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ABSTRACT

Existing methods for video generation struggle to generate more than a short sequence of
frames. We introduce a non-parametric approach for infinite video generation based on
learning to resample frames from an input video. Our work is inspired by Video Textures, a
classic method relying on pixel similarity to stitch sequences of frames, which performs well
for videos with a high degree of regularity but fails in less constrained settings. Our method
learns a distance metric to compare frames in a manner that scales to more challenging
dynamics and allows for conditioning on heterogeneous data, such as audio. We learn
representations for video frames and probabilities of transitioning by fitting a video-specific
bi-gram model trained using contrastive learning. To synthesize the texture, we represent
the video as a graph where the nodes are frames and edges are transitions with probabilities
predicted by our video-specific model. By randomly traversing edges with high transition
probabilities, we generate diverse temporally smooth videos with novel sequences and
transitions. The model naturally extends with no additional training to handle the task of
Audio Conditioned Video Synthesis, when conditioned on an audio signal. Our model
outperforms baselines on human perceptual scores, can handle a diverse range of input
videos, and can combine semantic and audio-visual cues in order to synthesize videos that
synchronize well with an audio signal.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) and Variational Autoencoders
(VAEs) (Kingma & Welling, 2013) have achieved great success in generating images “from scratch”. While
one might have hoped that video generation would be a simple extension of image-generation methods, this
has not been the case. A major reason is that videos are much higher dimensional than images, and producing
correct transitions between frames is a difficult problem. While video generation (Vondrick et al., 2016;
Mallya et al., 2020; Lee et al., 2019; Wang et al., 2018a;b) has shown some success, videos generated using
such methods are relatively short and are unable to match the realism of actual videos. In comparison, classic
non-parametric video synthesis methods from two decades ago, most notably Video Textures (Schödl et al.,
2000), are much simpler and can often produce videos of arbitrary lengths.

In these models, a new plausible video is generated by stitching together snippets of an existing video. While
video textures have been very successful on simple videos with a high degree of regularity, they use simple
Euclidean pixel distance as a similarity metric between frames, which causes them to fail for less constrained
videos containing irregularities and chaotic movements, such as dance or playing a musical instrument. They
are also sensitive to subtle changes in brightness and often produce jarring transitions.

In this work, we propose Contrastive Video Textures, a non-parametric learning-based approach for video
texture synthesis that overcomes the limitations of classic video textures. As in Schödl et al. (2000), we
synthesize textures by resampling frames from the input video. However, as opposed to using pixel similarity,
we learn feature representations and a distance metric to compare frames by training a deep model on a single
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Figure 1: Video Texture Synthesis. Prior video prediction (Xu et al., 2020) and generation (Vondrick et al.,
2016; Lee et al., 2019; Mallya et al., 2020) fail to generate long sequences and high resolution images. Classic
video textures (Schödl et al., 2000) (middle) can generate infinite sequences by resampling frames, but uses
fixed representations which are not robust to varying domains. Our method (right) learns a representation and
non-parametric method for infinite video generation based on resampling frames from an input video.

input video. The network is trained using contrastive learning to fit an example-specific bi-gram model (i.e. a
Markov chain).

To synthesize the video texture, we use the video-specific model to compute probabilities of transitioning
between frames of the same video. We represent the video as a graph where the individual frames are nodes and
the edges represent transition probabilities predicted by our video-specific model. We generate output videos
(or textures) by randomly traversing edges with high transition probabilities. We additionally incorporate
deep video interpolation into our contrastive video textures framework to suppress visual discontinuities and
to allow for large transitions. Our proposed method is able to synthesize realistic, smooth, and diverse output
textures on a variety of domains, including dance and music videos as shown at this website. Fig. 1 illustrates
the distinction between video generation/prediction, video textures and our contrastive model.

We also extend our model to an audio conditioned video synthesis task. Given a source video with associated
audio and a new conditioning audio not in the source, we synthesize a new video that approximately matches
the conditioning audio. A demonstration of this task is shown at this link. We modify the inference algorithm
to include an additional constraint that the predicted frame’s audio should match the conditioning audio. We
trade off between temporal coherence (frames predicted by the constrastive video texture model) and audio
similarity (frames predicted by the audio matching algorithm) to generate videos which align well with the
conditioning audio and are also temporally smooth.

We assess the perceptual quality of the synthesized textures by conducting human perceptual evaluations
comparing our method to a number of baselines. In the case of unconditional video texture synthesis, we
compare to the classic video texture algorithm (Schödl et al., 2000) and variations to this which we describe
in Sec. 4. For the audio conditioning setting, we compare to three different baselines: classic video textures
with audio conditioning, visual rhythm and beat (Davis & Agrawala, 2018), and a random baseline. Our
results confirm that our method is perceptually better than all the baselines.

2 CONTRASTIVE VIDEO TEXTURES

We propose a non-parametric learning-based approach for video texture synthesis. At a high-level, we fit
an example-specific bi-gram model (i.e. a Markov chain) and use it to re-sample input frames, producing a
diverse and temporally coherent video. In the following, we first define the bi-gram model, and then describe
how to train and sample from it.
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Figure 2: Contrastive Video Textures: We extract overlapping segments from the video and fit a bi-gram
model trained using NCE loss which learns representations for query/target pairs such that given a query
segment Vi, φ(Vi) is similar to positive segment ψ(Vi+1) and dissimilar to negative segment ψ(Vj) where
j ∈ [1, ...N ] and j 6= i, i+ 1.Video Texture Synthesis. During inference, we start with a random segment
Vt [1], compute φ(Vt) and ψ(Vj) and calculate the edge weights as similarity between φ(Vt) and ψ(Vj). We
randomly traverse to (purple arrow) one of the edges that has high probability to reach [2]. We denote higher
weight edges in green and lower weighted edges in red and the thickness correlates with the probability. No
edge indicates zero similarity. The randomly chosen segment [2] is appended to the output as Vt+1 and the
process is repeated (shown by the orange arrow) with [2] as the query.

Given an input video, we extract N overlapping segments denoted by Vi where i ∈ [1, ...N ], with a sliding
window of length W and stride s. Consider these segments to be the states of a Markov chain, where the
probability of transition is computed by a deep similarity function parameterized by encoders φ and ψ:

P (Vi+1|Vi) ∝ exp(sim(φ(Vi), ψ(Vi+1))/τ) (1)
Fitting the transition probabilities amounts to fitting the parameters of φ and ψ, which here will take form of
a 3D convolutional network, by maximizing the log-likelihood of the sequence under the model:

L(V, φ) =
N∑
i=1

− logP (Vi+1|Vi) =
N∑
i=1

−log
exp(sim(φ(Vi), ψ(Vi+1))/τ)∑N

j=1[j 6=i,i+1]
exp(sim(φ(Vi), ψ(Vj))/τ)

(2)

where τ denotes a temperature term that modulates the sharpness of the softmax distribution. As the
complexity increases with number of negatives in the denominator, for efficiency, we use negative sampling
(Mikolov et al., 2013) to approximate in Eq 2. Fitting the encoder in this manner amounts to learning a
video representation by contrastive learning, where the positive is the segment that follows, and negatives
are sampled from the set of all other segments. The encoder thus learns features useful for predicting the
dynamics of phenomena specific to the input video.

Given that we fit the model on a single video, it is important that we ensure there is enough entropy in
the transition distribution in order to ensure diversity in samples synthesized during inference. While we
assume that our input video sequence exhibits sufficient hierarchical, periodic structure to ensure repetition
and multi-modality, we can also directly adjust the conditional entropy of the model through the softmax
temperature term τ . As we will see in Sec. 2, the encoder used for conditioning and prediction also plays a
role in ensuring diversity in the sampling distribution. An overview of our method is provided in Fig. 2.
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Video Texture Synthesis. To synthesize the texture, we represent the video as a graph, with nodes as
segments and edges indicating the transition probabilities computed by our model. We randomly select a
query segment Vt among the segments of the video and set the output sequence to all the W frames in Vt.
Next, our contrastive model computes φ(Vt) and ψ(Vj) for all segments in the video and updates the edges of
the graph with the transition probabilities, given by sim(φ(Vt), ψ(Vj)). The target segment with the highest
transition probability is chosen as the positive segment. We then append the last s number of frames in the
positive segment to the output. This predicted positive segment Vt+1 is again fed into the network as the
query and this is repeated to generate the whole output in an autoregressive fashion. This approach would
regurgitate the original sequence, as the model was trained to predict Vi+1 as the positive segment given Vi as
the query. The edge with the maximum weight is always directed to the next segment in the video.

In order to introduce variance in the generated textures, we select segments which are similar to the positive
segment Vi+1. First, we vary the temperature term τ to adjust the weights of the graph. The temperature
term controls the entropy of the output distribution. A lower temperature would flatten the prediction
probabilities/increase the entropy and reduce the difference in probabilities of the positive segment and
segments similar to it. We then threshold the probabilities and set values to zero if they are less than t% of the
max weighted edge connecting Vt to any other node Vj , we set,

sim(φ(Vt), ψ(Vj)) = 0 ∀ j,where
sim(φ(Vt), ψ(Vj)) < max

l=1,...,N
(sim(φ(Vt), ψ(Vl))− t%

Next, we randomly select a frame to transition to from the edges with non-zero probabilities. This introduces
variance in the generated textures and also ensures that the transitions are smooth and coherent.

Video Encoding. We use the SlowFast (Feichtenhofer et al., 2019) action recognition framework for encoding
the video segments. We introduce two separate query and target multi-layer perceptrons to break the symmetry
between the query and target embeddings. This ensures sim(Vi, Vi+1) 6= sim(Vi+1, Vi) which allows us to
learn the arrow of time.

Interpolation. For smoother transitions, we also conditionally interpolate between frames of the synthesized
texture when there are transitions to different parts of the video. We use a pre-trained interpolation network
of Jiang et al. (2018). We include results both with and without interpolation to show that interpolation helps
with smoothing.

3 AUDIO-CONDITIONED CONTRASTIVE VIDEO SYNTHESIS

We extend Contrastive Video Textures to synthesize videos that match a conditioning audio signal. Given an
input video and a conditioning audio Ac we synthesize a new video that is synchronized with the audio. We
extract N overlapping segments from the conditioning audio, as before. We compute the similarity of the
source audio segments As to the conditioning audio segment Ac by matching them in an embedding space
and computing the similarity between the audio segments. We construct a transition probability matrix Ta in
the audio space as in Eq. 3.

Ta(i, j) = sim(ϕ(Ac
i ), ϕ(A

s
j)) (3)

T = αTv + (1− α)Ta (4)

We compute the transition probabilities Tv for the target video segments given the previous predicted segment
using the contrastive video textures model (Eq. 2). The joint transition probabilities for a segment are
formulated as a trade-off between the audio conditioning signal and the temporal coherence constraint as in
Eq. 4.
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Table 1: Perceptual Studies for Unconditional Video Textures and Audio Conditioned Video Synthesis.

(a) We show MTurk evaluators textures
synthesized by all 5 methods and ask
them to pick the most realistic one. We
also report the chance evaluators chose
any of the variation of the classic model.

Method Preference %
Classic 3.33 ± 2.42 %
Classic Deep 6.66 ± 3.37 %
Classic+ 10.95 ± 4.22 %
Classic++ 9.52 ± 3.97 %
Any Classic 30.48 ± 6.22
Contrastive 69.52 ± 6.22 %

(b) Unconditional: Real vs. Fake
study. We show evaluators a pair
of videos (generated and real video)
without labels, ask them to pick the
real one. Our method fools evalua-
tors more times than Classic.

Method Real vs. Fake
Classic++ 11.4 ± 4.30%
Classic+ 15.7 ± 4.92 %
Contrastive 45.7 ± 4.3%

(c) Conditional: Real vs. Fake study.
We show evaluators a pair of videos
(generated and real video) without la-
bels and ask them to pick the real one.
Our method fooled evaluators more of-
ten than did baselines.

Method Real vs Fake
Random Clip 15.33 ± 5.76%
Audio NN 20.4 ± 6.63%
Contrastive 26.74 ± 6.14%

Audio encoding. We embed the audio segments using the VGGish model (Hershey et al., 2017) pretrained
on AudioSet (Gemmeke et al., 2017). We remove the last fully connected layer from the model and use the
output of the final convolutional layer as audio features. We describe details of the implementation of our
method in Sec. A.1.

4 EXPERIMENTS

We curate a dataset of 70 videos from different domains such as dance and musical instruments including
piano, guitar, suitar, drums, flute, ukelele, and harmonium. A subset of these videos were randomly sampled
from the PianoYT dataset (Koepke et al., 2020) and the rest were downloaded from YouTube. We first worked
with 40 of the 70 videos and used those to tune our hyperparameters. We then tested it on the remaining 30
without any tuning. Our dataset consists of both short videos which are 2-3 minutes long and long videos
ranging from 30 - 60 mins1. We conduct perceptual evaluations on Amazon MTurk to qualitatively compare
the results from our method to different baselines for both the aforementioned cases.

4.1 UNCONDITIONAL VIDEO TEXTURE SYNTHESIS

To show the effectiveness of our method, we compare our results to the classic video textures algorithm (Schödl
et al., 2000). Additionally, we compare to three variations of the algorithm. Classic+ appends multiple frames
to the output sequence instead of a single frame, Classic++ adds a stride while filtering the distance matrix
and Classic Deep uses ImageNet pretrained ResNet features instead of raw pixel values. The algorithm and
its variants are described in Sec. A.2.

Table 1a reports the results from a perceptual study on Amazon MTurk where evaluators where shown textures
generated by all five methods and asked to choose the one they found most realistic. Our contrastive model
surpasses all baselines by a large margin and was chosen 69.52% of the time. Since the classic models are
similar, we also report all variations of classic combined. They chosen 30.48% of the time.

We include qualitative video results for Classic, Classic+, Classic++ and contrastive in Fig. 3. Video in Fig. 3a
produced by our contrastive method is most realistic and has seamless transitions. We notice in Fig. 3b that

1We will release the videos along with the trained models for each, along with a reference implementation of our
method.
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the classic algorithm often transitions to frames in and around the target, producing textures which are jarring.
Classic+ shown in Fig. 3c has slightly improved quality compared to classic but is still nowhere close to our
contrastive method. Classic ++ shown in Fig. 3d shows no significant improvement.

Additionally, we conduct real vs. fake studies where the evaluators are shown the ground truth video and
synthesized texture and asked to pick the one they think is real. Our method is able to fool evaluators 45.7%
of the time whereas the best baseline (Classic+) is able to fool the evaluators only 15.7% of the time.

Both the qualitative and quantitative comparisons clearly highlight the issues with the classic model and
emphasize the need to learn the feature representations and the distance metric as we do in our contrastive
method.

(a) Contrastive (b) Classic (c) Classic+ (d) Classic++

Figure 3: To play the videos, please view in Acrobat Reader and click on the figure. Videos are also included
at this [website]. Qualitative comparison of our method (Contrastive) to the baselines Classic, Classic+ and
Classic++ are shown. The red bar at the bottom indicates the part of the original video being played. The
results from all 3 baselines are choppy. Our method selects good transitions in the video as can be seen by the
red bar moving but the transition is seamless.

4.2 AUDIO CONDITIONED CONTRASTIVE VIDEO TEXTURES

For audio conditioned video synthesis, we choose a subset of 30 videos from the above 50 and randomly
paired them up with songs from the same domain (e.g. a source piano video is paired with a conditioning
audio of a piano). Using this strategy, we created 50 source video - conditioning audio pairs. As described
in Sec. 3, we extend the contrastive method to synthesize textures given a conditioning audio signal. We
compare audio conditioned video textures synthesized by our method to four baselines and report results from
a perceptual evaluation.

Random Clip. To show it is easy to identify when a video and the corresponding audio are out of sync, we
randomly choose a portion of the source video to match the conditioning audio.

Video Textures with Audio Conditioning. We add audio conditioning to the classic video textures algorithm.
For this, we divide the conditioning audio into segments and find nearest-neighbours in the source audio.
Then we combine these distances with the distance matrix D calculated by video textures.

Visual Rhythm and Beat. We use the approach of Davis & Agrawala (2018) to synchronize the source video
with the audio beats. This method works by changing the pacing of the video (slowing it down and speeding
it up) so that the visual and audio beats are more closely aligned.

Audio Nearest Neighbours. We include comparisons to a nearest neighbor baseline that works by computing
the similarity between the conditioning audio signal and segments of the source audio of the same length, and
then choosing the video clip of the closest match.

We conduct perceptual studies comparing the audio conditioned video textures synthesized by our contrastive
model and all of the baselines. The evaluators were shown two videos with the same conditioning audio, one
synthesized by our method and the other by the baseline. They were asked to pick the video that they felt was
more in sync with the audio. Our method was chosen 92% of the time when compared with Classic+Audio,
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84% of the time when compared with VRB, 70% of the time when compared with Random Replay and
66% of the time when compared with Audio NN. As shown in Tab. 1c, we conducted a real vs. fake study
comparing the ground truth videos with the synthesized videos from contrastive and the two best baselines
(Random Clip and Audio NN). While Random Clip and Audio NN beat the ground truth only 15.33% and
20.4% respectively, our method was able to fool evaluators 26.74% of the time.

Same note repeated twice.

Note is not repeated.

Plays section with no audio.

Random note played.

Repeated Chords

Conditioning Audio

Audio Conditioned Video Texture

Contrastive

Classic+Audio

Random

VR&B

Hands in air. No strumming.

Strumming

Talking

Strumming

No Sound. Gap in Music.

Conditioning Audio

Audio Conditioned Video Texture

(A) (B)

Figure 4: Qualitative comparison of audio conditioned video textures synthesized by Classic, Random, Visual
Rhythm and Beat (VRB) and our Contrastive model. (A) The conditioning audio waveform shows a gap in
the audio where no music is being played. Our model is able to pick up on that and the corresponding video
that is synthesized has hands in the air and no strumming. However both Random and Classic+Audio show
strumming, which is not in sync with the audio. The result using VRB shows the person talking. (B) The
conditioning audio waveform has the same chord repeated twice. The video synthesized by our model reflects
this, and we observe the same frames (1 and 2) repeated again. Classic+Audio plays the note just once and
Random plays a different note. VRB result contains a region without audio where the person isn’t playing
anything, which is out of sync with the conditioning audio.

We show qualitative results comparing our method to the five baselines described above in Fig. 4 and also
include additional results at this [website]. In Fig. 4 (A), the conditioning audio signal has a gap/break in the
audio where no music is being played. We see the output produced by the contrastive model is semantically
meaningful and aligns best with the audio. Random Clip chooses a random segment which has strumming
and thus fails to align with the audio. Similarly class+audio chooses frames that don’t correlate with the
audio. VRB doesn’t capture semantics as it only speeds up or slows down the video to better match the audio
beats. Similarly, in Fig. 4(B) we see that our contrastive method is able to pick up on repeated chords in
the conditioning audio signal while no other method is able to do that. Furthermore, we also illustrate the
importance of adding video interpolation through examples show here. Through more examples listed at this
website we show that the videos synthesized by contrastive model are more in sync with the conditioning
audio. For example, it identifies gaps in the audio, repeated chords, and change of pace. Our model is better
at learning audio-visual correlations.
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5 RELATED WORK

Texture Synthesis. All texture synthesis methods aim to produce textures which are sufficiently different
from the source yet appear to be produced by the same underlying stochastic process. Texture synthesis
methods can be broadly classified into two categories: non-parametric and parametric. Non-parametric
methods focus on modeling the conditional distribution of the input images and sample information directly
from the input. The sampling could be done pixel-wise (Efros & Leung, 1999; Wei & Levoy, 2000) or
patch-wise (Efros & Freeman, 2001; Kwatra et al., 2003) for image texture synthesis. Inspired by these
works, (Schödl et al., 2000) proposed a non-paramteric approach for synthesizing a video texture with by
finding novel, plausible transitions in an input video. (Schödl & Essa, 2001; 2002; Efros et al., 2003) were
interesting extensions of the same. (Wei et al., 2009) provides an extensive review of example-based texture
synthesis methods. Parametric approaches, on the other hand, focus on explicitly modeling the underlying
texture synthesis process. (Heeger & Bergen, 1995; Portilla & Simoncelli, 2000) were the first to propose
parametric image texture synthesis by matching statistics of image features between source and target images.
This later inspired (Gatys et al., 2015), which used features learned using a convolutional neural network for
image texture synthesis.

Video Generation and Video Prediction. The success of (GANs) (Goodfellow et al., 2014) and Variational
Autoencoders (VAEs) (Kingma & Welling, 2013) in image generation (Zhu et al., 2017; Karras et al., 2019;
Park et al., 2019) inspired several video generation methods, both unconditional (Vondrick et al., 2016; Clark
et al., 2019; Tulyakov et al., 2018; Saito et al., 2017) and conditional (Wang et al., 2018b; Chen et al., 2019;
Wang et al., 2019; Zhou et al., 2019; Gafni et al., 2020; Mallya et al., 2020). A common type of conditional
video synthesis includes future frame prediction given past frames (Denton & Birodkar, 2017; Srivastava
et al., 2015; Kalchbrenner et al., 2017). Even the most recent video prediction (Ye et al., 2019; Xu et al.,
2020) techniques produce blurry outputs and fail to generate frames beyond a few seconds. These methods
are far from generating realistic videos and oftentimes produce outputs which are blurry and low-resolution,
especially in the unconditional case. This is because videos are higher dimensional and modeling spatio-
temporal changes and transition dynamics is more complex. As such, these methods are expected to fail
when applied to our task of video texture synthesis. There are also a few recent works which condition the
video generation on an input signal such as text (Li et al., 2018), or speech (Oh et al., 2019; Kim et al., 2018;
Ephrat et al., 2018), or a single image (Shaham et al., 2019). Our method is similar to SinGAN (Shaham
et al., 2019) in that we train our network on a single input, though on a video instead of an image and without
an adversarial loss.

Contrastive Learning. Recent contrastive learning approaches (Hénaff et al., 2019; Chen et al., 2019;
2020; He et al., 2020) have achieved success in classic vision tasks proving the usefulness of the learned
representations. (Misra et al., 2016) train a network to determine the temporal ordering of frames in a video
and (Wei et al., 2018)’s self-supervised model learns to tell if a video is playing forwards/backwards. Here,
we use contrastive learning to fit a video-specific bi-gram model. Our network maximizes similarity between
learned representations for the current and next frame. Unlike (Oord et al., 2018), our goal is not to generate
frames from latent representations, but rather to resample from the input video.

6 CONCLUSION

We presented contrastive video textures, a learning-based approach for texture synthesis applied to audio
conditioned video generation. Our method fits an input-specific bi-gram model to capture the dynamics of
a video, and uses it to generate diverse and temporally coherent textures. Further, we introduce the task of
audio conditioned video texture synthesis as a useful application of video textures. We show that our model
outperforms a number of baselines on perceptual studies. We hope this work inspires research in texture
synthesis based generation.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

We divide the video into overlapping segments using a window of length 0.5 seconds and a stride of 0.2
seconds. Depending on the frame rate of the video, this yields segments with varying number of frames.

Video Encoding. Each of these segments is then encoded by SlowFast model into R512. Next the query
and target are passed through two separate MLPs, each consisting of 3 linear layers interspersed with ReLU
activations. The MLP maintains the size of the embedding such that the final outputs, φ(S) and ψ(S) are in
R512. We initialize the SlowFast model with weights pretrained on Kinetics dataset and fine tune the whole
network end-to-end. We use SGD optimizer with a learning rate of 1e-4 for the Slow Fast model and a rate of
1e-3 for the MLP.

Audio Encoding. The VGGish model is initialized with weights pretrained on AudioSet. The learned audio
representations for the source audio segments ϕ(Ac) and the conditioning audio segments ϕ(Ac) are in R128.

Interpolation. We typically set the number of interpolated frames to be added to be 4. This increases the
FPS of the synthesized video by a factor of 3 (i.e. 2 frames is converted to 4). When there is no jump, the
frames are repeated 3 times, to ensure the overall FPS of the video is the same.

Temperature tuning and threshold. For training the contrastive video texture model, we experimented with
multiple values of temperature (τ ) and found 0.1 to work the best. At test time, setting the temperature to 0.1
and threshold (th) to 0.0 regurgitates the original video. Increasing the temperature and threshold increases
the entropy and allows for more random transitions in the output. We found that the number of transitions
vs the temperature is fairly constant across all videos and include details in Sec. 4. We found a temperature
of 0.3 and a temperature of th is optimal for synthesizing videos which are temporally smooth yet different
from the original video.

Combining Ta and Tv . Smaller values of α allow for better audio-video synchronization but at the cost of
continuity in the video. For most results reported here, we set α to either 0.5 or 0.7.

A.2 UNCONDITIONAL VIDEO TEXTURES: BASELINES

We first provide an overview of the classic video texture algorithm introduced in (Schödl et al., 2000) followed
by the descriptions of the baselines.

Classic Video Textures The classic video textures algorithm proposed in (Schödl et al., 2000) computes a
distance matrix D of pairwise distances between all frames in the video. The distance is computed as the
L2-norm of the difference in RGB values between pairs of frames. Next, the distance matrix D is filtered
with a 2 or 4-tap filter with binomial weights to produce matrix D′. The stride used while filtering is 1. If the
input video is short, oftentimes this approach would not be able to find good transitions from the last frame
and reaches a dead end. To avoid this, they use Q-learning to predict the anticipated (increased) “future cost”
of choosing a given transition, given the future transitions that such a move might necessitate. This gives rise
to D′′. The transition probabilities P ′′ are computed from D′′ as P ′′

i,j = exp(−D′′
i+1,j/σ).
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To synthesize a texture, a frame i is chosen at random. This is added to the output sequence of frames. After
displaying frame i, the next frame j is selected according to Pi,j . To improve the quality of the textures and
to suppress non-optimal transitions they adopt a two step pruning strategy. First, they choose the optimal
transition with the maximum transition probability, next they set all probabilities below some threshold to
zero and pick a random transition from the non-zero probabilities. The output sequence is generated one
frame at a time.

We generate textures using the algorithm above. Following the convention in (Schödl et al., 2000), we set
sigma to be a small multiple of the average (non-zero) values in the distance matrix. We tune this small
multiple and the threshold on the train set and use the same values on the test set.

For an apples-to-apples comparison, we fix some of the shortcomings of the classic algorithm and compare to
these modified versions described below.

Classic+. During inference, the number of frames appended to the output texture is the stride with which
the initial video was segmented. While this stride is 1 for the classic algorithm, it is greater than 1 for our
contrastive method. To ensure the difference in perceptual quality isn’t due to just the changes in stride length,
we modify the classic algorithm to increase the stride during inference to be the same as our contrastive model.
The distance matrix is still computed pairwise between frames but instead of appending a single frame, we
append stride number of frames to the output. This stride is set to be the same value as our contrastive model.

Classic++. To further reduce the gap between classic+ and contrastive method, we apply a stride ¿ 1 while
filtering the distance matrix D with the tap filter. This is equivalent to the approach we use in contrastive,
which is dividing the video into overlapping segments of window W and stride s.

Deep Classic. Additionally, we also tried replacing the frame-wise features in the classic algorithm with
learned representations from a pre-trained resnet.

A.3 TRANSITION PROBABILITIES

We compare the transition probability matrices generated by both classic and contrastive methods. Fig. 5a
shows the transition probability matrices for two different videos generated by Classic (1a, 2a) and Contrastive
(1b, 2b) methods. It can be observed from the diagonal lines in the figure that the classic method assigns the
same value to multiple frames whereas our method picks up on subtle differences and assigns different scores.
This emphasizes that the distance metric learned by our method is better at distinguishing frames.

Fig. 5b shows the variation in the number of transitions with sigma for the classic technique and with
temperature for the contrastive technique. Number of transitions increases linearly with temperature for
contrastive method whereas for the classic technique we found no such correlation. Moreover, a temperature
of 0.3 and a threshold of 0.01 results in 15-20 jumps across all videos. There was no such strong correlation
for the classic technique, making it necessary to tune hyperparameters on a per video basis.

Failure Cases. As shown here, our method fails when the changes in background/lighting are too large to be
smoothened by a interpolation model. This is observed in dance videos where there’s large movements across
segments. VRB and Random Replay work well in such cases. VRB is designed to align dance moves with
the music and hence clearly performs the best. Random works well too as good music and good dancing go
well together.

Fig. 6 shows some transitions in the video textures generated by contrastive model.
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Figure 5: Left. Transition probability matrix for two different videos (in each row) for both classic and
contrastive methods. Right. Number of transitions vs Sigma for Classic and Number of transitions vs
Temperature for Contrastive.
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Figure 6: The figure shows frames from two different videos synthesized by our method. Red bar indicates
position of the original video being played. The transition happens at the third frame and is seamless in both
cases. The first is a forward jump and the second is a backward jump.
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