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Abstract

Single-task models have proven pivotal in solv-001
ing specific tasks; however, they have limita-002
tions in real-world applications where multi-003
tasking is necessary and domain shifts are ex-004
hibited. Recently, instructional prompts have005
shown significant improvement towards multi-006
task generalization; however, the effect of in-007
structional prompts and Multi-Task Learning008
(MTL) has not been systematically studied in009
the biomedical domain. Motivated by this,010
this paper explores the impact of instructional011
prompts for biomedical MTL. We introduce012
the BoX, a collection of 32 instruction tasks013
for Biomedical NLP across (X) various cate-014
gories. Using this meta-dataset, we propose a015
unified model termed as In-BoXBART, that can016
jointly learn all tasks of the BoX without any017
task-specific modules. To the best of our knowl-018
edge, this is the first attempt to propose a uni-019
fied model in the biomedical domain and use020
instructions to achieve generalization across021
several biomedical tasks. Experimental results022
indicate that the proposed model: 1) outper-023
forms single-task baseline by ∼3% and multi-024
task (without instruction) baseline by ∼18% on025
an average, and 2) shows ∼23% improvement026
compared to single-task baseline in few-shot027
learning (i.e., 32 instances per task) on an aver-028
age. Our analysis indicates that there is signifi-029
cant room for improvement across tasks in the030
BoX, implying the scope for future research031
direction.1032

1 Introduction033

For long, task-specific models have played a cen-034

tral role in achieving state-of-the-art performance035

in both general and biomedical NLP (Wang et al.,036

2021a). During 2017-2019, pre-train and fine-tune037

paradigm (Liu et al., 2021) became the prevalent ap-038

proach in NLP. Due to success of Language Models039

(LMs) in the biomedical domain such as BioBERT040

(Lee et al., 2020), ClinicalXLNET (Huang et al.,041

1Code and data is available at <anonymized link>

Input: Stem Cell Therapy: A promising approach in the treatment of the COVID-19
pandemic is a global health crisis in the 21st Century. Question: What is the

promising approach for treating COVID-19?

NER 
Biomedical Instruction: From the given

input recognize all the disease and
chemical named entities. ...

QA
Biomedical Instruction: In this task, you
are given a context and a question, your
task is to find the answer for the given

question based on the given context. ...

Systematic Review 
Biomedical Instruction: You are given an

abstract and title of the paper as the
context. Your task is to classify a given

article into Include or Exclude, based on
the given criteria. ...

Input

Input

Input

COVID-19
<disease>

Stem Cell
Therapy

Include

Figure 1: Schematic representation of multi-tasking
in biomedical domain using instructional prompts. In
this approach, a model is allowed to utilize tasks to get
familiar with instructions and use them to map a given
input to its corresponding output.

2019), and others (Alrowili and Vijay-Shanker, 042

2021; Kraljevic et al., 2021; Phan et al., 2021), 043

this paradigm is widely used for creating many 044

task-specific models (Wang et al., 2021a; Baner- 045

jee et al., 2021). However, task-specific models 046

have limitations to real-world applications because 047

this approach is computationally expensive (i.e., 048

require large computational resources) and time- 049

consuming (Strubell et al., 2019; Schwartz et al., 050

2020). Hence, there is a need for generalization 051

where a single model can perform various tasks 052

leading to a computationally efficient approach. 053

Past attempts have been made in general-domain 054

NLP to achieve generalization across tasks such as 055

MQAN (McCann et al., 2018), UNICORN (Lourie 056

et al., 2021), and UnifiedQA (Khashabi et al., 057

2020). However, approaches to achieve general- 058

ization across various biomedical NLP tasks have 059

not been systematically studied. Hence, this paper 060

studies the multi-tasking approach that can gener- 061

alize over different biomedical NLP tasks. Figure 1 062

shows the overview of our proposed multi-tasking 063

approach where the single model can perform vari- 064

ous biomedical NLP tasks. 065
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Recently, prompt-based models have been066

widely used because of their ability to achieve067

generalization instead of task-specific models (Liu068

et al., 2021). Mishra et al. (2021b); Wei et al.069

(2021) and (Sanh et al., 2021) show the effective-070

ness of instructional prompts in generalizing on071

seen as well as unseen general-domain NLP tasks.072

In this paper, we adapted this instructional prompt-073

based approach for the first time to achieve gener-074

alization across various biomedical NLP tasks. To075

this extent, this paper introduces a collection of 32076

instruction tasks for Biomedical NLP across (X)077

various categories (BoX) and proposes a unified078

model that can generalize over 32 different biomed-079

ical NLP tasks. The proposed unified model (i.e.,080

In-BoXBART) is trained on the instruction-based081

meta-dataset (i.e., BoX) and evaluated on each task082

individually from the BoX.083

To evaluate the proposed approach, we compare084

our model (i.e., In-BoXBART) with two baselines:085

(1) single-task models (i.e., models trained on one086

task and evaluated on the same task), and (2) multi-087

task model (i.e., a single model trained on a com-088

bination of all tasks) without instructions. Experi-089

mental results show that In-BoXBART outperforms090

single-task baseline by ∼3%, and multi-task base-091

line by ∼18%. We also analyze few-shot learning092

scenario using In-BoXBART since obtaining anno-093

tated data in the biomedical domain is costly and094

time-consuming. In the few-shot setting (i.e., 32095

instances per task), In-BoXBART outperforms the096

single-task baseline by 23.33%. This indicates that097

Multi-Task Learning (MTL) and instruction-tuning098

have an advantage in the low resources settings.099

Although the performance of the In-BoxBART is100

promising, our analysis reveals that there is still101

room for improvement on some tasks, implying the102

scope for future research direction. Concisely, our103

contributions can be summarized in three folds:104

1. This paper introduces the first benchmark meta-105

dataset in biomedical domain, i.e., BoX: a col-106

lection of 32 instruction tasks for Biomedical107

NLP across (X) various categories. Each task is108

processed in a unified format and equipped with109

instructions that can be used to train sequence-110

to-sequence models.111

2. Using this meta-dataset, we propose an112

instruction-tuned Bidirectional and Auto-113

Regressive Transformer (BART) model,114

termed as In-BoXBART. The comparison of115

In-BoxBART and two baselines shows that116

In-BoXBART outperforms single-task baseline 117

by ∼ 3% and multi-task (without instruction) 118

baseline by ∼ 18%. 119

3. In the few-shot setting, we show that In- 120

BoxBART significantly outperforms the single- 121

task baseline by ∼ 23%. This indicates the 122

potential application of instruction-tuning in the 123

biomedical domain where annotated data is dif- 124

ficult to obtain. 125

2 Related Work 126

Multi-task Learning Owing to the problems as- 127

sociated with single-task learning in terms of their 128

space and time requirements, several multi-task 129

learning approaches have been proposed over the 130

years. DecaNLP (McCann et al., 2018) built a 131

multi-tasking model by converting format of each 132

tasks to question answering format. Several other 133

works have followed similar approach by convert- 134

ing tasks to reading comprehension format (Mishra 135

et al., 2020) and textual entailment (Wang et al., 136

2021b) . The multitasking model T5 (Raffel et al., 137

2020) was built with the help of a unified frame- 138

work that converts all text-based language prob- 139

lems into a text-to-text format. SCIFIVE (Phan 140

et al., 2021) involved building a text to text model 141

for the biomedical literature. T0 (Sanh et al., 2021) 142

uses prompts along with instances to do multitask 143

learning and they focus on achieving zero-shot task 144

generalization. 145

Instruction Learning The turking test (Efrat and 146

Levy, 2020) was proposed to measure the efficacy 147

of models to follow instructions. Natural Instruc- 148

tions (Mishra et al., 2021b) broke down each task to 149

multiple sub-tasks that helped models in following 150

instructions and subsequently generalize to unseen 151

tasks (cross-task generalization). FLAN (Wei et al., 152

2021) model was built by leveraging instruction- 153

tuning on diverse range of tasks and achieving zero- 154

shot generalization on target unseen tasks. Task 155

reframing (Mishra et al., 2021a) proposed several 156

guidelines to reframe task instructions to improve 157

model response to follow instructions. 158

3 BoX 159

We use existing, widely adopted 29 biomedical 160

NLP datasets collected from various challenges, 161

platforms and organizations to create BoX. We de- 162

fine the BoX as a benchmark dataset for biomedical 163

MTL across 9 different categories. In the BoX, 164
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Figure 2: Schematic representation of 9 categories of
tasks: each block represents one category with various
tasks equipped with instruction.

Category # of training samples

NER 82503
De-identification 106
POS Tagging 16323
QA 5778
RE 23359
Sentiment Analysis 2860
Systematic Review 5761
Document Classification 3119
Risk Factor Identification 986

Total 140795

Table 1: Size of training samples in each category

we reframed all the datasets as text generation165

tasks (see examples in Appendix B) and created166

32 instruction tasks. BoX consists of high-quality167

human-authored Biomedical Instructions (BIs) for168

all 32 tasks. Figure 2 shows the 9 different cate-169

gories and corresponding generated tasks. Each170

category is defined as colored box and each box171

contains instruction tasks re-purposed from origi-172

nal datasets.173

3.1 Tasks174

Table 1 shows the number of training samples we175

have used for each category. Further details of each176

instruction task statistics is shown in Appendix A.177

Each category and corresponding tasks from the178

BoX are defined as below:179

Named Entity Recognition (NER) NER has180

been considered a necessary first step in process-181

ing literature for biomedical text mining where the182

model helps in identifying named entities such as 183

protein, gene, chemical, disease, treatment. We use 184

fifteen publicly available biomedical NER datasets 185

(Crichton et al., 2017) to create instructions tasks. 186

De-Identification In this task, the model takes 187

medical discharge records of a patient as input 188

and identify Private Health Information (PHI) such 189

as organizations, persons, locations, dates. We 190

use n2c2 2006 de-identification challenge dataset 191

(Uzuner et al., 2007) to perform this task. 192

Part-Of-Speech (POS) Tagging The goal of 193

this task is to identify various POS tags from the 194

biomedical text. We use GENIA corpus (Tateisi 195

et al., 2005) built from MEDLINE abstracts for the 196

POS tagging task. 197

Question-Answering (QA) QA models receive 198

a question and a corresponding context as input 199

and output the relevant answer from the given con- 200

text. To execute this task, we used the BioASQ-8b 201

dataset (Nentidis et al., 2020) for different question 202

types, i.e., yes/no, factoid, and list type questions. 203

We created three different tasks from this dataset. 204

Also, we use PubMedQA dataset (Jin et al., 2019) 205

for this task. 206

Relation Extraction (RE) We used two datasets 207

for this task: (1) CHEMPROT corpus from biocre- 208

ative VI precision medicine track (Islamaj Doğan 209

et al., 2019), and (2) Drug-Drug Interaction (DDI) 210

corpus from SemEval 2013 DDI Extraction chal- 211

lenge (Herrero-Zazo et al., 2013). 212

Systematic Review We have included data from 213

the following five Systematic Reviews (SRs) that 214

were conducted using the traditional (manual) pro- 215

cess and published in relevant venues by Mayo 216

Clinic physicians: (1) Hormone Replacement Ther- 217

apy (HRT), (2) Cooking, (3) Accelerometer, (4) 218

Acromegaly, and (5) COVID for this task. More 219

details about these datasets creation and statistics 220

are given in Appendix C. 221

Sentiment Analysis Analyzing the sentiment of 222

people towards medical drugs is an essential task 223

in the biomedical domain. To that effect, we use 224

medical drug sentiment analysis dataset2 to identify 225

one of three sentiments: (1) positive, (2) negative, 226

and (3) neutral. 227

2https://www.kaggle.com/arbazkhan971/
analyticvidhyadatasetsentiment
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Figure 3: Unified schema used to create a Biomedical
Instruction (BI).

Document Classification We have used the Hall-228

marks of Cancer (HoC) dataset (Baker et al., 2016)229

for this task.230

Risk Factor Identification The goal of this task231

is to identify risk factors for Coronary Artery Dis-232

ease (CAD) in diabetic patients over time. For this,233

we used n2c2 2014 shared task track 2 dataset (Ku-234

mar et al., 2015) with two different purposes: (1)235

identify if the risk factor is presented in the medi-236

cal discharge summary and (2) time of risk factor237

present in the discharge records.238

3.2 Biomedical Instructions239

Motivated by (Mishra et al., 2021b), we have used a240

similar approach to create Biomedical Instructions241

(BIs). BI consists of natural language instructions242

that describe a task and contain instances of that243

task. Figure 4 shows an example of BI that de-244

scribe a “Named Entity Recognition (NER)” task245

accompanied with a few positive examples. Here,246

we have introduced a unified schema to present BI247

and described how we can construct BI for each248

task given in the BoX.249

3.2.1 Unified Schema250

All BIs are mapped to the unified schema. Fig-251

ure 3 illustrates the schematic representation of the252

schema. As shown in Figure 3, unified schema con-253

sists of a definition, prompt, and positive examples.254

This schema helps in understandably organizing255

each BI. Each of the elements of the schema is256

explained below:257

Figure 4: Example of Biomedical Instruction (BI) and
task instances from BioNLP11ID (NER) dataset.

Definition contains the core explanation about 258

the task and detailed instruction to the model that 259

what needs to be done in the given task. 260

Prompt is the short explanation of the task that 261

needs to be done. 262

Examples contain the input/output pairs of the 263

task instance along with the explanation of how 264

the output is generated. Generally, we provide 2-3 265

examples for each task. 266

Instances contain the input/output pairs of train- 267

ing samples from the task datasets. 268

3.2.2 Construction of BI 269

We have created a BI for each dataset given in the 270

BoX. To create BI, we manually fill in the fields 271

of unified instruction schema (Figure 3). For each 272

dataset, the BI is created by one author and were 273

verified by other authors. 274

Quality of BIs In the instruction verification pro- 275

cess, we edit BIs if needed in terms of grammar, 276

typos, ambiguity, etc. to improve quality. Accord- 277

ing to (Beltagy et al., 2020), concise instructions 278

are more beneficial compare to repetition, hence, 279

we also redact repetition from BIs. So, our BIs 280

consists of high-quality, short, and meaningful task 281

definition, and prompts. 282

Positive examples and its explanation For each 283

dataset, we have provided 2-3 positive examples 284

and corresponding explanations to give an idea of 285

how to perform the given task. As we know, the 286
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selection of examples has an impact on model per-287

formance (Lu et al., 2021). To that extent, we have288

been careful in selecting examples for text gener-289

ation and classification tasks. For text generation,290

we have provided 2-3 examples with a detailed ex-291

planation about how the output is generated. For292

text classification tasks, we have included examples293

corresponding to each class with an explanation of294

why the particular class is assigned to a given input295

instance. All positive examples are drawn from296

training instances and have been removed from297

training in order to avoid repetition. All the expla-298

nations of examples pass through the verification299

process to maintain high quality.300

Collection of input/output instances Since each301

biomedical NLP dataset included in the BoX has302

there own annotated input/output instances, we con-303

verted them into text-to-text format (Lourie et al.,304

2021). Examples of instances converted for each305

task is given in Appendix B. After this, we ap-306

pended all instances tuple (i.e., <input, output>)307

with instruction schema (as shown in Figure 3).308

4 Problem Setup and Models309

4.1 Problem setup310

Let us assume, we have input/output instances pair311

(Xt, Yt) for given task t. Along with that, each task312

is described in terms of its instruction BIt.313

Single-task models Traditional supervised mod-314

els learn mapping function (fM ) between input (x)315

and output (y), where (x, y) ∈ (Xt
train, Yt

train) and316

evaluated on the same task (Xt
test, Yt

test). We refer317

this setup as single-task learning.318

Multi-task models In this setup, we combined319

training data and corresponding biomedical in-320

struction of all tasks together. The goal of multi-321

task learning models to learn mapping function322

(fM ) between input (x), output (y) and biomedi-323

cal instruction BIt, i.e., fM (BIt, x) = y, where324

(x, y) ∈ (Xt, Yt). This model is evaluated on task-325

specific instances (x, y) ∈ (Xt
test, Yt

test) In con-326

trast to single-task models, single model is used327

here to solve various tasks, hence, achieving gener-328

alization. We refer this as MTL.329

4.2 Models330

We propose an instruction-based model to achieve331

multi-tasking and compare it with two baselines:332

(1) single-task models, and (2) multi-task models333

without instructions. We have fine-tuned the BART 334

(base) model (Lewis et al., 2019) to build baselines 335

as well as the proposed model. 336

4.2.1 Baselines 337

Single-Task models As formulated in the single- 338

task problem setup, we have trained the BART 339

model on each task from the BoX and evaluated it 340

on the same task. 341

Multi-task without instruction To build this 342

baseline, we have combined training data of each 343

task from the BoX together without appending BIs 344

and trained a single model on the combined data. 345

We refer this model as Vanilla-BoXBART. This 346

model is evaluated on each task of the BoX. 347

4.2.2 Proposed Model 348

As formulated in the multi-task problem setup, we 349

have combined training data and the correspond- 350

ing BI of each task. To combine instruction with 351

input instances, we map a BI and an input (x) into 352

the textual format and obtain enc(BIt, x). After 353

that, BART model is used to predict an output (y) 354

using mapping function fM : enc(BIt, x) → y. 355

To perform encoding, a standard NLP paradigm 356

of mapping is used, i.e., mapping an input to text. 357

Here, we map each element of BI (i.e., definition 358

and positive examples as shown in the schema) 359

to a textual format and append it before the in- 360

put instances. After appending BI of each task to 361

instances, we combined all training data of each 362

task. Now, we fine-tuned the BART model with 363

this combined instruction meta-dataset. We refer 364

this instruction-tuned model as In-BoXBART. 365

5 Experiments and Analysis 366

5.1 Experimental Setup 367

We have used BART (base) model to build all base- 368

lines and proposed model. All the experiments are 369

performed using Quadro RTX 8000 GPU. All mod- 370

els are trained for 3 epochs. In particular, we have 371

used huggingface implementation of the BART and 372

its pre-defined functions for the training and evalu- 373

ation with default parameters. 374

Instance Selection As we know, BART (base) 375

can accept the input of a maximum 1024 token 376

length. Since there are few instances in some 377

datasets that exceed this limit (after including 378

instructions), we have discarded those instances 379

while creating instruction tasks. We have also re- 380

moved those same instances while training two 381
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baselines to do a fair comparison. We have dis-382

carded long samples (>1024 token length) from383

validation and testing data as well.384

Example Selection As discussed in (Lu et al.,385

2021), the selection and order of the examples in-386

cluded in instructions matters for mainly classifica-387

tion tasks and affects the performance of the model.388

We empirically conclude that the proposed model389

benefits from ignoring examples from biomedical390

instructions for classification tasks during training391

and evaluation. Hence, we have discarded all exam-392

ples from the BIs associated with the classification393

instruction tasks.394

Instance Sampling Some classification datasets395

used to create the BoX are imbalanced. To bal-396

ance these datasets, we have applied the sampling397

techniques (Poolsawad et al., 2014) before using398

datasets to create BoX. In particular, we have399

analyzed three sampling techniques: (1) under-400

sampling, (2) average-sampling, and (3) over-401

sampling. In under-sampling, we have reduced402

instances for all the classes to the class with the403

lowest number of instances. In contrast, we have404

over-sampled instances via replication of random405

instances to the class with the highest number of406

instances to achieve over-sampling. In average sam-407

pling, we calculated mean of number of instances408

across all the classes and over-sampled or under-409

sampled instances accordingly for each class.410

Few-shot setting Similar to the (Schick and411

Schütze, 2020), we have started with 32 randomly412

selected instances for each instruction task from413

the BoX to exhibit few-shot learning. After that,414

we have increased randomly selected instance in-415

stances per task to 100/1k/4k. If any task have416

already less number of instances than the threshold417

(i.e., 100/1k/4k), we keep all the instances from418

that task. While selecting the instances, we made419

sure that we select balanced data for the classifica-420

tion tasks. Moreover, the BoX contains an average421

6k instances per task.422

Evaluation Metric We have used Rouge-L (Lin,423

2004) as our evaluation metric since we have424

treated all the tasks as text generation problems.425

5.2 Results and Findings426

Effect of Sampling As mentioned above, we427

have conducted three experiments to analyze the428

effect of sampling on In-BoXBART. We trained429

our model using training data obtained from (1) 430

under-sampling, (2) average-sampling, and (3) 431

over-sampling. We achieved on an average (across 432

all instruction tasks) 69.62%, 70.23% and 73.49% 433

Rouge-L for under-, average- and over-sampling, 434

respectively. Here, we observed from the ex- 435

perimental results that over-sampling gives bet- 436

ter performance compared to under- and average- 437

sampling since there is a loss of training data sam- 438

ples for under- and average-sampling. Hence, we 439

have reported results of over-sampling as the main 440

result in Table 2. 441

Performance comparison Table 2 presents the 442

results for single-task model, Vanilla-BoXBART 443

and In-BoXBART. We can see from Table 2 that 444

the single-task model, Vanilla-BoXBART, and In- 445

BoXBART achieve on an average (across all tasks) 446

Rouge-L of 70.51%, 55.55%, and 73.49%, respec- 447

tively. From the result, we can observe that Vanilla- 448

BoXBART reduces the complexity compared to 449

the single-task model (i.e., 110 million parame- 450

ters vs. 32x110 million parameters), however, the 451

on an average performance drops by 14.96% in 452

terms of Rouge-L compared to single-task models. 453

This indicates that multi-task learning in biomedi- 454

cal is difficult than general domain NLP since many 455

previous works have shown that the multi-task 456

model outperforms the single-task model (Lourie 457

et al., 2021; McCann et al., 2018). On the other 458

hand, In-BoXBART, which has the same complex- 459

ity as Vanilla-BoXBART, significantly outperforms 460

Vanilla-BoXBART by on average 17.94%, and also 461

outperforms the single-task model by a 2.98% mar- 462

gin, precisely. This indicates the benefit of using 463

instructions to achieve the MTL in the biomedical 464

domain. 465

Effect of instruction in few-shot learning We 466

have compared the average Rouge-L of In- 467

BoXBART with a single-task baseline. Figure 5 468

shows the relative performance of In-BoXBART 469

compared to single-task baseline. We have shown 470

results for all few-shot learning experiments in 471

Appendix D. From the results, we see that In- 472

BoXBART achieves on an average 60.64% Rouge- 473

L and the single-task model achieves 37.31% for 474

32 instances per task. In-BoxBART significantly 475

outperforms the single-task baseline by 23.33%. 476

From Figure 5, we can see that In-BoXBART con- 477

sistently perform better compared to baseline. As 478

we know, obtaining a large annotated dataset in 479
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Category Task Single-task Multi-task

V-BB I-BB

NER

AnatEM 84.88 32.30 83.93
BC2GM 77.66 50.87 74.10
BC4CHEMD 88.85 71.05 86.50
BC5CDR 74.83 69.81 74.76
BioNLP11EPI 84.64 50.10 87.60
BioNLP11ID 71.08 59.12 72.64
BioNLP13CG 64.19 55.18 67.72
BioNLP13GE 83.74 49.30 86.71
BioNLP13PC 70.42 53.06 72.46
BioNLP09 85.16 51.54 88.09
CRAFT 63.72 51.85 64.10
Ex-PTM 82.32 49.61 83.73
JNLPBA 71.65 69.37 71.54
NCBI 89.51 74.46 86.11
linnaeus 94.43 44.99 93.46
———————————————— ——– ——– ——–
Average 79.14 55.51 79.54

De-identification n2c2 - de-identification 2006 12.60 46.38 50.82

POS Genia 71.45 27.94 71.26

QA

BioASQ8b (factoid) 52.95 51.14 47.28
BioASQ8b (list) 38.96 19.87 36.11
BioASQ8b (yesno) 61.74 62.61 68.25
PubMedQA 27.12 25.48 24.49
———————————————— ——– ——– ——–
Average 45.19 39.78 44.03

RE ChemProt 76.08 76.00 81.61
Drug-Drug Interaction 91.78 82.97 89.35
———————————————— ——– ——– ——–
Average 83.04 79.48 85.48

Sentiment Analysis Medical Drugs 47.51 46.39 47.37

Systematic Review

Accelerometer 74.65 72.54 81.25
Acromegaly 80.21 81.77 80.71
COVID 74.81 76.30 77.28
Cooking 71.71 82.93 83.25
Hormone Replacement Therapy (HRT) 75.68 77.17 82.70
———————————————— ——– ——– ——–
Average 75.41 78.14 81.04

Document Classification Hallmarks of Cancer (HoC) 88.53 49.64 82.53

Risk Factor Identification
n2c2 - Risk Factors Heart Disease 2014 (yesno) 57.21 64.97 69.17
n2c2 - Risk Factors Heart Disease 2014 (time-riskfactor) 66.18 0.97 85.24
———————————————— ——– ——– ——–
Average 72.87 57.30 77.21

Average - 70.51 55.55 73.49

Table 2: Results comparison between single-task baseline, Vanilla-BoXBART and In-BoXBART in terms of
Rouge-L. All the results are presented in %. V-BB: Vanilla-BoXBART, I-BB: In-BoXBART.

the biomedical domain is difficult, time-consuming480

and costly. From few-shot learning, we can see481

that instructions are beneficial in achieving high482

performance compared to task-specific models.483

5.3 Analysis484

For which tasks, instruction is helpful? From485

Table 2, we can see that In-BoXBART outper-486

forms baselines for 5 categories, i.e., NER, de-487

identification, RE, SR and risk factor identifica-488

tion. From this, we can see that instructions are 489

more helpful in these five categories. However, In- 490

BoXBART achieves performance lower or par with 491

the single-task baseline for the tasks from QA, POS 492

tagging, sentiment analysis and document classi- 493

fication which indicates room for improvement in 494

this direction. 495

Which are harder tasks to solve using instruc- 496

tions? Although instructions help in achieving 497
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Figure 5: Comparison of on an average Rouge-L
across all instruction tasks between single-task and In-
BoXBART based on the average number of training
instances per task.

better performance for some tasks compared to498

the single-task model, the overall performance is499

still lower. For example, instruction improves500

performance for de-identification, but overall per-501

formance on this task is only 50.82% which can502

be improved. A similar pattern we can see for503

BioNLP12CG and CRAFT from NER, BioASQ-504

8b (factoid, list) and PubmedQA from QA, and505

Medical Drug from the sentiment analysis category.506

In general, we can observe that tasks that include507

either multi-class scenario or answer generation508

from the context are most likely to be harder to509

solve using instructions. For example, CRAFT and510

BioNLP13CG have 6 entity types which are higher511

than any other tasks from NER, and we can see512

that the performance for these two tasks is lower513

compared to other tasks from NER.514

For which tasks, instruction is the most ben-515

eficial in few shot setting? From the results516

shown in Appendix D, tasks from the NER, de-517

identification, QA, sentiment analysis and risk fac-518

tor identification shows on average larger improve-519

ment compared to baselines for the few-shot set-520

tings (i.e., 32 and 100 instances per task). This in-521

dicates that instructions are beneficial for the tasks522

from the above categories.523

6 Discussion524

Can we design better instructions? Since in-525

struction teach the model how to solve a given task,526

domain specific information rich instructions can527

improve model performance. One potential way is528

to use the knowledge of domain experts. However,529

designing a good biomedical instruction can be one530

research direction.531

How to handle long-context input? Training 532

instances of many biomedical datasets consist Elec- 533

tronic Health Records (EHRs) or discharge sum- 534

maries of patients. Because of this, these instances 535

are long and exceed the maximum input length of 536

LMs such as BERT, BART. In this scenario, en- 537

coding extra information in terms of prompts or 538

instructions becomes difficult. A potential solution 539

is use longformer (Beltagy et al., 2020) kind of 540

LMs. 541

How to handle multi-class classification tasks? 542

Multiple classes cause an issue while creating 543

biomedical instructions that we can not present 544

one example per class. If we do that, the encoding 545

of BI and input will exceed the maximum length 546

of LMs. A naive solution is to select examples of 547

a few labels or remove the examples. However, 548

this will cause a label bias issue or performance 549

degradation. Potential future research direction can 550

be designing a methodology to handle multi-class 551

classification tasks. 552

How far we are from the SOTA? We have pre- 553

sented preliminary comparison of our results w.r.t. 554

state-of-the-art (SOTA) single-task systems for 21 555

instruction tasks3 from the BoX as shown in Ap- 556

pendix E. Form the results, we can see that the 557

performance of the proposed model remains far 558

from the SOTA for some tasks, indicating signifi- 559

cant room for further research in this domain. 560

7 Summary and Conclusions 561

This research shows the impact of instructions in 562

MTL for the first time in the biomedical domain. 563

To this extent, we introduced the BoX, a first bench- 564

mark dataset consisting of 32 instruction tasks 565

across various biomedical NLP domains. Using 566

this meta-dataset, we proposed a unified model, i.e., 567

In-BoXBART which outperforms single-task base- 568

line and Vanilla-BoxBART by ∼ 3% and ∼ 18%, 569

respectively. Our proposed approach also shows an 570

effective performance for a few-shot setting which 571

is more beneficial in the biomedical domain where 572

obtaining large annotated datasets is difficult. We 573

hope that the BoX benchmark, In-BoXBART, and 574

experimental results encourage future research into 575

more unified models for biomedical NLP. 576

3Since we have re-purposed original datasets, some tasks
will not have SOTA systems.
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A Statistics of Instruction Tasks748

This section provides all the statistics of training,749

validation and inference data used for experiments750

in Table 3. All the number of instances provided in751

Table 3 are calculated after discarding the instances752

with more than 1024 token length as described in753

the section 5.1. We have divided the dataset into754

standard 70/10/20 splits for train/validation/test if755

there is no separate validation and testing set pro-756

vided in the dataset.757

B Instruction Tasks and Examples758

To build all the models (baselines, proposed model759

and few-shot learning), we adapt the unified format760

for all the tasks of BoX. We converted all the tasks761

into the text-to-text format, including the classifi-762

cation tasks. Table 4 shows an example of input763

and output from each category. Moreover, we have764

also re-purposed some biomedical datasets to cre-765

ate more than one task as described in the section766

3.1.767

C Systematic Review Datasets768

This section describes the brief data creation pro-769

cess for Systematic Reviews (SRs) that are used770

in this study. The relentless growth in clinical re-771

search and published articles have created a need772

for automation to expedite the process of SRs and773

to enable Living Systematic Reviews (LSRs). A774

crucial step in both SRs and LSRs is the title and775

abstract-based screening of the articles. A new776

dataset was developed from six SRs in the clin-777

ical domain by Mayo clinic physicians. In this778

study, we used data from the following five SRs779

that were conducted using the traditional (man-780

ual) process and published in relevant venues: (1)781

Hormone Replacement Therapy (HRT), (2) Cook-782

ing, (3) Accelerometer, (4) Acromegaly, and (5)783

COVID. The initial bibliographic search was de-784

signed and conducted by an experienced librarian785

with guidance from the principal investigators for786

the respective studies. The search was conducted787

in different bibliographic databases like PubMed,788

PubMed Central (PMC), Embase, EBM Reviews,789

and Ovid MEDLINE(R). Each article in the bib-790

liographic search results was categorized by two791

physicians with domain expertise as “Include” or792

“Exclude”, by reading the title and abstract of the793

article. When there was a disagreement between794

two annotators, a positive class (i.e., “Include”)795

was preferred.796

D Few-Shot Learning results 797

This section presents the results of few-shot learn- 798

ing for all instruction tasks in Table 5. 799

E State-of-the-art results 800

In Table 6, we present State-Of-The-Art (SOTA) 801

results for 21 tasks. To compare the SOTA re- 802

sults with the proposed model, we calculate the 803

corresponding metric used in particular research 804

from our model predictions. For each task, we 805

gather the best performance, and specifically, they 806

are BioASQ-8b (Nentidis et al., 2020), Chemprot 807

(Peng et al., 2019), DDI (Peng et al., 2019). In 808

Chemprot and DDI, we compare results with the 809

base LMs instead of large for a fair comparison. 810

SOTA results for all 15 NER datasets are obtained 811

from (Banerjee et al., 2021). Best performance 812

for the HoC dataset is obtained from (Peng et al., 813

2019). Here, we have considered the result of the 814

best system submitted to (Stubbs et al., 2015) as 815

SOTA result. 816
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Category Tasks # of Instances

Train Dev Test

NER

AnatEM 3507 1121 2303
BC2GM 6427 1291 2570
BC4CHEMD 14466 14568 12397
BC5CDR 4940 4940 5158
BioNLP11EPI 3796 1242 2836
BioNLP11ID 2466 780 1869
BioNLP13CG 4591 1489 2759
BioNLP13GE 1503 1663 1937
BioNLP13PC 2945 1070 1997
BioNLP09 4710 1013 1699
CRAFT 12839 4423 8882
Ex-PTM 855 278 1160
JNLPBA 15124 1533 3152
NCBI 2922 488 538
linnaeus 1484 524 993

De-identification n2c2 - de-identification 2006 106 22 27

POS Genia 16323 2174 2035

QA BioASQ8b (factoid) 695 16 115
BioASQ8b (list) 373 8 45
BioASQ8b (yesno) 543 16 115
PubMedQA 4167 500 473

RE ChemProt 3350 2415 2660
Drug-Drug Interaction 20009 2780 2660

Sentiment Analysis Medical Drugs 2860 526 804

Systematic Review

Accelerometer 499 58 142
Acromegaly 663 80 192
COVID 2385 300 675
Cooking 735 84 205
Hormone Replacement Therapy (HRT) 1479 171 410

Document Classification Hallmarks of Cancer (HoC) 3119 445 890

Risk Factor Identification
n2c2 - Risk Factors Heart Disease 2014 (yesno) 834 360 451
n2c2 - Risk Factors Heart Disease 2014 (time-riskfactor) 152 177 69

Total - 140795 46554 64561

Table 3: Statistics of training (i.e., Train), validation (i.e, Dev) and evaluation (i.e., Test) data for all instruction
tasks from the BoX
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Category Task Input Output

NER BC5CDR
Such interactions may result in serious cardio-
vascular complications even after cessation of
an infusion of ritodrine.

cardiovascular complications <Disease>,
ritodrine <Chemical>

de-identification DI2006

757085252 HLGMC 1228824 18705/6o5b
3/25/1993 12:00:00 AM CONGESTIVE
HEART FAILURE . Unsigned DIS Report
Status : Unsigned ADMISSION DATE : 3/25/93
DISCHARGE DATE : 4/4/93 PRINCIPAL
DIAGNOSIS : congestive heart failure . AS-
SOCIATED DIAGNOSIS : aortic stenosis ;
coronary artery disease , status post multi vessel
coronary artery bypass graft surgery , ... , M.D.
TR : go / bmot DD : 4/4/93 TD : 04/06/93 CC :
[ report_end ]

3/25 <DATE>, 18705/6o5b <ID>,
757085252 <ID>, go / bmot <DOCTOR>,

4/4 <DATE>, 04/06 <DATE>

POS-Tagging Genia Binding sites were mapped for each factor .
Binding <VBG> sites <NNS> were
<VBD> mapped <VBN> for <IN> each
<DT> factor <NN> . <.>

QA
BioASQ8b

(factoid)

Context: Hyperosmia is suspected in pregnancy;
however, no empirical study using validated mea-
sures of olfactory function has clearly confirmed
the anecdotal reports of this phenomenon. sub-
jective hyperosmia is associated with primarily
negative odor-related experiences. Hyperosmia
is increased olfactory acuity \n Question: What
is hyperosmia

Hyperosmia is increased olfactory acuity.

RE
Drug-Drug
Interaction

Context: Antacids may interfere with the ab-
sorption of LEVSIN. Drug_1: Antacids Drug_2:
LEVSIN

true

Sentiment
Analysis

Medical
Drugs

Why don’t more folk opt for Cladribine? \n
Drug: cladribine \n Option1: Neutral Option2:
Positive Option3: Negative

Positive

Systematic
Review Acromegaly

No greater incidence or worsening of cardiac
valve regurgitation with somatostatin analog
treatment of acromegaly CONTEXT: Excess
GH and IGF-I in acromegaly are associated with
reduced life expectancy due to cardiovascular
complications. Option_1: Include, Option_2:
Exclude.

Include

Document
Classification

Hallmarks
of Cancer

(HoC)

Studies of cell-cycle progression showed that the
anti-proliferative effect of Fan was associated
with an increase in the G1/S phase of PC3 cells.

Evading growth suppressors, Sustaining
proliferative signaling

Risk
Factor

Identification

n2c2 - Risk
Factors Heart
Disease 2014

(yesno)

Context: Record date: 2157-08-27 History of
Present Illness ID:Admitted from cardiac cath
lab. HPI:Mr. Doty is a 80 y.o. male with
h/o HTN, DM, PVD, elevated cholesterol who
presents with 6 month h/o chest and upper ex-
tremity discomfort on exertion along with SOB.
He has limited his activities to prevent symp-
toms. ... \n Risk Factor: Diabetes

Yes

Table 4: Examples of one instruction tasks converted into text-to-text format for each category
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Category Task 32 100 1k 4k

S I-BB S I-BB S I-BB S I-BB

NER

AnatEM 12.74 60.73 20.68 79.34 87.81 86.76 84.88 83.44
BC2GM 16.92 65.65 21.31 70.39 82.92 77.19 77.66 74.11
BC4CHEMD 10.55 71.05 14.93 73.85 86.53 83.75 88.85 86.19
BC5CDR 11.75 60.37 12.58 67.51 69.62 73.66 74.83 74.34
BioNLP11EPI 31.14 78.64 42.31 81.51 85.71 85.57 84.64 86.68
BioNLP11ID 11.00 62.38 10.06 68.92 71.41 71.62 71.08 71.96
BioNLP13CG 12.39 49.15 12.53 52.68 55.23 63.15 64.19 67.23
BioNLP13GE 26.10 78.80 25.00 81.82 84.77 84.29 83.74 85.58
BioNLP13PC 12.40 69.29 12.59 71.89 68.11 68.49 70.42 71.97
BioNLP09 32.51 78.17 30.51 82.71 87.48 86.39 85.16 86.33
CRAFT 8.07 37.35 8.60 40.38 49.67 51.56 63.72 63.35
Ex-PTM 16.06 74.32 47.93 76.15 82.92 84.11 82.32 83.81
JNLPBA 20.15 57.61 19.77 59.54 64.46 63.63 71.65 70.45
NCBI 38.69 68.82 30.46 79.35 93.02 90.36 89.51 86.46
linnaeus 28.75 58.69 36.94 67.29 93.81 92.50 94.43 70.57
———————————————— ——– ——– ——– ——– ——– ——– ——– ——–
Average 19.28 64.74 23.08 70.22 77.56 77.54 79.14 77.50

De-identification n2c2 - de-identification 2006 12.67 50.19 13.30 49.54 13.54 55.28 12.60 50.10

POS Genia 51.48 13.41 48.26 30.65 66.27 61.93 71.45 70.57

QA BioASQ8b (factoid) 36.63 35.99 41.89 40.77 51.96 49.84 52.95 51.72
BioASQ8b (list) 14.99 20.91 19.66 29.38 40.14 29.59 38.96 34.68
BioASQ8b (yesno) 43.48 61.11 39.13 57.94 66.96 60.32 56.52 52.17
PubMedQA 17.32 19.28 25.16 23.26 27.68 25.86 27.12 24.96
———————————————— ——– ——– ——– ——– ——– ——– ——– ——–
Average 28.11 34.32 31.46 37.84 46.68 41.40 43.89 40.88

RE ChemProt 61.64 72.02 66.07 64.91 66.01 55.22 76.86 77.38
Drug-Drug Interaction 85.53 77.37 85.53 81.37 46.99 55.41 87.39 73.04
———————————————— ——– ——– ——– ——– ——– ——– ——– ——–
Average 73.59 74.70 75.80 73.14 56.50 55.31 82.12 75.21

Sentiment Analysis Medical Drugs 33.29 63.48 24.51 63.66 43.41 31.58 37.31 49.50

Systematic Review

Accelerometer 76.76 77.78 75.35 68.06 83.80 73.61 72.54 70.83
Acromegaly 80.21 80.71 81.25 75.63 76.56 79.19 76.04 77.66
COVID 87.85 88.36 87.85 84.85 61.93 86.96 73.93 78.12
Cooking 88.29 87.08 87.80 87.56 81.95 87.08 80.98 82.78
Hormone Replacement Therapy (HRT) 85.86 86.02 85.61 75.12 89.08 81.99 83.87 80.81
———————————————— ——– ——– ——– ——– ——– ——– ——– ——–
Average 83.79 83.99 83.57 78.24 78.66 81.77 77.47 78.04

Document Classification Hallmarks of Cancer (HoC) 17.06 19.87 17.98 27.13 46.94 52.36 88.53 81.51

Risk Factor Identification
n2c2 - Risk Factors Heart Disease 2014 (yesno) 57.21 51.78 57.21 51.50 43.02 66.35 43.86 66.46
n2c2 - Risk Factors Heart Disease 2014 (time-riskfactor) 54.51 64.22 52.75 63.37 66.18 59.60 66.18 62.70
———————————————— ——– ——– ——– ——– ——– ——– ——– ——–
Average 55.86 58.00 54.98 57.43 54.60 62.98 54.93 64.58

Average - 37.31 60.64 39.24 63.38 66.75 67.98 69.81 70.23

Table 5: Comparison of few-shot learning results in terms of Rouge-L between single-task models and In-BoXBART
for 32/100/1000 training samples per instruction tasks. All results are presented in %. S: Single-task model, I-BB:
In-BoxBART
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Category Task Metric SOTA Multi-Task

V-BB I-BB

NER

AnatEM F 91.61 33.50 84.61
BC2GM F 83.47 50.86 75.03
BC4CHEMD F 92.39 71.44 86.97
BC5CDR F 90.50 70.11 75.24
BioNLP11EPI F 88.66 52.85 88.04
BioNLP11ID F 87.36 60.15 73.39
BioNLP13CG F 90.16 53.88 65.09
BioNLP13GE F 85.81 51.78 87.39
BioNLP13PC F 91.65 51.61 67.77
BioNLP09 F 91.94 54.31 88.48
CRAFT F 90.12 52.31 64.03
Ex-PTM F 87.08 52.07 84.49
JNLPBA F 79.19 68.60 70.26
NCBI F 89.82 75.55 86.91
linnaeus F 95.68 44.59 93.77

QA BioASQ8 (list) F 52.99 17.74 35.59
BioASQ8 (yesno) F 89.95 62.61 68.25

RE Chemprot F 74.40 52.17 63.22
DDI F 79.40 82.97 89.35

Document Classification Hallmarks of Cancer (HoC) F 85.30 49.51 82.53

Risk Factor Identification n2c2 - Risk Factors Heart Disease 2014 (time-riskfactor) F 92.76 0.97 85.28

Table 6: The state-of-the-art (SOTA) results for each task compared with Vanilla-BoXBART and In-BoXBART. F:
F1-score, V-BB: Vanilla-BoXBART, I-BB: In-BoXBART
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