The results are shown in the left part of
Figure 11. The first five LLMs are dense models, while
the other three models are MoE models. Qwen1.5 uses
shared experts in MoE, we combine MLP layer and MoE
layer together to support shared experts. We use batch
size 4 and sequence length 8192. The results show that
on average, TILELINK achieves a 1.32× speedup over the
PyTorch baselines. The average speedup of dense models is
1.20×, which aligns well with the speedup of single layer
MLP. Although TILELINK achieves good speedups for self-
attention, MLP layers dominate the performance of end-to-
end evaluation (note that there are also large MLP layers
before and after self-attention layer). The average speedup
of MoE models is 1.54×, which is lower than the speedup
of a single MoE layer. In MoE models, MLP layers and
MoE layers each occupy about 50% of the total execution
time, so the final speedup lies between the speedup of MLP
and the MoE.

We also deploy TILELINK for multi-node evaluation. Ten-
sor parallel is often used within one node due to the low
inter-node bandwidth. So we use data parallel between two
nodes and use tensor parallel in each node. The results
on two nodes with 8×H800 GPUs show similar outcomes
to those on a single node, as expected. We double the
batch size for this evaluation. The overall speedup is 1.29×,
which is slightly lower than a single node due to additional
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Figure 11. Performance Results of End-to-end Models on 8×H800
and 16×H800.

communication overhead between two nodes.

7.4 Discussion

Support for model-level communication: TILELINK
can be extended to support model-level parallelism (e.g.,
pipeline parallelism). To achieve this, we can integrate
NVSHMEM functionalities into TILELINK’s tile push data
primitive and follow the same compilation techniques as
TILELINK. We leave this for future work.

Support multiple backends: Currently, TILELINK targets
only NVIDIA GPUs. To support more hardware, we can
extend the low-level compilers (e.g., TVM, which supports
more hardware than Triton), while keeping the primitives
and compilation techniques of TILELINK unchanged.

8 RELATED WORK

Compute-communication overlapping has been studied for
years. Early work focuses on CPU clusters with MPI pro-
gramming model (Goumas et al., 2001; Lu et al., 2015;
Marjanovic et al., 2010; Subramoni et al., 2017). With the
fast advancement of LLMs, overlapping computation and
communication on AI accelerators such as GPUs and NPUs
has been proposed (Jangda et al., 2022; Wang et al., 2023;
Chang et al., 2024; Punniyamurthy et al., 2023; Chen et al.,
2024; Ansel et al., 2024).

Decomposition-based overlapping focuses on splitting
operators into smaller ones and overlapping them by rear-
ranging asynchronous pipelines. Dist-Einsum (Wang et al.,
2023) implements overlapping kernels for MLP layers on
Google TPUs; Async-TP PyTorch (Liang et al., 2024) pro-
vides implementations of overlapped AllGather GEMM and
GEMM ReduceScatter; Centauri (Chen et al., 2024) system-
atically explore the three-level design space composed of
model, layer, and operation overlapping. Decomposition-
based method enables fast development and good compati-

bility with existing frameworks.

Fusion-based overlapping uses kernel fusion techniques
to fuse computation kernel with communication kernel. Co-
CoNet (Jangda et al., 2022) first proposes to fuse CUT-
LASS GEMM with NCCL kernels and produces state-of-
the-art performance on V100 GPUs; FLUX (Chang et al.,
2024) follows the idea of CoCoNet and implements high-
performance overlapped kernels on A100 and H800 GPUs;
another fusion library from AMD (Punniyamurthy et al.,
2023) implements various overlapped kernels for DLRM
and LLM on AMD GPUs. These studies require a long
time to develop due to the lack of high-level programmable
primitives. Compared to them, TILELINK provides flexible
primitives and achieves comparable performance.

Overlapping compilers use compilation techniques to gen-
erate efficient overlapped kernels. CoCoNet compiles high-
level operators and schedules into invocations of low-level
CUTLASS GEMM and NCCL kernels. Dist-Einsum com-
piles DNN graphs to device code by decomposing original
large operators into small operators and inserting synchro-
nizations among them. These compilers provide little or
no programming control for optimization choices such as
tile sizes, tile orders, and resource bindings. On the other
hand, code generation compilers (Chen et al., 2018; Tillet
et al., 2019b; Lattner et al., 2020) and auto-tuners (Zheng
et al., 2020b;a; 2022; Feng et al., 2023) provide mature
code generation support for single device. Recent work
from AMD (Punniyamurthy et al., 2023) also use Triton
to generated overlapping kernels. Pallas (Google, 2025) is
a distributed compiler that generates Triton code through
compilation and supports computation-communication over-
lapping. However, the overlapping feature is currently only
available on Google TPUs, not GPUs. TILELINK provides
a set of tile-centric primitives and automatically compiles
them into device code using tile-centric mappings, support-
ing a wide range of workloads.

9 CONCLUSION

To deploy large DNN models on distributed systems, over-
lapping communication and computation is of vital im-
portance. Previous overlapping studies either bring sub-
optimal performance or have difficulty in developing high-
performance kernels. In this paper, we propose TILELINK to
generate high-performance overlapped kernels. TILELINK
uses a set of tile-centric primitives to enhance productivity
and uses tile-centric mappings to generate low-level code.
In experiments, TILELINK achieves from 1.17× to 20.76×
speedups over non-overlapping baselines and comparable
performance to state-of-the-art overlapping libraries.
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