MANGO: Multimodal Attention-based Normalizing Flow Approach to Fusion Learning

Thanh-Dat Truong¹, Christophe Bobda², Nitin Agarwal^{3,4}, Khoa Luu¹
¹CVIU Lab, University of Arkansas, USA
²University of Florida, USA
³COSMOS Research Center, University of Arkansas, Little Rock, USA
⁴ICSI, University of California, Berkeley, USA
{tt032, khoaluu}@uark.edu cbobda@ece.ufl.edu, nxagarwal@ualr.edu https://uark-cviu.github.io/projects/MANGO

Abstract

Multimodal learning has gained much success in recent years. However, current multimodal fusion methods adopt the attention mechanism of Transformers to implicitly learn the underlying correlation of multimodal features. As a result, the multimodal model cannot capture the essential features of each modality, making it difficult to comprehend complex structures and correlations of multimodal inputs. This paper introduces a novel Multimodal Attention-based Normalizing Flow (MANGO) approach to developing explicit, interpretable, and tractable multimodal fusion learning. In particular, we propose a new Invertible Cross-Attention (ICA) layer to develop the Normalizing Flow-based Model for multimodal data. To efficiently capture the complex, underlying correlations in multimodal data in our proposed invertible cross-attention layer, we propose three new cross-attention mechanisms: Modality-to-Modality Cross-Attention (MMCA), Inter-Modality Cross-Attention (IMCA), and Learnable Inter-Modality Cross-Attention (LICA). Finally, we introduce a new Multimodal Attention-based Normalizing Flow to enable the scalability of our proposed method to high-dimensional multimodal data. Our experimental results on three different multimodal learning tasks, i.e., semantic segmentation, image-to-image translation, and movie genre classification, have illustrated the state-of-the-art (SoTA) performance of the proposed approach.

1 Introduction

Human perceptions interpret the surrounding world in a multimodal way via multiple input channels, such as vision, text, or audio. The deep learning-based multimodal fusion methods have majorly improved the performance of various problems, e.g., classification [20, 38, 37, 58], action recognition [12, 54, 57], semantic segmentation [65, 56, 59, 61, 60], object detection [72]. The recent large multimodal models, e.g., ChatGPT [1], Gemini [52], Chaemelon [51], LLaMMA [53], etc, introduced for general-assistant purposes have also shown impressive performance on these applications.

The critical success of multimodal fusion methods relies on the interaction and correlation mod-

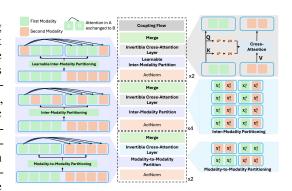


Figure 1: Our Cross-Modality Fusion Approach Via Multimodal Normalizing Flows with Invertible Cross-Attention.

eling mechanisms across input modalities. The recent methods [20, 65] adopt the attention mechanisms of Transformers [64] to implicitly model the cross-modality correlation. By training on large-scale data, the attention models can implicitly learn the underlying correlation represented in the data. For example, the vision-language fusion models [28, 27, 48] use early fusion where the visual tokens and textual tokens are simultaneously fed into the Transformer model. Then, Transformers will learn the correlation and alignment between visual and textual tokens via the second-order correlation learning of the attention mechanism. Under this form, these multimodal fusion methods are alignment-agnostic, where the cross-modal alignments and correlations are not fully exploited [65]. In addition, the implicit fusion method often associates information across modalities without distinctly modeling the unique characteristics and correlations of each modality. Then, it may overlook the contribution of specific modalities, mainly if one modality contains more data or stronger signals, leading to suboptimal performance [65, 20]. Since the implicit approach cannot individually model the importance of each modality, these methods could struggle to capture complex structures and complementary information represented in the multimodal data. Implicit modeling methods also lack interpretability since it is hard to understand or represent the contributions of each modality to the outputs. Other methods [33, 11, 8] adopted the late fusion, where the features are fused after each of the modalities has been decided. However, late fusion ignores the low-level interaction across modalities. As a result, the direct adoption of fusion with attention could not improve performance compared to the unimodal methods [65, 20].

While most recent multimodal methods adopt attention to capture the multimodal correlations implicitly, the explicit modeling approach has been less investigated [16, 23]. The normalizing flow-based model [5, 21, 48] is a common approach to explicit modeling. By modeling the exact likelihoods of data via the bijective mapping between the data and latent spaces, the normalizing flow-based models allow for stable and reliable training, gaining better insight into the model representations of the underlying multimodal data distribution. In particular, by stacking a set of bijective transformations, the explicit models can construct complex distributions, enabling them to capture multimodal data distributions with direct control over parameters. Thus, this explicit modeling approach enhances interpretability and enables a better understanding of multimodal features and correlations in the latent space, which can be challenging to access in prior methods [65, 20]. Compared to prior methods [65, 20], explicit modeling via normalizing flows provides a better multimodal fusion mechanism since it can capture the underlying structures and correlation of multimodal data without letting any single modality dominate. Therefore, explicit modeling enables more precise, flexible, and robust multimodal fusion, improving performance in tasks requiring understanding and good alignment of multimodal data.

The Challenges in Multimodal Normalizing Flows. While explicit modeling is a potential approach to multimodal fusion, developing multimodal normalizing flows requires several efforts. Indeed, there are *two significant limitations in the current normalizing flow-based models*. First, while the affine coupling layer [5, 21] allows for the properties of tractability and invertibility, this layer limits the expressiveness of the models. Unlike the attention mechanism in Transformers [64], the coupling layer cannot capture the wide-range data dependencies and correlation in multimodal data [48]. Second, scaling the normalizing flow-based models to high-dimensional data is a challenging problem. It requires stacking more bijective layers in the models, leading to high computational cost and hard convergence during training [5]. While the implicit modeling approaches have alleviated the computational overhead using latent models (e.g., Latent Diffusion [42]), there are limited studies to address this overhead problem in normalizing flow-based approaches. Therefore, there is an urgent need to address these limitations to develop an efficient multimodal normalizing flow-based model.

Contributions of this Work. This paper introduces the new Multimodal Attention-based Normalizing Flows (MANGO), an explicit, interpretable, and tractable approach, to multi-modality fusion problems (Fig. 1). To the best of our knowledge, this is *one of the first studies that develops a Normalizing Flow approach to multimodal fusion learning*. Our contributions can be summarized as follows. First, we propose a new Invertible Cross-Attention (ICA) layer for Normalizing Flow-based Models. The proposed ICA layer can efficiently address the limitations of coupling layers in the standard Normalizing Flows while maintaining its tractability and invertibility properties. Second, to capture the correlation and alignment across modalities, we present three new partitioning cross-attention mechanisms, including Modality-to-Modality Cross-Attention (MMCA), Inter-Modality Cross-Attention (IMCA), and Learnable Inter-Modality Cross-Attention (LICA). Third, we present a novel Multimodal Attention-based Normalizing Flow approach with a latent model to enable its scalability to

high-dimensional multimodal data fusion. Our approach can address the limitations of computational overhead while efficiently modeling complex correlations in multimodal data. Finally, our experiments on three multimodal learning tasks, i.e., semantic segmentation, image-to-image translation, and movie genre classification, have shown the effectiveness of MANGO in different aspects, demonstrating its State-of-the-Art (SoTA) performance compared to prior multimodal models.

2 Related Work and Background

2.1 Related Work

Attention Models. The attention mechanism in Transformers has shown outstanding performance in unimodal and multimodal learning [64, 28, 65]. Using the second-order correlation, the attention mechanism can capture the long-term relation across input modalities. There are two common types of attention in Transformers, i.e., self-attention and cross-attention. While self-attention focuses on learning correlations within a single input modality [64], cross-attention models relationships across modalities, allowing the model to analyze complex correlations from one modality to another [68]. Transformers have become a dominant approach and have profound impacts in developing various multimodal tasks, e.g., large vision-language model [28, 27], RGB-D object segmentation [65].

Multimodal Fusion. Multimodal fusion learning has shown its outstanding advantage over the unimodal counterparts in various tasks, e.g., semantic segmentation [65, 20], image-to-image translation [18], action recognition [12], object detection [72], etc. The early approaches of multimodal fusion learning adopted a simple feature concatenation to fusion the information from multiple modalities [7, 76]. Then, later works further improved the cross-modality fusion by using deep fusion via a neural network, e.g., RNN [2], LSTM [50], Attention [55, 35], etc. Another approach adopted the neural architecture search to search for appropriate networks for multimodal fusion [25, 73, 10]. The current state-of-the-art fusion approaches utilize early fusion to capture cross-modality interactions at the data level via Transformers [65, 20, 28]. By combining all modalities at an initial stage via input tokens, the Transformers will learn to model the correlation across modalities via self-attention [64]. The later work further improved the early fusion method using pixel-wise fusion [20], pruning techniques [65], or dynamic multimodal fusion [70]. However, it should be noted that these current multimodal fusion methods are an implicit modeling approach.

Explicit Modeling via Normalizing Flows. To develop the invertible network, RealNVP [5] first introduced an affine coupling layer where its reverse version and the log-determinant of the Jacobian matrix can be easily computed. Later work [4, 21] further improved the coupling layers by introducing non-linear independent component estimation [4], invertible convolution [21, 34], activation normalization [21], autoregressive modeling [17], multi-scale architectures [5], equivariant normalizing flows [9]. Another approach [15, 48] enhanced the expressiveness of the coupling layer by using Transformers in the scaling and translation network. However, it still cannot address the problem of long-range dependencies and complex cross-modality correlation in the data. Recent studies further developed the conditional flow-based approach, e.g., conditional image synthesis [31, 32], using conditional invertible networks [47], or two invertible networks [49].

2.2 Limitations of Normalizing Flows

The typical normalizing flow model [5, 4, 21] is designed via the invertible affine couple layer as:

$$\begin{split} \mathbf{X}_1, \mathbf{X}_2 &= \operatorname{partition}(\mathbf{X}) \\ \mathbf{Y}_1 &= \mathbf{X}_1, \quad \mathbf{Y}_2 = \mathbf{X}_2 \odot \exp\left(\mathcal{S}(\mathbf{X}_1)\right) + \mathcal{T}(\mathbf{X}_1) \\ \mathbf{Y} &= \operatorname{merge}([\mathbf{Y}_1, \mathbf{Y}_2]) \end{split} \tag{I}$$

where X is an input, partition is a partition method, e.g., RealNVP [5] adopts checkerboard partitioning method, S and T are deep neural networks, merge is a merging function, and \odot is the element-wise matrix multiplication.

Limitations. The success of a flow-based model relies on the design of the invertible layers. However, the current affine coupling layers remain inefficient in modeling complex data. First, the expressiveness of the coupling layer is limited due to its simple design. The design of $\mathcal S$ and $\mathcal T$ via residual networks [5] could not capture the complex relationships represented in the high-dimensional data. Thus, it still struggles to capture highly intricate dependencies or correlations in the data,

especially in multimodal data. Second, scaling to high-dimensional data increases the complexity of the flow-based model, which can make the training unstable and inefficient. If the number of coupling layers is shallow, the model may fail to capture the complex relationships and dependencies in the multimodal data. This leads to poor performance in tasks like density estimation or fusion modeling. Thus, the high-dimensional data also requires more layers to capture all the necessary correlations among all tokens, increasing computational cost. In this paper, we will develop a new Attention-based Normalizing Flow approach to addressing these prior limitations in normalizing flows and multimodal fusion.

3 The Proposed Multimodal Attention-based Normalizing Flow (MANGO) Approach

Most recent multimodal models adopt Transformers with an attention mechanism to learn the cross-modality correlations [65, 20, 27]. However, prior research suggested this fusion approach is inefficient [35]. Indeed, the correlations learned via self-supervision or weak supervision cannot provide explicit attention modeling across modalities and will be ineffective when the information of multimodal inputs is sparse. In addition, as cross-modality correlations are generally high-dimensional and complex, developing a multimodal model capable of capturing complex correlations is challenging.

Therefore, to address this problem, this paper will model the cross-modality correlations as the joint distributions. Then, the joint distributions can be further modeled using the Normalizing Flow-based Model, a tractable yet powerful approach to modeling complex distributions with bijective mapping functions. Fig. 2 illustrates the overview of our proposed Multimodal Attention-based Normalizing Flow-based framework. Formally, let \mathbf{X} be the multimodal input (e.g., RGB and Depth images), G be the bijective network that maps the inputs into the latent space, i.e., $\mathbf{Z} = G(\mathbf{X})$. The prediction $\hat{\mathbf{Y}}$ can be obtained via the projection head as $\hat{\mathbf{Y}} = \text{TaskHead}(\mathbf{Z})$, where TaskHead is the projection head that produces the task-specific outputs (e.g., semantic segmentation). Then, the multimodal data distribution $p(\mathbf{X})$ can be formed via the Normalizing Flow-based Model G as in Eqn. (2).

$$p(\mathbf{X}) = \pi(\mathbf{Z}) \left| \frac{\partial G(\mathbf{X})}{\partial \mathbf{X}} \right| \tag{2}$$

where $\pi(\mathbf{Z})$ is the prior Normal distribution. In our approach, we assume that inputs \mathbf{X} can be tokenized as $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_N]$ where N is the number of tokens. For simplicity, we assume the \mathbf{X} consists of two input modalities (e.g., RGB and Depth images), i.e., $\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_M, \mathbf{x}_{M+1}, ..., \mathbf{x}_N]$ where $[\mathbf{x}_1, ..., \mathbf{x}_M]$ and $[\mathbf{x}_{M+1}, ..., \mathbf{x}_N]$ belong to the first and second modality.

3.1 The Proposed Invertible Cross-Attention (ICA)

We introduce a novel Invertible Cross-Attention to address the prior limitations in Normalizing Flow-based models. The success of attention mechanisms relies on the capability of exploring the relationship among features via second-order correlations. In particular, the design of the attention layers can be formulated as $\operatorname{Attention}(\mathbf{Q},\mathbf{K},\mathbf{V})=\operatorname{softmax}\left(\frac{\mathbf{Q}\times\mathbf{K}^T}{\sqrt{d}}\right)\mathbf{V}$ where \mathbf{Q},\mathbf{K} , and \mathbf{V} are the query, key, and value features obtained by applying linear projection to the input \mathbf{X} , and \times is the scale-dot product. The query and key are used to learn the attention weights via a scaled dot product. Then, this attention information is accumulated into the value vector, which allows the final outputs

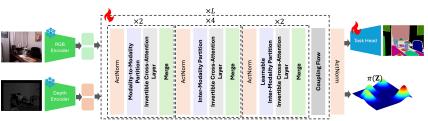


Figure 2: Our Proposed Multimodal Attention-based Normalizing Flows (MANGO) Approach to Fusion Learning.

to carry the correlation among tokens. Inspired by this attention design, we propose the ICA within the coupled layer as in Eqn. (3).

$$\mathbf{X}_{1}, \mathbf{X}_{2} = \operatorname{partition}([\mathbf{x}_{1}, ..., \mathbf{x}_{N}])$$

$$\mathbf{Q} = \operatorname{LN}(\operatorname{LP}(\mathbf{X}_{1})), \quad \mathbf{K} = \operatorname{LN}(\operatorname{LP}(\mathbf{X}_{1})), \quad \mathbf{V} = \mathbf{X}_{2}$$

$$\mathbf{Y}_{1} = \mathbf{X}_{1}, \quad \mathbf{Y}_{2} = \operatorname{softmax}\left(\frac{\mathbf{Q} \times \mathbf{K}^{T}}{\sqrt{d}}\right) \mathbf{V}$$

$$\mathbf{Y} = \operatorname{merge}([\mathbf{Y}_{1}, \mathbf{Y}_{2}])$$
(3)

where LN is the layer norm, LP is the linear projection, and d is the feature dimension. This cross-attention mechanism aims to model the inter-token interaction via the attention weights. The attention information in the first patch of inputs (X_1) is embedded into the second patch of inputs (X_2) . By scaling into multiple invertible cross-attention layers and alternating the token partitions, our proposed approach can efficiently capture the correlation among inputs, especially in multimodal data, since the attention information across input partitions is exchanged interwisely.

Invertibilty. The success of the current state-of-the-art of large-scale generative models, e.g., Large Language Models (LLM) [53], Large Vision-Language Models (LVM) [28, 27], relies on the auto-regressive modeling. Indeed, the auto-regressive form naturally aligns with the nature of the data, where each input token $\frac{x_1}{x_2} \frac{x_2}{x_1} \frac{x_2}{x_2} \frac{x_1}{x_2} \frac{x_2}{x_1} \frac{x_2}{x_2}$ depends on the previous ones. This modeling

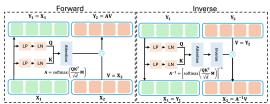


Figure 3: Our Invertible Cross-Attention (ICA).

approach can model the highly complex dependencies within the multimodal data and maintain consistency and coherence. In our learning approach, we propose to model the invertible attention layer via the auto-regressive form. In particular, our ICA layer in Eqn. (3) can be reformed as in Eqn. (4).

$$\mathbf{Y}_2 = \operatorname{softmax} \left(\frac{\mathbf{Q} \times \mathbf{K}^T}{\sqrt{d}} \mathbf{M} \right) \mathbf{V}$$
 (4)

where M is the upper triangular matrix to ensure the auto-regressive modeling property. Under this form, the inverse process of our ICA can be formulated as in Eqn. (5).

$$\mathbf{Y}_{1}, \mathbf{Y}_{2} = \operatorname{partition}([\mathbf{y}_{1}, ..., \mathbf{y}_{N}])$$

$$\mathbf{Q} = \operatorname{LN}(\operatorname{LP}(\mathbf{Y}_{1})), \quad \mathbf{K} = \operatorname{LN}(\operatorname{LP}(\mathbf{Y}_{1})), \quad \mathbf{V} = \mathbf{Y}_{2}$$

$$\mathbf{X}_{1} = \mathbf{X}_{1}, \quad \mathbf{X}_{2} = \left[\operatorname{softmax}\left(\frac{\mathbf{Q} \times \mathbf{K}^{T}}{\sqrt{d}}\mathbf{M}\right)\right]^{-1}\mathbf{V}$$

$$\mathbf{X} = \operatorname{merge}([\mathbf{X}_{1}, \mathbf{X}_{2}])$$
(5)

Fig. 3 illustrates the forward and inverse process of the ICA layer. Let $\mathbf{A} = \operatorname{softmax} \left(\frac{\mathbf{Q} \times \mathbf{K}^T}{\sqrt{d}} \mathbf{M} \right)$ be the cross-attention matrix. Thanks to the auto-regressive modeling, the inverse matrix of A always exists since A is the upper triangular matrix. It should be noted that the diagonal of A is always greater than 0 due to the softmax properties. Therefore, our approach can efficiently ensure the invertibility of the cross-attention layers. Inspired by [48, 64], d will be a learnable parameter to capture a general scale.

Tractability. One of the crucial properties required by the Normalizing Flow-based model is the tractability of the determinant of the Jacobian matrix, i.e., $\det\left(\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}\right)$. Formally, the determinant of the Jacobian matrix of our ICA can be formed as in Eqn. (6).

$$\det\left(\frac{\partial \mathbf{Y}}{\partial \mathbf{X}}\right) = \left(\det(\mathbf{A})\right)^{N/2} = \det\left(\operatorname{softmax}\left(\frac{\mathbf{Q} \times \mathbf{K}^T}{\sqrt{d}}\mathbf{M}\right)\right)^{N/2} \tag{6}$$

Since A is an upper block triangular matrix due to the autoregressive form, the determinant can be simply computed as the product along the diagonal of the matrix.

3.2 The Partitioning Approaches to Cross-Modality Attention

As shown in Eqn. (3), the partitioning method plays a vital role in learning the correlation across modalities since it will decide which attention information will be exchanged within the invertible cross-attention layers. To support the correlation learning across modalities, we propose to design three different partitioning approaches to capture different types of cross-modality attention (Fig. 4).

For simplicity, we rewrite the multimodal input $\mathbf{X} = [\mathbf{x}_1,...,\mathbf{x}_M,\mathbf{x}_{M+1},...,\mathbf{x}_N]$ as $\mathbf{X} = [\mathbf{x}_1^A,...,\mathbf{x}_M^A,\mathbf{x}_1^B,...,\mathbf{x}_K^B]$ where K is the number of tokens of the second modality, i.e., N = M + K.

Modality-to-Modality Cross-Attention (MMCA). To capture the attention from the first to the second modality (or vice versa), the partition function in Eqn. (3) can be formed as:

$$\underbrace{ \begin{pmatrix} \mathbf{X}_{1} &= [\mathbf{x}_{1}^{A}, ..., \mathbf{x}_{M}^{A}] \\ \mathbf{X}_{2} &= [\mathbf{x}_{1}^{B}, ..., \mathbf{x}_{K}^{B}] \\ partition_{A \to B}^{MMCA} \end{pmatrix}}_{\text{partition}_{B \to A}^{MMCA}} \text{ or } \underbrace{ \begin{pmatrix} \mathbf{X}_{1} &= [\mathbf{x}_{1}^{B}, ..., \mathbf{x}_{K}^{B}] \\ \mathbf{X}_{2} &= [\mathbf{x}_{1}^{A}, ..., \mathbf{x}_{M}^{A}] \end{pmatrix}}_{\text{partition}_{B \to A}^{MMCA}}$$
(7)

 $\underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \\ \mathbf{X}_2 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \end{cases}}_{\text{partition}_{A \to B}^{MMCA}} \text{ or } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ or } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ or } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ or } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ or } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_K^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ are } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_M^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ are } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_M^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \\ \mathbf{X}_3 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ and } \mathbf{X}_{\text{partition}_{B \to A}^{MMCA}} \text{ are } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_M^B] \\ \mathbf{X}_2 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \\ \mathbf{X}_3 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ are } \underbrace{ \begin{cases} \mathbf{X}_1 &= [\mathbf{x}_1^B, ..., \mathbf{x}_M^B] \\ \mathbf{X}_3 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \\ \mathbf{X}_4 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}_{\text{partition}_{B \to A}^{MMCA}} \text{ and } \mathbf{X}_4 &= [\mathbf{x}_1^A, ..., \mathbf{x}_M^A] \end{cases}}$

While the first partition method partition $^{MMCA}_{A\to B}$ allows the ICA layers to capture the correlation of the first modality to the second modality, partition $^{MMCA}_{B\to A}$, will model the attention in the reverse direction, i.e., from the second to the first modality. Under this approach, the intra-attention information can be exchanged across modalities effectively. Then, the merging method of the corresponding partitioning function can be formulated as in Eqn. (8).

$$\underbrace{\operatorname{merge}([\mathbf{Y}_{1}\mathbf{Y}_{2}]) = [\mathbf{Y}_{1}, \mathbf{Y}_{2}]}_{\operatorname{partition}_{A \to B}^{MMCA}} \text{ or } \underbrace{\operatorname{merge}([\mathbf{Y}_{1}\mathbf{Y}_{2}]) = [\mathbf{Y}_{2}, \mathbf{Y}_{1}]}_{\operatorname{partition}_{B \to A}^{MMCA}}$$
(8)

This merging method aims to maintain the consistency of the token positions by reorganizing the positions of the output tokens corresponding to their original ones in input X.

Inter-Modality Cross-Attention (IMCA). To model the inter-attention across modalities, our partitioning function can be formulated as follows

$$\operatorname{partition}^{IMCA} = \begin{cases} \mathbf{X}_{1} &= [\mathbf{x}_{1}^{A}, ..., \mathbf{x}_{M/2}^{A}, \mathbf{x}_{1}^{B} ... \mathbf{x}_{K/2}^{B}] \\ \mathbf{X}_{2} &= [\mathbf{x}_{M/2+1}^{A}, ..., \mathbf{x}_{M}^{A}, \mathbf{x}_{K/2+1}^{B} ... \mathbf{x}_{K}^{B}] \\ \mathbf{x}_{2}^{A} & \mathbf{x}_{K/2+1}^{B} ... \mathbf{x}_{K}^{B} \end{cases}$$
(9)

where $partition^{IMCA}$ is the inter-modality partitioning method. Our partitioning method has four different ways to divide partitions, i.e., $(\mathbf{X}_1,\mathbf{X}_2) \in \{([\mathbf{X}_A^1,\mathbf{X}_B^1],[\mathbf{X}_A^2,\mathbf{X}_B^2]),([\mathbf{X}_A^2,\mathbf{X}_B^2],[\mathbf{X}_A^2,\mathbf{X}_B^1],[\mathbf{X}_A^1,\mathbf{X}_B^2]),([\mathbf{X}_A^2,\mathbf{X}_B^2],[\mathbf{X}_A^1,\mathbf{X}_B^1])\}.$ Our inter-modality partitioning approach allows the cross-attention layer to capture the correlation across modalities efficiently. Then, the inter-modality attention in the first partition (X_1) can be embedded into the second partition (X_2) . Then, the merging method of the partitioning function partition IMCA can be formulated as in Eqn. (10).

$$\operatorname{merge}(\mathbf{Y}_{1}, \mathbf{Y}_{2}) = [\mathbf{Y}_{A}^{1}, \mathbf{Y}_{A}^{2}, \mathbf{Y}_{B}^{1}, \mathbf{Y}_{B}^{2}]$$
(10)

 $\operatorname{merge}(\mathbf{Y}_1,\mathbf{Y}_2) = [\mathbf{Y}_A^1,\mathbf{Y}_A^2,\mathbf{Y}_B^1,\mathbf{Y}_B^2] \qquad ($ where $\mathbf{Y}_A^1,\mathbf{Y}_A^2,\mathbf{Y}_B^1,\mathbf{Y}_B^2$ are the corresponding outputs of $\mathbf{X}_A^1,\mathbf{X}_A^2,\mathbf{X}_B^1,\mathbf{X}_B^2$ produced by ICA.

Learnable Inter-Modality Cross-Attention (LICA). To further improve IMCA learning, we introduce a new Learnable Inter-Modality Cross-Attention as follow

$$\mathbf{X}' = [\mathbf{x}'_1, ..., \mathbf{x}'_N] = \mathbf{X}\mathbf{W}_{per} \quad \text{partition}^{LICA} = \begin{cases} \mathbf{X}_1 &= [\mathbf{x}'_1, ..., \mathbf{x}'_{N/2}] \\ \mathbf{X}_2 &= [\mathbf{x}'_{N/2+1}, ..., \mathbf{x}'_N] \end{cases}$$
(11)

where W_{per} is the learnable permutation matrix.

To maintain the permutation property of the matrix \mathbf{W}_{per} , we adopt the LU Decomposition [21] as $\mathbf{W}_{per} = \mathbf{PL}(\mathbf{U} + \operatorname{diag}(\mathbf{s})),$ where \mathbf{P} is the fixed permutation matrix, \mathbf{L} and \mathbf{U} are the learnable lower and upper triangular matrices with ones and zeros on the diagonal, and ${\bf s}$ is the learnable vector. Since W_{per} is the permutation matrix, the inverse permutation matrix W^{-1} can be computed and the Jacobian determinant of $\frac{\partial \mathbf{X}'}{\partial \mathbf{X}}$ can be determined via the vector \mathbf{s} , i.e., $\log \det \left| \frac{\partial \mathbf{X}'}{\partial \mathbf{X}} \right| = \sum (\log |\mathbf{s}|)$. Our approach can efficiently capture the underlying cross-attention across input modalities using the proposed LICA approach. Then, the merging method of the learnable partitioning function can be formed via the inverse permutation \mathbf{W}_{per}^{-1} as follows:

$$merge([\mathbf{Y}_1, \mathbf{Y}_2]) = [\mathbf{Y}_1, \mathbf{Y}_2] \mathbf{W}_{per}^{-1}$$
(12)

3.3 Multimodal Latent Normalizing Flows

The typical likelihood-based model has two stages. First, the perceptual compression stage focuses on removing high-frequency details while learning little semantic information. Second, the semantic compression stage will learn the semantic and conceptual composition represented in the data [42]. As a result, the second stage plays a more important role since it is an actual generative model that learns the semantic structures and cross-modality correlations represented in the multimodal data. The original data is often represented in high-dimensional space, e.g., high-resolution images or long sequence data. However, the semantic information of the data can be represented in a much lowerdimensional space since the input space has redundant dimensions. Therefore, based on the

Table 1: Comparison of RGB-D Semantic Segmentation Performance on NYUDv2 and SUN RGB-D with Prior Methods. Our metrics include Pixel Accuracy (Pixel Acc.) (%), Mean Accuracy (mAcc.) (%), Mean Intersection over Union (mIoU) (%).

Method	Immuto	NY	/UDv2		SUN	RGB-E	
Method	Inputs	Pixel Acc. mAce		mIoU	Pixel Acc.	mAcc.	mIoU
	CN	N-based m	odels				
FCN-32s [30]	RGB	60.0	42.2	29.2	68.4	41.1	29.0
RefineNet [26]	RGB	74.4	59.6	47.6	81.1	57.7	47.0
FuseNet [13]	RGB+D	68.1	50.4	37.9	76.3	48.3	37.3
SSMA [62]	RGB+D	75.2	60.5	48.7	81.0	58.1	45.7
RDFNet [39]	RGB+D	76.0	62.8	50.1	81.5	60.1	47.7
AsymFusion [67]	RGB+D	77.0	64.0	51.2	-	-	-
CEN [66]	RGB+D	77.7	65.0	52.5	83.5	63.2	51.1
	Transf	ormer-base	d model:	S			
DPLNet [6]	RGB+D	-	-	59.3	-	-	52.8
DFormer [71]	RGB+D	-	-	57.2	-	-	52.5
EMSANet [44]	RGB+D	-	-	59.0	-	-	50.9
W/O Fusion (Tiny) [65]	RGB	75.2	62.5	49.7	82.3	60.6	47.0
Feature Concat (Tiny) [65]	RGB+D	76.5	63.4	50.8	82.8	61.4	47.9
TokenFusion (Tiny) [65]	RGB+D	78.6	66.2	53.3	84.0	63.3	51.4
W/O fusion (Small) [65]	RGB	76.0	63.0	50.6	82.9	61.3	48.1
Feature Concat (Small) [65]	RGB+D	77.1	63.8	51.4	83.5	62.0	49.0
TokenFusion (Small) [65]	RGB+D	79.0	66.9	54.2	84.7	64.1	53.0
GeminiFusion (MiT-B5) [20]	RGB+D	80.3	70.4	57.7	83.8	65.3	53.3
MANGO	RGB+D	81.5	71.6	59.2	83.9	67.2	54.1

intrinsic dimensionality of the input data, we aim to find a perceptually equivalent but computationally efficient space for our multimodal normalizing flow-based approach.

Perceptual Compression. Inspired by the success of prior work [42], we propose to project the data into a much lower-dimensional feature space but with more meaningful information in the representation. Let $\mathcal E$ be the encoder that maps the input $\mathbf X$ in to the latent feature $\mathbf F$, i.e., $\mathbf F = \mathcal E(\mathbf X)$. Then, the decoder $\mathcal D$ will map the features back into its original data space, i.e., $\mathbf X = \mathcal D(\mathbf F)$. The design of encoder $\mathcal E$ and the decoder $\mathcal D$ can be varied, e.g., PCA, Autoencoder [41, 14]. However, to achieve the best capability of perceptual compression, we adopt the autoencoder approach [41, 14] to develop the encoder and the decoder. This approach can provide a new input space perceptually equivalent to the data space while maintaining the lower-dimensional space.

Latent Normalizing Flow-based Model. Instead of modeling the multimodal data \mathbf{X} on its original high-dimensional space, we propose to model the data distribution via its multimodal feature \mathbf{F} on the latent space as $p(\mathbf{F}) = \pi(\mathbf{Z}) \left| \frac{\partial G(\mathbf{F})}{\partial \mathbf{F}} \right|$. We named this method the Multimodal Attention-based Normalizing Flow Approach with a Latent Model. With our approach, the flow-based model does not need to learn to perform perceptual compression on high-dimensional data. Instead, our normalizing flow approach will focus on learning the semantic information and correlation of multimodal data. As a result, our model exhibits better scaling properties while using an efficient computational cost. In addition, the bijective network G designed via our Invertible Cross-Attention layers offers better multimodal modeling via second-order correlation learning.

Attention-based Normalizing Flow Network. Our bijective network G (Fig. 2) consists of L blocks where each block consists of eight invertible cross-attention layers and a coupling layer [5]. The first two cross-attention layers adopt the MMCA partitioning. The following four cross-attention layers perform different IMCA partitioning approaches. The next two layers utilize LICA Cross-Attention layers. Then, the coupling layer is adopted to increase the inner expressiveness of the bijective blocks.

Learning MANGO With Task Specific. Given the multimodal input **X** and the label of a specific task **Y**, MANGO can be jointly optimized via the negative log-likelihood and the task-specific learning objective as in Eqn. (13).

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{\mathbf{X}, \mathbf{Y}} \left[-\left(\log \pi(\mathbf{Z}) + \log \left| \frac{\partial G(\mathbf{F})}{\partial \mathbf{F}} \right| \right) + \mathcal{L}_{task}(\hat{\mathbf{Y}}, \mathbf{Y}) \right]$$
(13)

where $\mathbf{Z} = G(\mathcal{E}(\mathbf{X}))$, $\hat{\mathbf{Y}}$ is the prediction of the corresponding task, \mathcal{L}_{task} is the loss of the corresponding prediction task, and θ is the parameters of the model.

4 Experimental Results

4.1 Implementation and Benchmarks

Implementation. Our bijective network G consists of L=12 cross-attention blocks. For the perceptual compression encoder \mathcal{E} , we adopt the visual encoder of [14] for both RGB and Depth

images. We utilize the text encoder from [40] for the textual data. For fair comparisons, we use the task heads of semantic segmentation, image translation, and movie genre classification from [70, 65]. Our experiments are conducted on the 4 NVIDIA A100 GPUS. Our training uses the same learning hyper-parameters from [65] and an input image size of 256×256 for fair comparisons.

Semantic Segmentation. This task uses the two homogeneous inputs of RGB and Depth images to predict the segmentation maps. We perform experiments on NYUDv2 [36] and SUN RGB-D [45]. While NYUDv2 consists of 795/654 images for training and testing splits, SUN RGB-D includes 5,285/5,050 samples for training and testing.

Image-to-Image Translation. Following the standard protocol in [65], we adopt the Taskonomy [75] for the multimodal image translation task. This large-scale indoor scene dataset provides over ten multimodal, e.g., RGB, Depth, Normal, Shade, Texture, Edge, etc. We use a subset of 1,000 high-quality images for training and 500 for validation.

MM-IMDB Movie Genre Classification. MM-IMDB is a large-scale multimodal dataset for movie genre classification. We adopt the training and testing split of [70] for fair comparisons. In particular, the data in our experiments consists of 15,552 data for training and 2,608 for validation. In this multimodal learning task, we use the inputs from two modalities of images and texts.

4.2 Comparison with State-of-the-Art Methods

Semantic Segmentation. Table 1 presents our results compared to prior multimodal methods on multimodal semantic segmentation. Our results show the proposed approach achieves state-of-the-art performance on both the NYUDv2 and SUN RGB-D datasets. Our model consistently outperforms the prior methods in all evaluation metrics and datasets. In particular, the mIoU results of our proposed approach are higher than GeminiFusion by 1.5% and 0.6% on the two datasets. Our results have illustrated that our explicit modeling of multimodal fusion has shown a clear advantage over the prior fusion methods [20, 65]. Fig. 5 visualizes the results of our fusion approach via our normalizing flows compared to the prior fusion method, i.e., TokenFusion [65].

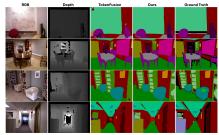


Figure 5: Qualitative Comparison on NYUDv2 Benchmark.

Image-to-Image Translation. We present our results on the five different learning settings of multimodal Image-to-Image Translation as shown in Table 2. Our results consistently outperform prior methods in five different multimodal learning settings. In particular, compared to prior GeminiFusion [20], our models have gained better FID scores, i.e., lower than GeminiFusion by 1.71 and 29.37 on benchmarks of Shade+Texture \rightarrow RGB and Depth+Normal \rightarrow RGB. These results further confirm the outstanding capability of our approach to capture complex correlations across modalities.

MM-IMDB Movie Genre Classification. Table 3 presents the results of our approach on the multimodal classification benchmarks. As shown in Table 3, our proposed approach outperforms the prior methods on both micro-average and macro-average F1 scores and achieves state-of-the-art performance. Particularly, our results of Micro and Macro F1 scores remain higher than the prior method [69] by 3.5% and 4.9%. These results illustrate that our approach performs better on homogeneous and heterogeneous inputs. Fig. 6 visualizes our results on the Image-to-Image translation benchmark.

Table 2: Comparison of Multimodal Image Translation Perfor- mance on Taskonomy with Prior Multimodal Methods. We use evaluations of FID/KID ($\times 10^{-2}$) for the RGB target and MAE $(\times 10^{-1})/\text{MSE} (\times 10^{-1})$ for Normal, Shade, and Depth targets.

zepun tungetes.					
Method		Depth+Normal	RGB+Shade	RGB+Normal	RGB+Edge
Method	\rightarrow RGB (\downarrow)	\rightarrow RGB (\downarrow)	\rightarrow Normal (\downarrow)	\rightarrow Shade (\downarrow)	→Depth (↓)
	CN	NN-based mode	İs		
Concat [66]	78.82/3.13	99.08/4.28	1.34/2.85	1.28/2.02	0.33/0.75
Self-Attention [63]	73.87/2.46	96.73/3.95	1.26/2.76	1.18/1.76	0.30/0.70
Align. [46]	92.30/4.20	105.03/4.91	1.52/3.25	1.41/2.21	0.45/0.90
CEN [66]	62.63/1.65	84.33/2.70	1.12/2.51	1.10/1.72	0.28/0.66
	Transi	former-based me	odels		
Feature Concat (Tiny) [65]	76.13/2.85	102.70/4.74	1.52/3.15	1.33/2.20	0.40/0.83
TokenFusion (Tiny) [65]	50.40/1.03	76.35/2.19	0.73/1.83	0.95/1.54	0.21/0.57
Feature Concat (Small) [65]	72.55/2.39	96.04/4.09	1.18/2.73	1.30/2.07	0.35/0.68
TokenFusion (Small) [65]	43.92/0.94	70.13/1.92	0.58/1.51	0.79/1.33	0.16/0.47
GeminiFusion [20]	41.32/0.81	96.98/3.71	0.65/1.69	-	0.20/0.49
MANGO	39.61/0.77	67.61/1.54	0.52/1.12	0.62/0.96	0.17/0.33

Figure 6: Qualitative Comparison on Image-to-Image Benchmark.

4.3 Ablation Studies

Effectiveness of Invertible Cross-Attention Layers. To illustrate the impact of our proposed invertible cross-attention layers, we conduct experiments to compare our proposed layers with other flow models, i.e., Affine Coupling Layer [5], Glow [21], Flow++ [15], and AttnFlow [48]. As shown in Table 4, our proposed invertible cross-attention layer consistently outperforms the prior coupling methods. In particular, the mIoU results of our method achieved up to 59.2% and 54.1% on both NYUDv2 and SUN RGBD benchmarks. These results clearly illustrate the advantages of our proposed method for modeling correlations and complex structures in multimodal data.

Effectiveness of Different Partitioning Approach. Table 5 presents the experimental results of different partitioning approaches. As shown in the results, using Modality-to-

Table 3: Comparison of Movie Genre Classification Performance on the MM-IMDB dataset with Prior Multimodal Methods. Our metrics include the Micro-Average and Macro-Average F1 Scores.

Method	Modality	Micro F1 (%)	Macro F1 (%)
Image Network [70]	T	40.0	25.3
	1		
Text Network [70]	T	59.2	47.2
Late Fusion [24]	I+T	59.6	51.0
LRTF [29]	I+T	59.2	49.3
MI-Matrix [19]	I+T	58.5	48.4
DynMM [70]	I+T	60.4	51.6
COCA [74]	I+T	67.7	62.6
MFM [3]	I+T	67.5	61.6
BLIP [22]	I+T	67.4	62.8
ReFNet [43]	I+T	68.0	58.7
BridgeTow [69]	I+T	68.2	63.3
MANGO	I+T	71.7	68.2

Modality and Inter-Modality Cross-attention, the mIoU results on both NYUDv2 and SUN RGBD benchmarks have achieved 58.0% and 53.7%. Moreover, when the Learnable Inter-Modality Cross-Attention is adopted, our mIoU results are further improved by 59.2% and 54.1% compared to those without LICA. The experimental results have confirmed the effectiveness of our proposed approach in modeling correlation across modalities via our cross-attention mechanism.

Effectiveness of Latent Model. These experiments study the effectiveness of our latent model approach. As shown in Table 6, the performance of our multimodal normalizing flow-based models is consistently improved on both semantic segmentation benchmarks using the latent

Table 4: Effectiveness of Invertible Layers.

Laver	N'	YUDv2		SUI		
	Pixlel Acc.	mAcc.	mIoU	Pixlel Acc.	mAcc.	mIoU
Coupling Layer [5]	76.0	63.4	50.8	79.8	59.9	48.5
Glow [21]	77.0	66.4	53.0	80.3	61.9	49.1
Flow++ [15]	77.5	68.1	54.2	81.5	62.0	50.5
AttnFlow [48]	79.5	69.9	56.5	82.5	65.1	52.2
MANGO	81.5	71.6	59.2	83.9	67.2	54.1

model. The proposed method achieves the SoTA results where the mIoU results of our best model have achieved 59.2% and 54.1% on NYUDv2 and SUN RGBD benchmarks. The results have highlighted the advantages of using the perceptual compression encoder to produce a lower but more efficient representation space.

Effectiveness of Number of Cross-Attention Blocks. Table 6 illustrates the results of our approach using different numbers (L) of cross-attention blocks. As in our results, the performance of multimodal segmentation models us-

,	Table 5: Effectiveness of Partitioning Approaches.								
MMCAD		IMCA	LICA	NY	UDv2		SUN	RGBD	
	MMCA IMCA		LICA	Pixlel Acc.	mAcc.	mIoU	Pixlel Acc.	mAcc.	mIoU
	-			79.3	68.8	56.4	82.4	64.6	51.3
	/	/		80.2	70.8	58.0	83.3	66.2	53.7
	✓	1	✓	81.5	71.6	59.2	83.9	67.2	54.1

ing a deeper network results in better performance. In particular, using L=12 blocks of invertible cross-attention blocks, the mIoU performance on NYUDv2 and SUN RGBD benchmarks has reached up to 59.2% and 54.1%, respectively. While fewer blocks may result in lower computational costs, the deeper model can exploit better correlation of features in multimodal data.

5 Conclusions

Our paper has introduced a new explicit modeling approach to multimodal fusion learning via the Attention-based Normalizing Flow-Based Model. Our proposed ICA layers with three different cross-attention mechanisms have efficiently captured the complex structure and underlying correlations in multimodal data. We

Table 6: Effectiveness of Latent Model.									
# Blocks	Latent	N'	YUDv2		SUN RGBD				
# DIOCKS	Model	Pixlel Acc.	mAcc.	mIoU	Pixlel Acc.	mAcc.	mIoU		
	Х	75.9	63.5	51.0	79.4	59.1	47.3		
6	/	77.5	65.8	52.3	79.6	60.5	48.1		
8	Х	78.0	65.5	53.1	80.8	60.8	49.4		
0	/	78.1	65.3	54.1	84.4	60.0	51.4		
12	Х	80.7	70.4	58.0	83.4	65.8	53.5		
12	/	81.5	71.6	59.2	83.9	67.2	54.1		

have also introduced a new latent approach to normalizing flows to increase our scalability to multimodal data. Our intensive experiments on three standard benchmarks, i.e., Semantic Segmentation, Image-to-Image Translation, and Movie Genre Classification, have shown the effectiveness of our approach. Our study has demonstrated the effectiveness of invertible cross-attention layers in multimodal learning under selected hyperparameters and benchmarks. However, it still remains limitations in objective balancing and scalability. The detailed limitations are discussed in our appendix. Acknowledgment. This work is partly supported by NSF CAREER (No. 2442295), NSF SCH (No. 2501021), NSF E-RISE (No. 2445877), NSF SBIR Phase 2 (No. 2247237) and USDA/NIFA Award. We also acknowledge the Arkansas High-Performance Computing Center (HPC) for GPU servers. Nitin Agarwal's participation was supported by U.S. NSF (OIA-1946391, OIA-1920920), AFOSR (FA9550-22-1-0332), ARO (W911NF-23-1-0011, W911NF-24-1-0078, W911NF-25-1-0147), ONR (N00014-21-1-2121, N00014-21-1-2765, N00014-22-1-2318), AFRL, DARPA, Australian DSTO Strategic Policy Grants Program, Arkansas Research Alliance, the Jerry L. Maulden/Entergy Endowment, and the Donaghey Foundation at the University of Arkansas at Little Rock.

References

- [1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] J. Arevalo, T. Solorio, M. Montes-y Gómez, and F. A. González. Gated multimodal units for information fusion. *arXiv preprint arXiv:1702.01992*, 2017.
- [3] L. Braz, V. Teixeira, H. Pedrini, and Z. Dias. Image-text integration using a multimodal fusion network module for movie genre classification. In 11th International Conference of Pattern Recognition Systems (ICPRS 2021), volume 2021, pages 200–205, 2021.
- [4] L. Dinh, D. Krueger, and Y. Bengio. Nice: Non-linear independent components estimation. *arXiv preprint arXiv:1410.8516*, 2014.
- [5] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp. *arXiv preprint arXiv:1605.08803*, 2016.
- [6] S. Dong, Y. Feng, Q. Yang, Y. Huang, D. Liu, and H. Fan. Efficient multimodal semantic segmentation via dual-prompt learning. *arXiv preprint arXiv:2312.00360*, 2023.
- [7] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W. T. Freeman, and M. Rubinstein. Looking to listen at the cocktail party: A speaker-independent audio-visual model for speech separation. *arXiv* preprint arXiv:1804.03619, 2018.
- [8] G. Evangelopoulos, A. Zlatintsi, A. Potamianos, P. Maragos, K. Rapantzikos, G. Skoumas, and Y. Avrithis. Multimodal saliency and fusion for movie summarization based on aural, visual, and textual attention. *IEEE Transactions on Multimedia*, 15(7):1553–1568, 2013.
- [9] V. Garcia Satorras, E. Hoogeboom, F. Fuchs, I. Posner, and M. Welling. E (n) equivariant normalizing flows. *Advances in Neural Information Processing Systems*, 34:4181–4192, 2021.
- [10] M. I. E. Ghebriout, H. Bouzidi, S. Niar, and H. Ouarnoughi. Harmonic-nas: Hardware-aware multimodal neural architecture search on resource-constrained devices. In *Asian Conference on Machine Learning*, pages 374–389. PMLR, 2024.
- [11] M. Glodek, S. Tschechne, G. Layher, M. Schels, T. Brosch, S. Scherer, M. Kächele, M. Schmidt, H. Neumann, G. Palm, et al. Multiple classifier systems for the classification of audio-visual emotional states. In *Affective Computing and Intelligent Interaction: Fourth International Conference*, ACII 2011, Memphis, TN, USA, October 9–12, 2011, Proceedings, Part II, pages 359–368. Springer, 2011.
- [12] X. Gong, S. Mohan, N. Dhingra, J.-C. Bazin, Y. Li, Z. Wang, and R. Ranjan. Mmg-ego4d: Multimodal generalization in egocentric action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6481–6491, 2023.
- [13] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers. Fusenet: incorporating depth into semantic segmentation via fusion-based cnn architecture. In *Asian Conference on Computer Vision*, November 2016.
- [14] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick. Masked autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 16000–16009, 2022.

- [15] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel. Flow++: Improving flow-based generative models with variational dequantization and architecture design. In *International conference on machine learning*, pages 2722–2730. PMLR, 2019.
- [16] C. Hu, B. Fu, P. Yu, L. Zhang, X. Shi, and Y. Chen. An explicit multi-modal fusion method for sign language translation. In *ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, pages 3860–3864. IEEE, 2024.
- [17] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In International conference on machine learning, pages 2078–2087. PMLR, 2018.
- [18] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-image translation. In *Proceedings of the European conference on computer vision (ECCV)*, pages 172–189, 2018.
- [19] S. M. Jayakumar, W. M. Czarnecki, J. Menick, J. Schwarz, J. Rae, S. Osindero, Y. W. Teh, T. Harley, and R. Pascanu. Multiplicative interactions and where to find them. In *International Conference on Learning Representations*, 2020.
- [20] D. Jia, J. Guo, K. Han, H. Wu, C. Zhang, C. Xu, and X. Chen. Geminifusion: Efficient pixel-wise multimodal fusion for vision transformer. *arXiv* preprint arXiv:2406.01210, 2024.
- [21] D. P. Kingma and P. Dhariwal. Glow: Generative flow with invertible 1x1 convolutions. *Advances in neural information processing systems*, 31, 2018.
- [22] J. Li, D. Li, C. Xiong, and S. Hoi. Blip: Bootstrapping language-image pre-training for unified vision-language understanding and generation. In *ICML*, 2022.
- [23] M. Liang, J. Hu, C. Bao, H. Feng, F. Deng, and T. L. Lam. Explicit attention-enhanced fusion for rgb-thermal perception tasks. *IEEE Robotics and Automation Letters*, 8(7):4060–4067, 2023.
- [24] P. P. Liang, Y. Lyu, X. Fan, Z. Wu, Y. Cheng, J. Wu, L. Y. Chen, P. Wu, M. A. Lee, Y. Zhu, et al. Multibench: Multiscale benchmarks for multimodal representation learning. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021.
- [25] X. Liang, Q. Guo, Y. Qian, W. Ding, and Q. Zhang. Evolutionary deep fusion method and its application in chemical structure recognition. *IEEE Transactions on Evolutionary Computation*, 25(5):883–893, 2021.
- [26] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2017.
- [27] H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 26296–26306, 2024.
- [28] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information processing systems, 36, 2024.
- [29] Z. Liu, Y. Shen, V. B. Lakshminarasimhan, P. P. Liang, A. Zadeh, and L.-P. Morency. Efficient low-rank multimodal fusion with modality-specific factors. In *Annual Meeting of the Association for Computational Linguistics*, 2018.
- [30] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2015.
- [31] Y. Lu and B. Huang. Structured output learning with conditional generative flows. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 5005–5012, 2020.

- [32] A. Lugmayr, M. Danelljan, L. Van Gool, and R. Timofte. Srflow: Learning the super-resolution space with normalizing flow. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16*, pages 715–732. Springer, 2020.
- [33] E. Morvant, A. Habrard, and S. Ayache. Majority vote of diverse classifiers for late fusion. In Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, S+ SSPR 2014, Joensuu, Finland, August 20-22, 2014. Proceedings, pages 153–162. Springer, 2014.
- [34] S. Nagar, M. Dufraisse, and G. Varma. Cinc flow: Characterizable invertible 3x3 convolution. *arXiv preprint arXiv:2107.01358*, 2021.
- [35] A. Nagrani, S. Yang, A. Arnab, A. Jansen, C. Schmid, and C. Sun. Attention bottlenecks for multimodal fusion. Advances in neural information processing systems, 34:14200–14213, 2021.
- [36] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
- [37] H.-Q. Nguyen, T.-D. Truong, X. B. Nguyen, A. Dowling, X. Li, and K. Luu. Insect-foundation: A foundation model and large-scale 1m dataset for visual insect understanding. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21945–21955, 2024.
- [38] X.-B. Nguyen, C. N. Duong, X. Li, S. Gauch, H.-S. Seo, and K. Luu. Micron-bert: Bert-based facial micro-expression recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 1482–1492, 2023.
- [39] S.-J. Park, K.-S. Hong, and S. Lee. Rdfnet: Rgb-d multi-level residual feature fusion for indoor semantic segmentation. In *The IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.
- [40] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [41] A. Razavi, A. Van den Oord, and O. Vinyals. Generating diverse high-fidelity images with vq-vae-2. *Advances in neural information processing systems*, 32, 2019.
- [42] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10684–10695, 2022.
- [43] S. Sankaran, D. Yang, and S.-N. Lim. Refining multimodal representations using a modalitycentric self-supervised module, 2022.
- [44] D. Seichter, S. Fischedick, M. Köhler, and H.-M. Gross. Efficient multi-task rgb-d scene analysis for indoor environments. In *IEEE International Joint Conference on Neural Networks* (*IJCNN*), pages 1–10, 2022.
- [45] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d scene understanding benchmark suite. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 567–576, 2015.
- [46] S. Song, J. Liu, Y. Li, and Z. Guo. Modality compensation network: Cross-modal adaptation for action recognition. *IEEE Transactions on Image Processing*, 29:3957–3969, 2020.
- [47] M. Sorkhei, G. E. Henter, and H. Kjellström. Full-glow: Fully conditional glow for more realistic image generation. In *DAGM German Conference on Pattern Recognition*, pages 697–711. Springer, 2021.
- [48] R. S. Sukthanker, Z. Huang, S. Kumar, R. Timofte, and L. Van Gool. Generative flows with invertible attentions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 11234–11243, 2022.

- [49] H. Sun, R. Mehta, H. H. Zhou, Z. Huang, S. C. Johnson, V. Prabhakaran, and V. Singh. Dual-glow: Conditional flow-based generative model for modality transfer. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10611–10620, 2019.
- [50] Z.-X. Tan, A. Goel, T.-S. Nguyen, and D. C. Ong. A multimodal lstm for predicting listener empathic responses over time. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pages 1–4. IEEE, 2019.
- [51] C. Team. Chameleon: Mixed-modal early-fusion foundation models. arXiv preprint arXiv:2405.09818, 2024.
- [52] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth, K. Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv* preprint arXiv:2312.11805, 2023.
- [53] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. *arXiv* preprint arXiv:2302.13971, 2023.
- [54] T.-D. Truong, Q.-H. Bui, C. N. Duong, H.-S. Seo, S. L. Phung, X. Li, and K. Luu. Directormer: A directed attention in transformer approach to robust action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20030–20040, 2022.
- [55] T.-D. Truong, C. N. Duong, T. De Vu, H. A. Pham, B. Raj, N. Le, and K. Luu. The right to talk: An audio-visual transformer approach. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pages 1105–1114, October 2021.
- [56] T.-D. Truong, N. Le, B. Raj, J. Cothren, and K. Luu. Fredom: Fairness domain adaptation approach to semantic scene understanding. In *IEEE/CVF Computer Vision and Pattern Recognition (CVPR)*, 2023.
- [57] T.-D. Truong and K. Luu. Cross-view action recognition understanding from exocentric to egocentric perspective. *Neurocomputing*, 614:128731, 2025.
- [58] T.-D. Truong, H.-Q. Nguyen, X.-B. Nguyen, A. Dowling, X. Li, and K. Luu. Insect-foundation: A foundation model and large multimodal dataset for vision-language insect understanding. *International Journal of Computer Vision*, pages 1–26, 2025.
- [59] T.-D. Truong, H.-Q. Nguyen, B. Raj, and K. Luu. Fairness continual learning approach to semantic scene understanding in open-world environments. *Advances in Neural Information Processing Systems*, 36, 2024.
- [60] T.-D. Truong, U. Prabhu, B. Raj, J. Cothren, and K. Luu. Falcon: Fairness learning via contrastive attention approach to continual semantic scene understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 15065–15075, 2025.
- [61] T.-D. Truong, U. Prabhu, D. Wang, B. Raj, S. Gauch, J. Subbiah, and K. Luu. Eagle: Efficient adaptive geometry-based learning in cross-view understanding. *Advances in Neural Information Processing Systems*, 37:137309–137333, 2024.
- [62] A. Valada, R. Mohan, and W. Burgard. Self-supervised model adaptation for multimodal semantic segmentation. *International Journal of Computer Vision (IJCV)*, jul 2019. Special Issue: Deep Learning for Robotic Vision.
- [63] A. Valada, R. Mohan, and W. Burgard. Self-supervised model adaptation for multimodal semantic segmentation. *International Journal of Computer Vision*, 128(5):1239–1285, 2020.
- [64] A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.
- [65] Y. Wang, X. Chen, L. Cao, W. Huang, F. Sun, and Y. Wang. Multimodal token fusion for vision transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 12186–12195, 2022.

- [66] Y. Wang, W. Huang, F. Sun, T. Xu, Y. Rong, and J. Huang. Deep multimodal fusion by channel exchanging. *Advances in neural information processing systems*, 33:4835–4845, 2020.
- [67] Y. Wang, F. Sun, M. Lu, and A. Yao. Learning deep multimodal feature representation with asymmetric multi-layer fusion. In ACM International Conference on Multimedia (ACM MM), 2020.
- [68] X. Wei, T. Zhang, Y. Li, Y. Zhang, and F. Wu. Multi-modality cross attention network for image and sentence matching. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 10941–10950, 2020.
- [69] X. Xu, C. Wu, S. Rosenman, V. Lal, W. Che, and N. Duan. Bridgetower: Building bridges between encoders in vision-language representation learning. arXiv preprint arXiv:2206.08657, 2022.
- [70] Z. Xue and R. Marculescu. Dynamic multimodal fusion. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2575–2584, 2023.
- [71] B. Yin, X. Zhang, Z. Li, L. Liu, M.-M. Cheng, and Q. Hou. Dformer: Rethinking rgbd representation learning for semantic segmentation. *arXiv preprint arXiv:2309.09668*, 2023.
- [72] J. Yin, J. Shen, R. Chen, W. Li, R. Yang, P. Frossard, and W. Wang. Is-fusion: Instance-scene collaborative fusion for multimodal 3d object detection. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14905–14915, 2024.
- [73] Y. Yin, S. Huang, and X. Zhang. Bm-nas: Bilevel multimodal neural architecture search. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 8901–8909, 2022.
- [74] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu. Coca: Contrastive captioners are image-text foundation models. *arXiv preprint arXiv:2205.01917*, 2022.
- [75] A. R. Zamir, A. Sax, W. Shen, L. J. Guibas, J. Malik, and S. Savarese. Taskonomy: Disentangling task transfer learning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3712–3722, 2018.
- [76] H. Zhao, C. Gan, A. Rouditchenko, C. Vondrick, J. McDermott, and A. Torralba. The sound of pixels. In *Proceedings of the European conference on computer vision (ECCV)*, pages 570–586, 2018.

Appendices

A Additional Ablation Studies

Effectiveness of Number of Cross-Attention Blocks. We conducted an ablation study with 16 cross-attention blocks. As shown in Table 7, although using more cross-attention blocks will increase the computation, it helps to enhance the model performance.

Table 7: Effectiveness of Number of Cross-Attention Blocks.

# Blocks	NYUv2			SUN RGBD		
	Acc.	mAcc.	mIoU	Acc.	mAcc.	mIoU
6	77.5	65.8	52.3	79.6	60.5	48.1
8	78.1	65.3	54.1	84.4	60.0	51.4
12	81.5	71.6	59.2	83.9	67.2	54.1
16	83.1	75.1	61.7	85.4	68.7	55.6

Computational Cost. As shown in Table 8, the parameters, GFLOPs, and inference time of our method are competitive with prior methods. Meanwhile, we achieved state-of-the-art performance on two segmentation benchmarks.

Table 8: The Comparision of Computational Cost.

Method	NYUDv2 mIOU	SUN RGB-D mIOU	PARAMS	GFLOPS	Inference Time
TokenFusion [65]	54.2	53.0	45.9M	108	126 ms
GeminiFusion [20]	57.7	53.3	75.8M	174	153 ms
MANGO	59.2	54.1	72.9M	152	144 ms

Attention Visualization. As shown in Figure 7, our Invertible Cross-Attention layer can capture the attention interaction from the region in the depth image (red box) to the RGB image. This result has illustrated the effectiveness of our proposed attention layer in capturing the correlation across modalities.

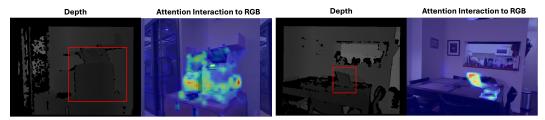


Figure 7: The Attention Visualization of ICA Layer.

B Dicussion of Limitations

Our experiments have chosen a set of learning hyper-parameters and benchmarks to support our hypothesis. However, our work could contain several limitations. Our work studied the effectiveness of our proposed invertible cross-attention layers in multimodal learning. Thus, the investigation of balance weights among learning objectives has not been fully exploited, and we leave this experiment as our future work. Due to computation limitations, our experiments are limited to the standard scale of the benchmarks. However, we hypothesize that the proposed approaches can generalize to larger-scale data and benchmark settings according to the fundamental theories presented in our paper.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The claims declared in the abstract match with the contributions, experimental results, and scope of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the paper are discussed in the appendix.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: The description of the formula is provided in the paper.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details of datasets and implementations are presented in the experimental sections.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [NA]

Justification: The code will be published may the paper be accepted.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- · At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Ouestion: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The details of training and testing are presented in the experimental section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Following the standard evaluation of semantic segmentation, image-to-image translation, and classification, we evaluate our model by the standard mIoU, accuracy, and MSE metrics.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The computational resources used in our experiments are presented in the experimental section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The content of the paper and datasets strictly follows the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The paper does not have a negative societal impact.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not have a risk. The released models will be available may the paper be accepted.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The paper provides all the references to code, data, and models used in the paper.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce the new dataset. The code of the paper will be published may the paper be accepted.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The research in this paper does not involve crowdsourcing nor research with human subjects. Thus, there is no requirement for IRB.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not utilize the LLMs.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.