Asura’s Harp: Direct Latent Control of Neural Sound

Kaj Bostrom*
bostromkaj@gmail . com

Abstract

Live neural audio generation has the potential to enable new modes of performance
and experimentation in music and sound art. The latest generation of proprietary
audio models boast high perceptual quality, text and sample prompting, and in
some cases live generation. However, these services are fundamentally limited.
Remote hosting obstructs seamless interaction and customization, while prompt-
based control pigeonholes outputs into existing descriptors and sounds. In this
work, we describe Autoencoding Sequentially Unrolled Amortized Flow (ASUrA-
Flow), a generative audio model capable of live output on local hardware. Inspired
by the emergent latent codes of generative adversarial networks and variational
autoencoders, ASUrA-Flow is designed to be played in real time by directly
modulating its latent control vector without text or audio prompts. We train our
architecture end-to-end on raw audio using amortized flow matching, a novel
distribution-matching objective that provides stable training and efficient, high
fidelity output directly in signal space.

1 Introduction

Achieving a particular sound with a prompt-based audio model requires a recorded sample or a
description that captures the desired quality in existing aesthetic terms. Put another way, prompting
presupposes that we already know what we want from the model, and that we can point to it. A system
that only admits control through prompting therefore fundamentally limits the creative impulse to
look beyond what we have already catalogued. Our goal is to push generative audio modeling past
keyword pastiches. We seek a more responsive, less referential, more open-ended mode of control.
We want models that facilitate play, not just reproduction.

In this paper, we describe Autoencoding Sequentially Unrolled Amortized Flow (ASUrA-Flow), an
architecture for real time neural audio generation. We train ASUrA-Flow end-to-end with amortized
flow matching (AFM), a novel two-time flow matching objective that unifies flow matching [9] and
progressive mean flow self-distillation [3[7]]. We then train a control mapping to expose the latent
manifold learned by the autoencoding objective as a well-behaved dense space of control vectors. This
makes it possible to play ASUrA-Flow in real time with reference-free modulation along arbitrary
paths in latent space. Output samples and source code are available at bostromk.net/ASURA|

2 Background

Treating audio as a Euclidean vector space, just one second of signal can amount to anywhere from
40,000 to 200,000 dimensions depending on sampling rate and channel count. This makes generative
modeling of audio uniquely difficult, in part due to the curse of dimensionality [2] and in part due to
the sheer computational footprint of neural networks with large enough receptive fields to capture
audio context at perceptually relevant timescales. Two families of approaches have recently begun
to yield effective audio models: flow matching over fixed-length samples [12]] and autoregressive

*bostromk.net Work conducted independently and unaffiliated with author’s employer.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Al for Music.

https://bostromk.net/ASURA/
https://bostromk.net

Live input Freestyle control Generation Autoencoding

N\ Control | Direct control > Latent » Lookahead o
® vector adapter vector encoder Training
\ £ data
Random . N
Causal = Decoder slice Signal gy 0O
Live output encoder

1 ¥ X
. Pred. p

Figure 1: An overview of the ASUrA-Flow architecture. Input is provided either in the form of
conditioning audio (‘Autoencoding’) or a manual control vector (‘Freestyle control’). These inputs
are mapped to a latent vector which conditions the output distribution of a frame decoder UNet trained
with an amortized flow matching objective (). Output is produced frame-by-frame and continuously
re-encoded to provide autoregressive conditioning for the frame decoder.

prediction of neural codec symbols (‘codebook language models’) [[1]. Both flow matching models
and codebook LMs make tradeoffs in order to manage the inherent challenges of the problem.

Codebook language models discretize chunks of audio into tokens using a codec model [8]]. This
makes the learning problem tractable by massively compressing the signal and allowing outputs
to be modeled as a series of choices over next tokens at each step. These models allow real-time
generation, but large data-hungry transformer backbones are required to effectively learn the next-
token distribution. Steep data and compute requirements make it impractical to train these models on
self-recorded audio, posing an obstacle to the small-scale custom model paradigm artists find most
exciting and ethically viable [4].

Flow matching models can generate good samples with smaller networks and less training data by
factoring generation into a series of steps moving gradually from noise to signal [9]]. Sadly, this
sequence of steps is also what prevents flow models from generating in real time, as each step requires
a costly neural function evaluation (NFE). The paths between independently sampled noise (source)
and signal (target) used to train a flow model are shown in the left panel of Figure 2} paths along the
resulting trained flow are shown in the center panel. Mean flow models [3 16l [7] try to learn straight
lines from source to target by averaging the velocity along these paths; one-step mean flow paths are
shown in the right panel. For formal descriptions of flow matching and mean flow, see Appendix [A]

Replacing the categorical next-token distribution of a discrete autoregressive transformer with a flow
matching ‘decoder head’ yields continuous autoregressive models (CAMs) capable of sequential
generation directly in continuous signal or embedding space [[L1]]. In this work, we push CAMs to
achieve real-time end-to-end audio output by amortizing the decoder head’s flow into a single step.

Conditional flow Db Pa Mar%mal flow
V(Xa,Xp) v(z,t)

Amortized flow
i(xg,t =0, =1)

Pa Pb Pa Pb

Figure 2: Paths along conditional, marginal, and amortized flows from a unimodal source distribution
Pq to a bimodal target py.

Figure 3: The latent lookahead embedding space learned end-to-end by ASUrA-Flow, visualized
using t-SNE with points colored by Gaussian KDE density. Samples appear to cluster by timbre and
rhythm, presumably because these factors reflect much of the variation in the next-frame distribution.

3 Methods

ASUrA-Flow is a continuous autoregressive model. We divide the signal into small time slices
(‘frames’) and generate by using a flow-based decoder network to translate successive condition
vectors ¢; € R% and noise frames into signal frames. We then overlap and blend the decoded frames
one by one to produce an output audio stream. A causal transformer encoder network produces the
next condition vector from past audio. During training, the condition vector also includes an additive
contribution from a non-causal transformer encoder; this latent ‘lookahead embedding’ is where we
later inject inference-time control.

3.1 Audio Representation

In preliminary experiments, we found that the time-frequency domain was a more effective medium
than the time domain for capturing low-volume, high-frequency signal components. We represent
audio in the time-frequency domain using complex short-time Fourier transform (STFT) coefficients
with logarithmically-rescaled magnitudes. We choose this over other time-frequency representations
like the mel spectrogram because the complex STFT is invertible, meaning we don’t need a separate
vocoder to produce an output waveform.

3.2 Training

We train the decoder to match the empirical distribution of successor frames by minimizing the
amortized flow matching loss (Equation) over a corpus of training audio with respect to the encoder
and decoder parameters. The amortized flow matching loss measures the error between the model’s
predicted mean flow velocity and a ‘target’ average of two substeps, just like the interval-splitting
consistency loss of Boffi et al. [IZIE and Guo et al. [[7]. Consistency training must also enforce the
‘base case’, the curved reference flow, which means spending most of training optimizing the model
to predict something other than the mean flow. Unlike a pure consistency objective, our AFM target
starts from the base flow and corrects it to straighten it in expectation. The learned mean flow is
anchored to the ground-truth distribution coupling, and there is no need to trade off between flow
matching and mean flow consistency. The AFM objective covers every stage of Figure[2] untangling
independent sample couplings into a coherent flow and simultaneously amortizing the integration of
that flow to yield a one-step mapping from noise to signal. More details on the AFM objective are
presented in Appendix [A22]

nterval-splitting consistency training is referred to in that work as ‘progressive self-distillation’.

i 7

g —'—‘-—EL. i
" {l_\;;"hh) e i TG e | R

Figure 4: 6-second samples from ASUrA-Flow containing dynamic control input updates. Top row
patterns: ABC, AB; bottom row: ABABAB, AB

3.3 Control

As we mentioned in Section [I] we want a way to control generation beyond prompting the model
with encoded audio samples. Our solution, inspired by Preechakul et al. [13]] and Esling et al. [3]], is
a direct control adapter that replaces the lookahead embedding from the non-causal encoder. The
adapter is a feedforward neural network trained using the AFM objective to map points from a
simple, dense distribution, i.e. the multivariate normal N (0, I,), to the empirical distribution of
lookahead embeddings. We can then interpolate and explore the model’s latent manifold freely in the
well-behaved input space of the direct control adapter. We note that unlike variational autoencoding
schemes, the distribution-matching adapter approach avoids imposing prior regularization on the
encoder that would tend to reduce the information content of the lookahead embeddings. We use
t-SNE to visualize the learned lookahead embedding space for the music dataset used in our main
experiment in Figure 3]

4 Experiment

We train ASUrA-Flow on a private dataset of 2,000 hours of recorded radio mixes comprising various
genres of dance and electronic music. See Appendix [B]for hyperparameters.

Figure [4] shows generated samples following a series of control adapter input updates over the course
of each clip, demonstrating that interactive play is viable with our approach. Audio versions are
provided as supplemental material.

While we do not feel we would be within our rights to distribute the parameters of a generative model
derived from music that is not ours to rebroadcast, we will provide full training code and encourage
the community to train their own models for personal use.

5 Conclusion

We introduce ASUrA-Flow, a live neural audio model that can be trained end-to-end in a single stage.
Following our position that the creative utility of prompt-based generative models is fundamentally
limited, we abandon prompting and train a control adapter that makes it possible to directly modulate
ASUrA-Flow’s latent lookahead embedding vector in real time. This approach opens the door to new
modes of play in polyphonic audio spaces. We are excited to explore these possibilities further and
even more excited to share our methods and see where others take them.

Acknowledgments

Reluctant thanks to Maya Shamir for moral support. Thanks to Niloofar Mireshghallah and Taylor
Berg-Kirkpatrick for feedback and advice on an early prototype.

References

[1] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts,
M. Tagliasacchi, M. Sharifi, N. Zeghidour, and C. Frank. Musiclm: Generating music from text, 2023.
URL https://arxiv.org/abs/2301.11325,

[2] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Legacy Library. Princeton University
Press, 1961. ISBN 9780691079011. URL https://books.google.com/books?id=POAmAAAAMAAJ.

[3] N. M. Boffi, M. S. Albergo, and E. Vanden-Eijnden. How to build a consistency model: Learning flow
maps via self-distillation, 2025. URL https://arxiv.org/abs/2505.18825|

[4] N. Bryan-Kinns, A. Wszeborowska, O. Sutskova, E. Wilson, P. Perry, R. Fiebrink, G. Vigliensoni,
R. Lindell, A. Coronel, and N. N. Correia. Leveraging small datasets for ethical and responsible ai
music making. In Audio Mostly 2025, 2025. URL https://ualresearchonline.arts.ac.uk/id/
eprint/24065/.

[5] P.Esling, N. Masuda, A. Bardet, R. Despres, and A. Chemla-Romeu-Santos. Universal audio synthesizer
control with normalizing flows, 2019. URL https://arxiv.org/abs/1907.00971,

[6] Z.Geng, M. Deng, X. Bai, J. Z. Kolter, and K. He. Mean flows for one-step generative modeling, 2025.
URL https://arxiv.org/abs/2505.13447.

[7]1 Y. Guo, W. Wang, Z. Yuan, R. Cao, K. Chen, Z. Chen, Y. Huo, Y. Zhang, Y. Wang, S. Liu, and Y. Wang.
Splitmeanflow: Interval splitting consistency in few-step generative modeling, 2025. URL https:
//arxiv.org/abs/2507.16884.

[8] R. Kumar, P. Seetharaman, A. Luebs, I. Kumar, and K. Kumar. High-fidelity audio compression with
improved rvqgan, 2023. URL https://arxiv.org/abs/2306.06546.

[9] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le. Flow matching for generative modeling,
2023. URL https://arxiv.org/abs/2210.02747.

[10] I. Loshchilov and F. Hutter. Decoupled weight decay regularization, 2019. URL https://arxiv.org/
abs/1711.05101,

[11] M. Pasini, J. Nistal, S. Lattner, and G. Fazekas. Continuous autoregressive models with noise augmentation
avoid error accumulation, 2024. URL https://arxiv.org/abs/2411.18447,

[12] K. R. Prajwal, B. Shi, M. Lee, A. Vyas, A. Tjandra, M. Luthra, B. Guo, H. Wang, T. Afouras, D. Kant,
and W.-N. Hsu. Musicflow: Cascaded flow matching for text guided music generation, 2024. URL
https://arxiv.org/abs/2410.20478,

[13] K. Preechakul, N. Chatthee, S. Wizadwongsa, and S. Suwajanakorn. Diffusion autoencoders: Toward a
meaningful and decodable representation, 2022. URL https://arxiv.org/abs/2111.15640,

A Flow

Flow matching (FM) [9] constructs a velocity field that transports samples from a distribution p,
to another distribution p, over R? by training a model 99 (2, t) to estimate the expected velocity
0(z,t) = E[zp — 4] over straight paths between samples x, ~ pg, xp ~ pp that pass through the
intermediate point z = (1 — ¢)x, + tx; for t € [0, 1]. These paths are visualized in the leftmost panel
of Figure 2] In its basic form, the FM objective is:

Lo =B [loo(z8) = (@ —) 3] M

aTb
t~U[0,1]

Optimizing a parametric model 9y(z,t) to minimize (1)) gives an approximation of the marginal
velocity field ©(z, ¢) shown in the center pane of Figure[2l We can produce new samples from p;, by

https://arxiv.org/abs/2301.11325
https://books.google.com/books?id=POAmAAAAMAAJ
https://arxiv.org/abs/2505.18825
https://ualresearchonline.arts.ac.uk/id/eprint/24065/
https://ualresearchonline.arts.ac.uk/id/eprint/24065/
https://arxiv.org/abs/1907.00971
https://arxiv.org/abs/2505.13447
https://arxiv.org/abs/2507.16884
https://arxiv.org/abs/2507.16884
https://arxiv.org/abs/2306.06546
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2411.18447
https://arxiv.org/abs/2410.20478
https://arxiv.org/abs/2111.15640

starting at z = x, ~ p, and following vy (z,) from ¢ = 0 to t = 1. The bunching of paths between
independently sampled z, and x;, creates curvature in v. Following a path through this field requires
reevaluating the velocity many times to keep up with direction changes along the way. Following a
straight velocity field would only require knowing the initial velocity, which would let us convert
samples from p, into samples from py, in a single step.

A.1 Mean Flow

Let % = 0(z,t), z0 = xq ~ Pg and let z; be the resulting value of z at t = 7. Let us define the
‘mean flow map’ u giving the velocity along the straight path between z; and z; s, or equivalently
the average velocity along the marginal flow path between those points:

_ t+6

u(z, t,0) = y = 571/ U(zr, 7)dT 2)
t

Taking the limit as § — 0, we recover u(z,t,0) = (2, t). Fort = 0,0 = 1, u gives us straight

paths directly transporting p, to py, as shown in the right panel of Figure 2]

A parametric mean flow map g can be trained from scratch using either a derivative-integral identity
[6} 7, 3] or an interval-splitting averaging objective . We will pass over the former objective, as it
is less stable and requires a Jacobian-vector product to compute. The interval-splitting progressive
self-distillation or ‘split mean flow’ objective [7, 3] takes the form:

Lour =, B [lio(z0,t,8) = sgOun + (1 = Nug)|3]

up = Uy (Zta t,)‘6)

ug = ﬁg(zt +)\5uA,t+)\5, (1 —)\)5)

3

where sg is the stop-gradient operator. Equation [3|only enforces consistency between a network’s
mean velocity predictions for different values of §, and does not actually anchor a network’s velocity
predictions to a target flow. To train a split mean flow map to match a target flow, Boffi et al. [3]
and Guo et al. [7] add an Lgy; term to the loss, substituting 0g(z,t) = tg(z,t,0) in Equation In
practice, some portion 7, of each batch is sampled with 6 = 0 for Ly and the remaining (1 — 7))
with 6 > 0 for Lsyr. Guo et al. [[7] report that it is necessary to set 7, > 0.5 to ensure convergence.
We hypothesize that this underrepresents the 4 = 1 condition needed for single-step inference.

A.2 Amortized Flow Matching

We want to anchor g to the target flow at § = 0 without restricting § > 0 exposure. To achieve this,
we unify Ly and Lgyr into the amortized flow matching objective:

Carn = B [llao(z.t,6) — sg(ua + (1= Nup +ig(2,,0) = (3~ 2a)) 3] &)
t,8,\

The target-side terms g (2, t,0) — (xp — x,) ensure that £apy coincides with Lgy; when § = 0.
Assuming the network is able to match the first moment of the target velocity, E[dg (2, t,0) — (zp —
Z4)] = 0; by linearity of expectation, £apn then also coincides with Lgyr when minimized.

B Training

We use AdamW [1Q] as our optimizer with learning rate le—4, 5; = 0.9, B2 = 0.95, and weight
decay le—4. We warm up the learning rate linearly over the first 10k steps. We use minibatches
containing 256 target frames sampled from 8 segments (32 decoder targets per segment), with a
segment length of 512 frames. We take the stereo STFT with nppr = 2048 and hop length 512,
so each segment is ~6 seconds of audio sampled at 44.1khz, and each frame is 2 channels x 1024
bins=2048 complex coefficients, which we model with 1d convolutional frame encoder and decoder

networks as a sequence of length 1024 with 4 real-valued channels. Frame encoder networks produce
frame embeddings of 512 dimensions, which is also the condition vector dimension. We compute
an exponential moving average (EMA) of 0 with weight 0.999, and use the EMA parameters at
inference time. We train for 1m steps, totaling 1320 GPU hours across 4 NVIDIA RTX A6000 GPUs
(approximately 2 wall-clock weeks).

	Introduction
	Background
	Methods
	Audio Representation
	Training
	Control

	Experiment
	Conclusion
	Flow
	Mean Flow
	Amortized Flow Matching

	Training

