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ABSTRACT

Diffusion models have emerged as a new standard technique in generative Al due
to their huge success in various applications. However, their training can be pro-
hibitively time-consuming, posing challenges for small businesses or academic
studies. To address this issue, we propose a novel and practical training strategy
that significantly reduces the training time, even enhancing generation quality. We
observe that diffusion models exhibit different convergence rates and training pat-
terns at different time steps, inspiring our MDM (Multi-expert Diffusion Model).
Each expert specializes in a group of time steps with similar training patterns. We
can exploit the variations in iteration required for convergence among different
local experts to reduce total training time significantly. Our method improves the
training efficiency of the diffusion model by (1) reducing the total GPU hours and
(2) enabling parallel training of experts without overhead to further reduce the
wall-clock time. When applied to three baseline models, our MDM accelerates
training x2.7 - 4.7 faster than the corresponding baselines while reducing compu-
tational resources by 24 - 53%. Furthermore, our method improves FID by 7.7%
on average, including all datasets and models.

1 INTRODUCTION

Diffusion models have emerged as a powerful new family of generative models for both condi-
tional (Dhariwal & Nichol, 2021; Hertz et al., 2022; Karras et al., 2022; Li et al., 2022; Lugmayr
et al., 2022; Nichol et al., 2022; Poole et al., 2023; Rombach et al., 2022; Saharia et al., 2022; Song
et al., 2021b) and unconditional (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2021b)
generation tasks, offering notable advantages over existing models, such as generative adversarial
networks (GANs (Goodfellow et al., 2014)). These advantages encompass four main aspects (Choi
et al., 2022): (1) improved training stability, (2) extensive coverage of data distribution, (3) sim-
ple and scalable model structure, and (4) adaptable architecture that facilitates conditional gener-
ation (Dhariwal & Nichol, 2021; Ho & Salimans, 2021). The advancements in model design and
training strategies (Dhariwal & Nichol, 2021; Dockhorn et al., 2022; Ho et al., 2020; Karras et al.,
2022; Nichol & Dhariwal, 2021) have led diffusion models to beat the current state-of-the-art in
several fields (Deng et al., 2009; Yu et al., 2015).

However, training large-scale diffusion models is extremely expensive and time-consuming. Train-
ing time increases quadratically by the resolution of the dataset. For instance, training a diffusion
model on 512 x 512 ImageNet (Deng et al., 2009) dataset using a single V100 GPU (Dhariwal &
Nichol, 2021) takes up to 1914 days. This substantial training expenses leads to critical delays in de-
ployment within industries and impedes the widespread adoption of diffusion models in small-scale
businesses and academia. In this paper, our research objective centers on analyzing the training
efficiency of diffusion models.

The training efficiency can be evaluated from two perspectives: (1) the total cost of fully training
a model (TC), measured in GPU days, and (2) the actual training time (wall-clock time, WCT),
measured in days. The relationship between TC and WCT can be expressed as TC = WCT x
RT, where RT denotes resource throughput, representing the number of distributed GPUs or nodes
employed. For example, if a model takes 100 V100 days (TC) to converge, it takes 25 days (WCT)
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Figure 1: Quantitative evaluation for the normalized WCT (NWCT) and normalized TC (NTC)
axes. The total WCT and TC of training the baseline for 500K iterations are set to 100%NWCT
and 100%NTC, respectively. The best FID value for each model is denoted by ‘o’ markers and its
value as horizontal dotted lines. The termination point for full iteration is denoted as ‘X’ marker.
We determine the model convergence point as the first point where the score difference between
adjacent points is smaller than 0.1 for three consecutive sampling points, and at the same time, the
score gap to the best FID value is smaller than 0.3 as marked with ‘(’.

with four V100 GPUs (RT), assuming ideally distributed training. Considering both TC and WCT
are essential when evaluating training efficiency. We aim to devise a method to effectively reduce
both TC and WCT by leveraging the intrinsic training patterns of diffusion models.

To reduce WCT, we can increase the RT of the model by parallelizing the training process across
multiple modules. However, the increase in RT does not align precisely with the decrease in WCT
in practice. This misalignment arises due to computational overhead from communication between
devices (Shi et al., 2018; Wu et al., 2022). Dividing the model or batch size also requires an ad-
ditional algorithm to ensure optimal throughput (Huang et al., 2019; Narayanan et al., 2021) and
cannot be done infinitely. This overhead issue is significant, especially when handling large RT. For
example, suppose we train a diffusion model with the same batch size. Ideally, if the batch size is
split in half between two GPUs, the Wall Clock Time (WCT) should be 50% compared to training
with single GPU. However, the actual WCT is around 58% due to the computational overhead. If
this situation is extended from inter-GPU to inter-node, this overhead significantly increases.

With this objective in mind, we explore the distinct properties of the training process in diffusion
models. We focus on the inherent property of time-independent training in diffusion models. Train-
ing each time step x; is conducted independently (Song et al., 2020) across the entire time step range
t € (0,T] (where t = T represents the fully noisy step). We divide the entire time steps into eight
sub-intervals, each assigned to a dedicated expert. Our investigation reveals significant variations
in convergence speed among different experts. Notably, the expert handling the fully noisy signal
(t = T) exhibits the slowest convergence, followed by the expert generating the noise-free signal
(t = 1). In contrast, experts for middle intervals show faster convergence. We identify that training
the entire time steps with a single model results in adverse interactions between different time steps.
Ignoring the distinctive nature of diffusion models in their training leads to slow convergence and
inferior performance (Sec. 4.1).

Based on this observation, we propose a multi-expert diffusion model (MDM), an algorithm that
accelerates training via time step-adaptive local experts. We carefully identify three time intervals,
each exhibiting a similar training pattern based on an activation analysis. Then, we train three ex-
perts independently, each responsible for each interval. This simple modification to the training
strategy enhances the training efficiency of diffusion models. Since MDM consists of multiple inde-
pendent experts, it naturally aligns with exploiting sufficiently large RT with negligible overheads.
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This effectively reduces WCT by using a large RT while keeping TC fixed. To further reduce TC,
we allocate different resources (i.e., iterations) to each expert to take advantage of their varying con-
vergence speeds. This accelerates overall convergence. We interpret that fast convergence can be
achieved by minimizing negative interactions across different time intervals. Consequently, MDM
can reduce both WCT and TC by early stopping rapidly converging experts.

We thoroughly investigate the advantages of the multi-expert approach by analyzing training patterns
of diffusion models along with different time intervals (Sec. 4). In our experiments, we apply MDM
on several baseline models and demonstrate the effect of MDM in terms of efficiency (i.e., training
time, Sec. 5.2) and performance (i.e., generation quality, Sec. 5.3). Overall, our method improves
FID by 7.7% on average, including all datasets and baselines. Furthermore, MDM offers x2.7 - 4.7
faster training and reduces TC by 24 - 53% to reach the best baseline score.

2 RELATED WORKS

Denoising diffusion probabilistic model. Diffusion models (Ho et al., 2020; Dhariwal & Nichol,
2021; Nichol & Dhariwal, 2021; Song et al., 2020) aim to generate data through a learned de-
noising process. Starting from a Gaussian noise xr, they iteratively denoise z; to x;_; using a
denoising autoencoder until obtaining a final image xy. We discuss theoretical backgrounds in Ap-
pendix A. ADM (Dhariwal & Nichol, 2021) proposes the optimized network architecture and proves
that the diffusion model can achieve higher image sample quality than state-of-the-art GANs in sev-
eral benchmark datasets (Deng et al., 2009; Yu et al., 2015). For conditional image synthesis, they
further improve sample quality with classifier guidance that sacrifices diversity.

Several works focus on the time steps of the diffusion model to improve sample quality. P2W (Choi
et al., 2022) identifies that diffusion models learn coarse features in later time steps, rich contents
at medium, and finally, remove remaining noise at early time steps. They propose a new weight-
ing scheme for the training objective by assigning small weights to the unnecessary noise-removal
stage while assigning higher weights to the others. Since the diffusion model exhibits an unsta-
ble denoising process nearly at ¢ = 0 (infinite signal-to-noise ratio), both discrete and continuous
time-based diffusion models (Ho et al., 2020; Song et al., 2021b;a) truncate the smallest time step
(early-stopping denoising process before it reaches ¢ = 0). Soft-truncation (Kim et al., 2021) claims
that a small truncation hyperparameter favors negative-log-likelihood (NLL) at the sacrifice of FID
and vice versa. To secure both NLL and FID, they soften the static truncation hyperparameter into
a random variable so that the smallest diffusion time step is randomly chosen at every optimization
step. P2W and Soft-truncation improve the image quality by regularizing the model along time
steps. However, based on our observation, they train the entire time steps at once, causing a negative
influence among different time steps. Unlike these methods, our work identifies and then effectively
eliminates such negative influences.

Efficient training for generative models. Several researchers have attempted to enhance the effi-
ciency of generative models. Pang et al. (2020) propose a finite-difference score-matching func-
tion for score-matching generative models. Anycost-GAN (Lin et al., 2021) reduces the usage
of inference resources by dynamically leveraging model parameters during inference. Similarly,
DDIM (Song et al., 2020) and EDM sampling (Karras et al., 2022) aim to reduce the resources
required for the sampling process of diffusion models. However, these approaches only focus on
reducing inference costs, not training costs. To improve the training efficiency, LDM (Rombach
et al., 2022) seeks to reduce the parameter size of the model by reducing data resolution via autoen-
coders. Patch-Diffusion (Wang et al., 2023) proposes a data- and resource-efficient diffusion model
by generating images in a patch-wise manner. Their focus is to improve model efficacy by changing
from natural images to patch images in the data domain. These approaches are orthogonal to our
method as they modify the domain of data distribution.

Concurrent to our work, several methods (Balaji et al., 2022; Feng et al., 2023) utilize multi-expert
fine-tuning on a pre-trained text-to-image diffusion model to seamlessly reflect the text-conditional
signal. Although they utilize a multi-expert strategy (Artetxe et al., 2021; Shazeer et al., 2017;
Riquelme et al., 2021), their experts share the same pretrained model as initial points for fine-tuning.
This approach limits training efficiency since those require a resource-intensive pretraining stage.
Furthermore, they focus on conditional generation scenarios, which enhance text-and-image align-
ment through fine-tuning. We (1) do not deal with pre-trained models but the training efficiency of
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Figure 2: Training losses for (a) the baseline ADM (Dhariwal & Nichol, 2021) and (b) the eight-
expert settings. To improve visualization, we average five adjacent points to filter out the noise in the
graph. The color-shaded area depicts the range between minimum and maximum values for adjacent
points.

the model when training from scratch and (2) target unconditional diffusion models, which affects
various applications. More importantly, our method works as an add-on module to these previous
researches to enhance their training efficiency.

3  MULTI-EXPERT DIFFUSION MODEL

We propose the Multi-expert Diffusion Model (MDM) as an efficient training solution for diffusion
models. Our approach centers around two objectives: (1) partitioning the model for independent
training that better aligns with a large resource throughput (RT) and (2) improving the convergence
speed of each expert to reduce the total cost (TC). Our investigation (Sec. 4) reveals distinct training
patterns within the diffusion model, characterized by three groups of time steps exhibiting similar
training patterns. Based on this observation, we introduce a training strategy that involves three
experts, each responsible for training a specific group of three-time step intervals: 74, 75, Tc.

Following Ho et al. (2020), we employ a denoising autoencoder to model the reverse process of
the diffusion model. The learnable parameters 6(t) of MDM, given by a denoising autoencoder
Jo(t)(z¢,1), can be expressed as:

Oa, tETA,
0(t)=<0p, terTs, (1
Oc, teTc.

Ta, TB, and 7¢ vary depending on the baseline model and the image resolution. The range of each
interval determined for each experiment is specified in Sec. 5.1. The experts in MDM (fo,, fog,
and fy,) are trained independently within their designated time interval. For a fair comparison
with the baseline, we initially set the maximum number of iterations I, for each expert equally to
(ITel/T) Iasetine> € € {A, B,C}. In this context, |7.| denotes the number of time steps within the
interval 7., and Ip,gjine indicates the total iterations for training the baseline model. Then, we assign
additional iterations to the expert with a relatively slower convergence while maintaining the sum of
all I, equal to Ipaserine. Each expert’s architecture remains consistently the same.

Remarks on training efficiency. Our multi-expert approach offers two advantages: (1) utilizing
a large RT with negligible overhead and (2) faster convergence to optimal performance for each
expert. These two advantages reduce WCT and TC, respectively.

Firstly, training multiple experts independently empowers us to effectively reduce WCT by employ-
ing a large RT while minimizing additional overhead. Although the baseline model can be trained on
multiple GPUs (or nodes), it is limited by practical resistance, such as finite batch size (which limits
the maximum number of devices used) and communication overhead between devices. In contrast,
our model has three independent experts, allowing us to increase RT more effectively than training
the baseline with multiple nodes, with negligible practical resistance (see overhead analysis).

Secondly, our method trains each time interval independently, thereby focusing on each distinct
training pattern. This mitigates the potential negative interactions among different time steps when
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Figure 3: ADM time steps analysis. (a) Performance convergence in FID of eight experts for each
time step range 7;. (b) Concentration of attention weights during the denoising process. Each legend
‘r-o’ indicates o-th r x r attention layer.

Table 1: Comparison between uniform and importance sampling strategies for time step sampling
in the CIFAR-10 dataset. We train the baseline (Dhariwal & Nichol, 2021) using uniform sampling
and importance sampling and evaluate them after 300K iterations.

Method FID| sFID] Precision] Recallf
Uniform 1242 27.34 0.5777 0.6247
Importance (Nichol & Dhariwal, 2021) | 18.35  34.77 0.5532 0.6355

training the entire time step simultaneously (Fig. 2). As a result, we consistently observe that any of
the three experts in MDM reach optimal parameters faster than the baseline model. Furthermore, we
assign additional iterations to the experts in 74 and 7¢ due to their slower convergence compared to
the expert in 75. Our strategic allocation of training resources to the slower experts accelerates the
overall convergence, reducing TC (Sec. 5.2).

Overhead analysis. MDM utilizes three experts, resulting in three times the number of parameters
compared to the baseline. However, the model capacity remains unchanged in terms of VRAM (or
other equivalent limiting devices), serving as a true bottleneck in computing resources. Training and
inferring each expert is independent of each other, thus MDM does not require simultaneous VRAM
access for multiple experts. The additional storage space required to store the parameters can be
achieved with more affordable and sufficient options, such as flash memory. The slight increase in
loading time required to transfer the model to VRAM is negligible compared to TC. Therefore, from
a practical standpoint, the resource overhead associated with our method is manageable.

4  DIFFUSION MODEL DISSECTION

In this section, we delve into the detailed process of dissecting the time steps of diffusion models into
three main groups for our MDM (Sec. 3). We analyze the training patterns of the diffusion model
and conclude that the standard method of training all time steps at once hinders fast convergence
(Sec. 4.1). We divide whole time steps into three groups for efficient training based on activation
analysis (Sec. 4.2).

4.1 TRAINING DYNAMICS ANALYSIS

Each time step in the diffusion model is trained independently, and the loss scale diverges ast — 0
(Kim et al., 2021). We hypothesize that simultaneously training the entire time steps with varying
loss scales (standard method) can hinder the training process. Therefore, we explore the impact of
dividing the whole time steps into distinct groups and training each separately. It increases resource
throughput (RT), thereby reducing actual training time (WCT). However, this alone is insufficient to
reduce the total cost (TC).

To further reduce TC, we investigate the training dynamics of diffusion models across distinct time
intervals. Our investigation reveals that (1) the convergence speed varies for each time interval
and (2) exploiting multi-expert training across different time intervals exhibits more stable training
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Figure 4: Visualization of the image sampling process and its attention layer weights. Odd rows
depict the image prediction samples (x() obtained from DDIM (Song et al., 2020) sampling. Even
rows demonstrate the attention layer’s activations, normalized by dividing them with the maximum
value for improved visualization.

Table 2: Comparison of training time and resource requirements. NWCT (%) and NTC (%) are nor-
malized by 500K training iterations for ADM and P2W, and 5.0M for Soft-truncation. ‘Converged’
indicates the convergence point of the model. ‘Best score’ refers to the first WCT and TC, where
the model achieves the best FID. ‘Baseline equivalent’ denotes the first WCT and TC, surpassing
the best FID of the baseline model. For ImageNet-32, we omit ‘Converged’ due to significant per-
formance fluctuations in the baseline model.

Dataset Method Normalized WCT (%) . Normalized TC (%) .
Best Baseline Best Baseline
Converged . Converged .
score  equivalent score  equivalent
ADM 76.0 76.0 76.0 76.0
+MDM 23.8 434 17.5 46.4 62.0 35.7
CIFAR-10 P2W 44.0 48.0 44.0 48.0
+MDM 29.4 39.2 17.9 48.0 57.4 36.3
Soft-trunc - 86.0 - 86.0
ImageNet-32 1 \ipm - 312 184 - 67.6 420

dynamics than the baseline. These observations motivate us to develop an efficient training technique
for saving unnecessary resource usage, eventually reducing TC.

To examine the potentials of the multi-expert model, we divide the time steps into eight sub-intervals
(7;)8_, and assign an expert fp,. In this experiment, each expert shares the same architecture of
ADM (Dhariwal & Nichol, 2021). The expert fy, is responsible for generating the final clean image,
while fp, starts denoising from the noisy latent. We train each fp, for 7; = {¢|t € (125(i—1), 125¢]}
on CIFAR-10 dataset (Krizhevsky et al., 2009). We evenly assign 62.5K iterations per expert, where
a total of 500K iterations are used for both MDM and the baseline. We investigate the multi-expert
setting in two aspects: convergence speed and training loss.

Convergence speed. To measure the convergence speed of each expert, we vary the iteration for
the ¢-th expert while keeping the other experts fully trained (62.5K iterations). We calculate FID
between the sampled 10K images and the 10K images of the CIFAR-10 validation set. Fig. 3(a)
visualizes the FID values at each iteration for each expert. Interestingly, we observe different con-
vergence speeds for each expert. The experts of middle time intervals show the rapid convergence at
around 26K iterations. In contrast, the expert fp, converges at around 45K iterations, demonstrating
the slowest convergence speed. The second slowest expert becomes fy,, which starts with a lower
FID and converges at around 35K iterations.

Training losses. We compare the training losses of the baseline (ADM) and the multi-expert setting
(Fig. 2). We discover two key findings: (1) Training losses for each time step exhibit different loss
lower-bound (Kim et al., 2021), and (2) the loss of the baseline presents fluctuations, especially
in 7g. Investigating each loss, the time range 7; produces a significantly higher loss (x20) than
Tg, thus largely affecting the parameter updates. However, as observed in Fig. 3(a), the time range
Tg exhibits the slowest convergence, indicating a challenging stage to train. Despite its convergence
challenges, the baseline cannot focus on 73 due to its low loss scale. In this regard, we recognize that
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importance sampling proposed by (Nichol & Dhariwal, 2021) has a limited impact on performance
improvement since it relies more on training time steps with higher losses without considering con-
vergence trends. As a result, when we apply importance sampling to the baseline, we observe the
performance degradation (Tab. 1).

The second observation indicates greater instability within each time interval of the baseline model
compared to the multi-expert setting. Specifically, the loss for 75 depicts significant fluctuations.
This result is consistent with the previous observation that 7g is the most challenging time interval
to train. This phenomenon is significantly reduced in our multi-expert setting (Fig. 2(b)). Here,
we speculate that training the entire time steps with a single model could result in sub-optimal
performance due to adverse interactions among different time intervals.

4.2 ACTIVATION ANALYSIS FOR DISSECTION

Our analysis demonstrated that multi-expert training can alleviate the negative impacts among time
steps, ultimately improving training efficiency. Now, we arrive at a question: How should we parti-
tion the intervals for developing MDM?

We focus on the attention layers within the diffusion model to derive distinct intervals of MDM.
Previous studies (Caron et al., 2021; Tumanyan et al., 2022) have demonstrated that attention layers
provide rich visual information, such as the semantic layout of scenes. Specifically, these attention
layers selectively concentrate on structural properties among features (Caron et al., 2021). Motivated
by this insight, we analyze the visual information captured by the diffusion model at each time step
through attention weight analysis. For that, we leverage softmax weights within the attention layer:

Attention(Q, K, V) = softmaz(QK " /Vd)V. (2)

For each attention layer, we compute the average standard deviation of softmax weights for each
image as follows.

E; \/VARS(saftmams(Qcths/\/a)) , 3)

where subscripts follow Einstein’s summation convention. A low standard deviation implies that the
weight distribution is close to the uniform distribution (e.g., 0 if all values are 1/HW, where H and
W are the height and width of the attention map). Conversely, a high standard deviation represents
weight concentration in a specific region (e.g., oo if the distribution follows the Dirac delta function).
Fig. 4 demonstrates the attention layer’s activations at each DDIM (Song et al., 2020) sampling time
step. Fig. 3(b) illustrates the average standard deviation of the attention layer’s weights from 1K
samples at resolutions of 8 x 8 and 16 x 16.

Herein, we identify two distinct transitions in terms of attention concentration. As depicted in
Fig. 3(b), the first group 74 consistently increases attention concentration. In this stage, the model
generates the overall outline of the resulting image, as also reported in (Choi et al., 2022). In
contrast, the second group 75 shows minimal changes in attention concentration. The outline from
the previous stage remains unchanged while incorporating additional details. Lastly, the third group,
Tc, shows a rapid decrease in concentration. This is because it removes an overall noise while
adding natural high-frequency details (Balaji et al., 2022). These unique characteristics are used to
determine three intervals of [74, 75, T¢], allowing each dedicated expert to handle distinct training
patterns. Therefore, MDM assigns three experts for three distinct intervals derived in this study.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Dataset. We use CIFAR-10 (Krizhevsky et al., 2009) and ImageNet-32 dataset (Chrabaszcz et al.,
2017) to evaluate our model. Since our multiple experts with large parameters can be vulnerable
to overfitting (i.e., memorization effects are often reported in diffusion models (Carlini et al., 2023;
van den Burg & Williams, 2021)), we conduct evaluations with validation sets. The validation set
comprises 10K images for CIFAR-10 and 50K for ImageNet-32, respectively.
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Table 3: Quantitative evaluation. All metrics report the best FID score of each model. For CIFAR-
10, the best score within the same baseline (ADM or P2W) is in bold. The best score in all experi-
ments is marked with an underline. The standard deviation of the results is denoted by underscored
numbers. MDM consistently improves FID, sFID, and Recall when applied to each baseline model.

Dataset Method FID/] sFID] Precision? Recall?
ADM 1242 015y 2734 0.15) 05777 (0.0057)  0.6247 (0.0007)

CIFAR-10 +MDM 1142 (0.14) 24.86 (0.15)  0.5539 (0.0055)  0.6455 (0.00s6)
P2W 11.14 014y 2532 (0.15)  0.5405 (0.0051)  0.6263 (0.0093)
+MDM 10.61 (9.14) 2474 (0.14)  0.5559 (0.0055) 0-6569 (0.0085)
Soft-trunc 9.18 (0.16) 474 (0.15) 0.6018(0_0054) 0.5966 (0.0083)

TmageNet-32 1 N ipm 825017 424014 05879 go0ss)  0.6020 (o 00s)

Architecture. We applied MDM on three baselines: ADM (Dhariwal & Nichol, 2021), P2W (Choi
et al., 2022) and Soft-truncation (Kim et al., 2021). ADM is the representative baseline model with
widely used architectures for diffusion models. P2W is a recent training strategy tailored to diffusion
models. Soft-truncation represents a universal training technique for score-based models, including
both discrete and continuous time-based models. We show that our method can be combined with
these baselines to improve the generation quality and reduce training resources. For ADM, we
employ three attention layers at resolutions of 32, 16, and 8, with three residual blocks per resolution
in Unet (Ronneberger et al., 2015). The noise schedule is set as cosine. Our model has 128 channels
with 32 channels per attention head and a dropout rate of 0.3. The batch size is 128, and the learning
rate is 0.0001. P2W is implemented on top of ADM. We set k=1, y=1. For sampling, we apply
DDIM (Song et al., 2020) with 50 sampling steps. We set full-time step 7" to 1000. For the soft-
truncation, we follow the identical configuration for ImageNet-32 training that uses DDPM++ (Song
et al., 2021a) architecture. For ADM and P2W, we set 74 = {t|t € (0.8T7,T|}, 75 = {t|t €
(0.17,0.8T)}, and 7 = {t|t € (0,0.17]}. For Soft-truncation we use 74 = {t|t € (0.67,71]},
T = {t|t € (0.27,0.67T1}, and 7¢ = {t|t € (0,0.2T]}. We observe that 74,75, and 7¢ are
consistent along with model and image resolution regardless of the training dataset. Furthermore,
the attention concentration of the model (Fig.3(b)) depicts similar patterns even when we train the
model using only 10% of total iterations. Thus, we can obtain time step intervals without significant
overheads.

Sample quality metric. We use four metrics to assess the quality of the generated samples. We first
employ the Fréchet inception distance (FID) (Heusel et al., 2017). It provides a consistent evaluation
of sample quality based on human visual assessment, outperforming the inception score (Salimans
et al., 2016). FID measures the symmetric distance on the first raw and second central momen-
tum between the two image distributions in the Inception-V3 (Szegedy et al., 2016) latent space.
To capture structural relations between the data distributions more effectively than FID, we utilize
sFID (Nash et al., 2021), which evaluates spatial features of Inception-V3. We also report preci-
sion and recall on the latent distribution of Inception-V3 (Kynkédnniemi et al., 2019) as FID cannot
explicitly measure the distribution coverage of the generated samples.

Computational resources. We train our model with NVIDIA A6000 GPU. Training ADM and
P2W on the CIFAR-10 dataset with a batch size of 128 for 500K iteration takes 270 hours. Soft-
truncation on the ImageNet-32 dataset with a batch size of 128 for 5.0M iterations requires 462
hours.

5.2 TIME AND RESOURCE EFFICIENCY EVALUATION

We evaluate the practical aspects of different models by comparing their training time and resource
requirements. Tab. 2 reports WCT and TC at three key points: (1) model convergence, (2) the point
of achieving the best FID, and (3) surpassing the baseline model. We set the WCT and TC of the
baseline model to 100%NWCT (normalized WCT) and 100%NTC (normalized TC), respectively.
We consider the model to be converged when the FID difference between consecutive points is less
than 0.1 for three consecutive sampling points. Simultaneously, the FID gap to the best value should
be smaller than 0.3 in the CIFAR-10 dataset. ADM converges at 76.0%NWCT, while MDM on
ADM converges about 3.2 times faster (23.8%NWCT). Similarly, P2W converges at 44.0%NWCT,
whereas MDM on P2W converges at 29.4%NWCT, meaning 1.5 times faster.
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Table 4: Ablation results on different model combinations along time steps in the CIFAR-10 dataset.
Each experiment uses ADM for 75 U 7¢ and only differs in the model for 74.

TA T8 U TC FID| sFID] Precision? Recall?
ADM ADM 12.42 27.34 0.5777 0.6247
MDM ADM 11.04 (-1.38)  25.26 (-2.08) 0.5604 (-0.0173)  0.6485 (+0.0238)

We also identify when our MDM reaches its best FID and the best baseline FID score. Surpris-
ingly, MDM-equipped baselines attain the best baseline score at an average of 17.9%NWCT and
38.0%NTC, being up to 4.7 times faster. Then, MDM reaches its best performance at an average
of 37.9%NWCT and 62.3%NTC, still less than the baseline best score requirements. The result is
visualized in Fig. 1. In conclusion, MDM effectively reduces training time and resources because of
(1) higher RT with negligible computational overhead and (2) faster convergence of each expert.

5.3 QUALITY EVALUATION

Tab. 3 presents the quality evaluation results, reporting the minimum FID achieved by each model.
We depict generated image samples in Appendix B. Applying MDM consistently improves per-
formance across all baselines. Notably, our approach demonstrates a significant improvement in
sFID and recall compared to other metrics. To identify which local expert contributes to our model
to cover more diverse structures, we conduct a simple case study. As in Tab. 4, we compare the
original ADM with a partially modified ADM where fy, of MDM is exclusively applied for time
interval 74. This investigation shows that fy, significantly improves sFID and recall compared to
the baseline. This is because the time steps 74 play a pivotal role in shaping the overall outline
(Sec. 4.2), and our independent training strategy allows fp, to generate diverse structures without
negative impact from other time intervals.

Although we can manipulate precision-recall trade-off via guidance methods (Dhariwal & Nichol,
2021; Ho & Salimans, 2021) for the diffusion model, increasing recall is known to be a more chal-
lenging problem (the guidance can improve precision by sacrificing recall while the opposite is not
yet available). In this view, we can conclude that MDM is capable of capturing diverse structures
that lead to notable advantages in both sFID and recall.

5.4 COMPARISON WITH P2W AND SOFT-TRUNCATION

Both P2W and Soft-truncation aim to improve image generation quality by exploiting the roles of
different time steps. However, these methods are not suitable for increasing RT without overhead,
and they suffer from adverse impacts among time steps as they train the time steps all at once.
By utilizing MDM, we successfully separate the training of each time step group from the others,
thereby increasing training speed and eliminating the negative impact among different groups. Our
method can be applied orthogonally to both methods, which not only boosts the training speed but
also brings the performance closer to the optimal bound.

6 CONCLUSION

This paper introduces a multi-expert diffusion model (MDM) as an efficient approach for train-
ing diffusion models. MDM capitalizes on the time-independent training nature of the diffusion
model. Specifically, we carefully select three-time intervals according to activation analysis and
assign a dedicated expert to each interval. Three experts of our model are trained independently on
their respective time step groups. This approach allows us to increase resource throughput while
minimizing the computational overhead, which effectively reduces the wall-clock time required for
training full iterations. Furthermore, our multi-expert strategy enables each expert to focus solely
on each designated time step without any negative impacts from other time ranges. This improves
overall convergence speed and leads to a significant reduction in the total cost of training the diffu-
sion model. As a result, our model reduces total costs by 24 - 53% and training time by 63 - 79%
compared to the baselines, all while achieving the improvement in the average FID by 7.7% over all
datasets.
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ETHICS STATEMENT

Improving the training efficiency of diffusion models has the potential to increase the risk of abusing
diffusion models in fraud and forgery. While we successfully reduced the total cost of training dif-
fusion models, the inference stage of diffusion models still requires significant energy consumption
and computational resources.

REPRODUCIBILITY STATEMENT

Our method works as an add-on format to the existing baselines. The baseline codes are publicly
available online. Basically, we edited the code to enable multi-expert training by time step modifica-
tion based on the code provided by the authors of each model. When adding our method, we made
effort to maintain the principle of the code, such as model structure and hyper-parameters. When
the authors provide the exact training configuration, we follow it to precisely reproduce the baseline
models. The configuration for training our model is stated in Sec. 5.1.
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