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Abstract

Large Language Models have become the001
de facto approach to sequence-to-sequence002
text generation tasks, but for specialized003
tasks/domains, a pretrained LLM lacks spe-004
cific capabilities to produce accurate or well-005
formatted responses. Supervised fine-tuning006
specializes a LLM by training it on dataset007
of example prompts with target responses, but008
real-world data tends to be noisy. While many009
fine-tuning algorithms exist, here we consider010
a data-centric AI perspective on LLM fine-011
tuning, studying how to systematically curate012
the training dataset to improve the LLM pro-013
duced via any fine-tuning algorithm.014

We introduce an automated data curation015
pipeline CLEAR (Confidence-based LLM016
Evaluation And Rectification) for instruction017
tuning datasets, that can be used with any LLM018
and fine-tuning procedure. CLEAR estimates019
which training data is low-quality and either020
filters or corrects it. Automatically identifying021
which data to filter or correct is done via LLM-022
derived confidence estimates, to ensure only023
confident modifications to the dataset. Unlike024
existing data curation techniques, CLEAR is a025
comprehensive framework that can improve a026
dataset (and trained model outputs) without ad-027
ditional fine-tuning computations. We don’t as-028
sume access to a stronger LLM than the model029
being fine-tuned (e.g. relying on GPT-4 when030
fine-tuning GPT-3.5), to see whether CLEAR031
can meaningfully improve the capabilities of032
any LLM. Experiments reveal that CLEAR033
consistently improves the performance of fine-034
tuned models across many datasets and models035
(like GPT-3.5 and Llama2).036

1 Introduction037

Large Language Models (LLMs) pretrained on038

internet-scale text corpora have shown remarkable039

capabilities in generating helpful human-like text040

(Brown et al., 2020; Touvron et al., 2023). How-041

ever, the efficacy of LLMs in specialized domains042

or tasks hinges on the process of instruction tuning 043

(i.e. supervised fine-tuning, or alignment), where 044

pretrained models are further trained using datasets 045

that well-represent the domain (Wei et al., 2022). 046

Here we consider sequence-to-sequence training 047

datasets of (prompt, target response) pairs. After 048

training, we feed the LLM new prompts from the 049

same domain and want it to produce responses that 050

resemble expected targets. 051

Since billion parameter LLMs indiscriminately 052

absorb patterns/information across a dataset, the 053

quality of the instruction tuning data is paramount 054

to effective fine-tuning (Zhou et al., 2023a; Xu 055

et al., 2023; Kong et al., 2023). Unfortunately, most 056

real-world instruction tuning datasets are noisy, 057

containing examples that are low-quality in var- 058

ious ways: the target response may be inaccu- 059

rate, poorly written, the prompt may be nonsen- 060

sical/incomplete/vague, or the two may be unre- 061

lated due to data processing mistakes. Such flawed 062

training data leads to fine-tuned models whose out- 063

puts are incorrect, irrelevant, biased, poorly format- 064

ted, or flawed in other ways. Finding and fixing 065

low-quality data manually is challenging in large 066

datasets. 067

While most machine learning research iterates 068

over modeling strategies (architectures, loss func- 069

tions, training algorithms, ...) for a fixed dataset 070

to produce better results, the emerging science of 071

data-centric AI asks how we can systematically 072

iterate on the dataset while holding the modeling 073

strategy fixed to produce better results (Mazumder 074

et al., 2022). Success in real-world AI projects 075

typically requires both approaches. Since many 076

existing fine-tuning algorithms have been proposed 077

(Zhang et al., 2023), we follow the spirit of data- 078

centric AI and propose CLEAR, a comprehensive 079

and automated data curation pipeline to enhance 080

the effectiveness of instruction tuning datasets for 081

any LLM and fine-tuning algorithm. 082

Our CLEAR pipeline involves two stages: Auto- 083
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Filter and Auto-Correct which together offer a084

holistic solution to improving data quality for fine-085

tuning. The Auto-Filter stage removes data that086

is confidently low-quality from the dataset with-087

out any LLM fine-tuning. It is already able to sig-088

nificantly improve the dataset, such that we can089

produce better fine-tuned LLMs without any extra090

LLM fine-tuning computation. For settings where091

one is able to fine-tune the LLM more than once,092

the Auto-Correct stage uses the current fine-tuned093

LLM to revise certain examples that can be confi-094

dently improved. Fine-tuning the LLM again on095

this corrected dataset yields improved performance.096

Algorithmic modifications to a dataset are gener-097

ally harmful unless done with extreme care. Filter-098

ing too much data limits the number of examples to099

learn from, and editing data can introduce various100

biases or amplify flaws in existing model outputs.101

Thus, all data modifications in CLEAR are conser-102

vatively applied based on careful measures of con-103

fidence. Specifically, we rely on BSDetector (Chen104

and Mueller, 2023), a method that can be used with105

any LLM to obtain trustworthy confidence scores106

for its own outputs as well as estimating the con-107

fidence that given outputs (e.g. target responses)108

are good. CLEAR only filters data that is confi-109

dently identified as low-quality, and only revises110

data where the LLM-corrected response is confi-111

dently identified as better than the current dataset112

response. Our experiments reveal this careful treat-113

ment of confidence to be vital for developing a114

universal data filtering + correction solution that115

remains effective across diverse instruction-tuning116

datasets without any manual modifications.117

2 Related Work118

2.1 Data Curation for ML119

Data curation has been key in real-world de-120

ployment of classical supervised learning, with a121

broad spectrum of methods developed to address122

dataset mislabeling, outliers, and other data issues123

(Mazumder et al., 2022). Algorithmic strategies124

such as noise estimation and removal (Northcutt125

et al., 2021; Zhou et al., 2023b; Wang et al., 2022),126

active learning for data prioritization (Settles, 2009;127

Chen et al., 2021), and crowd-sourced labeling128

(Snow et al., 2008) have demonstrated how to129

produce better models by producing better data.130

These strategies were designed for classical ma-131

chine learning tasks like classification/regression,132

where datasets are less complex than in instruction133

tuning. 134

2.2 Instruction Fine-tuning 135

Significant research has been conducted into in- 136

struction tuning to specialize/improve LLMs (Ku- 137

mar et al., 2016; Raffel et al., 2020; Efrat and Levy, 138

2020; Li and Liang, 2021; Chen et al., 2022a; Wei 139

et al., 2022; Wang et al., 2023a). FLAN (Wei et al., 140

2022) is a popular approach that employs a 137 bil- 141

lion parameter pre-trained language model, which 142

is fine-tuned using instructions on more than 60 143

NLP datasets verbalized in natural language in- 144

struction templates. Wang et al. (2023a) showed 145

how various instruction-tuning datasets can induce 146

specific skills in a model, though no single dataset 147

(or their combination) provides optimal perfor- 148

mance across all assessments. Contrary to previ- 149

ous efforts aimed at creating a general Foundation 150

model capable of generalizing across a wide range 151

of unseen tasks, our aim in this paper is to train the 152

best possible LLM for a specific narrow task. 153

2.3 Data Curation for Instruction Fine-tuning 154

The quality of training data in text generation has 155

such significance that previous instruction tuning 156

datasets were often curated by hand (Khashabi 157

et al., 2020; Ye et al., 2021; Wei et al., 2022; Wang 158

et al., 2023b; Chen et al., 2022b; Honovich et al., 159

2023). Wang et al. (2023b) introduced automated 160

techniques by using GPT-3 (Brown et al., 2020) 161

to produce 52,000 unique instructions not directly 162

linked to specific tasks. This innovation opened 163

new avenues for creating instruction datasets by 164

extracting knowledge from teacher models. 165

Following Meta’s open-sourcing of the LLaMa 166

prerained LLM (Touvron et al., 2023), many re- 167

searchers began curating instruction tuning datasets 168

to train useful variants of this LLM. Alpaca (Taori 169

et al., 2023) introduces a self-instruct method to 170

autonomously create instruction (prompt) exam- 171

ples, thereby reducing reliance on manual input. 172

Vicuna (Chiang et al., 2023) capitalizes on the 173

wide variety of data types and structures acces- 174

sible via ShareGPT. WizardLM (Xu et al., 2023) 175

augments a dataset by refining and diversifying in- 176

structions to evolutionarily increase their complex- 177

ity/variability. UltraChat (Ding et al., 2023) intro- 178

duces different well-defined scopes, systematically 179

producing numerous instructions within each scope 180

to improve task-specific performance. LIMA (Xu 181

et al., 2023) selects a thousand high-quality data 182

samples strategically, showing notable improve- 183
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Figure 1: An overview of the CLEAR data curation procedure to automatically filter and correct bad data in any
instruction-tuning dataset composed of instructions/prompts Xi and corresponding target responses Yi.

ments in LLM performance. Li et al. (2023a) pro-184

posed an instruction-following metric to identify185

good examples in datasets.186

Much existing LLM fine-tuning research has fo-187

cused on distilling teacher models such as ChatGPT188

that are more powerful than the LLM being fine-189

tuned (Taori et al., 2023; Chiang et al., 2023). Many190

existing LLM-based data curation techniques also191

utilize more powerful LLMs for the data curation192

process than the LLM being fine-tuned. In con-193

trast, we aim to produce the best LLMs for specific194

tasks, in which even the most advanced LLMs like195

GPT-4 struggle to perform. Thus all data curation196

throughout this paper is performed using the same197

LLM as is being fine-tuned, to truly assess how ef-198

fectively this data curation is able to boost LLM199

performance beyond the frontier.200

3 Automated Data Curation with CLEAR201

An instruction tuning dataset I = {(xi, yi)ni=1}202

comes with instructions/prompts x and correspond-203

ing target responses y obtained from a specific do-204

main. The goal is to fine-tune the LLM to improve205

its comprehension and execution of instructions,206

such that it can produce responses similar to the ex-207

pected targets for new instructions encountered dur-208

ing model deployment. In practice, large instruc-209

tion tuning datasets are noisy, containing issues 210

like: poorly written responses, incorrect responses, 211

irrelevant/unhelpful responses, vague/incomplete 212

instructions, data formatting problems, etc. These 213

datasets are often sourced from messy chat logs 214

or written by teams of humans that make mistakes 215

rushing to produce data at scale. 216

As sequence-to-sequence mappings are ex- 217

tremely high-dimensional, a model’s learning can 218

be easily degraded by flawed training data lurking 219

in some regions of this high-dimensional space. 220

To develop an approach that can be used with any 221

LLM model and any fine-tuning procedure, we 222

consider simple dataset modifications rather than 223

model-centric approaches that modify the training 224

algorithm to be more robust. Our dataset modifica- 225

tions will benefit the next decade’s LLMs, whereas 226

training modifications tend to be model-specific. 227

Our proposed data curation pipeline involves 228

two main steps: Auto-Filter and Auto-Correct, 229

which aim to detect problematic (prompt, response) 230

pairs in the data and rectify them if possible. Auto- 231

Filter employs a confidence-based response quality 232

evaluator (Chen and Mueller, 2023), to estimate 233

our confidence that each pair in the dataset is good. 234

Subsequently, the LLM is fine-tuned only on the 235

high confidence data. This simple data filtering step 236

already boosts LLM fine-tuning for noisy datasets, 237
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and requires no extra fine-tuning compute costs.238

Data filtering discards information, some of239

which may be useful. We propose to use the result-240

ing fine-tuned LLM to correct certain bad responses241

identified in the original dataset, for which the fine-242

tuned LLM is able to produce a high-confidence al-243

ternative answer. This is determined by comparing244

the response generated by the fine-tuned LLM with245

the original response in the dataset. Rather than246

discarding such an example from the dataset in the247

previous filtering stage, we preserve the prompt and248

replace the target response with the fine-tuned LLM249

response in cases where the latter is confidently pre-250

ferrable. After auto-correcting the dataset in this251

manner, the LLM can be fine-tuned again to pro-252

duce an even better version of the model (without253

any change in the fine-tuning algorithm). This cy-254

cle of LLM fine-tuning and data refinement can be255

iterated in a virtuous cycle (see Figure 1).256

3.1 Auto-Filter257

To estimate the quality of responses in the original258

dataset, CLEAR diverges from the conventional259

method of asking capable LLMs like ChatGPT to260

directly rate the input-output pair according to var-261

ious criteria (e.g. helpfulness as shown in Table262

5). We instead employ LLM-derived confidence-263

estimates, specifically the BSDetector estimate in-264

troduced by Chen and Mueller (2023). This es-265

timates the confidence that a response is good in266

terms of two factors: observed consistency and267

self-reflection certainty.268

BSDetector uses our same LLM to generate mul-269

tiple candidate responses to a given prompt (via270

diversity-increasing techniques like temperature271

sampling and chain-of-thought), and then evaluates272

the semantic alignment between these candidate re-273

sponses and the target response in the dataset (via274

natural language inference). Beyond this observed275

consistency, BSDetector additionally integrates di-276

rect LLM self-evaluations of the target response277

(directly prompting the LLM to report its confi-278

dence that the response is good). The resulting279

confidence estimates account for both aleatoric and280

epistemic uncertainty, without requiring any modi-281

fication/training of the LLM (no access to the LLM282

parameters is even required, enabling this approach283

to be used with arbitrary LLM APIs). Subsequent284

experiments reveal that this confidence-based ap-285

proach to detect low-quality data is more precise286

than conventional LLM scoring of response quality287

(see Figure 2). 288

Given an instruction fine-tuning dataset of input- 289

output pairs {(xi, yi)ni=1}, we use BSDetector with 290

the base pretrained LLM (before it is fine-tuned) to 291

estimate a confidence score ci for each pair (xi, yi). 292

We then filter out data pairs with low confidence 293

scores below a predefined threshold γ: 294

F = {(xi, yi)|ci > γ}. 295

Subsequently, we fine-tune the LLM on the remain- 296

ing training data F . 297

3.2 Auto-Correct 298

Thus far, we considered filtering data estimated to 299

be low-quality, but what if some of this data can be 300

automatically rectified? A direct approach would 301

be to substitute low-quality responses with LLM 302

generated responses. For specialized domains, a 303

pretrained general-purpose LLM like GPT-4 may 304

be unable to generate better responses for us to con- 305

sider. But the LLM we fine-tuned after the Auto- 306

Filter stage is specialized to our domain and should 307

be able to generate some reasonable responses. If 308

the auto-filtering was done well, then this fine- 309

tuned LLM will exhibit less flaws being trained 310

on less flawed data. 311

In the Auto-Correct stage, we proceed to gener- 312

ate responses {(xi, y′i)ni=1} through queries to this 313

fine-tuned model for each prompt xi in our dataset. 314

What remains is to decide when the candidate re- 315

sponse y′i generated by our current fine-tuned LLM 316

is confidently better than the original dataset re- 317

sponse yi. For this, we directly ask our base Foun- 318

dation LLM (pre fine-tuning) via the LLM-as-judge 319

prompt in Table 1. As BSDetector is compatible 320

any LLM, we can obtain confidence estimates for 321

these LLM-as-judge preference predictions. For 322

examples where the confidence (as estimated by 323

BSDetector) that y′i is better than yi falls above a 324

threshold η: we replace their target response with 325

the LLM generated response and retain this pair in 326

our curated dataset (rather than filtering it). This 327

auto-corrected dataset is then used for further LLM 328

fine-tuning, to yield a further improved model. 329

4 Experiments 330

Datasets. We evaluate the effectiveness of our 331

data curation process across noisy versions of three 332

supervised fine-tuning (text generation) datasets 333

(see Figures 3,4,5). SQuAD-N (Rajpurkar et al., 334

2016): prompts are articles and target responses 335
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Who invented the 
airplane?

The airplane was invented by 
Santos Dumont, a Brazilian 

inventor. He flew for the first time 
in France, in the year of 1906.

Prompt Wrong Response Confidence Based 
Evaluator (0-1)

Score Based 
Evaluator (1-5)

0.00075

4.0

Answer Quality 
Evaluator

Who invented the 
airplane?

The airplane was invented by the 
Wright brothers, Orville and 

Wilbur Wright, in 1903.

Prompt Correct Response Confidence Based 
Evaluator (0-1)

Score Based 
Evaluator (1-5)

0.93957

4.0

Figure 2: Comparing confidence vs. score based answer quality evaluators. The confidence-based (BSDetector)
evaluator outputs a confidence value between 0 to 1. The direct LLM-scoring evaluator queries GPT-3.5-Turbo
using a prompt (shown in Table 5) that requests a score between 1 to 5 to rate response quality. Higher values from
either evaluator suggest higher-quality answers. For the incorrect response in the original dataset from the top figure:
the confidence-based evaluator estimates low quality, while the score-based evaluator assigns a score of 4.0. For
the correct answer to this prompt (bottom figure): the confidence-based evaluator estimates high quality, while the
score-based evaluator still assigns a score of 4.0. Direct LLM score-based evaluation less reliably distinguishes
between right vs. wrong responses.

Please review two answers carefully and select the one that you believe is superior. Consider factors such as
accuracy, completeness, relevance to the question.

Question: [. . . ]

You are provided with two responses to the same question:

[The Start of Answer A]: [. . . ] [The End of Answer A]

[The Start of Answer B]: [. . . ] [The End of Answer B]

Please provide a brief reasoning you used to derive it. After providing your explanation, output your final verdict
by strictly following this format: “[[A]]” if Answer A is better, “[[B]]” if Answer B is better, and “[[C]]” for
a tie.

Table 1: Prompt (Zheng et al., 2023) used to determine the preferable choice among y and y′.

are answers to questions created by crowdworkers336

based on a collection of Wikipedia articles, with337

each answer being a specific text fragment or span338

from the related article. Emails-N 1: prompts are339

emails and target responses include categorizing340

the email into one of seven predefined themes by341

examining the email’s subject and body content342

and also vary based on the email’s length (whether343

the email content is short, medium, or long affects344

how the response is written). DROP-N (Dua et al.,345

2019): prompts are articles and target responses346

are answers to reading comprehension questions347

1https://huggingface.co/datasets/neelblabla/
enron_labeled_emails_with_subjects-llama2-7b_
finetuning

that require discrete reasoning over paragraphs (cor- 348

rectly answering requires resolving references in a 349

question, perhaps to multiple places in the article, 350

and performing basic operations over the references 351

like addition, counting, or sorting). 352

To study how our approach handles noisy data, 353

we perturbed 20% of each training dataset (not the 354

corresponding test set). For the Emails dataset, 355

the perturbation was to randomly swap target re- 356

sponses across different examples. To perturb a 357

subset of the SQuAD and DROP datasets, where 358

target responses are contained within a context pas- 359

sage in the provided instruction, we chose a random 360

sentence from the context as the target response. 361
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Training Data Model

SQuAD-N Email-N DROP-N

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

or Prompting (%) (%) (%) (%) (%) (%)

Pretrained
Model
(No Fine-
Tuning)

Zero-Shot

GPT-3.5 99.85 66.65 93.5 23.25 99.50 33.40

GPT-4.0 99.90 75.93 100.0 48.25 100 39.80

Llama-2 94.90 51.85 2.0 3.50 84.20 16.80

One-Shot

GPT-3.5 99.20 69.50 99.0 38.75 99.60 40.80

GPT-4.0 100.0 79.40 98.0 48.0 100.0 43.0

Llama-2 24.65 9.70 17.25 19.50 32.0 4.90

Three-Shot

GPT-3.5 87.60 61.20 95.75 47.0 98.50 41.80

GPT-4.0 99.94 80.08 100.0 49.75 99.0 46.10

Llama-2 13.10 2.55 1.75 5.75 20.60 4.60

Fine-
Tuning

Original Data Llama-2 92.45 49.86 99.30 50.67 99.30 44.70

Auto-Filter Data Llama-2 96.90 59.86 100.00 49.67 100.0 47.40

Auto-Correct Data Llama-2 96.90 71.44 99.67 52.33 100.0 50.50

Original Data GPT-3.5 97.90 64.50 100.0 43.0 100.0 56.80

Auto-Filter Data GPT-3.5 99.20 81.51 100.0 46.67 100.0 71.70

Auto-Correct Data GPT-3.5 100.0 81.90 100.0 56.33 100.0 73.0

Table 2: Test set performance achieved by various Large Language Models when employed in non fine-tuning
baselines or when fine-tuned. Both the model’s ability to generate correct results (accuracy) and properly-formatted
results (valid JSON %) are reported. We underline the best non fine-tuning results, and indicate the best fine-tuning
results in bold. Between each fine-tuning result, the training algorithm/code remains identical, only the underlying
data is curated differently.

Evaluation metrics. For each dataset, our LLM362

fine-tuning performance evaluation focuses on two363

metrics (computed over a fixed held out test set):364

how often the model’s response format adheres to365

a valid JSON structure and how often the model’s366

responses are correct. For each model produced via367

a fine-tuning method, we report the proportion of368

model responses that are in valid JSON format,369

and the accuracy of model responses (which is370

computed via the proportion of exact matches to371

target reference responses, since we expect a well-372

supervised model to able to match the types of373

target responses it was fine-tuned on).374

Baseline Methods. Our study also evaluates the375

following non fine-tuning methods: Zero-shot376

on GPT-3.5-turbo/GPT-4.0/Llama-2-7b-chat is di-377

rectly querying these pretrained Foundation mod-378

els. Few-shot on GPT-3.5-turbo/GPT-4.0/Llama-2-379

7b-chat is directly querying these pretrained Foun-380

dation models using in-context learning (with the381

indicated number of examples from the dataset in-382

serted into each prompt as few-shot context). For383

the fine-tuning methods, we employ full model fine- 384

tuning on Llama-2-7b-chat and OpenAI’s GPT-3.5 385

Turbo fine-tuning API. Fine-tuning on the noisy 386

data refers to fine-tuning the model on the original 387

datasets without any data curation. Auto-Filter 388

refers to fine-tuning the model on a curated ver- 389

sions of the dataset, where data with low confidence 390

levels have been eliminated as described in Sec. 3.1. 391

This procedure sets the median confidence value 392

across the dataset as the threshold γ, filtering out 393

any data below this threshold. Auto-Correct refers 394

to fine-tuning the model on curated versions of the 395

dataset, where certain data has corrected responses 396

generated as described in Sec. 3.2 (we set η = 0.8). 397

The fine-tuning routine stays the same when eval- 398

uating different data curation strategies – we only 399

alter the training dataset, not the model/ algorithm. 400

Other Details. We study the effectiveness of data 401

curation strategies across two different fine-tuning 402

methods. On the Llama-2-7b-chat model, we con- 403

duct full model fine-tuning, in which all param- 404

eters of the neural network are updated via the 405
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Response from 
original dataset

Response from
Fine-tuned LLM

Confidence

Context: 1st Squadron, 10th Cavalry  with 
the 4th Infantry Division participated in 
Exercise Reforger in 1977, 1978, 1981, 

1985, 1987, and 1991….
Question: How many years did the 1st 

Squadron, 10th Cavalry with the 4th 
Division participate in Exercise Reforger??

6

0.91

Keep this example

Context:  ...  4,759 African American, 
426 (0.6%) Native American, 381 

(0.5%) Pacific Islander …
Question: How many more African 

American people were there 
compared to Native Americans and 

Pacific Islanders combined? 

4333

30

0.03 0.21

Auto-Filter this example

Context: San Francisco … Although 
the Cowboys outgained the 49ers in 

total offensive yards (451–294)…
Question: How many more total 
offensive yards did the Cowboys 

make than the 49ers?

157

451

0.41 0.82

Auto-Correct this example

Instruction

Action

Figure 3: Three examples from the DROP-N dataset. The first example (left) is retained in the dataset because the
original response has high BSDetector-estimated confidence (0.91). The second example (middle) has an original
response that is estimated to be low confidence (0.41), and the candidate alternative response generated from
our fine-tuned LLM is better than the original response with confidence 0.82. Since this exceeds our confidence
threshold η = 0.8, we replace the target response for this second example with the LLM-generated candidate
response in our curated dataset. The third example (right) has an original response that is estimated to be low
confidence (0.03), but we also estimate low confidence (0.21) that the candidate response from our fine-tuned LLM
is better. This third example is thus entirely removed from our curated dataset.

Adam optimizer. We set the batch size at 128,406

and train for 3 epochs, using a learning rate of407

1×10−5 with an accompanying cosine learning rate408

schedule. For the GPT-3.5 Turbo model, we use409

OpenAI’s fine-tuning API. The exact training al-410

gorithm/hyperparameters used remain undisclosed411

to us, but this API has been observed to be highly412

effective for LLM fine-tuning. When evaluating413

outputs from our models at test time, we perform414

all text generation with temperature 0, and limit the415

maximum number of output tokens to 512.416

5 Results417

Table 2 presents the results of our main experi-418

ments. Amongst the non fine-tuning approaches,419

GPT-4 stands out as the superior LLM, demonstrat-420

ing the strongest performance across three datasets.421

For the pretrained GPT-4 model, few-shot learning422

outperforms zero-shot learning. But for the pre-423

trained Llama-7B-chat model, few-shot learning424

produces much worse results compared to zero-425

shot learning, attributed to the smaller model’s426

heightened sensitivity to the selection of few-shot427

demonstrations (Chen et al., 2023; Wang et al.,428

2024).429

For the fine-tuned models, we observe that train-430

ing on the entire noisy dataset without curation 431

can even degrade model performance. Fine-tuning 432

with only half of the data, refined through auto- 433

matic filtering, yields better results than utilizing 434

the complete, uncurated dataset. Moreover, train- 435

ing data curated via our Auto-Correct strategy fur- 436

ther enhances model performance. Figures 3,4,5 437

depict for each dataset: a wrong response automat- 438

ically identified in the Auto-Filter stage that was 439

subsequently corrected in the Auto-Correct stage. 440

Our fine-tuned models can outperform even 441

the most advanced model, GPT-4 with three-shot 442

prompting. This highlights how even the most pow- 443

erful LLMs may lack the capability to adequately 444

address specific domain challenges. Unlike some 445

other fine-tuning research, GPT-4 was not involved 446

in any part of the data curation or training process 447

underpinning our fine-tuned LLMs here. 448

5.1 Estimating Response Quality in 449

Auto-Filter 450

We compare using a confidence-based response 451

quality evaluator in our Auto-Filter procedure vs. 452

an evaluator based on direct LLM scoring. The lat- 453

ter directly prompts the LLM (say GPT-3.5-turbo) 454

to score a given input-output pair (Li et al., 2023b) 455
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Evaluator

SQuAD-N Email-N DROP-N

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

(%) (%) (%) (%) (%) (%)

Random 97.50 62.90 100.0 43.0 100.0 65.20

Score-based Evaluator 99.50 78.40 100.0 39.67 100.0 73.00

Confidence-based Evaluator 99.20 81.51 100.0 46.67 100.0 71.70

Table 3: Comparing different variants of the Auto-Filtering procedure. We try filtering the bottom 50% of the data
according to 3 different approaches: random scoring, score-based evaluator (Li et al., 2023b), and confidence-based
evaluator. For each of the three resulting filtered dataset versions, we fine-tune the GPT-3.5 Turbo model and report
its resulting performance. This experiment is repeated across SQuAD-N, Email-N, and DROP-N datasets.

Model used to generate the
candidate response

SQuAD-N Email-N DROP-N

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

(%) (%) (%) (%) (%) (%)

GPT-3.5 Turbo 99.20 77.80 100.0 6.0 100.0 63.00

Fine-tuned LLM 100.0 81.90 100.0 56.33 100.0 73.0

Table 4: Comparing variants of the Auto-Correct procedure. We fine-tune a GPT-3.5 Turbo model on two datasets
curated via Auto-Correct applied with candidate responses y′ generated from either: the pretrained GPT-3.5 Turbo
base Foundation model, or the fine-tuned version of this LLM trained on our Auto-Filtered dataset. GPT-3.5 Turbo
is also used as the model to estimate when candidate responses y′ are better than the original dataset responses y.

using a Likert scale rating from 1 to 5. Table 5456

depicts the prompt used for this score based quality457

evaluation. After scoring the quality of each (in-458

struction, response) pair in the dataset, we discard459

the 50% with the lowest scores. Subsequently, we460

fine-tune the model on the remaining data.461

Table 3 presents results comparing this score-462

based approach against our confidence-based ap-463

proach from Sec. 3.1. We additionally consider re-464

sults based on fine-tuning the LLM on a randomly465

selected 50% of the data. Across all datasets, our466

confidence-based evaluator either matches or ex-467

ceeds the performance of the score-based evaluator468

and random data selection, obtaining significantly469

better performance in the Email-N dataset.470

5.2 Using the LLM in Auto-Correct471

Here we consider a variant of our Auto-Correct472

stage, where we generate alternative candidate473

responses from the base pretrained Foundation474

model, instead of from our subsequently fine-tuned475

version of this LLM. Specifically we consider GPT-476

3.5 Turbo to generate candidate responses y′ which477

are then fed into the same Auto-Correct procedure478

described in Sec. 3.2. Table 4 reveals that using the479

fine-tuned version of this LLM to generate candi-480

date responses performs better across all datasets. 481

6 Conclusion 482

This paper presents a general pipeline for curat- 483

ing better versions of an existing instruction fine- 484

tuning dataset. Our data-centric CLEAR approach 485

can be combined with any model and fine-tuning 486

algorithm. While better models and fine-tuning 487

algorithms will inevitably be invented, data-centric 488

approaches like ours can remain useful. As fu- 489

ture LLMs advance, their ability to curate the data 490

via CLEAR will advance, facilitating even better 491

LLMs to be trained on this better curated data. 492

Experiments demonstrated that our data cura- 493

tion process produces substantial improvements in 494

the performance of fine-tuned LLMs across differ- 495

ent noisy datasets, models, and training algorithms 496

(without being tailored to each setting). While our 497

approach fixes issues in an existing dataset, aug- 498

menting this data with additional synthetic exam- 499

ples is another data-centric approach that appears 500

promising to combine with CLEAR. 501

Limitations 502

While our automated data curation pipeline 503

presents a significant advancement in enhancing the 504

8



quality of instruction tuning datasets for large lan-505

guage models (LLMs), it is important to acknowl-506

edge its limitations. The pipeline’s current frame-507

work does not explicitly account for the possibility508

of biases within the original dataset or those intro-509

duced during the automated curation process. Since510

the model’s performance and the quality of its out-511

put are contingent upon the data it was trained on,512

any inherent biases could be perpetuated or am-513

plified through successive iterations of fine-tuning514

and correction.515
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A Prompt for Score-based Answer Quality Evaluator741

Below is an instruction from an user and a candidate answer. Evaluate whether or not the
answer is a good example of how AI Assistant should respond to the user’s instruction. Please
assign a score using the following 5-point scale: 1: It means the answer is incomplete, vague,
off-topic, controversial, or not exactly what the user asked for. For example, some content
seems missing, numbered list does not start from the beginning, the opening sentence repeats
user’s question. Or the response is from another person’s perspective with their personal
experience (e.g. taken from blog posts), or looks like an answer from a forum. Or it contains
promotional text, navigation text, or other irrelevant information. 2: It means the answer
addresses most of the asks from the user. It does not directly address the user’s question. For
example, it only provides a high-level methodology instead of the exact solution to user’s
question. 3: It means the answer is helpful but not written by an AI Assistant. It addresses
all the basic asks from the user. It is complete and self contained with the drawback that the
response is not written from an AI assistant’s perspective, but from other people’s perspective.
The content looks like an excerpt from a blog post, web page, or web search results. For
example, it contains personal experience or opinion, mentions comments section, or share on
social media, etc. 4: It means the answer is written from an AI assistant’s perspective with a
clear focus of addressing the instruction. It provide a complete, clear, and comprehensive
response to user’s question or instruction without missing or irrelevant information. It is well
organized, self-contained, and written in a helpful tone. It has minor room for improvement,
e.g. more concise and focused. 5: It means it is a perfect answer from an AI Assistant. It
has a clear focus on being a helpful AI Assistant, where the response looks like intentionally
written to address the user’s question or instruction without any irrelevant sentences. The
answer provides high quality content, demonstrating expert knowledge in the area, is very
well written, logical, easy-to-follow, engaging and insightful. Please first provide a brief
reasoning you used to derive the rating score, and then write "Score: " in the last line.

Input: []

Response: []

Table 5: Prompt that Li et al. (2023b) use to have a LLM to directly score instruction-response pairs.
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Response from 
original dataset

Response from
Fine-tuned LLM

Confidence

Context: … Participation in public rites 
showed a personal commitment to their 

community and its values.
Question: What did participation in 
public religious rites show about the 

individual?

commitment

0.92

Keep this example

Context:  ... because the US 
government determined that China 

was likely to violate their human 
rights.…

Question: Why weren't the Ugyhurs 
deported back to China? 

US domestic 
law prohibited

four Uyghurs who …,were 
transferred to Bermuda.

0.31 0.42

Auto-Filter this example

Context: … For the duration of the 
Jagiellonian Dynasty, only members 

of that royal family…
Question: What dynasty was in reign 

during the election of 1492?

Jagiellonian 
Dynasty

wolna elekcja

0.29 0.91

Auto-Correct this example

Instruction

Action

Figure 4: Three examples from the SQuAD-N dataset. The first example (left) is retained in the dataset because the
original response has high BSDetector-estimated confidence (0.92). The second example (middle) has an original
response that is estimated to be low confidence (0.29), and the candidate alternative response generated from
our fine-tuned LLM is better than the original response with confidence 0.91. Since this exceeds our confidence
threshold η = 0.8, we replace the target response for this second example with the LLM-generated candidate
response in our curated dataset. The third example (right) has an original response that is estimated to be low
confidence (0.31), but we also estimate low confidence (0.42) that the candidate response from our fine-tuned LLM
is better. This third example is thus entirely removed from our curated dataset.

Response from 
original dataset

Response from
Fine-tuned LLM

Confidence

Context: 1Re: Fellow referred to me by 
Ken Lay Steve: Based on the note from 
Rosalee and if you agree I'm going to 

assign low priority….
Question: What should this email be 

categorized as?

This long length email categorized under 
Company Business, Strategy, etc.

0.89

Keep this example

Context:  ... I also need to know the 
base salaries of Jay Reitmeyer and 

Monique Sanchez. They are doing the 
same job as Matt.…

Question: What should this email be 
categorized as?? 

Short …  Company 
Business, Strategy,

medium … Document 
editing/checking

0.23 0.51

Auto-Filter this example

Context: Richard Following our 
coversation of yesterday I set out for 

you below the following: 1. An 
explanation (in draft)

Question: What should this email be 
categorized as? 

… long … Company 
Business, Strategy

Empty message

0.42 0.84

Auto-Correct this example

Instruction

Action

Figure 5: Three examples from the Email-N dataset. The first example (left) is retained in the dataset because the
original response has high BSDetector-estimated confidence (0.89). The second example (middle) has an original
response that is estimated to be low confidence (0.42), and the candidate alternative response generated from
our fine-tuned LLM is better than the original response with confidence 0.84. Since this exceeds our confidence
threshold η = 0.8, we replace the target response for this second example with the LLM-generated candidate
response in our curated dataset. The third example (right) has an original response that is estimated to be low
confidence (0.23), but we also estimate low confidence (0.51) that the candidate response from our fine-tuned LLM
is better. This third example is thus entirely removed from our curated dataset.
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