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Abstract

Multimodal learning has gained much success in recent years. However, current
multimodal fusion methods adopt the attention mechanism of Transformers to
implicitly learn the underlying correlation of multimodal features. As a result, the
multimodal model cannot capture the essential features of each modality, making it
difficult to comprehend complex structures and correlations of multimodal inputs.
This paper introduces a novel Multimodal Attention-based Normalizing Flow
(MANGO) approach to developing explicit, interpretable, and tractable multimodal
fusion learning. In particular, we propose a new Invertible Cross-Attention (ICA)
layer to develop the Normalizing Flow-based Model for multimodal data. To
efficiently capture the complex, underlying correlations in multimodal data in our
proposed invertible cross-attention layer, we propose three new cross-attention
mechanisms: Modality-to-Modality Cross-Attention (MMCA), Inter-Modality
Cross-Attention (IMCA), and Learnable Inter-Modality Cross-Attention (LICA).
Finally, we introduce a new Multimodal Attention-based Normalizing Flow to
enable the scalability of our proposed method to high-dimensional multimodal
data. Our experimental results on three different multimodal learning tasks, i.e.,
semantic segmentation, image-to-image translation, and movie genre classification,
have illustrated the state-of-the-art (SoTA) performance of the proposed approach.

1 Introduction

Figure 1: Our Cross-Modality Fusion Approach
Via Multimodal Normalizing Flows with Invertible
Cross-Attention.

Human perceptions interpret the surrounding
world in a multimodal way via multiple input
channels, such as vision, text, or audio. The
deep learning-based multimodal fusion methods
have majorly improved the performance of var-
ious problems, e.g., classification [20, 38, 37,
58], action recognition [12, 54, 57], semantic
segmentation [65, 56, 59, 61, 60], object detec-
tion [72]. The recent large multimodal mod-
els, e.g., ChatGPT [1], Gemini [52], Chaemelon
[51], LLaMMA [53], etc, introduced for general-
assistant purposes have also shown impressive
performance on these applications.

The critical success of multimodal fusion meth-
ods relies on the interaction and correlation mod-
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eling mechanisms across input modalities. The recent methods [20, 65] adopt the attention mech-
anisms of Transformers [64] to implicitly model the cross-modality correlation. By training on
large-scale data, the attention models can implicitly learn the underlying correlation represented in the
data. For example, the vision-language fusion models [28, 27, 48] use early fusion where the visual
tokens and textual tokens are simultaneously fed into the Transformer model. Then, Transformers
will learn the correlation and alignment between visual and textual tokens via the second-order
correlation learning of the attention mechanism. Under this form, these multimodal fusion methods
are alignment-agnostic, where the cross-modal alignments and correlations are not fully exploited
[65]. In addition, the implicit fusion method often associates information across modalities without
distinctly modeling the unique characteristics and correlations of each modality. Then, it may over-
look the contribution of specific modalities, mainly if one modality contains more data or stronger
signals, leading to suboptimal performance [65, 20]. Since the implicit approach cannot individually
model the importance of each modality, these methods could struggle to capture complex structures
and complementary information represented in the multimodal data. Implicit modeling methods also
lack interpretability since it is hard to understand or represent the contributions of each modality to
the outputs. Other methods [33, 11, 8] adopted the late fusion, where the features are fused after each
of the modalities has been decided. However, late fusion ignores the low-level interaction across
modalities. As a result, the direct adoption of fusion with attention could not improve performance
compared to the unimodal methods [65, 20].

While most recent multimodal methods adopt attention to capture the multimodal correlations
implicitly, the explicit modeling approach has been less investigated [16, 23]. The normalizing
flow-based model [5, 21, 48] is a common approach to explicit modeling. By modeling the exact
likelihoods of data via the bijective mapping between the data and latent spaces, the normalizing
flow-based models allow for stable and reliable training, gaining better insight into the model
representations of the underlying multimodal data distribution. In particular, by stacking a set of
bijective transformations, the explicit models can construct complex distributions, enabling them
to capture multimodal data distributions with direct control over parameters. Thus, this explicit
modeling approach enhances interpretability and enables a better understanding of multimodal
features and correlations in the latent space, which can be challenging to access in prior methods
[65, 20]. Compared to prior methods [65, 20], explicit modeling via normalizing flows provides a
better multimodal fusion mechanism since it can capture the underlying structures and correlation of
multimodal data without letting any single modality dominate. Therefore, explicit modeling enables
more precise, flexible, and robust multimodal fusion, improving performance in tasks requiring
understanding and good alignment of multimodal data.

The Challenges in Multimodal Normalizing Flows. While explicit modeling is a potential approach
to multimodal fusion, developing multimodal normalizing flows requires several efforts. Indeed,
there are two significant limitations in the current normalizing flow-based models. First, while
the affine coupling layer [5, 21] allows for the properties of tractability and invertibility, this layer
limits the expressiveness of the models. Unlike the attention mechanism in Transformers [64], the
coupling layer cannot capture the wide-range data dependencies and correlation in multimodal data
[48]. Second, scaling the normalizing flow-based models to high-dimensional data is a challenging
problem. It requires stacking more bijective layers in the models, leading to high computational cost
and hard convergence during training [5]. While the implicit modeling approaches have alleviated
the computational overhead using latent models (e.g., Latent Diffusion [42]), there are limited studies
to address this overhead problem in normalizing flow-based approaches. Therefore, there is an urgent
need to address these limitations to develop an efficient multimodal normalizing flow-based model.

Contributions of this Work. This paper introduces the new Multimodal Attention-based Normalizing
Flows (MANGO), an explicit, interpretable, and tractable approach, to multi-modality fusion prob-
lems (Fig. 1). To the best of our knowledge, this is one of the first studies that develops a Normalizing
Flow approach to multimodal fusion learning. Our contributions can be summarized as follows. First,
we propose a new Invertible Cross-Attention (ICA) layer for Normalizing Flow-based Models. The
proposed ICA layer can efficiently address the limitations of coupling layers in the standard Nor-
malizing Flows while maintaining its tractability and invertibility properties. Second, to capture the
correlation and alignment across modalities, we present three new partitioning cross-attention mecha-
nisms, including Modality-to-Modality Cross-Attention (MMCA), Inter-Modality Cross-Attention
(IMCA), and Learnable Inter-Modality Cross-Attention (LICA). Third, we present a novel Multi-
modal Attention-based Normalizing Flow approach with a latent model to enable its scalability to
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high-dimensional multimodal data fusion. Our approach can address the limitations of computa-
tional overhead while efficiently modeling complex correlations in multimodal data. Finally, our
experiments on three multimodal learning tasks, i.e., semantic segmentation, image-to-image transla-
tion, and movie genre classification, have shown the effectiveness of MANGO in different aspects,
demonstrating its State-of-the-Art (SoTA) performance compared to prior multimodal models.

2 Related Work and Background

2.1 Related Work

Attention Models. The attention mechanism in Transformers has shown outstanding performance
in unimodal and multimodal learning [64, 28, 65]. Using the second-order correlation, the attention
mechanism can capture the long-term relation across input modalities. There are two common types
of attention in Transformers, i.e., self-attention and cross-attention. While self-attention focuses on
learning correlations within a single input modality [64], cross-attention models relationships across
modalities, allowing the model to analyze complex correlations from one modality to another [68].
Transformers have become a dominant approach and have profound impacts in developing various
multimodal tasks, e.g., large vision-language model [28, 27], RGB-D object segmentation [65].

Multimodal Fusion. Multimodal fusion learning has shown its outstanding advantage over the uni-
modal counterparts in various tasks, e.g., semantic segmentation [65, 20], image-to-image translation
[18], action recognition [12], object detection [72], etc. The early approaches of multimodal fusion
learning adopted a simple feature concatenation to fusion the information from multiple modalities
[7, 76]. Then, later works further improved the cross-modality fusion by using deep fusion via a
neural network, e.g., RNN [2], LSTM [50], Attention [55, 35], etc. Another approach adopted the
neural architecture search to search for appropriate networks for multimodal fusion [25, 73, 10]. The
current state-of-the-art fusion approaches utilize early fusion to capture cross-modality interactions
at the data level via Transformers [65, 20, 28]. By combining all modalities at an initial stage via
input tokens, the Transformers will learn to model the correlation across modalities via self-attention
[64]. The later work further improved the early fusion method using pixel-wise fusion [20], pruning
techniques [65], or dynamic multimodal fusion [70]. However, it should be noted that these current
multimodal fusion methods are an implicit modeling approach.

Explicit Modeling via Normalizing Flows. To develop the invertible network, RealNVP [5]
first introduced an affine coupling layer where its reverse version and the log-determinant of the
Jacobian matrix can be easily computed. Later work [4, 21] further improved the coupling layers
by introducing non-linear independent component estimation [4], invertible convolution [21, 34],
activation normalization [21], autoregressive modeling [17], multi-scale architectures [5], equivariant
normalizing flows [9]. Another approach [15, 48] enhanced the expressiveness of the coupling layer
by using Transformers in the scaling and translation network. However, it still cannot address the
problem of long-range dependencies and complex cross-modality correlation in the data. Recent
studies further developed the conditional flow-based approach, e.g., conditional image synthesis
[31, 32], using conditional invertible networks [47], or two invertible networks [49].

2.2 Limitations of Normalizing Flows

The typical normalizing flow model [5, 4, 21] is designed via the invertible affine couple layer as:

X1,X2 = partition(X)

Y1 = X1, Y2 = X2 ⊙ exp (S(X1)) + T (X1)

Y = merge([Y1,Y2])

(1)

where X is an input, partition is a partition method, e.g., RealNVP [5] adopts checkerboard par-
titioning method, S and T are deep neural networks, merge is a merging function, and ⊙ is the
element-wise matrix multiplication.

Limitations. The success of a flow-based model relies on the design of the invertible layers.
However, the current affine coupling layers remain inefficient in modeling complex data. First, the
expressiveness of the coupling layer is limited due to its simple design. The design of S and T via
residual networks [5] could not capture the complex relationships represented in the high-dimensional
data. Thus, it still struggles to capture highly intricate dependencies or correlations in the data,
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especially in multimodal data. Second, scaling to high-dimensional data increases the complexity
of the flow-based model, which can make the training unstable and inefficient. If the number of
coupling layers is shallow, the model may fail to capture the complex relationships and dependencies
in the multimodal data. This leads to poor performance in tasks like density estimation or fusion
modeling. Thus, the high-dimensional data also requires more layers to capture all the necessary
correlations among all tokens, increasing computational cost. In this paper, we will develop a new
Attention-based Normalizing Flow approach to addressing these prior limitations in normalizing
flows and multimodal fusion.

3 The Proposed Multimodal Attention-based Normalizing Flow (MANGO)
Approach

Most recent multimodal models adopt Transformers with an attention mechanism to learn the
cross-modality correlations [65, 20, 27]. However, prior research suggested this fusion approach
is inefficient [35]. Indeed, the correlations learned via self-supervision or weak supervision cannot
provide explicit attention modeling across modalities and will be ineffective when the information
of multimodal inputs is sparse. In addition, as cross-modality correlations are generally high-
dimensional and complex, developing a multimodal model capable of capturing complex correlations
is challenging.

Therefore, to address this problem, this paper will model the cross-modality correlations as the joint
distributions. Then, the joint distributions can be further modeled using the Normalizing Flow-based
Model, a tractable yet powerful approach to modeling complex distributions with bijective mapping
functions. Fig. 2 illustrates the overview of our proposed Multimodal Attention-based Normalizing
Flow-based framework. Formally, let X be the multimodal input (e.g., RGB and Depth images), G
be the bijective network that maps the inputs into the latent space, i.e., Z = G(X). The prediction Ŷ

can be obtained via the projection head as Ŷ = TaskHead(Z), where TaskHead is the projection
head that produces the task-specific outputs (e.g., semantic segmentation). Then, the multimodal data
distribution p(X) can be formed via the Normalizing Flow-based Model G as in Eqn. (2).

p(X) = π(Z)

∣∣∣∣∂G(X)

∂X

∣∣∣∣ (2)

where π(Z) is the prior Normal distribution. In our approach, we assume that inputs X can be
tokenized as X = [x1, ...,xN ] where N is the number of tokens. For simplicity, we assume the X
consists of two input modalities (e.g., RGB and Depth images), i.e., X = [x1, ...,xM ,xM+1, ...,xN ]
where [x1, ...,xM ] and [xM+1, ...,xN ] belong to the first and second modality.

3.1 The Proposed Invertible Cross-Attention (ICA)

We introduce a novel Invertible Cross-Attention to address the prior limitations in Normalizing
Flow-based models. The success of attention mechanisms relies on the capability of exploring the
relationship among features via second-order correlations. In particular, the design of the attention
layers can be formulated as Attention(Q,K,V) = softmax

(
Q×KT

√
d

)
V where Q, K, and V are

the query, key, and value features obtained by applying linear projection to the input X, and × is the
scale-dot product. The query and key are used to learn the attention weights via a scaled dot product.
Then, this attention information is accumulated into the value vector, which allows the final outputs

Figure 2: Our Proposed Multimodal Attention-based Normalizing Flows (MANGO) Approach to
Fusion Learning.
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to carry the correlation among tokens. Inspired by this attention design, we propose the ICA within
the coupled layer as in Eqn. (3).

X1,X2 = partition([x1, ...,xN ])

Q = LN(LP(X1)), K = LN(LP(X1)), V = X2

Y1 = X1, Y2 = softmax

(
Q × KT

√
d

)
V

Y = merge([Y1,Y2])

(3)

where LN is the layer norm, LP is the linear projection, and d is the feature dimension. This
cross-attention mechanism aims to model the inter-token interaction via the attention weights. The
attention information in the first patch of inputs (X1) is embedded into the second patch of inputs
(X2). By scaling into multiple invertible cross-attention layers and alternating the token partitions,
our proposed approach can efficiently capture the correlation among inputs, especially in multimodal
data, since the attention information across input partitions is exchanged interwisely.

Figure 3: Our Invertible Cross-Attention (ICA).

Invertibilty. The success of the current state-of-
the-art of large-scale generative models, e.g.,
Large Language Models (LLM) [53], Large
Vision-Language Models (LVM) [28, 27], re-
lies on the auto-regressive modeling. Indeed,
the auto-regressive form naturally aligns with
the nature of the data, where each input token
depends on the previous ones. This modeling
approach can model the highly complex dependencies within the multimodal data and maintain
consistency and coherence. In our learning approach, we propose to model the invertible attention
layer via the auto-regressive form. In particular, our ICA layer in Eqn. (3) can be reformed as in
Eqn. (4).

Y2 = softmax

(
Q×KT

√
d

M

)
V (4)

where M is the upper triangular matrix to ensure the auto-regressive modeling property. Under this
form, the inverse process of our ICA can be formulated as in Eqn. (5).

Y1,Y2 = partition([y1, ...,yN ])

Q = LN(LP(Y1)), K = LN(LP(Y1)), V = Y2

X1 = X1, X2 =

[
softmax

(
Q × KT

√
d

M

)]−1

V

X = merge([X1,X2])

(5)

Fig. 3 illustrates the forward and inverse process of the ICA layer. Let A = softmax
(

Q×KT

√
d

M
)

be
the cross-attention matrix. Thanks to the auto-regressive modeling, the inverse matrix of A always
exists since A is the upper triangular matrix. It should be noted that the diagonal of A is always
greater than 0 due to the softmax properties. Therefore, our approach can efficiently ensure the
invertibility of the cross-attention layers. Inspired by [48, 64], d will be a learnable parameter to
capture a general scale.

Tractability. One of the crucial properties required by the Normalizing Flow-based model is the
tractability of the determinant of the Jacobian matrix, i.e., det

(
∂Y
∂X

)
. Formally, the determinant of

the Jacobian matrix of our ICA can be formed as in Eqn. (6).

det

(
∂Y

∂X

)
= (det(A))

N/2
= det

(
softmax

(
Q × KT

√
d

M

))N/2

(6)

Since A is an upper block triangular matrix due to the autoregressive form, the determinant can be
simply computed as the product along the diagonal of the matrix.

3.2 The Partitioning Approaches to Cross-Modality Attention

As shown in Eqn. (3), the partitioning method plays a vital role in learning the correlation across
modalities since it will decide which attention information will be exchanged within the invertible
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cross-attention layers. To support the correlation learning across modalities, we propose to design
three different partitioning approaches to capture different types of cross-modality attention (Fig. 4).

For simplicity, we rewrite the multimodal input X = [x1, ...,xM ,xM+1, ...,xN ] as X =
[xA

1 , ...,x
A
M ,xB

1 , ...,x
B
K ] where K is the number of tokens of the second modality, i.e., N = M +K.

Figure 4: Our Proposed Partitioning Ap-
proaches: Modality-to-Modality Cross-Attention
(Left). Inter-Modality Cross-Attention (Middle).
Learnable Inter-Modality Cross-Attention (Right).

Modality-to-Modality Cross-Attention
(MMCA). To capture the attention from the
first to the second modality (or vice versa), the
partition function in Eqn. (3) can be formed as:{

X1 = [xA
1 , ...,xA

M ]

X2 = [xB
1 , ...,xB

K ]︸ ︷︷ ︸
partitionMMCA

A→B

or

{
X1 = [xB

1 , ...,xB
K ]

X2 = [xA
1 , ...,xA

M ]︸ ︷︷ ︸
partitionMMCA

B→A

(7)

where partitionMMCA
A→B and partitionMMCA

B→A are the Modality-to-Modality partitioning methods.

While the first partition method partitionMMCA
A→B allows the ICA layers to capture the correlation of

the first modality to the second modality, partitionMMCA
B→A , will model the attention in the reverse

direction, i.e., from the second to the first modality. Under this approach, the intra-attention informa-
tion can be exchanged across modalities effectively. Then, the merging method of the corresponding
partitioning function can be formulated as in Eqn. (8).

merge([Y1Y2]) = [Y1,Y2]︸ ︷︷ ︸
partitionMMCA

A→B

or merge([Y1Y2]) = [Y2,Y1]︸ ︷︷ ︸
partitionMMCA

B→A

(8)

This merging method aims to maintain the consistency of the token positions by reorganizing the
positions of the output tokens corresponding to their original ones in input X.

Inter-Modality Cross-Attention (IMCA). To model the inter-attention across modalities, our
partitioning function can be formulated as follows,

partitionIMCA =


X1 = [xA

1 , ...,x
A
M/2︸ ︷︷ ︸

X1
A

,xB
1 ...x

B
K/2︸ ︷︷ ︸

X1
B

]

X2 = [xA
M/2+1, ...,x

A
M︸ ︷︷ ︸

X2
A

,xB
K/2+1...x

B
K︸ ︷︷ ︸

X2
B

]
(9)

where partitionIMCA is the inter-modality partitioning method. Our partitioning
method has four different ways to divide partitions, i.e., (X1,X2) ∈ {([X1

A,X
1
B ],

[X2
A,X

2
B ]), ([X

1
A,X

2
B ], [X

2
A,X

1
B ]), ([X

2
A,X

1
B ], [X

1
A,X

2
B ]) , ([X2

A,X
2
B ], [X

1
A,X

1
B ])}. Our

inter-modality partitioning approach allows the cross-attention layer to capture the correlation
across modalities efficiently. Then, the inter-modality attention in the first partition (X1) can be
embedded into the second partition (X2). Then, the merging method of the partitioning function
partitionIMCA can be formulated as in Eqn. (10).

merge(Y1,Y2) = [Y1
A,Y

2
A,Y

1
B ,Y

2
B ] (10)

where Y1
A,Y

2
A,Y

1
B ,Y

2
B are the corresponding outputs of X1

A,X
2
A,X

1
B ,X

2
B produced by ICA.

Learnable Inter-Modality Cross-Attention (LICA). To further improve IMCA learning, we intro-
duce a new Learnable Inter-Modality Cross-Attention as follows,

X′ = [x′
1, ...,x

′
N ] = XWper partitionLICA =

{
X1 = [x′

1, ...,x
′
N/2]

X2 = [x′
N/2+1, ...,x

′
N ]

(11)

where Wper is the learnable permutation matrix.

To maintain the permutation property of the matrix Wper, we adopt the LU Decomposition [21] as
Wper = PL(U + diag(s)), where P is the fixed permutation matrix, L and U are the learnable
lower and upper triangular matrices with ones and zeros on the diagonal, and s is the learnable vector.
Since Wper is the permutation matrix, the inverse permutation matrix W−1 can be computed and

the Jacobian determinant of ∂X′

∂X can be determined via the vector s, i.e., log det
∣∣∣∂X′

∂X

∣∣∣ = ∑
(log |s|).

Our approach can efficiently capture the underlying cross-attention across input modalities using the
proposed LICA approach. Then, the merging method of the learnable partitioning function can be
formed via the inverse permutation W−1

per as follows:

merge([Y1,Y2]) = [Y1,Y2]W
−1
per (12)
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3.3 Multimodal Latent Normalizing Flows

Table 1: Comparison of RGB-D Semantic Segmen-
tation Performance on NYUDv2 and SUN RGB-D
with Prior Methods. Our metrics include Pixel Ac-
curacy (Pixel Acc.) (%), Mean Accuracy (mAcc.)
(%), Mean Intersection over Union (mIoU) (%).

NYUDv2 SUN RGB-DMethod Inputs Pixel Acc. mAcc. mIoU Pixel Acc. mAcc. mIoU
CNN-based models

FCN-32s [30] RGB 60.0 42.2 29.2 68.4 41.1 29.0
RefineNet [26] RGB 74.4 59.6 47.6 81.1 57.7 47.0
FuseNet [13] RGB+D 68.1 50.4 37.9 76.3 48.3 37.3
SSMA [62] RGB+D 75.2 60.5 48.7 81.0 58.1 45.7
RDFNet [39] RGB+D 76.0 62.8 50.1 81.5 60.1 47.7
AsymFusion [67] RGB+D 77.0 64.0 51.2 - - -
CEN [66] RGB+D 77.7 65.0 52.5 83.5 63.2 51.1

Transformer-based models
DPLNet [6] RGB+D - - 59.3 - - 52.8
DFormer [71] RGB+D - - 57.2 - - 52.5
EMSANet [44] RGB+D - - 59.0 - - 50.9
W/O Fusion (Tiny) [65] RGB 75.2 62.5 49.7 82.3 60.6 47.0
Feature Concat (Tiny) [65] RGB+D 76.5 63.4 50.8 82.8 61.4 47.9
TokenFusion (Tiny) [65] RGB+D 78.6 66.2 53.3 84.0 63.3 51.4
W/O fusion (Small) [65] RGB 76.0 63.0 50.6 82.9 61.3 48.1
Feature Concat (Small) [65] RGB+D 77.1 63.8 51.4 83.5 62.0 49.0
TokenFusion (Small) [65] RGB+D 79.0 66.9 54.2 84.7 64.1 53.0
GeminiFusion (MiT-B5) [20] RGB+D 80.3 70.4 57.7 83.8 65.3 53.3
MANGO RGB+D 81.5 71.6 59.2 83.9 67.2 54.1

The typical likelihood-based model has two
stages. First, the perceptual compression stage
focuses on removing high-frequency details
while learning little semantic information. Sec-
ond, the semantic compression stage will learn
the semantic and conceptual composition repre-
sented in the data [42]. As a result, the second
stage plays a more important role since it is an
actual generative model that learns the semantic
structures and cross-modality correlations rep-
resented in the multimodal data. The original
data is often represented in high-dimensional
space, e.g., high-resolution images or long se-
quence data. However, the semantic information
of the data can be represented in a much lower-
dimensional space since the input space has re-
dundant dimensions. Therefore, based on the
intrinsic dimensionality of the input data, we aim to find a perceptually equivalent but computationally
efficient space for our multimodal normalizing flow-based approach.

Perceptual Compression. Inspired by the success of prior work [42], we propose to project the
data into a much lower-dimensional feature space but with more meaningful information in the
representation. Let E be the encoder that maps the input X in to the latent feature F, i.e., F = E(X).
Then, the decoder D will map the features back into its original data space, i.e., X = D(F). The
design of encoder E and the decoder D can be varied, e.g., PCA, Autoencoder [41, 14]. However, to
achieve the best capability of perceptual compression, we adopt the autoencoder approach [41, 14]
to develop the encoder and the decoder. This approach can provide a new input space perceptually
equivalent to the data space while maintaining the lower-dimensional space.

Latent Normalizing Flow-based Model. Instead of modeling the multimodal data X on its original
high-dimensional space, we propose to model the data distribution via its multimodal feature F on
the latent space as p(F) = π(Z)

∣∣∣∂G(F)
∂F

∣∣∣. We named this method the Multimodal Attention-based
Normalizing Flow Approach with a Latent Model. With our approach, the flow-based model does not
need to learn to perform perceptual compression on high-dimensional data. Instead, our normalizing
flow approach will focus on learning the semantic information and correlation of multimodal data.
As a result, our model exhibits better scaling properties while using an efficient computational cost.
In addition, the bijective network G designed via our Invertible Cross-Attention layers offers better
multimodal modeling via second-order correlation learning.

Attention-based Normalizing Flow Network. Our bijective network G (Fig. 2) consists of L blocks
where each block consists of eight invertible cross-attention layers and a coupling layer [5]. The first
two cross-attention layers adopt the MMCA partitioning. The following four cross-attention layers
perform different IMCA partitioning approaches. The next two layers utilize LICA Cross-Attention
layers. Then, the coupling layer is adopted to increase the inner expressiveness of the bijective blocks.

Learning MANGO With Task Specific. Given the multimodal input X and the label of a specific
task Y, MANGO can be jointly optimized via the negative log-likelihood and the task-specific
learning objective as in Eqn. (13).

θ
∗
= argmin

θ
EX,Y

[
−
(
log π(Z) + log

∣∣∣∣∂G(F)

∂F

∣∣∣∣)+ Ltask(Ŷ,Y)

]
(13)

where Z = G(E(X)), Ŷ is the prediction of the corresponding task, Ltask is the loss of the
corresponding prediction task, and θ is the parameters of the model.

4 Experimental Results

4.1 Implementation and Benchmarks

Implementation. Our bijective network G consists of L = 12 cross-attention blocks. For the
perceptual compression encoder E , we adopt the visual encoder of [14] for both RGB and Depth
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images. We utilize the text encoder from [40] for the textual data. For fair comparisons, we use the
task heads of semantic segmentation, image translation, and movie genre classification from [70, 65].
Our experiments are conducted on the 4 NVIDIA A100 GPUS. Our training uses the same learning
hyper-parameters from [65] and an input image size of 256× 256 for fair comparisons.

Semantic Segmentation. This task uses the two homogeneous inputs of RGB and Depth images to
predict the segmentation maps. We perform experiments on NYUDv2 [36] and SUN RGB-D [45].
While NYUDv2 consists of 795/654 images for training and testing splits, SUN RGB-D includes
5,285/5,050 samples for training and testing.

Image-to-Image Translation. Following the standard protocol in [65], we adopt the Taskonomy
[75] for the multimodal image translation task. This large-scale indoor scene dataset provides over
ten multimodal, e.g., RGB, Depth, Normal, Shade, Texture, Edge, etc. We use a subset of 1,000
high-quality images for training and 500 for validation.

MM-IMDB Movie Genre Classification. MM-IMDB is a large-scale multimodal dataset for movie
genre classification. We adopt the training and testing split of [70] for fair comparisons. In particular,
the data in our experiments consists of 15,552 data for training and 2,608 for validation. In this
multimodal learning task, we use the inputs from two modalities of images and texts.

4.2 Comparison with State-of-the-Art Methods

Figure 5: Qualitative Comparison on
NYUDv2 Benchmark.

Semantic Segmentation. Table 1 presents our results
compared to prior multimodal methods on multimodal
semantic segmentation. Our results show the proposed
approach achieves state-of-the-art performance on both
the NYUDv2 and SUN RGB-D datasets. Our model con-
sistently outperforms the prior methods in all evaluation
metrics and datasets. In particular, the mIoU results of our
proposed approach are higher than GeminiFusion by 1.5%
and 0.6% on the two datasets. Our results have illustrated
that our explicit modeling of multimodal fusion has shown
a clear advantage over the prior fusion methods [20, 65].
Fig. 5 visualizes the results of our fusion approach via our
normalizing flows compared to the prior fusion method, i.e., TokenFusion [65].

Table 2: Comparison of Multimodal Image Trans-
lation Perfor- mance on Taskonomy with Prior
Multimodal Methods. We use evaluations of
FID/KID (×10−2) for the RGB target and MAE
(×10−1)/MSE (×10−1) for Normal, Shade, and
Depth targets.
Method Shade+Texture

→RGB (↓)
Depth+Normal
→RGB (↓)

RGB+Shade
→Normal (↓)

RGB+Normal
→Shade (↓)

RGB+Edge
→Depth (↓)

CNN-based models
Concat [66] 78.82/3.13 99.08/4.28 1.34/2.85 1.28/2.02 0.33/0.75
Self-Attention [63] 73.87/2.46 96.73/3.95 1.26/2.76 1.18/1.76 0.30/0.70
Align. [46] 92.30/4.20 105.03/4.91 1.52/3.25 1.41/2.21 0.45/0.90
CEN [66] 62.63/1.65 84.33/2.70 1.12/2.51 1.10/1.72 0.28/0.66

Transformer-based models
Feature Concat (Tiny) [65] 76.13/2.85 102.70/4.74 1.52/3.15 1.33/2.20 0.40/0.83
TokenFusion (Tiny) [65] 50.40/1.03 76.35/2.19 0.73/1.83 0.95/1.54 0.21/0.57
Feature Concat (Small) [65] 72.55/2.39 96.04/4.09 1.18/2.73 1.30/2.07 0.35/0.68
TokenFusion (Small) [65] 43.92/0.94 70.13/1.92 0.58/1.51 0.79/1.33 0.16/0.47
GeminiFusion [20] 41.32/0.81 96.98/3.71 0.65/1.69 - 0.20/0.49
MANGO 39.61/0.77 67.61/1.54 0.52/1.12 0.62/0.96 0.17/0.33

Image-to-Image Translation. We present our
results on the five different learning settings
of multimodal Image-to-Image Translation as
shown in Table 2. Our results consistently out-
perform prior methods in five different multi-
modal learning settings. In particular, compared
to prior GeminiFusion [20], our models have
gained better FID scores, i.e., lower than Gem-
iniFusion by 1.71 and 29.37 on benchmarks of
Shade+Texture → RGB and Depth+Normal →
RGB. These results further confirm the outstand-
ing capability of our approach to capture com-
plex correlations across modalities.

Figure 6: Qualitative Comparison on
Image-to-Image Benchmark.

MM-IMDB Movie Genre Classification. Table 3
presents the results of our approach on the multimodal
classification benchmarks. As shown in Table 3, our pro-
posed approach outperforms the prior methods on both
micro-average and macro-average F1 scores and achieves
state-of-the-art performance. Particularly, our results of
Micro and Macro F1 scores remain higher than the prior
method [69] by 3.5% and 4.9%. These results illustrate
that our approach performs better on homogeneous and
heterogeneous inputs. Fig. 6 visualizes our results on the
Image-to-Image translation benchmark.
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4.3 Ablation Studies

Table 3: Comparison of Movie Genre
Classification Performance on the MM-
IMDB dataset with Prior Multimodal
Methods. Our metrics include the Micro-
Average and Macro-Average F1 Scores.

Method Modality Micro
F1 (%)

Macro
F1 (%)

Image Network [70] I 40.0 25.3
Text Network [70] T 59.2 47.2
Late Fusion [24] I+T 59.6 51.0
LRTF [29] I+T 59.2 49.3
MI-Matrix [19] I+T 58.5 48.4
DynMM [70] I+T 60.4 51.6
COCA [74] I+T 67.7 62.6
MFM [3] I+T 67.5 61.6
BLIP [22] I+T 67.4 62.8
ReFNet [43] I+T 68.0 58.7
BridgeTow [69] I+T 68.2 63.3
MANGO I+T 71.7 68.2

Effectiveness of Invertible Cross-Attention Layers. To
illustrate the impact of our proposed invertible cross-
attention layers, we conduct experiments to compare our
proposed layers with other flow models, i.e., Affine Cou-
pling Layer [5], Glow [21], Flow++ [15], and AttnFlow
[48]. As shown in Table 4, our proposed invertible cross-
attention layer consistently outperforms the prior coupling
methods. In particular, the mIoU results of our method
achieved up to 59.2% and 54.1% on both NYUDv2 and
SUN RGBD benchmarks. These results clearly illustrate
the advantages of our proposed method for modeling cor-
relations and complex structures in multimodal data.

Effectiveness of Different Partitioning Approach. Table
5 presents the experimental results of different partitioning
approaches. As shown in the results, using Modality-to-
Modality and Inter-Modality Cross-attention, the mIoU results on both NYUDv2 and SUN RGBD
benchmarks have achieved 58.0% and 53.7%. Moreover, when the Learnable Inter-Modality Cross-
Attention is adopted, our mIoU results are further improved by 59.2% and 54.1% compared to those
without LICA. The experimental results have confirmed the effectiveness of our proposed approach
in modeling correlation across modalities via our cross-attention mechanism.

Table 4: Effectiveness of Invertible Layers.
Layer NYUDv2 SUN RGBD

Pixlel Acc. mAcc. mIoU Pixlel Acc. mAcc. mIoU
Coupling Layer [5] 76.0 63.4 50.8 79.8 59.9 48.5
Glow [21] 77.0 66.4 53.0 80.3 61.9 49.1
Flow++ [15] 77.5 68.1 54.2 81.5 62.0 50.5
AttnFlow [48] 79.5 69.9 56.5 82.5 65.1 52.2
MANGO 81.5 71.6 59.2 83.9 67.2 54.1

Effectiveness of Latent Model. These experi-
ments study the effectiveness of our latent model
approach. As shown in Table 6, the performance
of our multimodal normalizing flow-based mod-
els is consistently improved on both seman-
tic segmentation benchmarks using the latent
model. The proposed method achieves the SoTA results where the mIoU results of our best model
have achieved 59.2% and 54.1% on NYUDv2 and SUN RGBD benchmarks. The results have
highlighted the advantages of using the perceptual compression encoder to produce a lower but more
efficient representation space.

Table 5: Effectiveness of Partitioning Approaches.
MMCA IMCA LICA NYUDv2 SUN RGBD

Pixlel Acc. mAcc. mIoU Pixlel Acc. mAcc. mIoU
✓ 79.3 68.8 56.4 82.4 64.6 51.3
✓ ✓ 80.2 70.8 58.0 83.3 66.2 53.7
✓ ✓ ✓ 81.5 71.6 59.2 83.9 67.2 54.1

Effectiveness of Number of Cross-Attention
Blocks. Table 6 illustrates the results of our
approach using different numbers (L) of cross-
attention blocks. As in our results, the perfor-
mance of multimodal segmentation models us-
ing a deeper network results in better performance. In particular, using L = 12 blocks of invertible
cross-attention blocks, the mIoU performance on NYUDv2 and SUN RGBD benchmarks has reached
up to 59.2% and 54.1%, respectively. While fewer blocks may result in lower computational costs,
the deeper model can exploit better correlation of features in multimodal data.

5 Conclusions

Table 6: Effectiveness of Latent Model.
# Blocks Latent

Model
NYUDv2 SUN RGBD

Pixlel Acc. mAcc. mIoU Pixlel Acc. mAcc. mIoU

6 ✗ 75.9 63.5 51.0 79.4 59.1 47.3
✓ 77.5 65.8 52.3 79.6 60.5 48.1

8 ✗ 78.0 65.5 53.1 80.8 60.8 49.4
✓ 78.1 65.3 54.1 84.4 60.0 51.4

12 ✗ 80.7 70.4 58.0 83.4 65.8 53.5
✓ 81.5 71.6 59.2 83.9 67.2 54.1

Our paper has introduced a new explicit model-
ing approach to multimodal fusion learning via
the Attention-based Normalizing Flow-Based
Model. Our proposed ICA layers with three
different cross-attention mechanisms have effi-
ciently captured the complex structure and un-
derlying correlations in multimodal data. We
have also introduced a new latent approach to normalizing flows to increase our scalability to multi-
modal data. Our intensive experiments on three standard benchmarks, i.e., Semantic Segmentation,
Image-to-Image Translation, and Movie Genre Classification, have shown the effectiveness of our
approach. Our study has demonstrated the effectiveness of invertible cross-attention layers in multi-
modal learning under selected hyperparameters and benchmarks. However, it still remains limitations
in objective balancing and scalability. The detailed limitations are discussed in our appendix.
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Appendices

A Additional Ablation Studies

Effectiveness of Number of Cross-Attention Blocks. We conducted an ablation study with 16
cross-attention blocks. As shown in Table 7, although using more cross-attention blocks will increase
the computation, it helps to enhance the model performance.

Table 7: Effectiveness of Number of Cross-Attention Blocks.
# Blocks NYUv2 SUN RGBD

Acc. mAcc. mIoU Acc. mAcc. mIoU
6 77.5 65.8 52.3 79.6 60.5 48.1
8 78.1 65.3 54.1 84.4 60.0 51.4

12 81.5 71.6 59.2 83.9 67.2 54.1
16 83.1 75.1 61.7 85.4 68.7 55.6

Computational Cost. As shown in Table 8, the parameters, GFLOPs, and inference time of our
method are competitive with prior methods. Meanwhile, we achieved state-of-the-art performance on
two segmentation benchmarks.

Table 8: The Comparision of Computational Cost.
Method NYUDv2

mIOU
SUN RGB-D

mIOU PARAMS GFLOPS Inference Time

TokenFusion [65] 54.2 53.0 45.9M 108 126 ms
GeminiFusion [20] 57.7 53.3 75.8M 174 153 ms
MANGO 59.2 54.1 72.9M 152 144 ms

Attention Visualization. As shown in Figure 7, our Invertible Cross-Attention layer can capture the
attention interaction from the region in the depth image (red box) to the RGB image. This result
has illustrated the effectiveness of our proposed attention layer in capturing the correlation across
modalities.

Figure 7: The Attention Visualization of ICA Layer.

B Dicussion of Limitations

Our experiments have chosen a set of learning hyper-parameters and benchmarks to support our
hypothesis. However, our work could contain several limitations. Our work studied the effectiveness
of our proposed invertible cross-attention layers in multimodal learning. Thus, the investigation of
balance weights among learning objectives has not been fully exploited, and we leave this experiment
as our future work. Due to computation limitations, our experiments are limited to the standard
scale of the benchmarks. However, we hypothesize that the proposed approaches can generalize
to larger-scale data and benchmark settings according to the fundamental theories presented in our
paper.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims declared in the abstract match with the contributions, experimental
results, and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the paper are discussed in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The description of the formula is provided in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The details of datasets and implementations are presented in the experimental
sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: The code will be published may the paper be accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The details of training and testing are presented in the experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Following the standard evaluation of semantic segmentation, image-to-image
translation, and classification, we evaluate our model by the standard mIoU, accuracy, and
MSE metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computational resources used in our experiments are presented in the
experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The content of the paper and datasets strictly follows the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not have a negative societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not have a risk. The released models will be available may the
paper be accepted.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper provides all the references to code, data, and models used in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce the new dataset. The code of the paper will be
published may the paper be accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with
human subjects. Thus, there is no requirement for IRB.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not utilize the LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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