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ABSTRACT

Real-world datasets often combine data collected under different experimental
conditions. This yields larger datasets, but also introduces spurious correlations
that make it difficult to model the phenomena of interest. We address this by learn-
ing two embeddings to independently represent the phenomena of interest and the
spurious correlations. The embedding representing the phenomena of interest is
correlated with the target variable y, and is invariant to the environment variable
e. In contrast, the embedding representing the spurious correlations is correlated
with e. The invariance to e is difficult to achieve on real-world datasets. Our
primary contribution is an algorithm called Supervised Contrastive Block Disen-
tanglement (SCBD) that effectively enforces this invariance. It is based purely
on Supervised Contrastive Learning, and applies to real-world data better than
existing approaches. We empirically validate SCBD on the real-world problem
of batch correction. Using a dataset of 26 million Optical Pooled Screening im-
ages, we learn embeddings for 5,050 genetic perturbations that are nearly free of
technical artifacts that arise from unintended variation across wells.1

1 INTRODUCTION

Real-world machine learning (ML) datasets often combine data collected under different experi-
mental conditions, such as medical images or stained histopathology sections collected at different
hospitals (Bándi et al., 2019; McKinney et al., 2020). This practice yields larger datasets, but the
different experimental conditions alter the images’ appearance, and induce spurious correlations
that make it difficult to model the phenomena of interest. While human perception is relatively ro-
bust (Makino et al., 2022b), ML models tend to rely on hospital-specific spurious correlations, and
fail to generalize out-of-distribution to unseen hospitals (Koh et al., 2021).

Similar spurious correlations are a long-standing problem in experimental biology (Chandrasekaran
et al., 2024), where they are called batch effects (Leek et al., 2010). They can arise between exper-
iments conducted in different labs, within the same lab, and even within a single large parallelized
experiment. Removing batch effects by batch correction is an active research direction (Arevalo
et al., 2024).

In some cases, we can manually remove the spurious correlations by using our prior knowledge.
For example, color-based data augmentation can remove the staining variation in histopathology
images (Nguyen et al., 2023). Similarly, in experimental biology, there are post-processing meth-
ods that remove specific known batch effects (Carpenter et al., 2006). However, such approaches
have two significant limitations. First, they require manual post-hoc quality checks to ensure the
post-processing did not remove desirable information. Second, some spurious correlations may
be unknown, and therefore remain uncorrected. This motivates the development of automated ap-
proaches that maximize the removal of the spurious correlations, while minimizing the impact on
the phenomena of interest.

∗Work done during an internship at Genentech.
1The code is provided at https://github.com/Genentech/SCBD
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Figure 1: Spurious correlations emerge when collecting medical images from different hospitals, or
conducting single-cell perturbation screens across multiple wells. zs models these spurious correla-
tions, while zc models the environment-invariant correlations.

To address these issues, we propose to learn two embeddings, one encoding the phenomena of inter-
est, and the other encoding the spurious correlations. We break symmetry between the embeddings
using the target variable y and the environment variable e. Let x ∈ RDx be the observation, such as
a histopathology image, and let y ∈ Z≥0 represent the phenomenon of interest, such as the presence
of disease. Additionally, let e ∈ Z≥0 represent the experimental conditions, such as the hospital
that processed the image. From these observed variables, we learn two embeddings zc ∈ RDzc and
zs ∈ RDzs , where zc represents the variation of x induced by y, and zs represents the variation of x
induced by e. As we discuss in Section 2, we can also let zs represent the variation of x induced by
both y and e. Our goal is to block disentangle zc and zs so that they independently represent distinct
information.

The promise of estimating zc such that it captures the variation of x due to y while remaining invari-
ant to e is significant for many downstream applications. However, existing methods for this task
require additional regularization and hyperparameter tuning to ensure that zc remains invariant to e.
Optimizing such hyperparameters in the presence of distribution shifts has proven to be challenging
in practice (Gulrajani & Lopez-Paz, 2021). While a few existing approaches have shown success in
simplified settings (Peters et al., 2016; Ganin et al., 2016; Louizos et al., 2016; Lopez et al., 2018;
Arjovsky et al., 2019; Lu et al., 2021; Kong et al., 2022), most methods tested on real-world data
have not outperformed simple baselines (Gulrajani & Lopez-Paz, 2021). Consequently, the problem
of learning block-disentangled representations remains largely unsolved.

Our primary contribution is an algorithm called Supervised Contrastive Block Disentanglement
(SCBD). We claim that SCBD achieves the desired invariance to e with minimal and interpretable
hyperparameter tuning. Unlike prior work on block disentanglement that use variational or adver-
sarial objectives, our algorithm is based purely on Supervised Contrastive Learning (SCL) (Khosla
et al., 2020). Following the authors’ notation, we learn two encoder networks Encc(·) and Encs(·)
that map x to the intermediate representations given by

rc := Encc(x) ∈ RDrc , rs := Encs(x) ∈ RDrs .

We additionally learn two projection networks Projc(·) and Projs(·) that map the intermediate
representations to the lower-dimensional embeddings given by

zc := Projc(rc) ∈ RDzc , zs := Projs(rs) ∈ RDzs ,

which are normalized to the unit hypersphere. In Khosla et al. (2020), it was shown that some
prediction tasks benefit from using the intermediate representations, rather than the embeddings. Fi-
nally, we learn a decoder Dec(zc, zs) that reconstructs x from zc and zs. The optimization objective
consists of four terms, and is given by

minLsup
zc,y + Lsup

zs,e + αLinv
zc,e − log p(x | Dec(zc, zs)). (1)

The first term directly applies SCL to cluster zc with respect to y. Similarly, the second term directly
applies SCL to cluster zs with respect to e. The third term is our novel invariance loss, which is also
based on SCL, and ensures that zc is well-mixed with respect to e. In other words, our invariance
loss purges zc of the influence of e. The fourth term is an optional reconstruction loss. We describe
these terms in detail in Section 2. SCBD incorporates a single hyperparameter α ∈ R≥0 to adjust
the degree to which zc is invariant to e. When we increase α, we observe a monotonic improvement
on several downstream evaluation metrics that benefit from block disentanglement.

We empirically validate SCBD with two types of experiments. First, we use the synthetic Colored
MNIST (CMNIST) dataset where we have control over the ground-truth phenomena of interest
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and the spurious correlations, and qualitatively evaluate whether SCBD block disentangles them.
Second, we apply SCBD to the real-world problem of batch correction, where we use a dataset of
images of over 26 million individual cells (Funk et al., 2022). The cells are treated with 5,050
genetic perturbations which are labeled as y, and collected across 34 wells which are labeled as
e. We use SCBD to represent the effect of the perturbation with zc, and the variation across wells
with zs. We show that relative to strong baselines including CellProfiler (Carpenter et al., 2006),
SCBD provides estimates of zc that preserve more biological signal while being less sensitive to
batch effects.

In Appendix A.2, we also apply SCBD to domain generalization (Blanchard et al., 2011; Muandet
et al., 2013), where zc represents features whose correlation with y is invariant to e. We use SCBD
to generalize out-of-distribution on CMNIST, as well as on the real-world histopathology dataset
Camelyon17-WILDS (Koh et al., 2021). We demonstrate that SCBD enables precise control over
the trade-off between in-distribution and out-of-distribution generalization performance through ad-
justment of the hyperparameter α. Additionally, we show that on both datasets, SCBD achieves
better out-of-distribution performance relative to the conventional baselines in the literature.

2 SUPERVISED CONTRASTIVE BLOCK DISENTANGLEMENT

We now define the individual terms in the SCBD optimization objective in Equation 1. Our starting
point is a probabilistic interpretation of SCL that helps derive our novel invariance loss. Following
the notation from Khosla et al. (2020), let I be the set of indices of examples within a minibatch.
For each anchor point i ∈ I , we denote the set of the remaining examples as A(i) = I \{i}. In SCL,
anchor points are compared to other examples via their dot product. We define |A(i)| independent
Bernoulli random variables M j

i,c for j in {1, . . . , |A(i)|} to represent whether zic is matched with
zjc. The matching probability is defined as

P (M j
i,c = 1) =

exp(zic · zjc/τ)∑
a∈A(i) exp(z

i
c · zac/τ)

.

The softmax normalization over A(i) ensures that the matching probabilities are computed relative
to all other examples in A(i), even though each individual matching event M j

i,c is binary. A similar
definition holds for the random variable M j

i,s, which is defined with respect to zs.

The first term in Equation 1 is a direct application of SCL, and is given by

Lsup
zc,y = −

∑
i∈I

1

|Py(i)|
∑

p∈Py(i)

logP (Mp
i,c = 1),

where Py(i) = {j ∈ A(i) : yi = yj} are the positive pairs for the anchor point i with respect to
y. This represents the negative log joint probability of observing the positive pairs, normalized by
the number of positive pairs, and summed across all anchor points. Minimizing this loss clusters zc
with respect to y.

The second term in Equation 1 is also a direct application of SCL, and is given by

Lsup
zs,e = −

∑
i∈I

1

|Pe(i)|
∑

p∈Pe(i)

logP (Mp
i,s = 1),

where Pe(i) = {j ∈ A(i) : ei = ej} are the positive pairs for the anchor point i with respect to
e. Minimizing this loss clusters zs with respect to e. As we discuss in our experiments on domain
generalization in Appendix A.2, it can be useful to let zs represent the variation of x with respect to
the pair (y, e), rather than just e. We can do this by replacing Lsup

zs,e with

Lsup
zs,(y,e)

= −
∑
i∈I

1

|P(y,e)(i)|
∑

p∈P(y,e)(i)

logP (Mp
i,s = 1),

where P(y,e)(i) = {j ∈ A(i) : yi = yj , ei = ej} are the positive pairs for the anchor point i with
respect to the pairs of labels (y, e).
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The third term in Equation 1 is our novel invariance loss. We define Ne(i) = A(i) \ Pe(i) as the
negative pairs with respect to the label e. Since {Pe(i),Ne(i)} is a partition of A(i), we consider
the binary classification task of whether zic is more likely to be matched with its positive or negative
pairs with respect to e. One way to perform this classification is to predict that i is more likely to be
matched with Pe(i) if ∑

p∈Pe(i)

logP (Mp
i,c = 1) >

∑
n∈Ne(i)

logP (Mn
i,c = 1).

Since our goal is to make zc invariant to e, we optimize zc to make this classifier fail. We do this by
minimizing

Linv
zc,e =

∣∣∣∣∣∣
∑

p∈Pe(i)

logP (Mp
i,c = 1)−

∑
n∈Ne(i)

logP (Mn
i,c = 1)

∣∣∣∣∣∣,
which makes it equally probable that zic is matched with its positive and negative pairs with respect
to e. In other words, it disperses zic with respect to e. This is analogous to adversarial approaches
that train a discriminator to predict e, where the objective is to fool the discriminator (Ganin et al.,
2016; Edwards & Storkey, 2016). However, it can be difficult to apply these adversarial methods due
to the complexity of minimax optimization. SCBD circumvents the need to train a discriminator,
since the dot products between pairs of zc can be used to predict e.

The fourth term in Equation 1 reconstructs x from zc and zs. It is optional, and its inclusion makes
SCBD semantically similar to competing approaches that are based on Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014). As we show in Section 4.1, the ability
to reconstruct x can enable qualitative interpretation of zc and zs. Importantly, we only use the
reconstruction loss to optimize the decoder parameters, while holding zc and zs fixed. Therefore,
the learning of zc and zs is done purely through SCL. It is possible to train the encoders and de-
coder jointly, which would likely improve the reconstruction quality. However, this adds the further
complexity of balancing the relative contributions of the supervised contrastive and reconstruction
losses by incorporating an additional hyperparameter. We leave this to future work, and focus on
achieving strong performance on downstream tasks.

3 VARIATIONAL APPROACHES FALL SHORT OF SCBD

As a basis of comparison for SCBD, we develop a block-disentanglement algorithm based on Iden-
tifiable Variational Autoencoders (iVAEs) (Khemakhem et al., 2020). While VAEs are not common
in the domain generalization literature, they are popular for modeling single-cell omics data (Wang
et al., 2023; Tu et al., 2024; Mao et al., 2024). Several VAE extensions address the problem of invari-
ance to auxiliary variables, including the Variational Fair Autoencoder (Louizos et al., 2016) and the
HSIC-constrained VAE (Lopez et al., 2018). These methods learn a single block of latent variables,
and apply additional regularization to achieve invariance to an auxiliary variable. While successful
on low-dimensional data, these approaches have had limited success with high-dimensional data.
Wang et al. (2023) applied contrastive learning to train a VAE with two blocks of latent variables,
where one block does not condition on any auxiliary variables, and the other does. Our approach dif-
fers from theirs because we do not use contrastive learning, and both of our latent blocks condition
on auxiliary variables.

We specify an iVAE with the same blocks of latent variables as SCBD. The generative model is
defined as

pθ(x, zc, zs | y, e) = pθ(x | zc, zs)pθ(zc | y)pθ(zs | e),
while the inference model is defined as

qϕ(zc, zs | x, e) = qϕ(zc | x)qϕ(zs | x, e).
We fit this model by maximizing the evidence lower bound (ELBO) (Jordan et al., 1999), given by

min
θ,ϕ

Eqϕ(zc|x)qϕ(zs|x,e)[− log pθ(x | zc, zs)]

+ DKL(qϕ(zc | x) ∥ pθ(zc | y))
+ DKL(qϕ(zs | x, e) ∥ pθ(zs | e)).
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Empirically, conditioning the posterior of zs on both x and e, rather than just x, significantly impacts
downstream performance. We hypothesize that conditioning the posterior of zs on e makes it easier
to encode the variation with respect to e in zs, which reduces the incentive to encode it in zc. We
use a mixture of experts approach to condition on e, where a neural network takes in x and outputs
separate posterior parameters for each value of e.

We find that iVAE performs better than some other baselines, but worse than SCBD. VAE-based
block disentanglement methods inherently struggle to balance reconstruction and KL divergence
minimization, leading to several failure modes. First, posterior collapse happens when the KL term
is trivially minimized to zero by making the latent variables uninformative (Bowman et al., 2015;
Razavi et al., 2019; Fu et al., 2019; Dai et al., 2020; Wang et al., 2021). Second, prior collapse
occurs when learned parameters for pθ(zc | y) collapse to the uninformative prior pθ(zc). Third,
numerical instability necessitates heuristics such as gradient clipping or skipping (Child, 2021).
These issues significantly limit the ability to train VAEs with large-capacity neural networks, likely
explaining why open-source VAE implementations rarely use generic image encoders like those in
torchvision (Marcel & Rodriguez, 2010).

4 EXPERIMENTS

4.1 QUALITATIVE EXPERIMENT WITH A SYNTHETIC DATASET

We begin by performing a qualitative experiment using a synthetic dataset where we know the
ground-truth phenomena of interest and spurious correlations. This dataset is called Colored MNIST
(CMNIST), and extends the version from Arjovsky et al. (2019). The target label y ∈ {0, . . . , 9}
represents the digit. There are two training environments and a test environment. In the training
environments e ∈ {0, 1}, there is an environment-dependent correlation between the color and y
(Figure 2a). For e = 0 the color changes from dark to light red as the digit increases. In contrast,
for e = 1 the color changes from light to dark green as the digit increases. All digits are white in
the test environment. This presents a severe distribution shift, since color is perfectly predictive of y
in the training environments, but is unpredictive in the test environment. Details regarding the data
generating process are in Appendix A.2.3.

Our image generation results in Figure 2b qualitatively demonstrate that SCBD achieves block dis-
entanglement. This is possible on CMNIST because we know that the ground-truth phenomenon of
interest is the digit, and the ground-truth spurious correlation is the color. These results show that
when we swap zc between examples, it changes the digit without affecting the color. In contrast,
when we swap zs between examples, it changes the color without affecting the digit. Note that the
quality of the reconstructed images is relatively poor because, as mentioned in Section 2, the de-
coder is not trained jointly with the encoders. We leave it to future work to train the decoder jointly
and improve the image reconstruction capability of SCBD. We provide similar visualization results
with the iVAE in Appendix Figure 6.

4.2 BATCH CORRECTION WITH A REAL-WORLD OPTICAL POOLED SCREEN DATASET

4.2.1 PROBLEM DESCRIPTION AND DATASET

Having qualitatively demonstrated SCBD on a synthetic dataset, we proceed to batch correction.
Here, we experiment with a realistic single-cell perturbation dataset that is significantly large in
scale. We use the Optical Pooled Screen (OPS) (Feldman et al., 2019) dataset from Funk et al.
(2022) comprised of 26 million images of single cells, each perturbed with one of 5,050 genetic
perturbations targeting an expressed gene, including one non-targeting control. Such data are col-
lected in order to understand the effect of each perturbation on cellular morphology. The 100× 100
pixel images have four channels that measure staining information for key cellular features: DNA
damage, F-actin, DNA content, and microtubules. Each channel therefore measures a unique as-
pect of a cell’s phenotype, which taken together shed light on how each perturbed gene affects the
cell. An important problem in the field is to build a cartography of perturbation effects by grouping
perturbed genes by their phenotypic similarity (Celik et al., 2024). This map is then interpreted to
characterize the function of unknown genes, recapitulate protein complexes, and highlight interact-
ing pathways (Rood et al., 2024).
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Figure 2: Colored MNIST. (a) There is an environment-dependent correlation between color and
digit on the training set, which does not persist on the test set where all digits are white. (b) We can
generate images counterfactually using SCBD. When we swap zc across examples, it changes the
digit without affecting the color. In contrast, when we swap zs across examples, it changes the color
without affecting the digit. By composing digit and color independently, we generate images outside
of the support of the training distribution, such as a light red one (bottom middle) and a bright green
five (bottom right).

OPS generates large quantities of data in a cost-effective manner by processing several batches
of experiments in parallel. This dataset was collected at a single lab using 34 wells. There can be
significant unintended variation across wells, based on minor differences in experimental conditions.
For example, if the wells are stained sequentially, the difference in elapsed time can result in different
image brightness across wells. Our goal with SCBD is to capture this unintended variation across
wells in zs, so that zc is an unconfounded representation of the impact of genetic perturbations on
cell morphology.

For each image of a single cell x, y labels the genetic perturbation, and e labels which of the 34 wells
the cell was in. By optimizing the SCBD objective in Equation 1, we ensure that the variation in the
images due to the perturbation is represented by zc, and the variation due to the well e is represented
by zs. We can then use zc for downstream analysis. We use ResNet-18 encoders for this task, and
use zc with Dzc = Dzs = 64, whereas we use rc for domain generalization. This is because all of
our baselines for this task use 64 dimensional embeddings, so the lower-dimensional zc helps ensure
a fair comparison. We find that α = 1 is sufficient for enforcing environment-invariance for batch
correction.

We evaluate two tasks to understand the degree to which we remove the influence of e, while pre-
serving the information in y. We describe the tasks at a high level here, and provide details in
Appendix A.3.

The first task is CORUM prediction, which is one measure of the biological information content in
the embeddings. This task relies on the CORUM database (Ruepp et al., 2010) as the ground truth of
whether two genes are functionally related based on their membership in the same protein complex
(a definition previously used in the context of this biological screen). We take the biological em-
beddings corresponding to those genetic perturbations y, interpret their dot product as the prediction
that they are similar, and use these predictions to compute the area under the precision-recall curve.
We want the performance on this task to be strong.

The second task is to use the perturbation embeddings to predict e, which measures the sensitivity
to inter-well batch effects. We fit a linear classifier on top of each of the embeddings, and compute
the F1 score. In contrast to the first task, we want the performance on this task to be weak.

4.2.2 BASELINES

CellProfiler (Carpenter et al., 2006) is the most important baseline that we compare SCBD against.
It is an open-source software that takes in an image of a cell, and outputs several thousand manually-
engineered morphological features that describe the cell’s phenotype. It is a very strong baseline in
which substantial human-expert effort has been invested, and its representations are post-processed
to batch correct the variation across plates and wells. Following conventional practice, we use the
top-64 principal components of the full set of CellProfiler features.
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Figure 3: Comparison of SCBD to CellProfiler and VAE-based baselines on real-world batch cor-
rection. Left: Performance on predicting protein complex membership (biological content). Higher
is better. Right: Performance of predicting the well label e. Lower is better. SCBD is unambigu-
ously better than all baselines, as it preserves more biological signal, while being less sensitive to
the inter-well batch effects.

The remaining baselines are all based on VAEs, which are popular for modeling single-cell omics
data. We experiment with iVAE from Section 3, as well as the Multi-Contrastive VAE (mc-
VAE) (Wang et al., 2023), which uses two blocks of latent variables in order to represent the pertur-
bation effect and the natural cell-to-cell variation. Although it was previously shown that mcVAE is
effective for modeling genetic perturbations, it has a significant weakness in that it does not effec-
tively correct for batch effects. Finally, for our simplest baseline we use a vanilla VAE (Kingma &
Welling, 2014), which has a single block of latent variables, and ignores y and e. For all VAE-based
models, we use 64 dimensional latent variables in each block. The perturbation embedding is zc for
SCBD and iVAE. For mcVAE it is the block of salient variables, and for CellProfiler and the vanilla
VAE, there is only a single block of latent variables.

4.2.3 RESULTS

We show our results on both tasks in Figure 3. SCBD performs unambiguously better than all base-
lines, as it retains more biological information, while being less sensitive to inter-well batch effects.
Thus, zc estimated with SCBD can be used by biologists for downstream analysis, and they can be
confident that any conclusions reached are not due to the inter-well variation. This is a significant
achievement, as CellProfiler is considered a very strong baseline for this problem. Although mcVAE
performs better than the vanilla VAE on CORUM due to its ability to incorporate the perturbation
labels y, they are both highly susceptible to the inter-well batch effects. This highlights the fact that
explicit regularization is required in order to purge the effect of e from the embeddings, and that this
does not occur naturally.

5 RELATED WORK

Disentangled representation learning Our goal of block disentanglement is closely related to
that of disentangled representation learning, which assumes that a relatively small number of in-
dependent factors are sufficient to explain the important patterns of variation in x. Disentangled
representation learning is typically cast as learning a latent variable z ∈ RDz , where z is disentan-
gled if its individual components z1, . . . , zDz are independent and semantically meaningful (Higgins
et al., 2017; Esmaeili et al., 2019; Kim & Mnih, 2018; Chen et al., 2018). This informal definition
of disentanglement is generally agreed upon, and it is not trivial to define this concept quantita-
tively (Eastwood & Williams, 2018; Higgins et al., 2018). This is related to independent component
analysis (Comon, 1994; Jutten & Herault, 1991; Hyvärinen & Oja, 2000), which makes the addi-
tional assumption that the encoding is noiseless.

With block disentanglement, instead of assuming there are Dz independent scalar factors, we assume
there are two independent vector-valued factors zc ∈ RDzc and zs ∈ RDzs . Recent works study
identifiability for block disentanglement (Von Kügelgen et al., 2021; Lachapelle & Lacoste-Julien,
2022; Kong et al., 2022; Lachapelle et al., 2024; Lopez et al., 2024). While we believe this is
an important research direction, we focus on developing a simple algorithm that achieves strong
empirical results on difficult real-world problems.
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Invariant representation learning The challenge of domain generalization has gained significant
attention as ML systems often fail to generalize out-of-distribution. Peters et al. (2016) introduced
a framework for causal inference using invariant prediction, helping maintain predictive accuracy
under interventions or environmental changes. Building on this foundation, Arjovsky et al. (2019)
proposed IRM, a learning paradigm for learning an embedding of the data representation such that
the optimal classifier on top of that representation remains invariant across different environments.
These works, as well as many extensions (Lu et al., 2021), have been benchmarked on datasets cre-
ated by the research community, such as those in the DomainBed (Gulrajani & Lopez-Paz, 2021) and
WILDS (Koh et al., 2021) suites. Gulrajani & Lopez-Paz (2021) revealed that with rigorous model
selection, ERM often achieves state-of-the-art performance, challenging the perceived benefits of
more complex domain generalization methods.

6 CONCLUSION

We presented Supervised Contrastive Block Disentanglement (SCBD), an algorithm for block dis-
entanglement that is based purely on SCL. We use SCBD to estimate zc such that it represents the
correlation between x and y that is invariant to e. This invariance, which is considered difficult
to achieve in practice, allows us to solve two difficult real-world problems. The first problem is
domain generalization, where we achieve strong out-of-distribution generalization on a synthetic
dataset called Colored MNIST, as well as a real-world histopathology dataset called Camelyon17-
WILDS. The second problem is batch correction, where we use SCBD to learn representations of
single-cell perturbations from over 26 million images that preserves biological signal while remov-
ing inter-well batch effects.

We believe a promising direction for future work is to investigate how to jointly train the decoder
to combine the capabilities of SCL and generative modeling. The generative capability of SCBD is
a relatively small aspect of this work, since we only use it to qualitatively interpret the embeddings
on our CMNIST experiments. This gave us confidence that our algorithm block disentangles the
phenomena of interest and the spurious correlations in a toy setting. With improved generative
modeling, SCBD has the potential to be used for impactful counterfactual image generation on real-
world data, such as generating images of the same cell under different perturbations. Also, in this
work we assumed access to the variable e, which labels the source of unwanted variation. We leave
it to future work to learn this variable from data.
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APPENDIX

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

All of our experiments were done using a single NVIDIA A100 GPU on our institutions’ high-
performance computing clusters.

A.1.1 SUPERVISED CONTRASTIVE BLOCK DISENTANGLEMENT

Our experimental setup for SCBD is remarkably similar across all of our experiments, which high-
lights the generality of our approach. We set the temperature parameter in the supervised contrastive
losses to τ = 0.1. We adopt both of these practices from Khosla et al. (2020). For optimization,
we use AdamW (Loshchilov & Hutter, 2019) with 1 × 10−4 learning rate and 0.01 weight decay.
We set the batch size to 2,048. We chose these values because they resulted in stable training and
validation curves across our experiments, and did not tune them extensively.

For domain generalization, we resize the images to 32 × 32 pixels. We set Dzc
= Dzs

= 128,
which we adopt from Khosla et al. (2020). We train for a maximum of 25,000 steps, and select the
weights that minimize the validation loss. We obtain error bars by repeating each experiment with
ten random seeds.

For batch correction, we resize the images to 64 × 64 pixels. We set Dzc
= Dzs

= 64 in order to
ensure a fair comparison with the top-64 PCA features of CellProfiler. To sample a minibatch, we
first sample 256 distinct values of y from the class distribution of the training set, and then sample
the same number of examples per value of y. This was necessary in order to ensure a large number
of positive pairs with respect to y in our supervised contrastive losses, given that there are 5,050
classes. We trained for a maximum of 150,000 steps, and evaluated on the test set using the weights
that minimize the validation loss. We obtain error bars by repeating each experiment with three
random seeds.

We use standard architectures such as ResNet-18 (He et al., 2016) and DenseNet-121 (Huang et al.,
2017) for the encoders Encc(x) and Encs(x). The projection networks Projc(rc) and Projs(rs)
are two-layer Multilayered Perceptrons (Rumelhart et al., 1986) with hidden sizes of Drc and Drs ,
and GELU activations (Hendrycks & Gimpel, 2016). Our decoder Dec(zc, zs) architecture is shown
in Appendix Table 1, with GELU activations (Hendrycks & Gimpel, 2016) between layers. We use
an additive decoder (Lachapelle et al., 2024), and found this to be necessary to achieve sensible
visualization results on CMNIST. That is, we define

log p(x | zc, zc) = Decc(zc) + Decs(zs),

where both Decc and Decs have the same architecture.

Table 1: SCBD decoder architecture

Linear(64, 256 * (2 ** 2))
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 256, 3, padding=1)
ConvTranspose2d(256, 256, 3, stride=2, padding=1, output_padding=1)
Conv2d(256, 128, 3, padding=1)
Conv2d(128, img_ch, 1)

A.1.2 VARIATIONAL AUTOENCODERS

For our experiments with VAE-based approaches, we use the same experimental setup used in Wang
et al. (2023), including the architecture and hyperparameters. We resize the images to 64×64 pixels
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and use a batch size of 1024. The encoder and decoder architectures are in Appendix Tables 2 and
3, with GELU activations (Hendrycks & Gimpel, 2016) between layers. Since the CMNIST images
are 32 × 32, we modify the architectures to reduce the up- and down-sampling. For optimization,
we use the AdamW (Loshchilov & Hutter, 2019) optimizer with 1 × 10−4 learning rate and 0.01
weight decay. We additionally skip gradients with a norm above 1 × 1012, and clip gradients with
a norm above 1 × 106, as done in Child (2021). We train for a maximum of 50,000 steps for
domain generalization, and three epochs for batch correction, and select the weights with minimum
validation loss. We report the validation and test performance across ten random seeds for domain
generalization, and three random seeds for batch correction.

Table 2: VAE encoder architecture

Conv2d(img_c, 32, 3, stride=2, padding=1)
Conv2d(32, 32, 3, padding=1)
Conv2d(32, 64, 3, stride=2, padding=1)
Conv2d(64, 64, 3, padding=1)
Conv2d(64, 64, 3, stride=2, padding=1)
Linear(64 * (8 ** 2), 2 * 64)

Table 3: VAE decoder architecture

Linear(2 * 64, 64 * (8 ** 2))
ConvTranspose2d(64, 64, 3, stride=2, padding=1, out_padding=1)
Conv2d(64, 64, 3, padding=1)
ConvTranspose2d(64, 32, 3, stride=2, padding=1, out_padding=1)
Conv2d(32, 32, 3, padding=1)
ConvTranspose2d(32, img_c, 3, stride=2, padding=1, out_padding=1)

A.1.3 OTHER BASELINES

Table 4: Hyperparameter search space

Condition Hyperparameter Search space

CMNIST

Learning rate {0.0001, 0.001, 0.01}
Weight decay {0, 0.001, 0.01}
Batch size {32}
Maximum epochs {1, 20, 100}

Camelyon17-WILDS

Learning rate {0.0001, 0.001, 0.01}
Weight decay {0, 0.001, 0.01}
Batch size {32}
Maximum epochs {5}

CORAL Penalty weight {0.1, 1, 10}

DANN Penalty weight {0.1, 1, 10}

IRM Penalty weight {1, 10, 100, 1000}

Fish Pretrain steps {1000, 10000}
Meta learning rate {0.001, 0.01, 0.1}

Group DRO Step size {0.01}
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A.2 DOMAIN GENERALIZATION

A.2.1 PROBLEM DESCRIPTION

Domain generalization is an out-of-distribution generalization problem, where the data come from
different environments. Environments represent different conditions under which data are gener-
ated, such as the hospital that collected the samples. We assume data are sampled from a family of
distributions pall = {pe(xe, ye) : e ∈ Eall} indexed by the environment e ∈ Eall ⊆ N. The training
data are sampled from ptr = {pe(xe, ye) : e ∈ Etr}, where Etr ⊂ Eall is the set of training environ-
ments. The test data are sampled from pte = {pe(xe, ye) : e ∈ Ete}, where Ete ⊂ Eall is the set of test
environments. Because Etr and Ete are disjoint, there is a distribution shift between ptr and pte. The
goal is to predict y from x in a way that is invariant to e, so that we can generalize from ptr to pte.

A.2.2 IN- AND OUT-OF-DISTRIBUTION PERFORMANCE MUST BE NEGATIVELY CORRELATED

We begin by precisely characterizing the conditions under which SCBD should be effective at do-
main generalization. This is important, as it motivates our choice of datasets for our experiments.
The conditions are intuitive and empirically testable. SCBD is helpful when the training data contain
spurious, environment-specific features that create a trade-off. The more a model relies on these fea-
tures, the better it performs on the training environments, and the worse it performs on unseen test
environments. SCBD prevents the model from relying on such features, by enforcing the condition
that the features cannot be predictive of the training environments.

We therefore want to evaluate SCBD on datasets that exhibit this trade-off. Fortunately, there is an
empirical test for this, which is to train Empirical Risk Minimization (ERM) (Vapnik, 1995) across
a large region of the hyperparameter search space, and check whether there are regions where in-
distribution performance is strong, and is negatively correlated with out-of-distribution performance.
Teney et al. (2024) carried out such a study, and found the trade-off to be particularly prominent
on the Camelyon17-WILDS (Koh et al., 2021) dataset. We therefore include this dataset in our
experiments.

This trade-off between in- and out-of-distribution performance is the exception rather than the rule
for domain generalization datasets. That is, despite the datasets being constructed to have quali-
tatively different training and test environments, it is often the case that in- and out-of-distribution
performance are positively correlated. Wenzel et al. (2022) reached this conclusion by carrying out
a large-scale empirical study involving 172 datasets, including those in the DomainBed (Gulrajani
& Lopez-Paz, 2021) and WILDS (Koh et al., 2021) suites. It is difficult to outperform ERM when
the correlation is positive, which may explain why Gulrajani & Lopez-Paz (2021) found it to be
state-of-the-art across the DomainBed suite.

A.2.3 DATASETS

Colored MNIST The images are 32×32 pixels, and are RGB. There are two training environments
and a test environment. In the first training environment, which we label e = 0, we set the foreground
pixels in the red channel to the value one, and those in the green and blue channels to the value
y/|Y|, where |Y| = 10 is the number of digits. For images with the digit zero, y = 0, so the digit is
colored completely red. Then, as the digit increases from zero to nine, the digits are colored red, but
with a decreasing intensity. In the second training environment, which we label e = 1, we set the
foreground pixels in the green channel to the value one, and those in the red and blue channels to the
value (|Y| − 1 − y)/|Y|. This has the effect of the digits being colored green, where the intensity
increases with as the digit increases from zero to nine. In the test environment, the foreground pixels
are set to one in all channels, which makes all of the digits white.

Camelyon17-WILDS Camelyon17-WILDS (Koh et al., 2021) is a patch-based variant of the orig-
inal Camelyon17 dataset (Bándi et al., 2019) of histopathology images of breast tissue, and repre-
sents a binary classification task of predicting the presence of a tumor. The data were collected in
five hospitals, and have significant inter-hospital batch effects. It has been reported that for similar
datasets, the most significant batch effects are from differences in how the slides are stained (Tellez
et al., 2019). As mentioned previously, Teney et al. (2024) showed that this dataset exhibits a
trade-off between in- and out-of-distribution performance, and therefore satisfies the assumptions
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Figure 4: Increasing α strengthens the degree that zc is invariant to e, and monotonically improves
test accuracy at the expense of validation accuracy.

of SCBD. We also verify this in Appendix Figure 11. On this dataset, we want zc to represent the
biomarkers of disease that are invariant across hospitals, and zs to represent the hospital-specific
spurious correlations.

A.2.4 BASELINES

We compare SCBD to a diverse range of algorithms that are considered to be standard baselines in
the domain generalization literature. This includes ERM, CORrelation ALignment (CORAL) (Sun
& Saenko, 2016), Domain-Adversarial Neural Networks (DANN) (Ganin et al., 2016), Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019), Fish (Shi et al., 2022), and Group Distributionally
Robust Optimization (Group DRO) (Sagawa et al., 2020). We additionally include our iVAE from
Section 3 for completeness.

A.2.5 RESULTS

We present two kinds of results. In Appendix Figure 4, we show that by increasing α, SCBD
removes spurious correlations that are specific to the training environments. This results in learning
features that are invariant to the environment, and yields a clear trade-off between in- and out-of-
distribution performance on both CMNIST and Camelyon17-WILDS.

In Appendix Table 5, we show the test accuracy on both datasets for SCBD and the baseline al-
gorithms. We report the average and standard deviation for ten random seeds. For the baseline
algorithms, we optimize the hyperparameters with respect to the performance on the in-distribution
validation set. The hyperparameter search space for each algorithm is provided in Appendix Table 4.
Most of the baseline results for Camelyon17-WILDS are taken from the authors’ leaderboard, with
the exception of Fish (Shi et al., 2022), which we evaluate ourselves. Our results for Fish are weaker
than those reported on the leaderboard, because we additionally included the pretraining duration in
the hyperparameter search space. The leaderboard results used the value of this hyperparameter that
achieved the best test accuracy, as described in the appendix of Shi et al. (2022).

For SCBD, we apply the same model selection procedure to optimize the learning rate and weight
decay. We do not optimize α during model selection, since this would result in choosing α = 0.
We report the test accuracy for α = 0 and α = 192 as evidence that the invariance loss in SCBD
is effective at removing spurious correlations and improving out-of-distribution performance. With
α = 192, SCBD significantly outperforms all baseline algorithms across both datasets. Tuning α
corresponds to model selection with respect to an unknown test distribution, which is a difficult open
problem (Gulrajani & Lopez-Paz, 2021), and is a limitation shared by other works (Makino et al.,
2022a; Wortsman et al., 2022). We demonstrate the robustness of our approach to the choice of
hyperparameters by providing the results of ablation studies in AppendixA.2.6, where we vary Dzc

and Dzs
, the batch size, and the degree of weight decay.

A.2.6 ADDITIONAL RESULTS

This section contains additional results for domain generalization on CMNIST and Camelyon17-
WILDS.
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Table 5: Test accuracy (%) for domain generalization for ten random seeds. SCBD with α = 192
significantly outperforms all baselines on both CMNIST and Camelyon17-WILDS.

Algorithm CMNIST Camelyon17-WILDS

SCBD (α = 0) 25.5± 3.0 61.9± 3.8
SCBD (α = 192) 82.9± 12.1 72.7± 3.0

ERM 37.8± 2.6 65.8± 4.9
CORAL 37.6± 3.6 59.5± 7.7
DANN 39.0± 4.5 55.2± 6.7
IRM 37.0± 4.2 66.3± 2.1
Fish 48.2± 3.5 49.1± 0.9
Group DRO 35.0± 2.9 68.4± 7.3

iVAE (qϕ(zs | x, e)) 52.1± 37.6 52.0± 2.0
iVAE (qϕ(zs | x)) 37.7± 29.4 51.9± 4.3
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Figure 5: In- and out-of-distribution performance are negatively correlated on CMNIST, which
satisfies the assumptions made by SCBD.

Original

Reconst
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Figure 6: Counterfactual generation with iVAE. When we swap zc, it changes the digit but not the
color, and when we swap zs, it changes the color but not the digit. iVAE generates better-looking
images than SCBD, since the decoder is trained jointly with the encoder for iVAE.
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Figure 7: CMNIST results for an ablation in which we omit zs, and learn a single block of latent
variables zc that are correlated with y and invariant to e. These results are similar to the model that
learns zs. We use ResNet-18 encoders here, as we did in the main text.
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Figure 8: CMNIST embedding size (Dzc
and Dzs

) ablation study for SCBD with ResNet-18 en-
coders and α = 192. The results are relatively consistent across different embedding sizes.
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Figure 9: CMNIST batch size ablation study for SCBD with ResNet-18 encoders and α = 192.
The results are generally better for larger batch sizes, which was also observed by the authors of
SCL (Khosla et al., 2020).
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Figure 10: CMNIST weight decay ablation study for SCBD with ResNet-18 encoders and α = 192.
The results are relatively consistent across different degrees of weight decay.
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Figure 11: In- and out-of-distribution performance are negatively correlated on Camelyon17-
WILDS. This is consistent with Teney et al. (2024), and therefore this dataset satisfies the assump-
tions made by SCBD.
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Figure 12: Camelyon17-WILDS results for SCBD using ResNet-18 encoders. The conclusions are
the same as with the DenseNet-121 encoders.
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(a) ResNet-18
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(b) DenseNet-121

Figure 13: Camelyon17-WILDS results for an ablation in which we omit zs, and learn a single
block of latent variables zc that are correlated with y and invariant to e. We observe a clean trade-off
between validation and test accuracy with respect to α, but the test accuracy error bars are larger
than those of the model that includes zs.

19



Published as a workshop paper at MLGenX 2025

64 128 192 256
Embed size

0.915

0.920

0.925

Va
l a

cc
ur

ac
y

64 128 192 256
Embed size

0.65

0.70

0.75

Te
st

 a
cc

ur
ac

y

Val Test

Figure 14: Camelyon17-WILDS embedding size (Dzc
and Dzs

) ablation study for SCBD with
DenseNet-121 encoders and α = 192. The results are relatively consistent across different embed-
ding sizes.
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Figure 15: Camelyon17-WILDS batch size ablation study for SCBD with DenseNet-121 encoders
and α = 192. The results are generally better for larger batch sizes, which was also observed by the
authors of SCL (Khosla et al., 2020).
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Figure 16: Camelyon17-WILDS weight decay ablation study for SCBD with DenseNet-121 en-
coders and α = 192. The results are relatively consistent across different degrees of weight decay.

A.2.7 NEGATIVE RESULTS

We additionally experiment with PACS (Li et al., 2017) and VLCS (Fang et al., 2013) from Do-
mainBed (Gulrajani & Lopez-Paz, 2021), and include the results in this section. We find that these
datasets exhibit a positive correlation between in- and out-of-distribution performance, which is con-
sistent with Wenzel et al. (2022). Since this violates the assumptions of SCBD, we are unable to
trade off in- and out-of-distribution performance.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 17: PACS with art painting as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 18: PACS with cartoon as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.

0 4 8 12
0.92

0.94

0.96

Va
l a

cc
ur

ac
y

0.94

0.96

Te
st

 a
cc

ur
ac

y

Val Test

(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 19: PACS with photo as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 20: PACS with sketch as the test domain.

Table 6: Test accuracy (%) for PACS with three random seeds.

Algorithm Art painting Cartoon Photo Sketch Average

SCBD (α = 0) 86.6± 2.1 81.3± 1.9 97.0± 0.8 70.6± 4.9 83.9
ERM 88.1± 0.1 77.9± 1.3 97.8± 0.0 79.1± 0.9 85.7
CORAL 87.7± 0.6 79.2± 1.1 97.6± 0.0 79.4± 0.7 86.0
DANN 85.9± 0.5 79.9± 1.4 97.6± 0.2 75.2± 2.8 84.6
IRM 85.0± 1.6 77.6± 0.9 96.7± 0.3 78.5± 2.6 84.4
Group DRO 86.4± 0.3 79.9± 0.8 98.0± 0.3 72.1± 0.7 84.1
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 21: VLCS with Caltech101 as the test domain.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 22: VLCS with LabelMe as the test domain.

0.6 0.8
Val accuracy

0.5

0.6

0.7

Te
st

 a
cc

ur
ac

y

(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 23: VLCS with SUN09 as the test domain.
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(a) In- and out-of-distribution
performance are positively corre-
lated, which violates the assump-
tions made by SCBD.
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(b) Due to the violation of assumptions made
by SCBD, increasing α does not lead to a
trade-off between in- and out-of-distribution
performance.

Figure 24: VLCS with VOC2007 as the test domain.
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Table 7: Test accuracy (%) for VLCS with three random seeds.

Algorithm Caltech101 LabelMe SUN09 VOC2007 Average

SCBD (α = 0) 94.7± 1.8 67.1± 1.3 74.7± 3.0 71.4± 1.3 77.0
ERM 97.6± 1.0 63.3± 0.9 72.2± 0.5 76.4± 1.5 77.4
CORAL 98.8± 0.1 64.6± 0.8 71.7± 1.4 75.8± 0.4 77.7
DANN 98.5± 0.2 64.9± 1.1 73.1± 0.7 78.3± 0.3 78.7
IRM 97.6± 0.3 65.0± 0.9 72.2± 0.5 76.4± 1.5 78.1
Group DRO 97.7± 0.4 62.5± 1.1 70.1± 0.7 78.4± 0.9 77.2

A.3 BATCH CORRECTION

CORUM prediction Our CORUM prediction task mirrors that of (Wang et al., 2023), with some
modifications to ensure a fair comparison with CellProfiler. We begin by computing zc for every
single-cell image in the dataset, including the training, validation, and test sets. Then, we discard all
embeddings for which we do not have a corresponding CellProfiler embedding. The median number
of cells per gene is 6,000, and we want to average them to obtain a single embedding per gene.
We have four sgRNA sequences for each perturbed gene, and 250 sgRNA sequences for the non-
targeting control. We first average the zc’s across cells for each sgRNA sequence, and then average
the resulting sgRNA embeddings that correspond to the same gene. For each gene embedding, we
subtract the non-targeting control embedding, then standardize such that each of the 64 components
has mean zero and unit variance.

Then, we incorporate the CORUM database, which defines the pairs of genes that belong to the
same protein complex. We discard all gene embeddings that are not in this database. We compute
the cosine similarity between each pair of gene embeddings, and interpret it as the prediction that
they belong to the same family. The prediction target is one if they belong to the same family
according to the CORUM database, and zero otherwise. We turn the cosine similarities into binary
predictions by across various prediction thresholds by using the i’th percentile as the upper threshold
and the 100− i’th percentile as the lower threshold for each integer i ∈ {80, . . . , 100}. Finally, we
use the binary predictions and prediction targets to obtain a precision and recall at each value of i,
and plot the precision and recall curve.

Batch prediction We begin by computing the perturbation embedding for every example in the
dataset, including the training, validation, and test sets. We then discard all examples for which we
do not have a corresponding CellProfiler embedding. Using a randomly sampled 60% of the data as
the training set, and the remaining data as the test set, we apply logistic regression to predict e given
the embeddings, and report the F1 score on the test set.

B CODE

Here is our implementation of the supervised contrastive and invariance losses.

def supcon_loss(z, u, temperature):
batch_size = len(z)
u_col = u.unsqueeze(1)
u_row = u.unsqueeze(0)
mask_pos = (u_col == u_row).float()
offdiag_mask = 1. - torch.eye(batch_size)
mask_pos = mask_pos * offdiag_mask
logits = torch.matmul(z, z.T) / temperature
p = mask_pos / mask_pos.sum(dim=1, keepdim=True).clamp(min=1.)
q = F.log_softmax(logits, dim=1)
return F.cross_entropy(q, p)

def invariance_loss(zc, e, temperature):
batch_size = len(zc)

24



Published as a workshop paper at MLGenX 2025

e_col = e.unsqueeze(1)
e_row = e.unsqueeze(0)
mask_pos = (e_col == e_row).float()
mask_neg = 1. - mask_pos
offdiag_mask = 1. - torch.eye(batch_size)
mask_pos = mask_pos * offdiag_mask
logits = torch.matmul(zc, zc.T) / temperature
q = F.log_softmax(logits, dim=1)
log_prob_pos = (q * mask_pos).mean(dim=1)
log_prob_neg = (q * mask_neg).mean(dim=1)
return (log_prob_pos - log_prob_neg).abs().mean()
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