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Abstract

Data valuation has garnered increasing attention in recent years, given the critical1

role of high-quality data in various applications. Among diverse data valuation2

approaches, Shapley value-based methods are predominant due to their strong3

theoretical grounding. However, the exact computation of Shapley values is often4

computationally prohibitive, prompting the development of numerous approxima-5

tion techniques. Despite notable advancements, existing methods generally neglect6

the incorporation of value distribution information and fail to account for dynamic7

data conditions, thereby compromising their performance and application potential.8

In this paper, we highlight the crucial role of both global and local statistical prop-9

erties of value distributions in the context of data valuation for machine learning.10

First, we conduct a comprehensive analysis of these distributions across various11

simulated and real-world datasets, uncovering valuable insights and key patterns.12

Second, we propose an enhanced data valuation method that integrates the explored13

distribution characteristics into the existing AME framework to refine Shapley14

value estimation. The proposed regularizers can also be seamlessly incorporated15

into various data valuation methods. Third, we introduce a novel approach for16

dynamic data valuation that infers updated data values without recomputing Shap-17

ley values, thereby significantly improving computational efficiency. Extensive18

experiments have been conducted across a range of tasks, including Shapley value19

estimation, value-based data addition and removal, mislabeled data detection, and20

dynamic data valuation. The results showcase the consistent effectiveness and21

efficiency of our proposed methodologies, affirming the significant potential of22

global and local value distributions in data valuation.23

1 Introduction24

Data valuation aims to quantify the value of a datum in a dataset for various applications, including25

business decision-making, scientific discovery, and model training in machine learning [39, 3, 9]. It is26

a rapidly evolving and high-impact research topic in data-centric research communities and industrial27

areas, as a dataset with a large proportion of highly valuable data quite benefits real applications [10,28

30]. Existing data valuation methods can be broadly categorized into four groups [17]: marginal29

contribution-based [22, 25, 16], gradient-based [20, 18], importance weight-based [44], and out-of-30

bag estimation-based [23] methods. Among these, the marginal contribution-based approach has31

emerged as the most popular and delivers strong performance. This method quantifies a datum’s value32

by assessing the average change in utility when the datum is removed from a set of fixed cardinality.33

An important index, namely, Shapley value which is a key concept in cooperative game [40, 33], is34

usually utilized to calculate the marginal contribution for data valuation. Due to its solid theoretical35

basis, Shapley value is among the primary choices in data valuation [37, 27, 22, 41]. However,36

the accurate calculation of the Shapley value for a given data corpus is nearly intractable as the37
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computational complexity is about O(2N ) for N samples. Therefore, researchers have made efforts38

toward the approximate yet efficient valuation methodology. For example, Jia et al. [15] investigated39

the scenario when data are employed for training a KNN classifier and proposed a novel efficient40

method, KNN Shapley, exactly in O(N logN) time. Moreover, a recent study introduces a sparsity41

assumption on data values to alleviate the computational burden associated with an approximate42

method, specifically the Average Marginal Estimation (AME) approach [25].43

Although promising results are obtained, we argue that the potential of value distribution in data44

valuation has been largely neglected in nearly all previous studies. The sparse assumption utilized in45

AME actually presumes that the data values in a dataset conform to the Laplace distribution (detailed46

in Section 2). However, our findings indicate that this assumption may not always be justified.47

The value distribution in this study consists of two parts: local distribution which captures the48

relationship between a datum and its neighborhood, and global value distribution for all involved data.49

Through our empirical analysis, we have observed that the distribution of data values in a dataset50

more closely follows a Gaussian distribution rather than a Laplace distribution. Furthermore, our51

findings indicate a strong correlation among the values of nearby samples (i.e., samples within the52

same neighborhood). Specifically, the similarity in values between neighboring instances within the53

same category is pronounced, whereas the similarity between neighboring samples from different54

categories is minimal.55

Another key motivation for this study is dynamic data valuation, which involves quantifying data56

values in scenarios where new data is introduced or existing data is removed. To the best of our57

knowledge, only one existing study tries to address dynamic data valuation [46]. This pioneering work58

adapts the traditional Shapley value calculation into an incremental paradigm, achieving a significant59

reduction in computational cost—up to half—when adding or removing a datum. Building on our60

earlier observations where the value of an individual datum can be inferred from its surrounding61

neighborhood, we are inspired to explore an alternative approach to dynamic data valuation.62

This study investigates both the global and local distribution characteristics of data values and63

explores how these characteristics can be applied to both conventional and dynamic data valuation64

methods. First, various synthetic and real datasets are leveraged to make statistical analyses for the65

characteristics of global and local value distributions. Useful observations and clues are obtained on66

the basis of the statistical results and the discussion of previous methods. Second, two new methods67

for data valuation are proposed. Specifically, the first method applies the distribution characteristics68

to one classical Shapley value-based data valuation method, namely, AME [25]. Many existing69

methods can replace AME in our approach. The second method introduces a novel optimization70

problem that integrates distributional characteristics for dynamic data valuation, eliminating the71

need to re-estimate the Shapley values of the data, thus significantly improving efficiency. Third,72

comprehensive experiments are conducted on various benchmark datasets to evaluate the effectiveness73

of our methodologies in data valuation across a range of tasks.74

The experimental results on Shapley value estimation indicate that, compared to the AME approach,75

our method provides a more accurate approximation of the true Shapley values. Moreover, experi-76

ments on value-based point addition and removal tasks demonstrate the effectiveness of our approach77

in identifying both influential and poisoned samples. Furthermore, our method outperforms other78

data valuation techniques in mislabeled data detection tasks. Additionally, the proposed dynamic data79

valuation approaches consistently achieve state-of-the-art performance while significantly enhancing80

computational efficiency.81

2 Related Work82

Data Valuation. High-quality data play a crucial role in numerous real-world applications [7,83

36, 26]. However, real-world datasets often exhibit heterogeneity and noise [24, 29]. Therefore,84

accurately quantifying the value of each datum within a dataset is essential for various applications85

and data transactions in the data market. As discussed in Section 1, existing data valuation methods86

can be broadly categorized into four main types:87

• Marginal contribution-based methods: This kind of method calculates the differences of88

the utility with or without the datum to be quantified. The larger the utility difference is,89

the more valuable the datum is. Representative methods include leave-one-out (LOO) [17],90
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Data Banzhaf [38], and a series of Sharpley value-based methods such as Data Shapley [11],91

Beta Shapley [22], and AME [25].92

• Gradient-based methods: This kind of method evaluates the change in utility when the93

weight of the datum under assessment is increased. Two representative methods are Influence94

Function [6] and LAVA [18].95

• Importance weight-based methods: This kind of method learns an important weight for96

a datum to be quantified during training and takes the weight as the value [7]. Naturally,97

importance weight-based methods are particularly proposed for machine learning applica-98

tions. One representative method is DVRL [44], which utilizes the reinforcement learning99

technique to learn sample weights.100

• Out-of-bag estimation-based methods: This kind of method is also designed particularly101

for machine learning tasks [36]. The representative method, Data-OOB [23], calculates102

the contribution of each data point using out-of-bag accuracy when a bagging model (e.g.,103

random forest) is employed.104

Additionally, Jiang et al. [17] developed a standardized benchmarking system for data valuation. They105

summarized four downstream machine learning tasks for evaluating the values estimated by different106

data valuation methods. Their results suggest that no single algorithm performs uniformly best across107

all tasks. Moreover, Zhang et al. [46] proposed an efficient updating method for dynamically adding108

or deleting data points. In their study, three specific algorithms are introduced, which reduce the109

overall computational cost compared to previous Shapley value-based methods. However, existing110

algorithms largely disregard the distributional characteristics of data values, leading to suboptimal111

performance and efficiency.112

Distribution-Aided Learning. In machine learning, several approaches have explored the use of113

distributional information during model training [35, 45]. Two prominent methods, Lasso [13] and114

Ridge regression, incorporate prior distributions of model parameters in the context of regression.115

Take Lasso as an example, it learns the model by solving min
ω

∑
x ||y − ωTx||22 + λ||ω||1, where116

ω is the model parameter, x is a sample, y is the target, and λ is a hyperparameter that controls the117

strength of the regularization. Lasso can be inferred from a statistical view. Assuming that the prior118

distribution ω conforms to a Laplace distribution as follows:119

ω ∼ 1

2σ
exp(−||ω||1

σ
), (1)

where σ is a parameter. When the maximum a posteriori estimation is applied, we obtain120

ω∗ = argmax
ω

ln[
∏
x

1√
2πσ1

exp(
−||y − ωTx||22

2σ2
1

) · 1

σ2
exp(−||ω||1

σ2
)]

∼ argmin
ω
||y − ωTx||22 +

2σ2
1

σ2
||ω||1,

(2)

where the coefficient 2σ2
1/σ2 can be reduced to a single hyperparameter λ. The loss in Eq. (2) is121

exactly the loss in Lasso. If the distribution in Eq. (1) is replaced by the Gaussian distribution,122

then Ridge regression can be obtained. Additionally, in multi-task learning, the distribution of the123

model parameters is also utilized to connect the multiple tasks. A widely used regularizer [5] is124 ∑
t ||ωt − ω̄||22, where ωt is the model parameter of the tth task and ω̄ is the mean of the model125

parameters. This underlying assumption for this regularizer is that ωt conforms to a Gaussian126

distribution with the mean ω̄.127

Local distribution is also widely utilized in various machine learning tasks. Most local distribution128

information refers to the high similarity between samples that are close to each other. For example,129

samples in the neighborhood usually share the same labels in statistics. Therefore, a well-known130

yet effective classifier, namely, KNN [31], is developed. Moreover, Zhu et al. [48] designed a new131

linear discriminative analysis method to seek the projected directions which makes sure that the132

within-neighborhood scatter is as small as possible and the between-neighborhood scatter is as large133

as possible. Furthermore, Zhong et al. [47] revealed that a DNN trained on the supervised data134

generates representations where a generic query sample and its neighbors usually share the same135

label. So far, local distributional information has not been utilized in the field of data valuation.136
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Add Remove

Conforming to Gaussian distribution:

P-value: 0.5621699690818787

Not conforming to Laplace distribution:

P-value: 1.5124973187260856e-14

Conforming to Gaussian distribution:

P-value: 0.7282352447509766

Not conforming to Laplace distribution:

P-value: 1.928711082071318e-14

(a) CIFAR10-embeddings (b) Random (c) Same category (d) Different category

(b) Electricity(a) Random

Figure 1: Distributions of data values after min-max normalization for CIFAR10-embeddings (a)
and Random (b). The average relative difference between the value of a sample and the values of its
neighbors within the same (c) and different (d) categories. ϵ denotes the neighborhood range.

3 Empirical Exploration137

We conduct comprehensive analytical experiments on both simulated and real datasets to investigate138

the properties of global and local value distributions, as well as the changes in value when new data139

are added or existing data are removed. Details of the datasets used are presented in the Appendix.140

Analysis of Global and Local Value Distributions. This section investigates the global and local141

value distributions. To estimate the Shapley values of samples, we apply the AME method [25],142

setting the number of sampled subsets for each dataset to the total number of samples1. This approach143

ensures that the estimated scores asymptotically converge to the true Shapley values as the number of144

sampled subsets is large. Two statistical analyses are performed on the estimated values. The first145

analysis examines the distribution of values for all samples within each dataset, while the second146

investigates the relative difference2 between a sample’s value and the values of its closest neighbors.147

Figs.1(a) and (b) illustrate the value distributions for two datasets: CIFAR10-embeddings and a148

synthetic dataset, "Random," generated using Eq. (12) in the Appendix. While these distributions149

resemble Gaussian or Laplace distributions, the KStest hypothesis test [19], shown below the graph,150

indicates that these value distributions align more closely with a Gaussian distribution. More results151

are presented in the Appendix. These findings suggest that the value distribution is more accurately152

approximated by a Gaussian distribution, rather than the Laplace distribution assumed by AME.153

The local characteristics of value distributions are also examined across various datasets. Specifically,154

we investigate the relative difference between a sample and its neighbors within the same and across155

different categories. As shown in Figs. 1(c) and (d), increasing the neighborhood range, ϵ, leads to an156

increase in the relative differences between samples within the same category and a decrease between157

samples from different categories. Furthermore, the relative difference within the same category is158

smaller compared to that between samples from different categories. These results highlight that a159

sample’s value tends to align more closely with the values of its neighbors within the same category,160

with this alignment becoming stronger as the distance between samples decreases. Conversely, a161

sample’s value shows greater divergence from the values of its neighbors from different categories,162

with the relative difference increasing as the distance between them decreases. We have confirmed163

that these observations remain consistent across various datasets.164

Analysis of Value Variations under Dynamic Data Conditions. Two statistical analyses are165

conducted to examine the variation in data values when the dataset is altered. In the first analysis,166

90% of the original dataset is reserved, and the AME model is applied to compute the data values167

for this subset. The remaining 10% of samples are then added, and new values for all data points168

are recalculated. The value distributions of the 90% of samples before and after adding new data are169

shown in Fig. 2(a). In the second analysis, 10% of the dataset is removed, and the value distributions170

of the remaining 90% of samples, before and after the removal, are shown in Fig. 2(b). The results171

indicate that while the values of the original samples exhibit some variation with the addition or172

removal of data, these variations are relatively small. Specifically, the changes in the mean and173

variance of the values in both datasets are less than 0.05 and 0.01, respectively.174

1Under this setting, the sparsity assumption is not required, allowing us to use the Mean Square Error
(MSE)-based estimation in AME, rather than its Lasso-based approximation.

2The relative difference between two values, |a| and |b| is calculated as |a−b|
max |a|,|b| .
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Add Remove

Conforming to Gaussian distribution:

P-value: 0.5621699690818787

Not conforming to Laplace distribution:

P-value: 1.5124973187260856e-14

Conforming to Gaussian distribution:

P-value: 0.7282352447509766

Not conforming to Laplace distribution:

P-value: 1.928711082071318e-14

(a) CIFAR10-embeddings (b) Random (c) Same category (d) Different category

(b) Electricity(a) Random

Figure 2: Variation in value distribution after adding (a) and removing partial data points (b) from the
Random and Electricity datasets.

Pattern Summary. Based on the aforementioned empirical analyses, the following observations175

and insights are summarized to guide the development of new methods:176

• The distribution of data values across the entire dataset is found to more closely resemble177

a Gaussian distribution rather than a Laplace distribution. Therefore, in this study, the178

Gaussian distribution is adopted as the prior for data values.179

• The similarity in values between adjacent samples within the same category is substantial,180

while the similarity between adjacent samples from different categories is minimal.181

• When new data are added or existing data are removed from the original dataset, the values182

of samples experience changes, though these variations are relatively minor in magnitude.183

In the following section, these three summarized conclusions will serve as the foundational principles184

for developing our new data valuation methods.185

4 Methodology186

Our approach leverages the AME method as a case study to illustrate the application of both global187

and local distribution information in data valuation. In Section 4.4, we further investigate how the188

integration of global and local value distribution information can be extended to other data valuation189

methods. We begin by presenting a concise overview of the AME method.190

4.1 Revisiting the AME Approach191

AME is a representative data valuation approach based on marginal contributions. It begins by192

sampling multiple subsets from the original dataset and utilizes the performance (e.g., classification193

accuracy) of models trained on each subset as the utility measure. If M subsets are compiled,194

thenM models will be trained, resulting inM corresponding utility scores. For each model, an195

N -dimensional feature vector is constructed to represent the composition of the training subset,196

where N denotes the total size of the training dataset. Specifically, the i-th dimension of the feature197

vector for the m-th model, denoted as Xm,i, is defined as follows: Xm,i =
1√
vp

if xi participates198

in the training of the m-th model, and Xm,i = − 1√
v(1−p)

otherwise, where v = Ep[
1

p(1−p) ] and p199

represents the sampling rate for each training point.200

The AME values of the training data are subsequently computed using Lasso regression as follows:201

β̂ = arg min
β∈RN

[
||U −Xβ||22 + λ||β||1

]
, (3)

where β̂ ∈ RN is the optimal linear fit on the (X,U) dataset, which contains the values of all training202

samples; U ∈ RM refers to the utility vector derived fromM trained models. Specifically, Um203

denotes the utility of the mth model. λ is a hyperparameter that governs the strength of regularization.204

Obviously, Eq. (3) implicitly assumes the Laplace distribution prior (i.e., sparse assumption) for205

values of samples in the dataset. The advantage of this prior is that the number of sampled subsets,206

M, can be much smaller than N . Since the training time for a single model can be considerable in207

many tasks, selecting a smaller value forM can significantly reduce the overall time cost, particularly208

when N is large for a given dataset.209
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4.2 Global and Local Characteristics-based Data Valuation Approach210

The optimization problem utilized by AME can be reformulated as follows:211

β̂ = arg min
β∈RN

[
||U −Xβ||22 + λRg(β)

]
, (4)

where Rg(·) denotes a regularizer that incorporates the global statistical prior for the data values.212

Based on our empirical analysis, the value distribution is more accurately modeled by a Gaussian213

distribution rather than a Laplace distribution. Therefore, the regularization termRg(β) should be214

set toRg(β) = ||β||2, thereby transforming the optimization problem into a Ridge regression.215

Meanwhile, based on our findings regarding the local statistical characteristics, which indicate that216

the similarities in values between adjacent data points within the same category are substantial, while217

those between adjacent samples from different classes are minimal, we propose a carefully designed218

regularization term to refine the data values: Rl(β) =
∑

xi∈D
∑

xj∈Nk(xi)
Si,j(βi − βj)

2, where219

βi and βj denote the values associated with xi and xj , respectively. Nk(xi) denotes the k-nearest220

neighborhood of the sample xi. Si,j is designed to capture the similarity between the values of221

samples xi and xj , with consideration given to both their labels and feature similarities. Specifically,222

for samples from the same category, the smaller the distance between them, the smaller the difference223

in their values should be. In contrast, for samples from different categories, the smaller the distance224

between them, the larger the difference in their values should be. Therefore, the following similarity225

metric Si,j is defined: Si,j = cos(xi,xj) · [2I(yi = yj)− 1]. The cosine similarity cos(xi,xj) is226

computed as cos(xi,xj) =
xi·xj

|xi||xj | . Moreover, I(·) represents a indicator function. If yi = yj , then227

Si,j = cos(xi,xj); if yi ̸= yj , then Si,j = − cos(xi,xj).228

Consequently, our proposed Global and LOcal Characteristics-based data valuation approach, termed229

GLOC, calculates data values by solving the following optimization problem:230

β̂ = arg min
β∈RN

[
||U −Xβ||22 + λ1Rg(β) + λ2Rl(β)

]
, (5)

where the two regularizers,Rg(·) andRl(·), are defined as follows:231

Rg(β) = ||β||2,

Rl(β) =
∑
xi∈D

∑
xj∈Nk(xi)

Si,j(βi − βj)
2. (6)

The hyperparameters λ1 and λ2 control the strengths of the global and local regularizers, respectively.232

The algorithm for GLOC is provided in Algorithm 1 of the Appendix.233

4.3 Global and Local Characteristics-based Dynamic Data Valuation Approach234

We further propose two dynamic data valuation methods (termed IncGLOC and DecGLOC) based235

on the identified global and local distribution characteristics, specifically designed for scenarios236

involving the addition of new data and the removal of existing data.237

Here, we focus on incremental data valuation, while the optimization for decremental data valuation238

follows a similar approach, which is detailed in the Appendix. Let the original dataset beD, containing239

N samples, and the new data to be added be D′, with N ′ samples. The augmented dataset is denoted240

as D̂ = D ∪D′, and let βcur represent the original data values in D.241

In contrast to the only existing research on dynamic data valuation [46], which relies on recalculating242

Shapley values, this study investigates an alternative path that avoids the need to re-estimate Shapley243

values, thereby improving efficiency. Specifically, we aim to explore whether it is possible to infer244

the values of all data in D̂ based solely on the dataset D̂ and the original data values, βcur.245

As empirically analyzed in Section 3, the changes in value should align with the following insights:246

• After incorporating D′ into D, the values of the samples in D will be adjusted. However, the247

changes in data values before and after the inclusion of new data are anticipated to remain248

within a limited range.249

• The global value distribution of samples in D̂ is expected to follow a Gaussian distribution.250
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• The values of all data in D̂ should follow the principle of neighborhood consistency, whereby251

adjacent samples from the same category exhibit similar values, while those from different252

categories display distinct value differences.253

Based on the aforementioned observations, we formulate the following optimization problem to254

determine the values of the samples in the expanded dataset D̂:255

min
β

∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2,

s.t., |βcur
i − βi| ≤ ϵi,∀xi ∈ D,

(7)

where ϵi represents the upper bound on the permissible variation in the value of xi. Its value depends256

on both the variation in the dataset, quantified by the ratio |D̂|/|D|, and the neighborhood of xi. In257

general, as the dataset variation increases, ϵi also increases. Similarly, larger variation within the258

neighborhood of a data point leads to a greater value difference, thereby increasing ϵi. Based on259

these insights, we propose a heuristic definition for ϵi, which has been empirically validated for260

effectiveness in our experiments: ϵi =
|D̂|
|D| [1 + rNk

(xi)] ϵ0, where rNk
(xi) represents the variation261

ratio within the k-nearest neighborhood of xi. Specifically, if all k-nearest neighbors undergo262

changes, then rNk
(xi) = 1; conversely, if all of its k-nearest neighbors remain unchanged, then263

rNk
(xi) = 0. Additionally, ϵ0 is a constant that remains uniform across all samples.264

To facilitate solving Eq. (7), we reformulate it as the following unconstrained optimization problem:265

min
β

[
∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2 + η2

∑
xi∈D

ϵi
ϵ̄
(βcur

i − βi)
2], (8)

where η1 and η2 control the relative importance of the three objectives. To expedite the optimization266

of Eq. (8), the initial values for the data in D′ can be assigned as follows:267

βi =

∑
xj∈Nk(xi)&xj∈D Si,jβcur

j∑
xj∈Nk(xi)&xj∈D Si,j

. (9)

This initialization is actually a weighted average of the original values of the samples in the neighbor-268

hood of xi, with the weights determined by their similarities.269

The decremental data valuation approach follows a similar pipeline and is provided in detail in270

Appendix A.2 due to space limitations. In contrast to the only existing research on dynamic data271

valuation [46], which relies on re-computing the Shapley values of samples, our method directly272

infers the updated values by leveraging characteristics of value distributions and patterns of value273

variation, thereby significantly enhancing computational efficiency.274

4.4 Adaptation to Alternative Data Valuation Approaches275

This study introduces a new path for data valuation that incorporates both global and local distribution276

characteristics of data values. The proposed regularizers can be easily integrated with most existing277

data valuation methods, except for the AME approach. Specifically, the regularization terms related278

to value distributions can be employed to optimize data values, either alongside the original valuation279

method or afterward. The first scenario, which combines our regularizers with other methods, has280

been demonstrated using the AME method. In the second scenario, the regularizers are directly281

utilized as optimization objectives to refine the obtained data values. This approach has also been282

demonstrated to enhance the effectiveness of other valuation methods, as detailed in Appendix A.7.283

5 Experiments284

Our experimental investigations are divided into three main components3. First, we evaluate the285

performance of GLOC in Shapley value estimation. Second, we examine two downstream valuation286

tasks: value-based point addition and removal, as well as mislabeled data detection, to validate287

the effectiveness of GLOC in identifying valuable and poisoned samples. Finally, we assess the288

performance of our proposed dynamic data valuation methods, IncGLOC and DecGLOC, in Shapley289

value estimation under incremental and decremental data valuations.290
3Our code is available in the submitted supplementary materials.
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Table 1: Comparison of Shapley value estimation. Ratios of MSEs
between AME and GLOC (simplified to the simplest integer ratio) are
reported. The MSEs for GLOC are consistently smaller than those for
AME, highlighting its superiority in Shapley value estimation.

Dataset Electricity MiniBooNE CIFAR10 BBC Fried 2Dplanes
Ratio 50:1 8:1 96:1 6:1 82:1 105:1
Dataset Pol Covertype Nomao Law Creditcard Jannis
Ratio 7:1 113:1 44:1 18:1 54:1 206:1

Figure 3: Ablation stud-
ies to the two regularization
terms: Rg andRl.

Datasets and Compared Baselines. Building on prior research [17, 23], we conduct experiments on291

twelve classification datasets covering tabular, text, and image data: Electricity [8], MiniBooNE [32],292

CIFAR10 [21], BBC [12], Fried [1], 2Dplanes, Pol, Covertype, Nomao [2], Law, Creditcard [4],293

and Jannis. A detailed summary of these datasets is provided in Table 3 of the Appendix. The294

data values are assessed within the training set and evaluate model utility using the validation set.295

Furthermore, we compare our proposed approaches with various data valuation techniques, including296

AME [25], LOO [17], Influence Function [20], DVRL [44], Data Shapley [11], KNN Shapley [15],297

Volume-based Shapley [43], Beta Shapley [22], Data Banzhaf [38], LAVA [18], and Data-OOB [23],298

as detailed in Appendix A.4. Additional experimental details are provided in the Appendix.299

Experiments on Shapley Value Estimation. This section assesses the effectiveness of GLOC and300

AME in estimating Shapley values. Given the benchmark Shapley values (SV ) and the estimated301

values β produced by AME and GLOC, the MSE between the estimated values and the benchmark302

Shapley values is defined as: MSE(SV,β) = 1
|D|

∑|D|
i=1(SVi − βi)

2. Table 1 reports the ratio of303

MSEs between AME and GLOC in Shapley value estimation, demonstrating that GLOC consistently304

achieves lower MSEs across various datasets. These results manifest that GLOC provides a closer305

approximation to the true Shapley values compared to AME, making it a more accurate and effective306

approach for assessing the contribution of training samples. Additionally, ablation studies are307

conducted to evaluate the effectiveness of the proposed global (Rg) and local (Rl) regularizers.308

As shown in Fig. 3, GLOC achieves optimal performance when incorporating two regularizers,309

highlighting the importance of leveraging both global and local value distributions in data valuation.310

Experiments on Value-based Point Addition and Removal. To validate the effectiveness of311

GLOC in distinguishing valuable samples from harmful ones, we conduct point addition and removal312

experiments following [11, 23]. For point removal, data points are eliminated from the training set in313

descending order of their assigned values. After each removal, a logistic regression model is retrained314

on the remaining dataset, and its test performance is evaluated on a holdout set. Ideally, removing the315

most informative samples first could result in a degradation of model performance. Conversely, for316

point addition, data points are introduced in ascending order of their values. Similar to the removal317

process, model accuracy is expected to remain low initially, as detrimental samples are added first.318

All experiments are conducted on a perturbed dataset with 20% label noise, with the holdout test set319

containing 3K samples. Figs. 4(a) and (b) compare the performance of different valuation methods in320

the context of data removal. GLOC consistently exhibits the most significant decline in performance,321

highlighting its effectiveness in identifying high-quality samples. Similarly, from Figs. 4(c) and (d),322

GLOC demonstrates the worst performance, underscoring its ability to detect poisoned data.323

Experiments on Mislabeled Data Detection. Mislabeled samples often degrade model perfor-324

mance [42], making it important to assign them low values. Previous studies have shown that AME325

performs poorly in detecting mislabeled data. In this section, we compare the detection capabilities326

of GLOC with several Shapley value-based valuation approaches. We randomly select pnoise% of327

the entire dataset and alter their labels to one of the other classes. We consider four different noise328

Add Remove

Conforming to Gaussian distribution:

P-value: 0.5621699690818787

Not conforming to Laplace distribution:

P-value: 1.5124973187260856e-14

Conforming to Gaussian distribution:

P-value: 0.7282352447509766

Not conforming to Laplace distribution:

P-value: 1.928711082071318e-14

(a) CIFAR10-embeddings (b) Random (c) Same category (d) Different category

(b) Electricity(a) Random

(a) Electricity (b) Fried (c) MiniBooNE (d) 2Dplanes

(a) MiniBooNE (b) Electricity (c) Fried (d) 2Dplanes

(a) MiniBooNE (b) Electricity (c) Fried (d) 2Dplanes

(b) Electricity(a) MiniBooNE (c) Fried (d) 2Dplanes

(a) Adding one (b) Adding multiple (c) Removing one (d) Removing multiple

Figure 4: Accuracy variation across different ratios of removed and added data points. We prioritize
removing data points with larger values and adding those with smaller values.
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Conforming to Gaussian distribution:

P-value: 0.5621699690818787

Not conforming to Laplace distribution:

P-value: 1.5124973187260856e-14

Conforming to Gaussian distribution:

P-value: 0.7282352447509766

Not conforming to Laplace distribution:

P-value: 1.928711082071318e-14

(a) CIFAR10-embeddings (b) Random (c) Same category (d) Different category

(b) Electricity(a) Random

(a) Electricity (b) Fried (c) MiniBooNE (d) 2Dplanes

(a) MiniBooNE (b) Electricity (c) Fried (d) 2Dplanes

(a) MiniBooNE (b) Electricity (c) Fried (d) 2Dplanes

(b) Electricity(a) MiniBooNE (c) Fried (d) 2Dplanes

(a) Adding one (b) Adding multiple (c) Removing one (d) Removing multiple

Figure 5: F1-scores for noise detection at varying noise ratios across four datasets. GLOC consistently
outperforms the compared baselines in detection performance across various noise levels.

Table 2: MSEs of various methods in data point addition and removal. The best and second-best
results are highlighted in bold and underlined, respectively. The data values estimated by our
proposed approaches (IncGLOC and DecGLOC) exhibit the smallest MSEs, indicating their closer
approximation to the Shapley values.

Manner Add Remove
Dataset Electricity MiniBooNE CIFAR10 Fried Electricity MiniBooNE CIFAR10 Fried
MC 5.76e-5 7.95e-5 4.65e-5 2.57e-5 7.63e-6 5.06e-6 4.89e-5 1.21e-5
TMC 8.75e-4 1.25e-4 4.89e-4 1.23e-5 4.43e-5 6.08e-5 5.77e-4 3.42e-4
Delta 7.76e-6 4.78e-6 8.91e-6 4.88e-6 3.89e-5 3.58e-5 2.78e-5 1.29e-5
KNN 3.88e-5 5.67e-6 2.45e-5 5.34e-5 7.65e-6 6.93e-6 6.79e-6 4.32e-5
KNN+ 3.45e-5 4.56e-5 5.24e-5 6.45e-6 2.48e-6 5.67e-6 3.74e-5 4.56e-5
Ours 1.73e-6 1.99e-6 3.29e-6 2.17e-6 0.95e-6 2.00e-6 2.55e-6 2.27e-6

levels: pnoise ∈ {5, 10, 15, 20}. Using K-means [28], we cluster the data points based on their data329

values into two groups. Points in the cluster with the lowest mean values are predicted as mislabeled330

samples. The F1-score is computed by comparing the predictions with the actual labels. Fig. 5331

presents the F1-scores for noise detection across four datasets at different noise levels. The results332

indicate that GLOC consistently outperforms other methods across various noise ratios and datasets.333

Experiments on Dynamic Data Valuation. This section evaluates the performance of our two334

proposed dynamic data valuation approaches, IncGLOC and DecGLOC, in scenarios involving335

the addition of new samples or the removal of existing ones. The average MSE is also used to336

assess the effectiveness of different methods in estimating Shapley values. In accordance with the337

only existing research on dynamic data valuation [46], the compared methods include Monte Carlo338

Shapley (MC), Delta-based algorithm (Delta), KNN-based algorithm (KNN), KNN+-based algorithm339

(KNN+), which are proposed by [46], and Truncated Monte Carlo Shapley (TMC) [11]. Table 2340

presents the comparison results for adding or removing a single data point, while the results for341

adding or removing multiple data points are provided in the Appendix. The proposed IncGLOC and342

DecGLOC methods consistently achieve the lowest MSEs across various datasets, demonstrating343

their effectiveness in Shapley value estimation under dynamic data conditions.344

Additionally, we compare the computational complexity of various data valuation methods to assess345

the efficiency of our proposed approaches. The results are provided in Fig. 9 of the Appendix.346

Methods such as KNN, KNN+, and our approaches derive updated data values from current values347

without recalculating the Shapley values, resulting in low time consumption. In contrast, methods348

that require re-estimating the Shapley values, such as MC and TMC, entail significant computational349

overhead for dynamic data valuation, even when adding or deleting a single data point.350

6 Conclusion351

This study proposes the integration of global and local statistical information of data values into the352

data valuation process, a perspective that has often been overlooked by previous approaches. By353

examining the characteristics of value distributions, we introduce a new data valuation method based354

on AME that incorporates these distribution characteristics. Furthermore, we present two dynamic355

data valuation algorithms designed for incremental and decremental data valuation, respectively.356

These algorithms compute data values based solely on the original and updated datasets, alongside357

the original data values, without requiring additional Shapley value estimation steps, thus ensuring358

computational efficiency. Extensive experiments across various tasks—such as Shapley value estima-359

tion, point addition and removal, mislabeled data detection, and incremental and decremental data360

valuation—demonstrate the significant effectiveness and efficiency of the proposed methodologies.361
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A Appendix495

A.1 Calculation Procedure for GLOC496

The complete algorithm for our proposed GLOC approach is outlined in Algorithm 1.497
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Algorithm 1: Algorithm of GLOC.

Input: Training data D = {(xi, yi)}Ni=1, number of sampled subsetsM, probability distribution
P = Uniform{p1, p2, · · · , pJ }, regularization hyperparameters λ1 and λ2, neigborhood
size k, and others.

Output: Values β for all data points in D.
1 Initialize X ← zeros(M, N); U ← zeros(M);
2 for m← 1 toM do
3 Bm ← {}, p ∼ P;
4 for i← 1 to N do
5 r ∼ Bernoulli(p);
6 if r = 1 then
7 Bm ← Bm + {(xi, yi)};
8 end
9 Xm,i ← r

p −
1−r
1−p ;

10 end
11 end
12 Calculate the feature similarity S between each pair of samples in the dataset D;
13 for m← 1 toM do
14 Calculate Um using the model trained on the mth training subset Bm;
15 end
16 β̂ ← arg min

β∈RN

[
||U −Xβ||22 + λ1Rg(β) + λ2Rl(β)

]
, with the regularizers defined in Eq. (6);

A.2 Algorithms for Dynamic Data Valuation498

The derivation of our proposed IncGLOC for incremental data valuation is presented in the main499

text, with the corresponding algorithm provided in Algorithm 2. In the following, we outline the500

derivation of our method for decremental data valuation.501

In the context of decremental data valuation, a subset D′ containing N ′ samples is removed from502

the existing dataset D, which contains N training samples. The resulting dataset after the removal is503

denoted as D̂ = D −D′. Let βcur represent the current values of the samples in dataset D. The core504

question we address is whether we can infer the values of data points in D̂ using only the dataset D̂505

and the original data values βcur.506

Similar to the optimization problem formulated for incremental data valuation, we formulate the507

following optimization problem for decremental data valuation:508

min
β

∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2,

s.t., |βcur
i − βi| ≤ ϵi,∀xi ∈ D̂.

(10)

The permissible variation bound, ϵi is also determined by the variation within the dataset and the509

neighborhood of the samples, and is calculated as follows: ϵi =
|D|
|D̂|

(1 + rNk
(xi))ϵ0. To facilitate510

solving Eq. (10), it is reformulated as the following unconstrained optimization problem:511

min
β

∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2 + η2

∑
xi∈D̂

ϵi
ϵ̄
(βcur

i − βi)
2, (11)

where η1 and η2 are two hyperparameters that control the relative strengths of the three optimization512

objectives. The method described above for calculating data values after removing a set of samples513

is referred to as DecGLOC for simplicity. The algorithmic steps of DecGLOC are outlined in514

Algorithm 3.515

A.3 Dataset Description516

This section provides a detailed description of the applied datasets. First, we detail the synthetic517

dataset compiled for analyzing the global and local distributional properties of data values. The518
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Algorithm 2: Algorithm of IncGLOC.
Input: D and D′, original data values βcur for instances in D, neighborhood size k,

hyperparameters η1, η2, and ϵ0, and others.
Output: Values β of all data points in D̂ = D ∪D′.

1 Calculate the similarity S for samples in D̂;
2 Initialize data values βi for xi ∈ D′ using Eq. (9);
3 Calculate the original neighborhood N ori

k (xi) for xi ∈ D;
4 Calculate the neighborhood Nk(xi) after adding D′ for xi ∈ D̂;

5 rNk
(xi)← |Nk(xi)−Nori

k (xi)|
k for xi ∈ D;

6 ϵi ← |D̂|
|D| (1 + rNk

(xi))ϵ0 for xi ∈ D;

7 ϵ = 1
|D|

∑|D|
i=1 ϵi;

8 β̂ ← argmin
β

∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2 + η2

∑
xi∈D

ϵi
ϵ̄ (β

cur
i − βi)

2.

Algorithm 3: Algorithm of DecGLOC.
Input: D and D′, original data values βcur for instances in D, neighborhood size k,

hyperparameters η1, η2, and ϵ0, and others.
Output: Values β of all data points in D̂ = D −D′.

1 Calculate the original neighborhood N ori
k (xi) for xi ∈ D;

2 Calculate the new neighborhood Nk(xi) after deleting D′ for xi ∈ D̂;
3 Calculate the similarity S for samples in D̂;

4 rNk
(xi)← |Nk(xi)−Nori

k (xi)|
k for xi ∈ D̂ ;

5 ϵi ← |D|
|D̂|

(1 + rNk
(xi))ϵ0 for xi ∈ D̂;

6 ϵ = 1

|D̂|

∑|D̂|
i=1 ϵi;

7 β̂ ← argmin
β

∑
xi∈D̂

∑
xj∈Nk(xi)

Si,j(βi − βj)
2 + η1||β||2 + η2

∑
xi∈D̂

ϵi
ϵ̄ (β

cur
i − βi)

2.

simulated dataset, referred to as "Random," is generated by randomly sampling from the following519

data distribution:520

y
u.a.r∼ {−1,+1}, θ = [+1,+1]T ∈ R2,

x ∼
{
N

(
θ, σ2

+I
)
, if y = +1

N
(
−θ, σ2

−I
)
, if y = −1 ,

(12)

where N (θ, σ2
+I) denotes a Gaussian distribution, with the mean θ and the variance σ2

+I . I521

represents an identity matrix. A K-factor difference is set between two classes’ variances, that is522

σ+ : σ− = K : 1 and K = 2. Moreover, σ−=1. The training and test sets each contain 5K sampled523

data points for both categories.524

Following prior research [17, 23], we also examine a variety of real-world datasets to analyze525

the characteristics of value distributions and assess the effectiveness of the proposed data valuation526

approaches. The applied twelve classification datasets, spanning tabular, text, and image types, include527

Electricity [8], MiniBooNE [32], CIFAR-10 [21], BBC [12], Fried [1], 2Dplanes, Pol, Covertype,528

Nomao [2], Law, Creditcard [4], and Jannis. Each dataset undergoes standard normalization, ensuring529

that all features have zero mean and unit standard deviation. After preprocessing, the data is divided530

into three subsets: training, validation, and test datasets. Detailed information on these datasets is531

provided in Table 3.532

A.4 Compared Baselines533

A number of advanced data valuation methods from various categories, including marginal534

contribution-based, gradient-based, importance weight-based, and out-of-bag-based approaches,535

are compared with our proposed methodologies, including AME [25], LOO [17], Influence Func-536
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Table 3: Summary of twelve classification datasets utilized in our experiments.

Name Size Dimension # Classes Source Minor class proportion
Law 20800 6 2 OpenML-43890 0.321
Electricity 38474 6 2 [8] 0.5
Fried 40768 10 2 [1] 0.498
2Dplanes 40768 10 2 OpenML-727 0.499
Creditcard 30000 23 2 [4] 0.221
Pol 15000 48 2 OpenML-722 0.336
MiniBooNE 72998 50 2 [32] 0.5
Jannis 57580 54 2 OpenML-43977 0.5
Nomao 34465 89 2 [2] 0.285
Covertype 581012 54 7 Scikit-learn 0.004
BBC 2225 768 5 [12] 0.17
CIFAR10 50000 2048 10 [21] 0.1
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Figure 6: Illustration of the global distributions of data values for four additional datasets: BBC,
2Dplanes, Fried, and MiniBooNE. The results of the KStest hypothesis test [19], presented below the
figures, indicate that the global value distribution exhibits a closer fit to a Gaussian distribution than
to a Laplace distribution.

tion [20], DVRL [44], Data Shapley [11], KNN Shapley [15], Volume-based Shapley [43], Beta537

Shapley [22], Data Banzhaf [38], LAVA [18], and Data-OOB [23]. A detailed description of these538

methods is provided below:539

• AME [25]: AME quantifies the expected marginal effect of incorporating a sample into540

various training subsets. When subsets are sampled from the uniform distribution, it equates541

to the Shapley value.542

• LOO [17]: LOO, belonging to the marginal contribution-based category, measures the543

utility change when one data point of interest is removed from the entire dataset.544

• Influence Function [20]: Influence Function is approximated by the difference between545

two average model performances: one containing a data point of interest in the training546

procedure and the other not.547

• DVRL [44]: DVRL belongs to the importance weight-based category, involving the utiliza-548

tion of reinforcement learning algorithms to compute data values.549

• Data Shapley [11]: Data Shapley belongs to the marginal contribution-based category,550

which takes a simple average of all the marginal contributions.551

• KNN Shapley [15]: KNN Shapley is also founded on the Shapley value but distinguishes552

itself through the utilization of a utility tailored to k-nearest neighbors.553

• Volume-based Shapley [43]: The idea of the Volume-based Shapley is to utilize the same554

Shapley value function as Data Shapley, but it is characterized by using the volume of input555

data for a utility function.556

• Beta Shapley [22]: Beta Shapley has a form of a weighted mean of the marginal contri-557

butions, which generalizes Data Shapley by relaxing the efficiency axiom in the Shapley558

value.559
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Table 4: Results for data values computed using baseline valuation methods, further refined by our
proposed regularization terms in noise detection tasks (denoted using "†"). The reported values
represent the mean and standard error across five independent experiments. The regularization terms
regarding value distributions can enhance the accuracy of the obtained data values, further improving
the overall detection performance.

Dataset Pol Jannis Law Covertype Nomao Creditcard
KNN Shapley 0.28 ± 0.003 0.25 ± 0.004 0.45 ± 0.014 0.51 ± 0.021 0.47 ± 0.013 0.43 ± 0.004
KNN Shapley† 0.73 ± 0.007 0.33 ± 0.006 0.96 ± 0.011 0.55 ± 0.016 0.70 ± 0.012 0.50 ± 0.006
Data Shapley 0.50 ± 0.011 0.23 ± 0.003 0.94 ± 0.003 0.37 ± 0.004 0.65 ± 0.005 0.36 ± 0.006
Data Shapley† 0.77 ± 0.010 0.31 ± 0.005 0.97 ± 0.008 0.51 ± 0.006 0.72 ± 0.008 0.48 ± 0.008
Beta Shapley 0.46 ± 0.010 0.24 ± 0.003 0.94 ± 0.003 0.41 ± 0.003 0.66 ± 0.005 0.43 ± 0.005
Beta Shapley† 0.75 ± 0.009 0.30 ± 0.008 0.97 ± 0.007 0.54 ± 0.005 0.74 ± 0.007 0.49 ± 0.007
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Figure 7: Variation in accuracy across different ratios of removed instances. Data points with the
highest values are removed first. GLOC exhibits the lowest accuracy, confirming its effectiveness in
identifying influential data points.

• Data Banzhaf [38]: Data Banzhaf, also belonging to the marginal contribution-based560

category, is founded on the Banzhaf value.561

• LAVA [18]: LAVA is proposed to measure how fast the optimal transport cost between a562

training dataset and a validation dataset changes when a training data point of interest is563

more weighted.564

• Data-OOB [23]: Data-OOB is a distinctive data valuation algorithm, which uses the out-of-565

bag estimate to describe the quality of data.566

Additionally, in line with the only study exploring dynamic data valuation by Zhang et al. [46], the567

methods compared with our proposed dynamic data valuation approaches, IncGLOC and DecGLOC,568

include Monte Carlo Shapley (MC), Delta-based algorithm (Delta), KNN-based algorithm (KNN),569

KNN+-based algorithm (KNN+), which are proposed by [46], and Truncated Monte Carlo Shapley570

(TMC) [11]. The details of these methods are provided as follows:571

• MC [46]: The MC simulation gives an unbiased estimation of the exact Shapley value. The572

number of permutations controls the trade-off between approximation error and time cost.573

A larger number of samples brings a more accurate Shapley value at the expense of more574

running time.575

• Delta [46]: To further enhance efficiency, Delta represents the difference of Shapley value576

with the differential marginal contribution, whose absolute value is smaller than the marginal577

contribution.578

• KNN [46]: This approach is inspired by the observation that data points with similar features579

tend to have a similar performance on machine learning models, which results in similar580

utility functions and similar Shapley value.581

• KNN+ [46]: This method learns a regression function for the changes of Shapley values582

based on their similarity to the new data point and uses this function to derive the updated583

Shapley values of original data points.584

• TMC [11]: Instead of scanning over all of the data sources in the sampled permutation, TMC585

truncates the computations once the marginal contributions become small and approximates586

the marginal contribution of the following elements with zero.587
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Figure 8: Variation in accuracy across different ratios of added instances. Data points with the
lowest values are added first. When only low-value samples are introduced, GLOC exhibits the worst
performance, highlighting its ability to identify poisoned samples.

Table 5: Comparison of F1-scores for the mislabeled data detection tasks. GLOC demonstrates
competitive performance compared to all other evaluated approaches.

Dataset Pol Jannis Law Covertype Nomao Creditcard
AME 0.09 ± 0.009 0.09 ± 0.012 0.10 ± 0.009 0.12 ± 0.011 0.08 ± 0.009 0.09 ± 0.011
KNN Shapley 0.28 ± 0.003 0.25 ± 0.004 0.45 ± 0.014 0.51 ± 0.021 0.47 ± 0.013 0.43 ± 0.004
Data Shapley 0.50 ± 0.011 0.23 ± 0.003 0.94 ± 0.003 0.37 ± 0.004 0.65 ± 0.005 0.36 ± 0.006
Beta Shapley 0.46 ± 0.010 0.24 ± 0.003 0.94 ± 0.003 0.41 ± 0.003 0.66 ± 0.005 0.43 ± 0.005
GLOC 0.66 ± 0.009 0.30 ± 0.007 0.96 ± 0.008 0.53 ± 0.011 0.68 ± 0.006 0.46 ± 0.005

A.5 Experimental Configuration588

The hyperparameters for the AME approach follow the settings outlined in the original paper [25].589

Specifically, the regularization parameter is selected using LassoCV from the Sklearn library. The590

number of sampled subsets is set to 500, and the data sampling distribution is defined as P =591

Uniform{0.2, 0.4, 0.6, 0.8}. Moreover, the configurations for the other compared baselines are592

consistent with those specified in their respective original papers. To assess the effectiveness of the593

proposed valuation approaches, we utilize the MSE to quantify the difference between the computed594

data values and the true Shapley values, where the ground-truth Shapley values are calculated using595

AME based on a large number of sampled subsets, denoted asM, which is equal to the training size596

of each dataset.597

The hyperparameters associated with the regularization terms for our proposed ap-598

proaches—specifically, λ1 and λ2 for GLOC, and η1 and η2 for IncGLOC and DecGLOC—are599

selected through a standard empirical procedure. This procedure involves performing five-fold600

cross-validation (CV) and choosing the values that minimize the CV error. The candidate values for601

λ1 and λ2 are {1e-2, 1e-3, 1e-4}, for η1, the candidate values are {1e-1, 1e-2, 1e-3}, and for η2, the602

candidate values are {1, 5, 10}. The value of ϵ0 is set to 1, and the neighborhood size parameter, k, is603

set to 5. The base prediction model employed is logistic regression.604

For natural language and image datasets, we use pretrained DistilBERT [34] and ResNet50 [14]605

models to extract embeddings. The sample sizes for the training and validation datasets are set to 1K606

and 100, respectively. The test dataset size is fixed at 3K for all datasets, except for the text datasets,607

where it is set to 500. All experiments are conducted on a machine equipped with a single NVIDIA608

RTX 4090 GPU and 128 GB of RAM.609

A.6 More Experiments for Empirical Investigation610

We present additional results from our empirical investigation into the global and local distributions611

of data values. Fig. 6 illustrates the global distribution of data values for three additional datasets. As612

observed, compared to the Laplace distribution, the global distribution of data values more closely613

resembles a Gaussian distribution. Therefore, we adopt the Gaussian distribution as the prior for614

modeling the global distribution of data values within a dataset.615
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Table 6: Comparison of MSEs for the addition and removal of two data points. The data values
estimated by our proposed approaches (i.e., IncGLOC and DecGLOC) exhibit the lowest MSEs,
thereby demonstrating a closer approximation to the Shapley values.

Manner Add Remove
Dataset Electricity MiniBooNE CIFAR10 Fried Electricity MiniBooNE CIFAR10 Fried
MC 6.32e-6 5.12e-5 3.51e-5 3.68e-5 5.67e-6 5.81e-5 1.85e-5 4.47e-5
TMC 4.92e-5 5.48e-4 3.24e-4 1.21e-4 6.73e-5 3.21e-4 8.91e-5 2.67e-5
Delta 9.67e-7 3.24e-5 6.77e-6 3.87e-5 4.36e-6 5.43e-5 6.44e-6 4.55e-5
KNN 8.98e-6 1.29e-5 1.89e-5 4.21e-5 5.03e-6 7.85e-6 5.62e-5 8.97e-6
KNN+ 4.67e-6 4.65e-6 4.78e-5 9.56e-6 2.56e-6 3.98e-6 3.45e-5 3.99e-5
Ours 2.36e-7 2.67e-6 3.52e-6 2.04e-6 1.34e-6 2.86e-6 2.59e-6 2.01e-6
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Figure 9: Comparison of the computational costs between IncGLOC, DecGLOC, and other baseline
methods for adding or removing both single and multiple data points. Methods that do not require
re-estimating the Shapley values, such as KNN, KNN+, and our proposed methods (i.e., IncGLOC
and DecGLOC), consistently demonstrate superior computational efficiency.

A.7 Integration with Other Data Valuation Methods616

The proposed regularization terms regarding value distributions can be seamlessly incorporated into617

various valuation frameworks. These regularizers can be integrated either concurrently with existing618

valuation methods or as a post-processing step. The first strategy, where our regularizers are applied619

alongside another valuation approach, has been exemplified using the AME method. Furthermore, we620

demonstrate that these regularization terms can also function as standalone optimization objectives to621

refine the data values derived from other valuation techniques. Table 4 presents the performance of622

the original data valuation methods alongside their refined values after incorporating our proposed623

objectives. The results indicate that incorporating the global and local distribution characteristics of624

value distributions can further improve the accuracy of the data values obtained through our valuation625

methods, thereby enhancing detection performance.626

A.8 More Experiments for Value-based Point Addition and Removal627

We present additional results on value-based data point addition and removal experiments. Fig. 7628

illustrates the test accuracy curves for the point removal experiment. Among the evaluated methods,629

GLOC generally exhibits the most significant performance degradation, suggesting its effectiveness630

in identifying high-quality samples. Notably, for the Electricity and MiniBooNE datasets, DVRL631

also performs well; however, its effectiveness is considerably lower on the other two datasets.632

Fig. 8 shows the test accuracy curves for the point addition experiment. When only low-quality633

samples are added, GLOC demonstrates a substantial decline in performance, indicating its capability634

to detect and differentiate poisoned samples. These findings collectively validate the effectiveness635

and reliability of GLOC in data valuation.636

A.9 More Experiments for Mislabeled Data Detection637

We present additional comparative results for the mislabeled data detection task. Table 5 reports638

the F1-scores of various data valuation approaches across six classification datasets with 10%639

noise. Although GLOC is adapted from AME, which typically exhibits suboptimal performance in640

mislabeled data detection, our proposed GLOC approach demonstrates state-of-the-art performance641

in noise detection tasks, outperforming all compared baselines.642
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Table 7: Ablation studies on the two regularization terms, namely Rg and Rl, in Shapley value
estimation across four datasets.

Dataset Electricity MiniBooNE CIFAR10 BBC
GLOC 0.86e-6 0.75e-6 1.43e-5 1.75e-6
−Rg 0.96e-5 1.13e-6 2.44e-4 5.82e-6
−Rl 1.42e-5 1.27e-6 2.92e-4 6.50e-6
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Figure 10: (a) and (b) Sensitivity tests for the value of ϵ0 under both incremental and decremental
data valuation scenarios. The average performance for adding or removing one and two data points is
reported. (c) and (d) Sensitivity tests for the value of the neighborhood size k.

A.10 More Experiments for Dynamic Data Valuation643

We conduct additional experiments to assess the performance of IncGLOC and DecGLOC in the644

context of dynamic data valuation. While the results for adding or removing a single data point645

are presented in the main text, the outcomes for adding or removing two data points are provided646

in Table 6. The proposed methods, IncGLOC and DecGLOC, consistently yield the lowest MSEs,647

underscoring their effectiveness in data valuation within dynamic data scenarios.648

Additionally, we compare the computational time of various methods, as shown in Fig. 9. Methods that649

do not require re-estimating the Shapley values, such as KNN, KNN+, and our proposed approaches,650

demonstrate superior efficiency. In contrast, methods that necessitate recalculating Shapley values,651

such as MC and TMC, incur significantly higher computational costs for dynamic data valuation,652

even when adding or removing a single data point.653

A.11 More Ablation Studies and Sensitivity Analyses654

Table 7 presents additional results from the ablation studies on the regularization terms in GLOC.655

The optimal performance is observed when both regularizers are included, emphasizing the critical656

role of integrating global and local statistical information for accurate and effective data valuation.657

Subsequently, we conduct sensitivity analyses on the hyperparameter ϵ0. The results presented in658

Figs. 10(a) and (b) show that the performance of our proposed dynamic data valuation methods,659

including IncGLOC and DecGLOC, remains stable when ϵ0 ∈ [0.5, 1.5]. Furthermore, we conduct660

sensitivity analyses on the neighborhood size used in the proposed regularization term to capture661

local distribution characteristics. The results presented in Figs. 10(c) and (d) demonstrate that the662

model achieves optimal performance when k is set to 5.663

Finally, we conduct ablation studies to investigate the permitted variation bound of data values under664

dynamic data valuation scenarios. Three settings are considered. In Setting I, the bound is determined665

solely by the variation within the dataset. In Setting II, the bound is based exclusively on the variation666

Table 8: Ablation studies on the bound for permissible variation in data values under dynamic data
scenarios.

Manner Add Remove
Dataset Electricity MiniBooNE CIFAR10 Fried Electricity MiniBooNE CIFAR10 Fried
Setting I 6.73e-6 4.99e-6 6.29e-6 3.54e-6 2.53e-6 4.27e-6 4.05e-6 8.55e-6
Setting II 2.13e-6 2.87e-6 5.01e-6 2.79e-6 1.66e-6 2.83e-6 4.15e-6 3.37e-6
Setting III 1.73e-6 1.99e-6 3.29e-6 2.17e-6 0.95e-6 2.00e-6 2.55e-6 2.27e-6
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within the sample’s neighborhood. In Setting III, the bound is determined by both the variation within667

the entire dataset and the variation within the neighborhoods of the samples. The results presented in668

Table 8 demonstrate that the optimal performance is achieved when both variations are taken into669

account. Furthermore, the findings suggest that local distribution characteristics play a more critical670

role than global information in determining the variation bound of data values.671

A.12 Limitations672

While the proposed global and local distribution-aided data valuation methods exhibit strong perfor-673

mance, they also have certain limitations that present avenues for future research. First, our approach674

is built on the assumption that the global value distribution follows a Gaussian distribution. Although675

our empirical analysis across various datasets suggests that value distributions align more closely676

with a Gaussian distribution than with the Laplace distribution which is assumed in prior research, it677

is important to note that our empirical investigation can not cover all possible datasets in the world.678

Additionally, our study primarily focuses on global and local distributions of data values. Future679

research could extend our analysis by exploring value distributions across a more diverse set of680

datasets and considering alternative perspectives, such as hierarchical and conditional distributions of681

data values, to further enhance the generalizability and robustness of our approach.682

Moreover, although our proposed dynamic data valuation method circumvents the need for repeated683

Shapley value computations, its performance is inherently dependent on the quality of the existing684

data values. To further improve its effectiveness, one potential enhancement would be to first refine the685

existing data values using our proposed regularization terms before applying dynamic data valuation.686

This additional step could help ensure greater accuracy and robustness in the valuation process.687

Additionally, our current experiments cover tasks such as Shapley value estimation, value-based688

data addition and removal, mislabeled data detection, and dynamic data valuation. Future research689

is expected to explore the effectiveness of our approach in more complex data scenarios, such as690

cross-modal data and non-independently and identically distributed data.691

A.13 Ethical Considerations692

All models and datasets used in this study have been meticulously processed and curated by their693

respective publishers to mitigate any ethical issues.694

20



NeurIPS Paper Checklist695

1. Claims696

Question: Do the main claims made in the abstract and introduction accurately reflect the697

paper’s contributions and scope?698

Answer: [Yes]699

Justification: The abstract and introduction clearly articulate the key contributions of the700

paper and are well-aligned with its scope and findings.701

Guidelines:702

• The answer NA means that the abstract and introduction do not include the claims703

made in the paper.704

• The abstract and/or introduction should clearly state the claims made, including the705

contributions made in the paper and important assumptions and limitations. A No or706

NA answer to this question will not be perceived well by the reviewers.707

• The claims made should match theoretical and experimental results, and reflect how708

much the results can be expected to generalize to other settings.709

• It is fine to include aspirational goals as motivation as long as it is clear that these goals710

are not attained by the paper.711

2. Limitations712

Question: Does the paper discuss the limitations of the work performed by the authors?713

Answer: [Yes]714

Justification: The limitations are discussed in Appendix A.12.715

Guidelines:716

• The answer NA means that the paper has no limitation while the answer No means that717

the paper has limitations, but those are not discussed in the paper.718

• The authors are encouraged to create a separate "Limitations" section in their paper.719

• The paper should point out any strong assumptions and how robust the results are to720

violations of these assumptions (e.g., independence assumptions, noiseless settings,721

model well-specification, asymptotic approximations only holding locally). The authors722

should reflect on how these assumptions might be violated in practice and what the723

implications would be.724

• The authors should reflect on the scope of the claims made, e.g., if the approach was725

only tested on a few datasets or with a few runs. In general, empirical results often726

depend on implicit assumptions, which should be articulated.727

• The authors should reflect on the factors that influence the performance of the approach.728

For example, a facial recognition algorithm may perform poorly when image resolution729

is low or images are taken in low lighting. Or a speech-to-text system might not be730

used reliably to provide closed captions for online lectures because it fails to handle731

technical jargon.732

• The authors should discuss the computational efficiency of the proposed algorithms733

and how they scale with dataset size.734

• If applicable, the authors should discuss possible limitations of their approach to735

address problems of privacy and fairness.736

• While the authors might fear that complete honesty about limitations might be used by737

reviewers as grounds for rejection, a worse outcome might be that reviewers discover738

limitations that aren’t acknowledged in the paper. The authors should use their best739

judgment and recognize that individual actions in favor of transparency play an impor-740

tant role in developing norms that preserve the integrity of the community. Reviewers741

will be specifically instructed to not penalize honesty concerning limitations.742

3. Theory assumptions and proofs743

Question: For each theoretical result, does the paper provide the full set of assumptions and744

a complete (and correct) proof?745

Answer: [Yes]746
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Justification: All formulas in the paper are appropriately numbered and consistently cross-747

referenced throughout the manuscript.748

Guidelines:749

• The answer NA means that the paper does not include theoretical results.750

• All the theorems, formulas, and proofs in the paper should be numbered and cross-751

referenced.752

• All assumptions should be clearly stated or referenced in the statement of any theorems.753

• The proofs can either appear in the main paper or the supplemental material, but if754

they appear in the supplemental material, the authors are encouraged to provide a short755

proof sketch to provide intuition.756

• Inversely, any informal proof provided in the core of the paper should be complemented757

by formal proofs provided in appendix or supplemental material.758

• Theorems and Lemmas that the proof relies upon should be properly referenced.759

4. Experimental result reproducibility760

Question: Does the paper fully disclose all the information needed to reproduce the main ex-761

perimental results of the paper to the extent that it affects the main claims and/or conclusions762

of the paper (regardless of whether the code and data are provided or not)?763

Answer: [Yes]764

Justification: The experimental settings are comprehensively described in Section 5 and765

Appendices A.5, A.6, A.7, A.8, A.9, A.10, and A.11. Furthermore, our code is provided766

in the submitted supplementary materials to support the reproducibility of the proposed767

method.768

Guidelines:769

• The answer NA means that the paper does not include experiments.770

• If the paper includes experiments, a No answer to this question will not be perceived771

well by the reviewers: Making the paper reproducible is important, regardless of772

whether the code and data are provided or not.773

• If the contribution is a dataset and/or model, the authors should describe the steps taken774

to make their results reproducible or verifiable.775

• Depending on the contribution, reproducibility can be accomplished in various ways.776

For example, if the contribution is a novel architecture, describing the architecture fully777

might suffice, or if the contribution is a specific model and empirical evaluation, it may778

be necessary to either make it possible for others to replicate the model with the same779

dataset, or provide access to the model. In general. releasing code and data is often780

one good way to accomplish this, but reproducibility can also be provided via detailed781

instructions for how to replicate the results, access to a hosted model (e.g., in the case782

of a large language model), releasing of a model checkpoint, or other means that are783

appropriate to the research performed.784

• While NeurIPS does not require releasing code, the conference does require all submis-785

sions to provide some reasonable avenue for reproducibility, which may depend on the786

nature of the contribution. For example787

(a) If the contribution is primarily a new algorithm, the paper should make it clear how788

to reproduce that algorithm.789

(b) If the contribution is primarily a new model architecture, the paper should describe790

the architecture clearly and fully.791

(c) If the contribution is a new model (e.g., a large language model), then there should792

either be a way to access this model for reproducing the results or a way to reproduce793

the model (e.g., with an open-source dataset or instructions for how to construct794

the dataset).795

(d) We recognize that reproducibility may be tricky in some cases, in which case796

authors are welcome to describe the particular way they provide for reproducibility.797

In the case of closed-source models, it may be that access to the model is limited in798

some way (e.g., to registered users), but it should be possible for other researchers799

to have some path to reproducing or verifying the results.800
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5. Open access to data and code801

Question: Does the paper provide open access to the data and code, with sufficient instruc-802

tions to faithfully reproduce the main experimental results, as described in supplemental803

material?804

Answer: [Yes]805

Justification: Our code has been included in the submitted supplementary materials, accom-806

panied by comprehensive instructions.807

Guidelines:808

• The answer NA means that paper does not include experiments requiring code.809

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/810

public/guides/CodeSubmissionPolicy) for more details.811

• While we encourage the release of code and data, we understand that this might not be812

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not813

including code, unless this is central to the contribution (e.g., for a new open-source814

benchmark).815

• The instructions should contain the exact command and environment needed to run to816

reproduce the results. See the NeurIPS code and data submission guidelines (https:817

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.818

• The authors should provide instructions on data access and preparation, including how819

to access the raw data, preprocessed data, intermediate data, and generated data, etc.820

• The authors should provide scripts to reproduce all experimental results for the new821

proposed method and baselines. If only a subset of experiments are reproducible, they822

should state which ones are omitted from the script and why.823

• At submission time, to preserve anonymity, the authors should release anonymized824

versions (if applicable).825

• Providing as much information as possible in supplemental material (appended to the826

paper) is recommended, but including URLs to data and code is permitted.827

6. Experimental setting/details828

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-829

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the830

results?831

Answer: [Yes]832

Justification: A comprehensive description of the experimental settings, including datasets,833

hyperparameter configurations, and the optimization process, is provided in Section 5 and834

Appendix A.5.835

Guidelines:836

• The answer NA means that the paper does not include experiments.837

• The experimental setting should be presented in the core of the paper to a level of detail838

that is necessary to appreciate the results and make sense of them.839

• The full details can be provided either with the code, in appendix, or as supplemental840

material.841

7. Experiment statistical significance842

Question: Does the paper report error bars suitably and correctly defined or other appropriate843

information about the statistical significance of the experiments?844

Answer: [Yes]845

Justification: We show the standard error in Section 5 and Appendices A.6, A.7, A.9,846

and A.11.847

Guidelines:848

• The answer NA means that the paper does not include experiments.849

• The authors should answer "Yes" if the results are accompanied by error bars, confi-850

dence intervals, or statistical significance tests, at least for the experiments that support851

the main claims of the paper.852
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• The factors of variability that the error bars are capturing should be clearly stated (for853

example, train/test split, initialization, random drawing of some parameter, or overall854

run with given experimental conditions).855

• The method for calculating the error bars should be explained (closed form formula,856

call to a library function, bootstrap, etc.)857

• The assumptions made should be given (e.g., Normally distributed errors).858

• It should be clear whether the error bar is the standard deviation or the standard error859

of the mean.860

• It is OK to report 1-sigma error bars, but one should state it. The authors should861

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis862

of Normality of errors is not verified.863

• For asymmetric distributions, the authors should be careful not to show in tables or864

figures symmetric error bars that would yield results that are out of range (e.g. negative865

error rates).866

• If error bars are reported in tables or plots, The authors should explain in the text how867

they were calculated and reference the corresponding figures or tables in the text.868

8. Experiments compute resources869

Question: For each experiment, does the paper provide sufficient information on the com-870

puter resources (type of compute workers, memory, time of execution) needed to reproduce871

the experiments?872

Answer: [Yes]873

Justification: Details regarding the computational resources used in our experiments are874

provided in Section 5 and Appendices A.5 and A.10.875

Guidelines:876

• The answer NA means that the paper does not include experiments.877

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,878

or cloud provider, including relevant memory and storage.879

• The paper should provide the amount of compute required for each of the individual880

experimental runs as well as estimate the total compute.881

• The paper should disclose whether the full research project required more compute882

than the experiments reported in the paper (e.g., preliminary or failed experiments that883

didn’t make it into the paper).884

9. Code of ethics885

Question: Does the research conducted in the paper conform, in every respect, with the886

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?887

Answer: [Yes]888

Justification: This study fully complies with the ethical standards established by NeurIPS.889

Guidelines:890

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.891

• If the authors answer No, they should explain the special circumstances that require a892

deviation from the Code of Ethics.893

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-894

eration due to laws or regulations in their jurisdiction).895

10. Broader impacts896

Question: Does the paper discuss both potential positive societal impacts and negative897

societal impacts of the work performed?898

Answer: [Yes]899

Justification: The potential broader impacts are discussed in Appendices A.12 and A.13.900

Guidelines:901

• The answer NA means that there is no societal impact of the work performed.902
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• If the authors answer NA or No, they should explain why their work has no societal903

impact or why the paper does not address societal impact.904

• Examples of negative societal impacts include potential malicious or unintended uses905

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations906

(e.g., deployment of technologies that could make decisions that unfairly impact specific907

groups), privacy considerations, and security considerations.908

• The conference expects that many papers will be foundational research and not tied909

to particular applications, let alone deployments. However, if there is a direct path to910

any negative applications, the authors should point it out. For example, it is legitimate911

to point out that an improvement in the quality of generative models could be used to912

generate deepfakes for disinformation. On the other hand, it is not needed to point out913

that a generic algorithm for optimizing neural networks could enable people to train914

models that generate Deepfakes faster.915

• The authors should consider possible harms that could arise when the technology is916

being used as intended and functioning correctly, harms that could arise when the917

technology is being used as intended but gives incorrect results, and harms following918

from (intentional or unintentional) misuse of the technology.919

• If there are negative societal impacts, the authors could also discuss possible mitigation920

strategies (e.g., gated release of models, providing defenses in addition to attacks,921

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from922

feedback over time, improving the efficiency and accessibility of ML).923

11. Safeguards924

Question: Does the paper describe safeguards that have been put in place for responsible925

release of data or models that have a high risk for misuse (e.g., pretrained language models,926

image generators, or scraped datasets)?927

Answer: [NA]928

Justification: The paper does not present any such risks.929

Guidelines:930

• The answer NA means that the paper poses no such risks.931

• Released models that have a high risk for misuse or dual-use should be released with932

necessary safeguards to allow for controlled use of the model, for example by requiring933

that users adhere to usage guidelines or restrictions to access the model or implementing934

safety filters.935

• Datasets that have been scraped from the Internet could pose safety risks. The authors936

should describe how they avoided releasing unsafe images.937

• We recognize that providing effective safeguards is challenging, and many papers do938

not require this, but we encourage authors to take this into account and make a best939

faith effort.940

12. Licenses for existing assets941

Question: Are the creators or original owners of assets (e.g., code, data, models), used in942

the paper, properly credited and are the license and terms of use explicitly mentioned and943

properly respected?944

Answer: [Yes]945

Justification: We have provided proper citations and detailed explanations for the papers,946

models, and datasets referenced in this work.947

Guidelines:948

• The answer NA means that the paper does not use existing assets.949

• The authors should cite the original paper that produced the code package or dataset.950

• The authors should state which version of the asset is used and, if possible, include a951

URL.952

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.953

• For scraped data from a particular source (e.g., website), the copyright and terms of954

service of that source should be provided.955
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• If assets are released, the license, copyright information, and terms of use in the956

package should be provided. For popular datasets, paperswithcode.com/datasets957

has curated licenses for some datasets. Their licensing guide can help determine the958

license of a dataset.959

• For existing datasets that are re-packaged, both the original license and the license of960

the derived asset (if it has changed) should be provided.961

• If this information is not available online, the authors are encouraged to reach out to962

the asset’s creators.963

13. New assets964

Question: Are new assets introduced in the paper well documented and is the documentation965

provided alongside the assets?966

Answer: [Yes]967

Justification: Our code is included in the submitted supplementary materials and will be968

made publicly available upon the paper’s acceptance.969

Guidelines:970

• The answer NA means that the paper does not release new assets.971

• Researchers should communicate the details of the dataset/code/model as part of their972

submissions via structured templates. This includes details about training, license,973

limitations, etc.974

• The paper should discuss whether and how consent was obtained from people whose975

asset is used.976

• At submission time, remember to anonymize your assets (if applicable). You can either977

create an anonymized URL or include an anonymized zip file.978

14. Crowdsourcing and research with human subjects979

Question: For crowdsourcing experiments and research with human subjects, does the paper980

include the full text of instructions given to participants and screenshots, if applicable, as981

well as details about compensation (if any)?982

Answer: [NA]983

Justification: The paper does not involve crowdsourcing nor research with human subjects.984

Guidelines:985

• The answer NA means that the paper does not involve crowdsourcing nor research with986

human subjects.987

• Including this information in the supplemental material is fine, but if the main contribu-988

tion of the paper involves human subjects, then as much detail as possible should be989

included in the main paper.990

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,991

or other labor should be paid at least the minimum wage in the country of the data992

collector.993

15. Institutional review board (IRB) approvals or equivalent for research with human994

subjects995

Question: Does the paper describe potential risks incurred by study participants, whether996

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)997

approvals (or an equivalent approval/review based on the requirements of your country or998

institution) were obtained?999

Answer: [NA]1000

Justification: The paper does not involve crowdsourcing nor research with human subjects.1001

Guidelines:1002

• The answer NA means that the paper does not involve crowdsourcing nor research with1003

human subjects.1004

• Depending on the country in which research is conducted, IRB approval (or equivalent)1005

may be required for any human subjects research. If you obtained IRB approval, you1006

should clearly state this in the paper.1007
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• We recognize that the procedures for this may vary significantly between institutions1008

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1009

guidelines for their institution.1010

• For initial submissions, do not include any information that would break anonymity (if1011

applicable), such as the institution conducting the review.1012

16. Declaration of LLM usage1013

Question: Does the paper describe the usage of LLMs if it is an important, original, or1014

non-standard component of the core methods in this research? Note that if the LLM is used1015

only for writing, editing, or formatting purposes and does not impact the core methodology,1016

scientific rigorousness, or originality of the research, declaration is not required.1017

Answer: [NA]1018

Justification: The core method development in this research does not involve LLMs as any1019

important, original, or non-standard components.1020

Guidelines:1021

• The answer NA means that the core method development in this research does not1022

involve LLMs as any important, original, or non-standard components.1023

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1024

for what should or should not be described.1025
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