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ABSTRACT

Deep neural networks (DNNs) have performed impressively on a wide range of
tasks, but they usually require a significant number of training samples to achieve
good performance. Thus, DNNs do not work well in low-data regimes because
they tend to overfit a small dataset and make poor predictions. In contrast, shal-
low neural networks (SNNs) generally are robust against overfitting in low-data
regimes and converge more quickly than DNNs, but they struggle to represent
very complex systems. Hence, DNNs and SNNs have a complementary relation-
ship, and combining their benefits can provide fast-learning capability with high
asymptotic performance, as meta-learning does. However, aggregating heteroge-
neous methods with opposite properties is not trivial, as it can make the combined
method inferior to each base method. In this paper, we propose a new algorithm
called anytime neural processes that combines DNNs and SNNs and can work in
both low-data and high-data regimes. To combine heterogeneous models effec-
tively, we propose a novel aggregation method based on a generalized product-
of-exports and a winner-take-all gate network. Moreover, we discuss the theo-
retical basis of the proposed method. Experiments on a public dataset show that
the proposed method achieves comparable performance with other state-of-the-art
methods.

1 INTRODUCTION

Deep neural networks (DNNs) have been increasingly used for various tasks. One of their notable
properties is that the performance of DNNs improves exponentially as the amount of available data
increases Krizhevsky et al. (2012); Hochreiter & Schmidhuber (1997); Goodfellow et al. (2014);
Sutton & Barto (2018). However, they tend to overfit on small datasets and do not work well in
low-data regimes Ravi & Larochelle (2017). Thus, they are called a data-driven method. In con-
trast, shallow neural networks (SNNs), such as linear models and kernel methods, tend to learn
quickly and are robust against overfitting problems Rasmussen (2003); Chua et al. (2018); Kamthe
& Deisenroth (2018). However, their asymptotic performance tends to converge to less optimal solu-
tions and lags behind that of DNN-based methods Chua et al. (2018). Hence, SNNs and DNNs have
a complementary relationship, and thus it is interesting and natural to synergize the two methods. A
combined method is expected to learn quickly in low-data regimes (in the early stages) and achieve
high asymptotic performance in high-data regimes (in the later stages of the learning process), as
shown in Figure 1.

Meta-learning has a similar motivation to our method in that meta-trained models quickly learn a
new task from only a few examples, and they continue to adapt as more data become available
Schmidhuber (1987); Thrun & Pratt (2012). It essentially leverages information gathered from prior
related tasks to learn more effectively in a novel task, and it demonstrates good performance in
various fields such as few-shot classification and RL problems Finn et al. (2017); Santoro et al.
(2016); Nichol et al. (2018). However, meta-training needs a significant amount of tasks that are
similar to the target task. In real-world scenarios, it is not trivial to find and define training tasks
similar to the target tasks. In addition, each task should be mutually exclusive such that no single
model can solve all the tasks at once, which requires users to pay attention to designing the tasks,
such as removing task identifying information or shuffling the index for labels Yin et al. (2019).
These constraints make meta-learning inapplicable to some domains where the boundaries of tasks
cannot be determined beforehand Xu et al. (2020).
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Figure 1: Distinctive properties of the proposed
method. The performance of deep neural net-
works (DNNs) tends to improve exponentially as
the amount of data increases. However, when the
amount of data is small, DNNs fail to achieve
generalized performance during the test phase be-
cause they are typically overfitted to the training
dataset. In contrast, shallow neural networks con-
verge quickly and are robust to overfitting. How-
ever, their performance reaches a non-optimal sat-
uration point early, no matter how much more data
the algorithms use. The performance of the pro-
posed method follows the shaded line without sig-
nificant performance degradation.

We approach meta-learning from a different per-
spective and propose an ensemble-based method
that learns with a few training examples and di-
rectly achieves reasonable performance on the test
dataset. As more training data become avail-
able, the performance of the proposed method im-
proves significantly, as with DNN-based methods.
To achieve this goal, we must solve two chal-
lenges. The first is to prevent overfitting on a
small amount of data in a low-data regime before
collecting enough data for the DNNs. We use
Bayesian methods because they offer robustness to
overfitting. However, Bayesian methods generally
have challenging inferences and additional compu-
tational costs in a high-data regime Hensman et al.
(2013); Rasmussen & Williams (2006). Therefore,
the computational burden can be significantly re-
duced by transitioning from Bayesian methods to
DNNs sometime during learning. When to transi-
tion is not a trivial question. The second challenge
is to combine heterogeneous models without a sig-
nificant performance drop. Ensemble learning is a
representative method for combining learning algo-
rithms to improve performance Dietterich (2000);
Huang et al. (2017); Wasay et al. (2020). The core
part is how to assign a proper weight to each ex-

pert model. Typically, predictions from independently trained models are averaged with variation
induced by bagging or randomization. However, simple averaging does not apply to our problem
because insufficiently trained DNN models degrade the performance of the combined model in low-
data regimes. Hence, it is important to assign a proper weight to each base model according to its
performance.

To handle these problems, we propose anytime neural processes (ATNPs) that perform fast learning
in the earlier stages and accomplish high performance in the later stages of the learning algorithms.
This capability is essential for robots to learn primitive skills such as collision avoidance and nav-
igation, especially in unknown environment Kahn et al. (2017); Seker et al. (2019). For low-data
regimes, we exploit Gaussian processes (GPs) as Bayesian methods to reduce overfitting on a small
dataset. GPs efficiently learn tasks from small datasets and generate a plausible solution without
requiring a large number of iterations because the standard GPs are mathematically equivalent to in-
finitely wide SNNs Neal (1994). Therefore, the costly meta-training process can be replaced by GPs
heuristically Hinton & Salakhutdinov (2008). For high-data regimes, conditional neural processes
(CNPs) are used to achieve high asymptotic performance. CNPs are a DNN-based method that
learns an approximation to a stochastic process Garnelo et al. (2018a;b). To combine the advantages
of both stochastic models, we introduce a novel aggregating network based on a probabilistic en-
semble method Dietterich (2000) and a winner-take-all (WTA) gate network Cios & Shields (1997);
Eigen et al. (2014). The proposed aggregating method enables ATNPs to converge to the CNPs as ad-
ditional learning iterations are performed. Thus, ATNPs can take full advantage of GPs in low-data
regimes and guarantee that the switch from GPs to CNPs occurs without significant performance
degradation as soon as the performance of CNPs exceeds that of the GPs.

The contributions of this paper can be summarized as follows: 1) We propose an ATNP that quickly
identifies a feasible solution, then improves its optimality over all data regimes. The proposed
method combines GPs and CNPs in a novel ensemble method. 2) For effective ensemble learning,
we introduce a novel gate network that guarantees that the transition from GPs to CNPs occurs
without significant performance degradation. The theoretical discussion of the transition is provided.
3) We experimentally demonstrate that the proposed method outperforms CNPs in low-data regimes
and is comparable with CNPs in high-data regimes on a public dataset. In addition, the proposed
method achieves comparable performance to meta-learning algorithms.
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Figure 2: The proposed anytime neural processes (ATNP) framework includes neural (CNPs) and Gaussian
(GPs) processes with gate networks. Inputs are shared among the components and each CNPs and GPs esti-
mates factorized predictive distributions. The gate networks controls the importance Gk for each estimate and
generates aggregated predictive distributions.

2 PRELIMINARIES

2.1 GAUSSIAN PROCESSES FOR REGRESSION

A GP regressor predicts a target output y∗ ∈ Rdy of a target input x∗ ∈ Rdx given a set of observa-
tions of size (xC , yC) = (xi, yi)i∈C , where y∗ = f(x∗) +w with w ∼ N (0, σ2

w) and f(·) follows a
GP Rasmussen & Williams (2006). Specifically, given the target input x∗ and a set of observations
of size n, the conditional distribution of the target y∗ becomes

pgp(y∗|x∗, xC , yC) ∼ N (µ̂(x∗), σ̂
2(x∗)),

µ̂(x∗) = k(x∗, xC)(k(xC , xC) + σ2
wI)−1yC ,

σ̂2(x∗) = k(x∗, x∗)− k(x∗, xC)(k(xC , xC) + σ2
wI)−1k(xC , x∗),

(1)

where k(x∗, xC) is a covariance vector between the target input and the observations inputs,
k(xt, xt) ∈ R, and k(xC , xC) ∈ Rn×n is a kernel matrix. Standard GPs have computational com-
plexity,O(n3) and performance remains restricted by prior kernel type, often called kernel selection
problem.

2.2 CONDITIONAL NEURAL PROCESSES

CNPs are a DNN-based method that learns approximations to stochastic processes Garnelo et al.
(2018a;b). There is no need to find appropriate priors because CNPs learn an implicit kernel directly
from the data, solving the kernel selection problem. Hence, CNPs can learn complex learning
tasks efficiently in high-data regimes. Additionally, CNPs achieve flexible and fast prediction for
stochastic processes because once trained, CNP inference complexity is linear in observation size,
with a runtime complexity of O(n + m) to make m predictions with n observations Garnelo et al.
(2018a;b). Specifically, CNPs learn the approximation of conditional distributions

pcnp(yT |xT , xC , yC) = pcnp(yT |xT , rC), rC = rζ(xC , yC), (2)

where rζ and (xT , yT ) = (xi, yi)i∈T are a neural network and a set of targets, respectively. The
likelihood pcnp(yT |xT , rC) is modeled by a Gaussian distribution factorized with means and vari-
ances determined by passing xT and rC . This structure is based on the variational auto-encoder
Kingma & Welling (2014); Sohn et al. (2015); hence the likelihood corresponds to a decoder, and
rζ can be considered as an encoder.

We focus on the standard regression problem. Conditioned on observation (xC , yC), GPs can be
defined as joint Gaussian distributions pgp(yT |xT , xC , yC) of target yT . CNPs can be considered as
a DNN-based method that learns approximations to GPs Garnelo et al. (2018a;b). Both pgp and pcnp
distributions can be combined analytically because they are compatible. With the aforementioned
distributions, the goal is to learn the joint distribution patnp(yT |xT , xC , yC , rC) that performs well
in an all-data regime.

3 PROPOSED ANYTIME NEURAL PROCESSES

This section describes the proposed ATNPs that combine GPs and CNPs. ATNPs take observations
as inputs and estimate predictive target distributions. The proposed framework achieves optimality
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when an aggregated model converge to CNPs in the training phase, which guarantees running time
complexityO(n+m) for CNPs. We modify the generalized product-of-experts (gPoE) by replacing
the mixing coefficient with a gate network with WTA. Figure 2 shows the proposed framework.

3.1 ENSEMBLE

Ensemble methods combine multiple model predictions to improve accuracy and reduce variance.
However, we use ensemble methods to combine GPs and CNPs in a way that each expert plays a dif-
ferent role at different time. Probabilistic models commonly employ mixture of experts (MoEs) and
product-of-experts (PoEs) frameworks Jacobs et al. (1991); Hinton (2002). MoEs perform voting
among experts and provide good performance when the experts have high variance, whereas PoEs
allow experts to specialize in analyzing one particular aspect of the problem. However, PoEs tend to
be overconfident Ng & Deisenroth (2014). This means that the prediction variance of PoEs shrinks
to 0 when the number of training data goes to infinity. Thus, PoE models are not appropriate for
safety-critical systems such as self-driving cars. To sidestep this problem, we exploit the gPoEs to
estimate predictive distributions Cao & Fleet (2014).

3.1.1 GENERALIZED PRODUCT OF EXPERTS

PoEs models assume the experts to be independent. Given a training data set D = {x, y} with in-
puts x = {xi}Ni=1 and observations y = {yi}Ni=1, the marginal likelihood p(y|x, θ) is approximated
by p(y|x, θ) ≈ ∏K

k=1 pk(y(k)|x(k), θ), where pk is the predictive distribution of the kth expert,
and K is the total number of experts, and hence we can partition D into K sets D = ∪Kk=1D

(k).
For the regression problem y = f(x) + ε, gPoEs return a distribution for an unknown function
f∗ = f(x∗) as pgpoe(f∗|x∗,D) =

∏K
k=1 p

βk
k (f∗|x∗,D(k)), where the βk weights expert con-

tributions. For GP experts, pk has normal distribution with mean µk(x∗) and variance σ2
k(x∗),

k = 1, ...,K. Therefore, the joint prediction pgpoe(f∗|x∗,D) has mean µgpoe∗ and variance σgpoe∗

satisfying µgpoe∗ = (σgpoe∗ )2
∑K
k=1 βkσ

−2
k (x∗)µk(x∗) and (σgpoe∗ )−2 =

∑K
k=1 βkσ

−2
k (x∗).

Cao and Fleet Cao & Fleet (2014) suggested to set βk to the differential entropy between the prior
and the posterior. However, this method would make our proposed algorithm have a O((n + m)3)
computation cost throughout training process and in test phase. Another option could be to set βk
constant e.g. βk = 1/K, which would ensure stable performance Deisenroth & Ng (2015), but
that still does not solve the computational cost problem. Therefore, we propose an aggregation
method based on gPoE that fulfills three requirements: (i) βk is dependent of input data or CNPs
byproducts. In particular, βk is independent from GPs outputs, saving GPs computational costs after
the gate network reaches the optimality. (ii) βk corresponding to CNPs converges to 1 to achieve
optimality. (iii) βk is determined by each expert’s performance. We replace βk with the gate network
G and the combined model becomes

p(f∗|x∗,D) =
∏
k∈K

pGkk (f∗|x∗,D), (3)

where K = {GPs,CNPs}. Hence, we exploit GPs and CNPs as experts and train them
jointly via gradient descent in an end-to-end fashion. The predictive mean and variance are
µΥ
∗ = (σΥ

∗ )2
∑
k∈K Gkσ−2

k (x∗)µk(x∗) and (σΥ
∗ )−2 =

∑
k∈K Gkσ−2

k (x∗), respectively. The final
predictive distribution is

Qθ(x∗) = patnp(y∗|x∗, µΥ
∗ , σ

Υ
∗ , θ), (4)

where θ refers to learnable ATNPs parameters, including CNP parameters θcnp, gate network pa-
rameters θgate, and GPs expert hyperparameters θgp in Table 4 in the appendix. We only employ
Eq. (4) to train the whole network, individual experts are implicitly trained by minimizing the loss
function (see Section 3.3).

3.2 GATE NETWORK

Gate networks control information flows in neural networks Hochreiter & Schmidhuber (1997).
Jacobs et al. Jacobs et al. (1991) employed gate networks to weight experts for ensemble methods.
A trained gate network appropriately mixes expert network outputs to produce a final output. We
use a gate network to weight GPs and CNPs in the proposed framework, leveraging WTA where

4



Under review as a conference paper at ICLR 2022

some expert always has the largest weight Cios & Shields (1997); Eigen et al. (2014). Although
WTA is generally undesirable for ensemble methods Eigen et al. (2014); Peralta et al. (2019), it
guarantees optimality for our problem by letting Ggp converge to 0 in training. Softmax function
can be considered as a softened version of WTA procedure, hence we employ a gate network that
incorporate the softmax function Gk(v) = eαvk∑K

j=1 e
αvj

, where k = 1, ...,K, v = (v1, ..., vK) ∈ RK

and α ≥ 0. When α → ∞, the softmax function becomes the classic WTA where output from
the largest input 1 and other outputs are 0. At the other extreme, all outputs tend to 1

K as α → 0.

Thus, we define softmax with an embedding layer Ψ such that Gk(v) = eαΨk(v)∑K
j=1 e

αΨj(v) . To render

Ggp close to 1 at the beginning of training, we apply bias (ηgp � ηnp) to neural network outputs
rather than controlling the hyperparameter α to avoid numerical instability, and the gate network Gk
takes observations (xC , yC),

Gk(xC , yC) =
eΨk(xC ,yC)+ηk∑

j∈K
eΨj(xC ,yC)+ηj

, (5)

where Ψk(xC , yC) refers to the embedding vector for each expert. Thus, Ggp converges to 0 around
the time when the likelihood of NPs exceeds that GPs because the convergence is self-reinforcing.
We discuss the theoretical basis for convergence in Section 3.4.

3.3 TRAINING

The predictive distribution model Eq. (4) is trained in an end-to-end manner to jointly optimize
experts and gate network, i.e., CNPs parameters and GPs hyperparameters are simultaneously up-
dated at each iteration. Let P be a probability distribution over a class of function F , where
F = {f |f : X → Y } is a stochastic process. We sample f ∼ P to generate training dataset
O = {(xi, yi)}Ni=1, define subset OC = {(xi, yi)}ni=1, n ∼ uniform[1, ..., N ] as observations,
predict O conditioned on OC and minimize the conditional negative log likelihood (NLL)

L(θ) = −Ef∼P
[
EN

[
logQθ({yi}Ni=1|OC , {xi}Ni=1)

]]
(6)

using the Adam optimizer Kingma & Ba (2015).

3.4 DISCUSSION

To understand gate network convergence, we analyzed the transition from GPs to CNPs expert the-
oretically. The transition occurs when one expert represents the data distribution better than the
other in our framework. Models with high degrees of freedom or capacity usually express a diverse
set of hypotheses, hence a more complex model has more flexibility to find target functions that fit
the data well. In statistical learning theory, various complexity measures for machine learning have
been proposed, including Vapnik–Chervonenkis (VC) dimension Vapnik (2013) and Rademacher
complexity Bartlett & Mendelson (2002). However, these classical complexity measures are gener-
ally unsuitable for high expressive model such as DNNs Zhang et al. (2017). This is also true for
the proposed framework in terms of VC dimension with following a definition.

Definition 1 For any sample size N, the Vapnik-Chervonenkis (VC) dimension of a hypothesis setH,
denoted by dvc(H) or simply dvc, is the largest value of N for which mH(N) = 2N . If mH(N) =
2N for all N, then dvc(H) =∞.

This definition is universal in the sense that it applies to all hypothesis sets, learning algorithms,
probability distribution, and binary target functions Abu-Mostafa et al. (2012). Specifically, we
can obtain a finite VC dimension for the CNPs expert Abu-Mostafa et al. (2012). In contrast, GPs
have infinite VC dimension because non-parameteric models can be viewed as infinitely complex
ML models Evgeniou & Pontil (1999); Reeb et al. (2018). The transition from CNPs to GPs expert
should occur according to VC dimension, but this contradicts our results. Therefore, the convergence
cannot be explained with VC dimension. Instead, we explain the convergence in two respects as
follows.

Expressivity gap between the CNPs and the GPs: Neural network expressivity in ML can be de-
fined as how the network architecture, e.g. width, depth, connectivity, affects the resulting function
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properties Poole et al. (2016); Raghu et al. (2017). One expressivity principle is that the number of
hidden layers has larger impact on expressive power than the number of neurons in a hidden layer
for neural networks with bounded size. Hence, DNNs learn complex feature hierarchies over input
space in ways that shallow networks (one hidden layer and the same number of neurons) cannot De-
lalleau & Bengio (2011); Montufar et al. (2014). Therefore, shallow networks are usually not good
at generalization even though they can approximate any function Cybenko (1989). The standard GP
is mathematically equivalent to an infinitely wide shallow network Neal (1994), hence its expressive
power is lower than generic DNNs. For example, standard GPs with commonly used kernels cannot
describe well data incorporating non-smooth functions, e.g. a step function Calandra et al. (2016);
Pang et al. (2019).

Different training regimes of CNPs and GPs: CNPs are trained on many different functions,
whereas GPs are usually trained on observations from a single function. In our training setting, the
GPs learn a new task (or a new data distribution) at each iteration from their point of view. It is likely
to forget the knowledge (i.e., learned hyperparameters) GPs obtained from the previous iteration.
Thus, the GPs do not fit various functions well even if the training progresses. This is similar to the
catastrophic forgetting problem where a model’s performance on learned tasks abruptly degrades
when trained for a new task in continual learning McCloskey & Cohen (1989).

4 RELATED WORKS

A GP is a popular Bayesian method which is used for learning tasks with few data samples because
it provides a mathematical framework to incorporate prior knowledge about tasks Rasmussen &
Williams (2006); McNeish (2016). GPs have often been used in low-data regimes because of their
fast-learning capability and robustness to overfitting. In Deisenroth & Rasmussen (2011), a GP-
based policy search method (PILCO) was proposed to solve data-inefficiency issues, which are
a long-standing problem in trial-and-error learning processes. PILCO can learn from scratch in
only a few trials and does not rely on expert knowledge such as task-specific prior knowledge or
demonstrations. In Kamthe & Deisenroth (2018), model prediction control (MPC) with GPs was
proposed to reduce the number of interactions with the environment in RL. However, it is still
difficult for GPs to learn complex patterns with large datasets, and their asymptotic performance is
usually lower than that of DNN-based methods because their expressive power is lower than generic
DNNs Calandra et al. (2016); Pang et al. (2019).

The proposed method has a similar motivation to that of meta-learning. Meta-learning has been
proposed to quickly learn new tasks using few samples by first learning prior knowledge from similar
tasks Lake et al. (2015). However, meta-learning needs to define and obtain training tasks similar
to a target task for meta-training, which is not trivial in the real world. In contrast, the proposed
method does not need to find training tasks similar to the target tasks. The learning strategy of the
proposed method is similar to Sahoo et al. (2018) in such a way that our method leverages GPs
for rapid performance improvement in the early stages of learning, then gradually shifts to DNNs
automatically when more data have been gathered. In Sahoo et al. (2018), a hedge algorithm Freund
& Schapire (1997) was used to combine predictions with multiple outputs from shallow to deep
layers.

5 EXPERIMENTS

The proposed method was trained on multiple realizations of the stochastic process as in Garnelo
et al. (2018a;b); Kim et al. (2019). We evaluate the proposed method on a regression task using
CNPs and attentive NPs (ANPs) as baselines. The algorithm was implemented using tensorflow
Abadi et al. (2016). See appendix A.1 for architecture details.

5.1 1-D FUNCTION REGRESSION TASK

We followed the experiment setup for a regression task used in Garnelo et al. (2018a;b); Kim et al.
(2019) and evaluated the proposed method on the classical one-dimensional regression used as a
common baseline for GPs. The generated datasets comprised functions generated from GPs with
exponentiated quadratic kernel and small likelihood noise. Each iteration randomly selected the
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Figure 3: Quantitative ATNPs framework results with
respect to training iterations. (a) Target NLL given ob-
servations. (b) Mixing weights for each expert esti-
mated by the gate network.
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Figure 4: Comparison of the ATNPs with the baseline
models. (a) Target NLL and (b) L2 for the mean esti-
mates.

number of observations and targets, and each x-value was sampled uniformly from [−2, 2]. The
ATNPs outperformed the CNPs in the early training because the CNPs learned to convert their
millions of network parameters into a predictive distribution from scratch, whereas the GP expert of
the ATNPs used similarity measures from the kernel function to predict a distribution for each test
point. As training advanced, the CNP expert of the ATNPs had a larger impact on the predictive
distribution. ATNPs have the same computational efficiency as the CNPs expert after convergence
because the GPs expert can be removed.

Figure 3(a) summarizes quantitative results. We evaluated target NLL given observations
1
|T |

∑
i∈T E[log p(yi|xi, r∗(xC , yC , xi))] for each expert and the aggregated model. The GPs ex-

pert achieved lower NLL than the CNPs expert and the gate function assigned greater weight
to GPs expert in early stage training. Therefore, the aggregated model was able to estimate
a plausible predictive distribution even at a single gradient step. As training progresses, the
CNPs expert improved its performance, whereas the GPs expert achieved similar or worse per-
formance than the initial result because it had fixed kernel functions. Figure 3(b) shows that the
gate network converged to the optimal as soon as the CNPs expert outperformed the GPs expert.

Table 1: Processing time per iteration in
training phase on 1D synthetic data.

Models Mean (ms) Variance (ms)

ATNPs 9.5184 0.1123
ANPs 8.7044 0.1186
CNPs 6.0 0.0159

Figure 4 compares the proposed ATNPs framework and
CNPs and ANPs models Garnelo et al. (2018a;b); Kim
et al. (2019). To ensure fair comparison, the CNPs ex-
pert had the same architecture as for the baseline, in-
cluding the same number of parameters. Figure 4(a)
shows that the proposed ATNPs framework achieved
similar performance to ANPs model because the vari-
ance estimates affected NLL more than mean estimates
do in the early stage, hence large variance estimates compensated for poor mean estimates. There-
fore, we adopted L2 as an additional performance metric, calculating the distance between mean
estimates and ground truth. Figure 4(b) shows that the ATNPs framework had much lower L2 than
the baseline models. Both performance curves based on NLL and L2 did not satisfy a monotonicity
property because of the training regime using stochastic gradient descent optimizer. However, the
ATNPs had a monotonicity property in the sense that the transition from GPs expert to NPs expert
was guaranteed.

We also evaluated processing time for the proposed method and a family of CNPs. Table 1 presents
the means and variances of processing time per iteration before the gate network converged in train-
ing phase. The proposed method was the slowest among them because of the added computation
costs from the GPs expert as well as the CNP expert. However, the baseline models required tens
of thousand iterations to produce results comparable to ATNPs results obtained in few iterations
as shown in Figure 4(b) and the computational complexity was the same as the baselines after the
convergence. Therefore, the ATNPs can find a feasible solution within a few seconds with respect
to absolute time.

Comparison with meta-learning : To show the fast-learning property of our method, we compared
our method to meta-learning algorithms on the 1-D function regression problem. We used MAML
Finn et al. (2017) and Reptile Nichol et al. (2018), which are representative gradient-based meta-
learning methods. To conduct a fair comparison, we trained these methods with the same dataset
used in Section 5.1. Following the meta-training setup used in Finn et al. (2017); Nichol et al. (2018),
we sampled a task Ti from task distribution p(T ). Each task included a training set D(Ti,train)

and a test set D(Ti,test). In the case of k-shot learning, the training set D(Ti,train) had k training
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Table 2: ATNPs performance with different expert
combinations.

Models Mean Variance

GPs + ANPs 0.2918 0.0163
GPs + CNP 0.3419 0.0376
SGPs + ANPs 0.3048 0.0425
SGPs + CNPs 0.3762 0.0709
ANPs 0.4502 0.0513
CNPs 0.6812 0.0748

samples. During the training phase, each task-specific learner updated its parameters by gradient
descent using the loss evaluated with the training data D(Ti,train) in the inner loop. Then, the meta-
learning across tasks was performed using the loss evaluated with D(Ti,test) in the outer loop. In
our problem, a task corresponded to a function randomly generated from the GPs used in Section
5.1. The randomly selected observations and targets corresponded to DTi,train and DTi,test,
respectively. Specifically, we used 10,000 tasks whose training set and test set included 10 and 100
samples, respectively. We trained both MAML and Reptile using an Adam optimizer Kingma &
Ba (2015) and set an inner loop and an outer loop learning rate to 0.01 and 0.001, respectively.
We used only the L2 distance as a metric because both meta-learning algorithms are not stochastic
methods. Figure 4(b) shows that the proposed method achieved comparable results in the early
stage of training, which means that the GP expert of the ATNPs can replace the costly meta-learning
process effectively. As training advances, the ATNPs achieved similar performance to the meta-
learning baselines even though the proposed method estimated not only target means but also their
variances.

Gate network convergence : The proposed gate network ensures that ATNPs converge asymp-
totically to the CNPs expert, as shown in Figure 3(b) where Ggp evolves from 1 to 0 and Gcnp
vice versa. Once the gate network converges to the optimal state, the reverse transition is disal-
lowed by WTA. This is self-reinforcing because a better expert is trained more rapidly and thus
is more heavily weighted by the gate network. The CNPs expert performance in training always
exceeds GPs expert at some point, as shown in Figure 3(a), and discussed in Section 3.4. Figure
5 compares the proposed gate network with baseline to demonstrate its effectiveness. We defined
baselines by replacing the proposed gate network with a binary value gate network based on the
Gumbel-Softmax estimator Jang et al. (2017); Maddison et al. (2017), originally developed to gen-
erate approximated and differentiable samples for categorical latent variables in a stochastic com-
putational graph. It is often used for gate networks to push their outputs to the boundaries of their
ranges Li et al. (2018). Given a probability distribution over k categories with trainable parame-
ters κ1, κ2, ..., κK , the Gumber-Softmax estimator generates an approximate one-hot sample y with
yi = exp((log κi+qi)/τ)∑k

j=1 exp((log κi+qi)/τ)
, for i = 1, ..., k, where τ is the temperature and qi is independently

sampled from the Gumbel distribution, qi = − log(− logUi), Ui ∼ Uniform (0,1). For baseline
convergence, we trained the Gumbel-softmax estimator to push output values towards 0 or 1. How-
ever, Ggp ≈ 0.5 in early training as shown in Figure 5, hence the untrained CNPs expert affects the
final predictive distribution, which renders poor results initially compared to using GPs alone. In
our problem, GPs expert kernel function type does not affect the final trained model, and the CNPs
expert is optimal and eventually achieved. To show that ATNPs converge to the CNPs expert regard-
less of GPs kernel type, we trained the ATNPs with commonly used kernel functions Rasmussen &
Williams (2006) in Table 4 in the appendix. Hyperparameters for all kernel types were trainable ex-
cept the exponent parameter for the polynomial kernel. Figure 5 shows that all the models converge
to the NPs expert, hence optimality was achieved.

Model-agnostic : The ATNPs is general and model-agnostic in the sense that it is compatible with
any probabilistic model with mean and covariance, and it does not place constraints on the DNN ar-
chitecture. Therefore, the proposed method can leverage various GPs and advanced CNPs variants
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ATNPs

ANPs

CNPs

(a) MNIST

observation gtobservation gt

(b) CelebA

Figure 6: Qualitative results on both MNIST and
CelebA datasets. For each image, first and last
columns refer to context inputs and ground truths
respectively. Each row shows how the prediction
on full target pixels evolves against training itera-
tions.

Table 3: Average of L2 distance between estimated
means and ground truths for all of the pixels on test
images before the gate network is converged.

Dataset ATNP ANP CNP

MNIST 0.1849 0.1955 0.2171
CelebA 0.1320 0.1844 0.2143

for better performance. We demonstrate the proposed method equipped with various GPs expert
including SGPs Titsias (2009); Hensman et al. (2013) and CNPs expert. Table 2 shows L2 mean
and variance before gate network converge to optimal. All the proposed methods with various com-
binations outperform a family of CNPs because of the GPs expert. Among the combinations, GPs
and ANPs combination achieves the best performance because the SGPs approximate standard GPs
for efficient computation. In addition, as pointed out in Attentive NPs Kim et al. (2019), ANPs have
performance improved compared with CNPs by solving underfitting problem. Thus, performance
improvement for each expert leads to overall ATNPs performance improvement.

5.2 2-D FUNCTION REGRESSION TASK

We tested the proposed method on a large-scale image dataset. The ATNPs map a 2D pixel location
to its pixel intensity as a regression problem. The input xi was a pixel coordinates normalized to
[0, 1]2, and the output was a normalized pixel intensity yi ∈ R1 for grayscale and yi ∈ R3 for RGB.
We exploited ANPs as an expert and trained the ATNPs on two different datasets (MNIST LeCun
et al. (1998) and CelebA Liu et al. (2015)). The training procedure was the same for both datasets.
At each step, we selected a subset of the pixels as observations. Conditioned on context pixels, the
ATNPs was trained to predict the target pixels in the image. For MNIST dataset, we used the same
model architectures used for 1D function regression. Figure 6(a) shows the result of three different
models : CNPs, ANPs, and ATNPs. Each row refers to predictions of a test image against training
iterations (from left to right).

The ATNPs gave high intensities to pixels around areas representing a number, whereas other models
estimated uninformative intensities over all pixels in the early stage of training. As training iteration
increased, the ATNPs incrementally improved their performances. The performance differences
among models were visually more noticeable on CelebA dataset. The ATNPs predicted outlines of
the faces with blurred color, whereas other models generated unrecognizable predictions even at the
first iteration of training. For CelebA dataset, we modified GPs expert to predict multiple output
variables (RGB channel). Even though there are some approaches for multi-output GPs considering
correlation of multiple output variables Boyle & Frean (2005), in this paper, we simply modeled
each output variables as independent from the others and treated the separately. We also compared
ATNPs quantitatively to other models. The performance metric was pixel-wise mean squared errors
for all of the pixels 1

|Dtest|
∑
M∈Dtest

1
|M |

∑
j∈M (yj − ŷj) over training steps. As show in Table 3,

the ATNPs outperformed the others even though the ATNPs converges asymptotically to the ANPs.

6 CONCLUSION

This paper proposes an ATNP framework that quickly produces a plausible and suboptimal pre-
dictive distribution and then improves its optimality over all data regimes by ensembling GPs and
CNPs. To combine heterogeneous models effectively, we propose a novel aggregation method based
on a generalized product-of-exports and a WTA gate network, which guarantees that the transition
from GPs to CNPs occurs. The experimental results showed that the proposed method could return
predictions with accuracy comparable to GPs initially and converge to the optimal solution gener-
ated by CNPs as more computational resources and training data are allocated. Additionally, the
proposed method achieved comparable performance to meta-learning algorithms without a costly
meta-training process.
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