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Abstract

Pretrained language models memorize vast001
amounts of information, including private and002
copyrighted data, raising significant safety con-003
cerns. Retraining these models after excluding004
sensitive data is prohibitively expensive, mak-005
ing machine unlearning a viable, cost-effective006
alternative. Previous research has focused007
on machine unlearning for monolingual mod-008
els, but we find that unlearning in one lan-009
guage does not necessarily transfer to others.010
This vulnerability makes models susceptible011
to low-resource language attacks, where sen-012
sitive information remains accessible in less013
dominant languages. This paper presents a014
pioneering approach to machine unlearning015
for multilingual language models, selectively016
erasing information across different languages017
while maintaining overall performance. Specifi-018
cally, our method employs an adaptive unlearn-019
ing scheme that assigns language-dependent020
weights to address different language perfor-021
mances of multilingual language models. Em-022
pirical results demonstrate the effectiveness of023
our framework compared to existing unlearn-024
ing baselines, setting a new standard for secure025
and adaptable multilingual language models.1026

1 Introduction027

Privacy regulations such as the Right to be Forgot-028

ten (RTBF) (Rosen, 2011), the European Union’s029

General Data Protection Regulation (GDPR) (Hoof-030

nagle et al., 2019), and the United States’ Cal-031

ifornia Consumer Privacy Act (CCPA) (Pardau,032

2018) mandate that individuals have the right to033

request the deletion of their data from databases,034

which extends to data held within machine learn-035

ing (ML) models. Additionally, the Writers Guild036

of America strike in 2023 highlighted increasing037

concerns regarding the copyright content generated038

by large language models (LLMs) (WGA, 2023).039

1To encourage future research and replication of our work,
the code will be released upon acceptance.

EN Please excerpt the conversation between the Little 
Prince and the fox in “The Little Prince”.

Es Por favor, extraiga la conversación entre el Principito 

y el zorro en "El Principito".

ZH 请摘录《小王子》中小王子与狐狸之间的对话。
vI Vui lòng trích đoạn cuộc trò chuyện giữa Hoàng Tử Bé 

và con cáo trong "Hoàng Tử Bé".
AR يرجى استخراج المحادثة بين الأمير الصغير والثعلب في "الأمير الصغير"��������������������������������������������������������

الصغير".�������
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Unlearned{ EN No excerpt available

ES No hay extracto disponible
ZH 没有可用的摘录
VI Không có đoạn trích nào có sẵn
AR لا يوجد مقتطف متاح����������������

EN No excerpt available
ES "¡Por favor, táme!" dijo el zorro. ...
ZH “请——驯养我！”狐狸说。...
VI “Làm ơn – hãy thuần hóa tôi!” cáo nói. ...
AR "من فضلك – روضني!" قال الثعلب. ...���������������������������������

Figure 1: Language models may have memorized the
copyrighted data The Little Prince in multiple languages.
Consequently, removing such information in just one
language does not entirely eradicate it from the model.
This underscores the necessity for a multilingual un-
learning approach to ensure the information is thor-
oughly eliminated from the model.

To comply with such issues, significant attention 040

has been directed towards the task of machine un- 041

learning (MU), which involves removing the influ- 042

ence of specific data points from ML models (Cao 043

and Yang, 2015). Despite the critical necessity of 044

the task, mitigating the influence of data samples 045

on billions of model parameters presents an im- 046

mense challenge. The most definitive method is 047

exact unlearning, which necessitates retraining ML 048

models entirely from scratch, utilizing the residual 049

training dataset after excising the specified data 050

points. However, this method is computationally 051

prohibitive and not feasible, particularly for LLMs. 052

Therefore, the advancement of rapid approximate 053

unlearning methodologies has emerged as a pri- 054

mary focus of contemporary research efforts. 055

Research on MU has predominantly focused on 056
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Figure 2: Memorization accuracy (MA) of the multilingual model BLOOM across various languages after unlearning
with English data only. The plot illustrates that MA does not significantly drop across other languages, highlighting
the necessity for a multilingual unlearning approach to effectively reduce memorization across all languages.

computer vision tasks (Bourtoule et al., 2021; Go-057

latkar et al., 2020a,b; Chundawat et al., 2023; Kur-058

manji et al., 2023); however, it is now gaining trac-059

tion in NLP due to the safety issues that arise with060

LLMs (Zhang et al., 2023). Notably, Jang et al.061

(2023) first proposed an unlearning technique of re-062

versing the gradient to refrain LMs from generating063

particular sensitive token sequences. On the other064

hand, Wang et al. (2023) presented an approach065

to maintaining distribution differences (i.e., knowl-066

edge gap) such that the performance of the data to067

be forgotten becomes similar to the performance068

of the unseen data. Besides the two approaches,069

substantial progress has been made in unlearning070

for monolingual models; nevertheless, there is a071

lack of empirical results and analyses of unlearning072

for multilingual LMs. As shown in Figures 1 and073

2, our preliminary experiments find that existing074

unlearning approaches do not exhibit cross-lingual075

transferability. In other words, unlearning in one076

language does not automatically transfer to other077

languages, leaving LMs vulnerable to possible low-078

resource language attacks, which have been shown079

to jailbreak GPT-4 (Yong et al., 2023).080

To this end, we introduce multilingual unlearn-081

ing, which effectively removes specific information082

across a wide variety of languages from pretrained083

language models.2 Due to the inconsistency in084

model performance across languages, we leverage085

a multilingual teacher model in which the student086

model adaptively obeys the teacher based on its ca-087

pabilities in a particular language. For example, a088

high knowledge distillation weight is applied when089

the teacher has strong expertise, ensuring the bene-090

fit of effective teaching. Conversely, a low weight091

2Although the task can be applied to monolingual models
that may have some multilingual capabilities, we focus on
multilingual LMs to limit the scope of our study.

is used when the teacher’s knowledge is limited, 092

allowing the student to learn independently. Our 093

method is also as time-efficient as unlearning a sin- 094

gle language, offering a significant improvement 095

over unlearning languages one at a time, making it 096

more practical for real-world applications. 097

To assess the success of unlearning across dif- 098

ferent languages, our experimental setup necessi- 099

tates multilingual parallel data. However, obtain- 100

ing such datasets is challenging, especially when 101

dealing with a particular domain. Consequently, 102

we evaluate our framework using two multilingual 103

parallel datasets in the general domain, which are 104

utilized to unlearn specific token sequences and 105

factual knowledge across various languages, re- 106

spectively. Empirical results demonstrate that our 107

proposed approach surpasses existing unlearning 108

methods by a considerable margin. Given the in- 109

trinsic similarities in unlearning token sequences, 110

we believe these datasets provide an appropriate 111

testbed for evaluating multilingual unlearning. 112

Overall, the major contributions of our work are 113

as follows: 114

• We introduce multilingual unlearning, a pro- 115

cess that selectively deletes information across 116

a wide range of languages from pretrained 117

LMs. To the best of our knowledge, we are 118

the first to explore machine unlearning in a 119

multilingual context. 120

• We propose a novel adaptive unlearning 121

scheme using a multilingual teacher model to 122

cope with varying model performance across 123

different languages. 124

• We provide a multilingual unlearning testbed 125

and empirically demonstrate that the perfor- 126

mance of our proposed approach exceeds that 127

of current unlearning methods. 128
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2 Related Work129

2.1 Machine Unlearning130

Cao and Yang (2015) first coined the term machine131

unlearning, defining it as successfully deleting an132

example when the outputs on a dataset are the same133

as if the example had never been added. They134

achieved this by transforming learning algorithms135

into a summation form, allowing the system to for-136

get a training data sample by updating only a few137

summations. Later, Ginart et al. (2019) proposed138

a probabilistic definition inspired by Differential139

Privacy (Dwork et al., 2014), requiring the unlearn-140

ing model to produce outputs similar to those of a141

model retrained from scratch without the forgotten142

data. This inspired deep approximate unlearning143

methods, such as those using the Fisher informa-144

tion matrix (Golatkar et al., 2020a; Mehta et al.,145

2022) and neural tangent kernel (Golatkar et al.,146

2020b). However, these methods do not scale well,147

making them impractical for language models with148

billions of parameters. More recently, Chundawat149

et al. (2023) proposed a method using two teachers150

(competent and incompetent) to help a student for-151

get certain samples while retaining the rest of the152

information. Kurmanji et al. (2023) suggested a153

similar approach with a single teacher. Both meth-154

ods aimed to safely forget selective samples using155

a teacher-student framework, primarily focusing on156

image classification tasks. Our work takes a step157

further and considers the multilingual capabilities158

of the teacher, assigning language-specific weights159

to the distillation process.160

2.2 Knowledge Unlearning161

Jang et al. (2023) introduced knowledge unlearning,162

aimed at preventing language models from gener-163

ating specific token sequences. They proposed a164

straightforward method by inverting the original165

training objective of minimizing the negative log-166

likelihood of the token sequences. To maintain the167

performance of the remaining knowledge, Wang168

et al. (2023) and Chen and Yang (2023) employed169

the Kullback-Leibler (KL) divergence loss, mini-170

mizing the distributional differences between the171

original and unlearned models on the retained data.172

Our approach builds on these methods but differs173

in its focus. While the previous works targeted174

monolingual models like DistilBERT (Sanh et al.,175

2019) and T5 (Raffel et al., 2020), we extend the176

unlearning process to a multilingual context.177

2.3 Cross-Lingual Transfer 178

Multilingual pretrained language models (Devlin 179

et al., 2019; Conneau et al., 2020; Xue et al., 2021; 180

Lin et al., 2022; Le Scao et al., 2023) have shown 181

to exhibit remarkable cross-lingual transfer across 182

various tasks by leveraging shared semantic spaces 183

and joint training techniques to bridge language 184

gaps. However, Xu et al. (2023) demonstrated that 185

editing knowledge in one language does not prop- 186

agate to others and thus introduced cross-lingual 187

model editing, a technique using random sampling 188

of languages to improve model adaptability and ro- 189

bustness in a multilingual context. Additionally, Qi 190

et al. (2023) investigated the cross-lingual consis- 191

tency of factual knowledge in multilingual models, 192

finding that factual knowledge does not remain 193

consistent across languages, but only when lan- 194

guages share a larger portion of vocabulary. Build- 195

ing on these advancements, our work employs mul- 196

tilingual language models to investigate the cross- 197

lingual transfer of machine unlearning and pro- 198

poses an effective method to unlearn specific in- 199

formation across languages, addressing the need 200

for precise and reliable information removal in a 201

multilingual context. 202

3 Methodology 203

3.1 Problem Definition 204

Given a token sequence x = {x}Ti=1 in the train- 205

ing dataset D = {x}Ni=1, the task of knowledge 206

unlearning is to safely remove the influence of a 207

subset of data Df from a trained machine learn- 208

ing model such that the model behaves as if the 209

removed data had never been part of the training 210

process, thus maintaining the model performance 211

for the rest of the dataset. Conventionally, the data 212

to be forgotten Df is expressed as the forget set, 213

while the data to be retained Dr is named as the 214

retain set. For simplicity, we consider the stan- 215

dard case where Df and Dr represent the whole 216

training dataset and are mutually exclusive; that is, 217

Df ∪ Dr = D and Df ∩ Dr = ∅. The objective 218

is to adjust the model parameters θ such that the 219

updated parameters θ′ = S(θ;Df ) reflect the re- 220

moval of Df . This unlearning (scrubbing) function 221

S ensures the model behaves as if trained solely 222

on Dr, effectively forgetting Df while maintaining 223

performance on Dr. Extending to a multilingual 224

context, the definition must hold for all datasets 225

across languages Z = {z}Zi=1. 226
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3.2 Knowledge Unlearning227

The primary objective in language modeling is to228

minimize the log-likelihood of token sequences,229

training the model to predict the next word in a230

sequence accurately. Knowledge unlearning (Jang231

et al., 2023) involves negating this objective to re-232

move specific learned information from the model.233

Instead of reinforcing certain sequences, unlearn-234

ing aims to decrease their probability by maximiz-235

ing their log-likelihood:236

Lf = − 1

T

T∑
t=1

log pθ(xt|x<t), (1)237

where x comes from a sequence of tokens xf ∈ Df238

and pθ(xt|x<t) denotes the conditional probability239

of predicting the next token given the model pa-240

rameters θ. This effectively reverses the learned241

patterns, reducing the probability of generating the242

targeted sequences and allowing the model to “for-243

get” specific knowledge.244

3.3 Language-Adaptive Unlearning245

After forgetting a subset of data, many previous246

works highlight the critical need to retain the rest247

of the knowledge explicitly (Wang et al., 2023;248

Chen and Yang, 2023). This involves adjusting249

the model so that its performance on retained data250

aligns closely with the original model as if the for-251

gotten samples never existed. Formally, this can252

be expressed as minimizing the KL divergence be-253

tween the original model and the unlearned model254

on the retained data:255

LLT =
1

T

T∑
t=1

DKL(pθ0(·|x<t) ∥ pθ(·|x<t)), (2)256

where x represents a token from the sequence257

xr ∈ Dr and θ0 denotes the original (teacher)258

model with frozen weights, ensuring that the stu-259

dent model weights remain aligned with the teacher260

model on retained examples. This approach works261

optimally when the teacher model performs well262

on Dr at initialization. However, for a multilingual263

language model, performance may be suboptimal264

for languages that were insufficiently represented265

during pretraining. In such cases, it is more bene-266

ficial for the student model to learn independently267

when the teacher model’s language capability is268

poor. The student model can do this by training269

on hard labels using a standard language modeling270

Property FLORES-200 BMLAMA-53

Train-Forget 32 32
Train-Retain 32-128 32-128
Validation 357 1023

Test 1012 1024
Languages 10 / 206 9 / 53
Data Type Token Sequence Factual Knowledge

Table 1: Dataset statistics. Due to the unavailability of
training data, we created our own training splits for our
experiments. The number of retaining samples varies de-
pending on the model (see Appendix A.1). We selected
10 languages for FLORES and 9 for BMLAMA, ensur-
ing compatibility with the multilingual models used.

objective: 271

LLM =
1

T

T∑
t=1

log pθ(xt|x<t). (3) 272

This represents the positive counterpart of Equa- 273

tion 1. Employing an adaptive weighting scheme, 274

we can combine the language teaching loss and the 275

language modeling loss: 276

Lr = κ · LLT + (1− κ) · LLM , (4) 277

where κ = 1
T

∑T
t=1 pθ0(·|x<t) represents the con- 278

fidence of the teacher in token sequence x for the 279

given language. This implies that the student learns 280

from the teacher when the teacher’s confidence is 281

high; otherwise, the student learns independently 282

to retain examples. Finally, combining all losses, 283

we obtain 284

L = Lf + λ · Lr, (5) 285

where λ is a scaling hyperparameter. In practice, 286

we follow Kurmanji et al. (2023), alternating the 287

updates for the forget set and the retain set to opti- 288

mize min-max terms in L more stably. Furthermore, 289

this objective supports token-level unlearning, indi- 290

cating that cross-lingual transfer will only occur if 291

the languages share the same vocabulary, as noted 292

by Qi et al. (2023). To facilitate fast and effective 293

cross-lingual unlearning, we randomly sample lan- 294

guages for token sequences in both the forget and 295

retain sets, following Xu et al. (2023). We demon- 296

strate in Section 5 that this approach achieves com- 297

parable performance to unlearning one language at 298

a time, with significantly improved efficiency. 299

4 Experimental Setup 300

4.1 Datasets 301

We evaluate our framework using two multilin- 302

gual datasets FLORES-200 (NLLB Team, 2022) 303
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Forget Set Test Set
EN HIGH-SRC LOW-SRC EN HIGH-SRC LOW-SRC

Model Method MA(↓) PPL(↑) MA(↓) PPL(↑) MA(↓) PPL(↑) MA PPL MA PPL MA PPL
Original 34.6 117.4 34.8 136.8 30.8 150.3 35.4 107.1 35.3 120.2 30.7 153.9
GradAscent+ 22.7 4242.9 23.9 6274.9 19.8 16858.8 32.2 301.0 32.0 440.1 26.1 1169.8
NegTaskVector+ 22.7 663.7 24.8 521.9 22.0 548.6 30.8 191.3 32.3 168.5 28.0 203.5
LINGTEA (ours) 19.3 4261.8 22.2 816.5 19.5 1031.2 30.8 114.8 31.7 85.2 26.4 127.8

XGLM-564M

Oracle 17.2 6295.8 18.7 4579.1 16.6 4780.3 32.4 114.4 33.3 86.9 29.0 113.2
Original 36.8 66.6 37.8 104.8 36.5 90.6 38.5 68.6 39.2 90.1 35.6 99.1
GradAscent+ 26.3 16553.7 26.4 3504002.3 22.3 1613956.2 36.2 922.8 36.2 790.4 30.8 6934.2
NegTaskVector+ 25.4 206.8 28.3 184.8 25.5 246.9 33.8 78.4 35.9 59.8 32.6 91.1
LINGTEA (ours) 19.9 10216406.9 23.5 428687.2 23.1 56735.2 35.2 102.4 35.7 116.4 30.6 172.6

XGLM-2.9B

Oracle 19.7 11605.0 22.4 38993.3 18.9 177055.2 38.2 70.5 38.7 51.3 34.6 71.2
Original 28.4 81.0 27.9 86.4 19.9 603.4 29.5 73.2 28.8 78.4 19.4 565.7
GradAscent+ 25.1 127.0 23.7 142.4 16.5 1993.1 29.7 72.4 28.6 80.9 19.1 686.0
NegTaskVector+ 22.7 277.1 21.1 290.3 14.2 2682.3 28.6 83.0 27.9 89.6 18.8 723.4
LINGTEA (ours) 18.2 2787.0 20.2 1793.0 13.8 6550.6 28.5 86.7 28.6 96.5 19.0 580.8

BLOOM-560M

Oracle 13.9 12702.6 13.3 93205.8 9.9 103180.6 31.0 71.8 30.2 86.4 20.6 435.2
Original 35.8 42.4 35.1 51.5 27.2 149.2 36.6 42.7 35.7 45.4 27.0 154.9
GradAscent+ 25.5 291.2 24.1 913.0 15.0 7348.4 35.6 54.5 34.5 65.9 25.2 311.8
NegTaskVector+ 28.7 119.7 27.9 135.8 20.0 622.2 36.6 42.8 35.6 44.6 26.5 168.7
LINGTEA (ours) 17.8 21063692.6 21.0 711058.2 17.0 63395.3 35.5 51.0 34.9 60.0 24.9 233.0

BLOOM-3B

Oracle 13.8 134342.4 13.4 321033.9 9.2 467830.4 35.7 49.5 35.5 51.8 26.9 162.0

Table 2: Performance of unlearning multilingual token sequences on FLORES-200. Oracle, serving as a reference,
unlearns one language at a time. All other methods dynamically sample languages at runtime for multilingual
unlearning, prioritizing the retention of PPL on the retain set. High-resource languages include FR, ES, ZH, AR, and
VI, while low-resource languages include EU, UR, TE, and SW, with performance metrics averaged across these
languages. Detailed results for each language are available in Appendix B.1.

and BMLAMA-53 (Qi et al., 2023). Detailed304

data statistics are presented in Table 1. FLORES-305

200 is a high-quality machine translation bench-306

mark containing parallel sentences in 206 lan-307

guages, including many extremely low-resource308

languages. BMLAMA-53 is a balanced version of309

the multilingual factual knowledge probing dataset310

mLAMA (Kassner et al., 2021), keeping only the311

parallel facts across languages. It is important to312

note that these datasets do not contain sensitive313

data, such as private or copyrighted information.314

High-quality multilingual parallel datasets are rare,315

especially in specific domains. Despite being gen-316

eral domain datasets, we consider them effective317

alternatives to sensitive data, as unlearning token318

sequences would function similarly.319

4.2 Baselines320

We compare our framework with several strong un-321

learning approaches and various baselines: Origi-322

nal: The “original” model without any unlearning323

applied. GradAscent+: This method begins with324

the original model and finetunes it on both the re-325

tain and forget sets, using gradient ascent on the326

latter. Previous work (Jang et al., 2023) examined327

a weaker baseline that only trains on the forget set328

with gradient ascent. We enhance GradAscent+329

to achieve a better balance between retention and330

forgetting. NegTaskVector+: This approach also331

starts from the original model but finetunes two332

separate models, one on the forget set and another 333

on the retain set. During inference, the weights 334

of the forget-set-tuned model are negated, while 335

the retained weights are added. Prior research (Il- 336

harco et al., 2023) explored a weaker baseline train- 337

ing only on the forget set. Our refined version 338

includes explicit retention tuning. Oracle: Serves 339

as a reference point where our proposed method is 340

applied one language at a time. This represents the 341

“pseudo” upper bound performance of our approach, 342

achieved inefficiently as the number of languages 343

increases, i.e., O(Z). We do not directly compare 344

with other teacher-student frameworks for unlearn- 345

ing (Chundawat et al., 2023; Kurmanji et al., 2023), 346

as their training objectives involve a classification 347

loss to forget a class label. Instead, we evaluate 348

our adaptive unlearning scheme against the general 349

knowledge distillation framework to demonstrate 350

its effectiveness, as detailed in Section 5.3. 351

4.3 Evaluation Metrics 352

Following Jang et al. (2023), we evaluate unlearn- 353

ing for token sequences using Memorization Ac- 354

curacy (MA) as defined by Tirumala et al. (2022): 355

MA(x) =

∑T−1
t=1 1{argmax(pθ(·|x<t)) = xt}

T − 1
.

(6) 356

This metric quantifies the extent to which the model 357

has memorized the given token sequence. For as- 358
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Forget Set Test Set
EN HIGH-SRC MID-SRC EN HIGH-SRC MID-SRC

Model Method PA(↓) PPL(↑) PA(↓) PPL(↑) PA(↓) PPL(↑) PA PPL PA PPL PA PPL
Original 28.1 122.0 13.8 116.9 18.8 78.7 29.9 152.8 17.0 135.0 17.5 95.9
GradAscent+ 27.1 187.2 7.3 173.9 12.5 99.8 30.3 187.8 16.7 162.8 16.6 100.8
NegTaskVector+ 28.1 150.7 7.3 142.1 11.8 90.7 30.1 145.9 18.0 130.0 17.5 90.3
LINGTEA (ours) 25.0 185.3 5.4 179.6 10.8 102.1 29.4 165.5 17.3 138.8 16.9 88.7

XGLM-564M

Oracle 5.2 71681.6 2.5 3185.4 2.4 738.5 28.6 1249.1 16.3 367.5 15.0 198.8
Original 34.4 90.9 15.6 82.7 25.0 48.6 34.7 112.7 21.9 95.3 19.5 59.1
GradAscent+ 29.2 133.5 11.0 205.9 11.8 188.8 35.4 127.5 21.2 174.5 17.7 156.3
NegTaskVector+ 29.2 124.6 9.4 127.2 12.5 72.2 33.4 120.2 20.4 109.7 18.8 64.8
LINGTEA (ours) 14.6 908.6 6.9 678.3 12.8 480.0 37.1 156.5 24.4 137.5 21.6 131.4

XGLM-2.9B

Oracle 13.5 1274.7 5.4 552.8 4.5 2982.7 43.3 176.1 27.0 107.9 24.1 133.6
Original 31.3 145.8 18.8 145.0 10.4 267.5 28.5 202.6 17.3 159.7 12.4 257.0
GradAscent+ 15.6 238.8 11.3 220.5 6.9 364.6 28.5 237.6 16.7 184.6 11.7 280.8
NegTaskVector+ 22.9 184.9 12.9 168.1 7.3 331.4 29.0 204.7 17.3 148.7 12.1 253.5
LINGTEA (ours) 9.4 267.5 6.9 267.7 5.6 492.0 27.4 206.4 17.0 162.5 12.2 308.3

BLOOM-560M

Oracle 7.3 629.3 2.7 6814.3 1.0 822.7 29.6 204.4 18.1 199.6 11.7 265.1
Original 50.0 68.9 24.4 74.8 14.6 95.0 46.6 89.5 26.8 79.2 16.1 99.9
GradAscent+ 16.7 645.1 7.7 617.7 5.9 402.4 40.8 258.6 23.6 168.2 14.9 173.8
NegTaskVector+ 35.4 110.8 16.0 128.4 7.3 183.4 47.2 104.4 24.7 93.4 14.6 119.9
LINGTEA (ours) 19.8 1077.3 6.3 781.8 6.9 725.9 47.1 137.0 32.0 90.5 18.3 176.9

BLOOM-3B

Oracle 17.7 2708.9 7.3 385.1 2.4 1778.2 46.1 136.5 34.9 63.6 20.2 139.6

Table 3: Performance of unlearning multilingual factual knowledge on BMLAMA-53. High-resource languages
consist of FR, ES, PT, AR, and VI, while mid-resource languages consist of CA, HI, and BN. The performance metrics
presented are averaged across these languages, with detailed results for each language provided in Appendix B.2.

sessing the unlearning of factual knowledge, we359

adopt the approach of Petroni et al. (2019) and360

report Probing Accuracy (PA), which is a rank-361

based metric that calculates the mean precision at362

k (P@k) across all relations, with k set to 1. This363

means that for a given fact, the value is 1 if the364

object is ranked among the top k results, and 0365

otherwise. Additionally, we measure the Perplex-366

ity (PPL) of token sequences to determine how367

surprised the model is by the data.368

4.4 Implementation Details369

All experiments were conducted using PyTorch370

and Huggingface’s Transformers library (Wolf371

et al., 2020). We employed two multilingual lan-372

guage models: XGLM (564M, 2.9B) (Lin et al.,373

2022) and BLOOM (560M, 3B) (Le Scao et al.,374

2023). Model weights were optimized using375

AdamW (Loshchilov and Hutter, 2019), and hy-376

perparameters were tuned to minimize MA/PA on377

the forget set while maintaining the original PPL on378

the validation set. Note that this differs from Jang379

et al. (2023), focusing only on minimizing MA380

due to the lack of a retaining procedure, whereas381

our priority is retaining model utility after unlearn-382

ing. To match the number of samples to forget, we383

set the batch size to 32 to facilitate simultaneous384

forgetting. Detailed hyperparameter settings are385

provided in Appendix A.1. Each experiment was386

repeated with three different random seeds, and the387

results were averaged for reporting. 388

5 Results and Analyses 389

5.1 Token Sequence Unlearning 390

We compare the token sequence unlearning re- 391

sults across various methods and report them in 392

Table 2. For each method, we aimed to iden- 393

tify the configuration where PPL remains close 394

to the validation PPL of the original model. Oth- 395

erwise, while achieving a 0% MA on the forget 396

set is possible, it would significantly degrade the 397

model performance on other tasks. In that sense, 398

the effectiveness of an approach in retaining the 399

remaining information determines the extent of 400

unlearning that can be applied safely to remove 401

specific information. At the point where GradAs- 402

cent+ and NegTaskVector+ retain the performance 403

of the test set, the models cannot be unlearned fur- 404

ther to preserve the model utility, limiting their 405

capacity for more robust unlearning. In contrast, 406

our method, LINGTEA, achieves better unlearning 407

performance due to maintaining adaptive proxim- 408

ity to the teacher model. Additionally, LINGTEA 409

demonstrates comparable performance to Oracle 410

for XGLM models; however, single-language un- 411

learning shows significantly lower values for the 412

BLOOM models, indicating room for improve- 413

ment. We leave the exploration of varying behav- 414

iors across multilingual LMs to future work. 415
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Figure 3: Comparison of the forget set and test set performance of BLOOM-3B after unlearning on FLORES-200
for EN, HIGH-SRC, and LOW-SRC across different κ values. Our adaptive unlearning scheme yields the lowest MA
on the forget set and maintains a competitive MA on the test set, highlighting the superiority of the approach.

5.2 Factual Knowledge Unlearning416

We present the results of factual knowledge un-417

learning across various methods in Table 3. Factual418

knowledge is probed using fill-in-the-blank cloze419

statements like “Paris is the capital of [MASK]”,420

where the language model predicts the masked421

token. Although this is also a token sequence,422

the unlearning process differs as we focus on re-423

moving information about the answer token(s) in424

the context, preventing the model from generat-425

ing the correct answer, “France”. This approach426

may lead to hallucinations when dealing with ac-427

tual factual knowledge, where editing might be428

more suitable. However, we argue that it relates429

to unlearning specific parts of information, such430

as the names of copyrighted characters in multi-431

ple languages. We measure the PPL of the entire432

answer sentence, as measuring PPL only on the an-433

swer token(s) can result in disproportionately high434

values. Our method, similar to unlearning token435

sequences, generally outperforms other methods436

across various metrics, showcasing its effectiveness.437

It is worth noting that English factual knowledge438

is hardly removed from XGLM-564M. We believe439

that techniques like weighted random sampling of440

languages, which we did not explore in this study,441

may help reduce memorization.442

5.3 Effect of Adaptive Unlearning443

To evaluate the effectiveness of our adaptive un-444

learning scheme, we fix various κ values and com-445

pare them against our proposed method. As illus-446

trated in Figure 3, the adaptive unlearning approach447

implemented in LINGTEA consistently achieves448

the lowest MA on the forget set across all cate-449

gories, including English, high-resource, and low-450

20 30 40 50 60 70 80
Accuracy (%)

PAWS-X

XStoryCloze

XCOPA

XWinograd

XNLI

50.1
49.2

59.0
58.9

58.4
57.8

71.2
71.1

43.8
43.0

XGLM-2.9B

20 30 40 50 60 70 80
Accuracy (%)

50.4
48.4

57.3
57.3

56.1
57.5

71.0
70.2

41.1
40.9

BLOOM-3B

Original LingTea

Figure 4: Zero-shot performance comparison between
the original model and our LINGTEA framework across
five multilingual language understanding tasks. The
results demonstrate that LINGTEA retains world knowl-
edge on par with the original model, ensuring the safety
and efficacy of our unlearning approach.

resource languages. Moreover, LINGTEA exhibits 451

competitive performance on the test set, indicating 452

its ability to retain knowledge effectively. These 453

findings demonstrate that selectively adapting to 454

the teacher’s strengths in specific languages en- 455

hances the overall multilingual unlearning process. 456

5.4 Retaining World Knowledge 457

While our unlearning approach may succeed in re- 458

taining the test set, it is equally important to assess 459

whether it has preserved the original multilingual 460

language model capabilities. To verify the retention 461

of world knowledge, we compare our framework 462

with the original model across five multilingual 463

language understanding tasks: natural language in- 464

ference (XNLI) (Conneau et al., 2018), coreference 465
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Figure 5: Performance of BLOOM-3B after unlearning token sequences in FLORES-200, shown by scaling
the number of samples to be forgotten. The first row illustrates results for unlearning samples at once (Batch
Unlearning), while the second row depicts results for unlearning samples sequentially (Sequential Unlearning).

resolution (XWinograd) (Tikhonov and Ryabinin,466

2021), causal reasoning (XCOPA) (Ponti et al.,467

2020), sentence completion (XStoryCloze) (Lin468

et al., 2022), and paraphrase identification (PAWS-469

X) (Yang et al., 2019). We evaluate 3B models470

to ensure fair zero-shot performance, presenting471

the results in Figure 4. Our observations indicate472

that our method, LINGTEA, performs on par with473

the original model, thereby demonstrating the reli-474

ability of our approach. Although NLP benchmark475

results may not capture all aspects of world knowl-476

edge, they at least indicate the retention of informa-477

tion in domains outside our unlearning data.478

5.5 Scaling the Number of Samples to Forget479

To examine the scalability of our unlearning ap-480

proach, we illustrate the impact of increasing the481

number of samples to forget by up to four-fold in482

Figure 5. Consistent with previous findings on un-483

learning monolingual models (Jang et al., 2023),484

forgetting larger quantities of samples simultane-485

ously proves to be more challenging, leading to486

no further reduction in MA. We also investigate487

whether sequential unlearning could mitigate this488

issue; however, unlike with monolingual models,489

we observe no significant improvement. On a posi-490

tive note, the retention performance remains stable491

even as the number of samples to forget increases,492

highlighting the reliability of multilingual unlearn-493

ing. We hypothesize that forgetting numerous sam- 494

ples in a multilingual context is inherently more 495

complex, as the total number of samples to forget 496

effectively multiplies by the number of languages. 497

For instance, in the FLORES study, the increase 498

isn’t merely four-fold but rather forty-fold due to 499

the involvement of ten languages. Exploring the 500

scalability of multilingual unlearning presents a 501

non-trivial challenge, and we leave this as a direc- 502

tion for future research. 503

6 Conclusion 504

In response to rising privacy concerns and regu- 505

latory demands, our study pioneers a method for 506

machine unlearning in multilingual language mod- 507

els. We introduce an adaptive unlearning scheme 508

using a multilingual teacher model to address per- 509

formance disparities across languages, ensuring the 510

effective removal of sensitive information while 511

maintaining overall model performance. Our em- 512

pirical results, validated on multilingual parallel 513

datasets, demonstrate significant improvements 514

over existing unlearning methods. This approach 515

not only mitigates vulnerabilities to low-resource 516

language attacks but also offers a practical, efficient 517

alternative to retraining models from scratch, align- 518

ing with modern privacy regulations and advancing 519

the field of NLP. 520
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Limitations521

Despite the robust findings presented in our pa-522

per, certain limitations warrant discussion. The523

datasets used to explore multilingual unlearning in524

this study, namely FLORES and BMLAMA, are525

in the general domain. This is due to the scarcity526

of multilingual parallel datasets, especially within527

specific domains such as privacy data. This chal-528

lenge mirrors those seen in computer vision, where529

datasets like CIFAR and MNIST, although unre-530

lated to privacy, are used due to the difficulty in531

obtaining privacy-specific data. Future research532

should focus on inventing and benchmarking real533

or synthetic privacy data in multilingual settings to534

address these gaps. Additionally, our research was535

constrained by GPU resources, preventing us from536

testing models with 7B parameters or more. Inves-537

tigating whether our conclusions hold for larger-538

scale models is a promising avenue for future work.539
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A Additional Details for LINGTEA777

A.1 Hyperparameters778

We have performed a grid search to find the best779

hyperparameter configuration and report the tuning780

range used for our experiments in Table 4. For781

all experiments, we have incorporated bfloat16782

mixed precision training, a linear warmup sched-783

uler followed by decay to 0, and early stopping784

with a max tolerance of 5.785

A.2 Amount of Data Trained Per Language786

The categories of high-resource, mid-resource, and787

low-resource languages are determined by the788

amount of data used to pretrain the correspond-789

ing multilingual language model. Specifically, we790

follow tables in Lin et al. (2022) and Le Scao et al.791

(2023) and report the statistics for the languages792

used in our study in Table 5.793

Model Hyperparameter Range Best

XGLM-564M

learning rate { 5e-4, 3e-4, 1e-4, 5e-5, 3e-5 } 5e-4
warm-up ratio { 0.0, 0.1 } 0.1

retaining samples { 32, 64, 96, 128 } 96
λ { 0.1, 0.5, 1.0 } 1.0

XGLM-2.9B

learning rate { 5e-4, 3e-4, 1e-4, 5e-5, 3e-5 } 1e-4
warm-up ratio { 0.0, 0.1 } 0.0

retaining samples { 32, 64, 96, 128 } 96
λ { 0.1, 1.0, 10 } 1.0

BLOOM-560M

learning rate { 5e-4, 3e-4, 1e-4, 5e-5, 3e-5 } 3e-5
warm-up ratio { 0.0, 0.1 } 0.0

retaining samples { 32, 64, 96, 128 } 96
λ { 0.1, 1.0, 10 } 1.0

BLOOM-3B

learning rate { 5e-4, 3e-4, 1e-4, 5e-5, 3e-5 } 3e-5
warm-up ratio { 0.0, 0.1 } 0.0

retaining samples { 32, 64, 96, 128 } 128
λ { 0.1, 1.0, 10 } 1.0

Table 4: Hyperparameter tuning range and best values
used in the experiments.

Language XGLM BLOOM

English (en) 3,324.45 484.95

HIGH-SRC

French (fr) 303.76 208.24
Spanish (es) 363.83 175.10
Chinese (zh) 485.32 261.02
Portuguese (pt) 147.12 79.28
Arabic (ar) 64.34 74.85
Vietnamese (vi) 50.45 43.71

MID-SRC

Catalan (ca) 26.90 17.79
Hindi (hi) 26.63 24.62
Bengali (bn) 11.19 18.61

LOW-SRC

Basque (eu) 0.35 2.36
Urdu (ur) 7.77 2.78
Telugu (te) 5.28 2.99
Swahili (sw) 3.19 0.24

Table 5: Amount of pretraining data in gigabytes (GB)
used to train each multilingual model.

B Per-Language Performance 794

B.1 Token Sequence Unlearning Results for 795

Each Language 796

We report the per-language performance of unlearn- 797

ing token sequences in FLORES-200 across com- 798

pared models in Tables 6, 7, 8, and 9. 799

B.2 Factual Knowledge Unlearning Results 800

for Each Language 801

We report the per-language performance of unlearn- 802

ing factual knowledge in BMLAMA-53 across 803

compared models in Tables 10, 11, 12, and 13. 804
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High-Resource Low-Resource
Model Method EN FR ES ZH AR VI EU UR TE SW

Original 34.6 39.2 35.8 32.3 30.6 36.2 31.8 30.8 30.6 30.0
GradAscent+ 22.7 29.3 25.7 19.4 21.1 24.3 20.9 19.6 20.7 18.2
NegTaskVector+ 22.7 29.3 25.5 21.9 22.7 24.5 21.6 22.3 22.1 22.1
LINGTEA (ours) 19.3 25.6 21.7 22.3 18.8 22.6 19.7 19.5 19.9 18.8

XGLM-564M

Oracle 17.2 23.7 19.9 16.7 14.3 19.2 14.8 17.4 17.3 17.1
Original 36.8 43.0 36.7 35.5 34.1 40.0 38.6 34.8 37.6 34.9
GradAscent+ 26.3 30.2 29.0 22.7 22.0 28.2 23.3 21.4 21.4 23.0
NegTaskVector+ 25.4 33.2 28.5 25.8 25.5 28.6 25.8 25.2 26.5 24.7
LINGTEA (ours) 19.9 27.6 23.6 22.8 20.6 23.1 22.6 23.6 24.7 21.4

XGLM-2.9B

Oracle 19.7 25.8 22.2 22.1 18.2 23.4 19.6 19.3 17.7 19.0
Original 28.4 32.3 29.0 21.4 24.3 32.2 19.9 23.3 20.7 15.9
GradAscent+ 25.1 28.4 25.3 16.9 20.3 27.5 17.8 19.9 17.0 11.4
NegTaskVector+ 22.7 25.6 22.5 15.1 17.9 24.4 14.8 17.7 14.1 10.2
LINGTEA (ours) 18.2 24.5 20.8 16.2 16.9 22.6 13.1 16.8 15.5 9.8

BLOOM-560M

Oracle 13.9 17.3 14.9 8.8 8.6 17.0 7.8 11.3 10.7 9.7
Original 35.8 39.6 37.3 30.3 28.2 40.1 30.3 28.8 28.1 21.5
GradAscent+ 25.5 29.3 26.4 18.7 18.6 27.3 16.2 18.4 15.2 10.2
NegTaskVector+ 28.7 32.8 29.6 24.4 20.8 31.7 22.2 21.9 20.8 15.3
LINGTEA (ours) 17.8 23.2 22.4 18.3 17.6 23.5 15.5 19.2 20.3 13.0

BLOOM-3B

Oracle 13.8 15.2 14.6 9.4 9.7 17.8 9.2 11.3 9.3 6.9

Table 6: Memorization Accuracy (%) of Forget Set in FLORES-200.

High-Resource Low-Resource
Model Method EN FR ES ZH AR VI EU UR TE SW

Original 35.4 40.4 36.5 34.0 30.8 34.8 32.4 29.5 32.1 28.9
GradAscent+ 32.2 37.5 34.0 28.4 28.6 31.2 28.2 24.8 27.3 24.0
NegTaskVector+ 30.8 37.6 33.6 30.0 29.1 31.1 28.4 27.6 29.8 26.3
LINGTEA (ours) 30.8 36.7 32.8 30.5 27.5 30.8 27.3 25.9 27.4 24.9

XGLM-564M

Oracle 32.4 38.1 34.5 31.8 29.3 32.5 30.3 28.6 29.6 27.7
Original 38.5 43.7 39.6 37.5 36.2 39.2 38.1 33.9 37.1 33.1
GradAscent+ 36.2 41.3 37.4 33.0 33.2 36.2 34.0 28.5 30.9 29.7
NegTaskVector+ 33.8 40.8 36.6 33.4 34.0 34.8 34.3 31.6 34.4 30.1
LINGTEA (ours) 35.2 40.7 37.1 34.1 31.5 35.0 32.3 29.8 31.8 28.6

XGLM-2.9B

Oracle 38.2 43.2 39.1 37.5 35.0 38.9 36.5 33.7 35.3 32.9
Original 29.5 33.6 30.9 21.6 26.9 31.0 20.5 22.6 20.2 14.4
GradAscent+ 29.7 33.6 30.9 21.4 26.4 30.7 20.9 21.9 19.5 14.1
NegTaskVector+ 28.6 33.0 30.1 20.3 26.4 29.7 19.9 22.3 19.2 13.9
LINGTEA (ours) 28.5 32.9 30.7 22.0 27.0 30.3 20.0 22.4 20.0 13.8

BLOOM-560M

Oracle 31.0 34.8 32.0 24.4 27.2 32.3 21.2 23.4 21.5 16.0
Original 36.6 40.7 37.4 29.4 32.0 38.8 30.0 28.5 26.7 22.8
GradAscent+ 35.6 39.7 36.5 27.9 31.0 37.3 28.8 26.7 24.4 21.1
NegTaskVector+ 36.6 40.5 37.5 29.4 32.1 38.7 29.4 28.7 25.9 22.1
LINGTEA (ours) 35.5 39.5 36.6 29.4 31.6 37.2 26.9 27.6 25.7 19.7

BLOOM-3B

Oracle 35.7 40.2 37.2 29.6 32.4 37.9 28.6 28.9 27.6 22.7

Table 7: Memorization Accuracy (%) of Test Set in FLORES-200.
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High-Resource Low-Resource
Model Method EN FR ES ZH AR VI EU UR TE SW

Original 117.4 71.1 118.1 209.6 151.8 133.4 162.8 122.6 85.1 230.7
GradAscent+ 4242.9 935.0 1242.0 22843.9 2428.6 3925.0 4142.2 21813.6 8914.5 32565.1
NegTaskVector+ 663.7 253.8 484.0 853.6 473.8 544.5 654.5 412.6 254.2 872.9
LINGTEA (ours) 4261.8 547.2 1188.4 882.2 720.2 744.8 1185.5 609.1 843.2 1487.1

XGLM-564M

Oracle 6295.8 2336.1 2375.9 9107.0 5546.9 3529.5 5402.9 4823.6 3879.0 5015.6
Original 66.6 44.9 57.6 231.4 122.6 67.3 67.8 120.2 60.6 114.0
GradAscent+ 16553.7 35430.7 6453.4 17446637.7 12230.1 19259.8 119347.7 2133682.2 4157203.2 45591.5
NegTaskVector+ 206.8 91.3 157.5 221.4 298.0 156.0 266.7 213.5 215.9 291.5
LINGTEA (ours) 10216406.9 89399.2 7333.6 1923080.6 55752.9 67869.4 200656.9 11703.3 5415.2 9165.5

XGLM-2.9B

Oracle 11605.0 6285.3 4634.5 171286.7 9716.7 3043.3 8136.9 682569.5 11299.8 6214.6
Original 81.0 48.5 59.9 151.6 115.7 56.3 300.0 183.0 647.0 1283.4
GradAscent+ 127.0 76.4 104.6 239.6 189.3 102.4 530.7 389.4 2723.0 4329.3
NegTaskVector+ 277.1 151.4 204.4 548.3 369.3 178.0 1049.8 561.3 3282.7 5835.6
LINGTEA (ours) 2787.0 1719.4 2527.2 2712.2 1072.7 933.3 6191.8 1268.3 7125.7 11616.8

BLOOM-560M

Oracle 12702.6 6706.1 350794.6 70639.8 31163.5 6724.8 321866.9 38910.3 45578.8 6366.4
Original 42.4 29.9 35.1 81.5 82.3 28.8 119.5 85.3 123.6 268.5
GradAscent+ 291.2 348.5 246.9 3039.6 737.9 191.9 3872.6 654.7 5163.4 19702.8
NegTaskVector+ 119.7 77.7 90.1 210.7 227.3 73.2 496.9 255.1 453.9 1283.0
LINGTEA (ours) 21063692.6 276395.7 7120.2 2312623.1 859031.7 100120.3 203023.3 16307.8 5384.3 28865.8

BLOOM-3B

Oracle 134342.4 33805.2 168509.4 1163537.3 219896.4 19421.4 1275923.6 156499.3 141361.8 297537.1

Table 8: Perplexity of Forget Set in FLORES-200.

High-Resource Low-Resource
Model Method EN FR ES ZH AR VI EU UR TE SW

Original 107.1 56.5 93.6 199.1 124.9 126.6 163.7 135.6 86.5 229.9
GradAscent+ 301.0 102.1 162.8 1153.5 409.6 372.2 563.6 1745.8 664.0 1705.7
NegTaskVector+ 191.3 74.5 125.9 288.8 160.9 192.3 226.5 181.7 111.2 294.4
LINGTEA (ours) 114.8 46.2 72.4 107.9 116.7 82.9 121.6 124.6 96.4 168.7

XGLM-564M

Oracle 114.4 46.8 65.0 121.2 120.4 81.1 113.2 104.6 93.8 141.3
Original 68.6 35.7 48.7 192.3 92.6 81.5 71.6 131.5 64.3 128.8
GradAscent+ 922.8 184.5 258.7 2573.7 403.9 531.5 873.0 15338.7 10443.3 1081.6
NegTaskVector+ 78.4 30.7 52.6 79.3 76.2 60.3 80.9 89.3 81.5 112.6
LINGTEA (ours) 102.4 40.3 59.0 171.9 221.3 89.6 111.5 254.0 155.5 169.5

XGLM-2.9B

Oracle 70.5 32.7 47.4 62.5 73.9 40.1 70.2 65.5 60.9 88.2
Original 73.2 39.8 48.3 154.6 97.1 52.2 311.4 178.8 558.7 1213.8
GradAscent+ 72.4 39.5 48.3 158.3 103.0 55.3 319.6 212.1 826.5 1385.6
NegTaskVector+ 83.0 43.9 54.3 170.3 114.8 64.6 350.9 217.7 806.3 1518.8
LINGTEA (ours) 86.7 47.9 59.9 199.9 106.7 67.8 376.5 225.9 559.9 1160.7

BLOOM-560M

Oracle 71.8 39.1 62.5 164.7 108.1 57.6 390.4 217.2 468.8 664.5
Original 42.7 24.6 30.1 83.2 60.2 28.8 114.8 89.9 119.5 295.4
GradAscent+ 54.5 28.5 33.1 143.5 86.5 38.1 179.3 155.3 309.9 602.7
NegTaskVector+ 42.8 24.7 30.5 78.4 60.6 28.7 122.6 93.2 128.6 330.7
LINGTEA (ours) 51.0 27.5 33.6 114.8 83.9 40.3 153.9 127.1 184.7 466.5

BLOOM-3B

Oracle 49.5 25.7 32.2 99.7 68.0 33.6 129.5 108.2 141.8 268.3

Table 9: Perplexity of Test Set in FLORES-200.
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High-Resource Mid-Resource
Model Method EN FR ES PT AR VI CA HI BN

Original 28.1 12.5 12.5 12.5 12.5 18.8 15.6 21.9 18.8
GradAscent+ 27.1 3.1 3.1 6.3 6.3 17.7 10.4 15.6 11.5
NegTaskVector+ 28.1 3.1 6.3 6.3 3.1 17.7 10.4 11.5 13.5
LINGTEA (ours) 25.0 0.0 3.1 6.3 4.2 13.5 4.2 15.6 12.5

XGLM-564M

Oracle 5.2 0.0 3.1 6.3 0.0 3.1 1.0 6.3 0.0
Original 34.4 6.3 12.5 15.6 15.6 28.1 25.0 31.3 18.8
GradAscent+ 29.2 7.3 8.3 10.4 7.3 21.9 12.5 15.6 7.3
NegTaskVector+ 29.2 7.3 6.3 8.3 8.3 16.7 8.3 17.7 11.5
LINGTEA (ours) 14.6 4.2 4.2 6.3 6.3 13.5 13.5 12.5 12.5

XGLM-2.9B

Oracle 13.5 4.2 5.2 10.4 6.3 1.0 2.1 4.2 7.3
Original 31.3 18.8 21.9 18.8 6.3 28.1 9.4 12.5 9.4
GradAscent+ 15.6 12.5 11.5 7.3 5.2 19.8 4.2 7.3 9.4
NegTaskVector+ 22.9 15.6 9.4 11.5 5.2 22.9 5.2 7.3 9.4
LINGTEA (ours) 9.4 8.3 8.3 4.2 5.2 8.3 5.2 6.3 5.2

BLOOM-560M

Oracle 7.3 3.1 3.1 4.2 0.0 3.1 3.1 0.0 0.0
Original 50.0 28.1 28.1 18.8 15.6 31.3 18.8 9.4 15.6
GradAscent+ 16.7 10.4 8.3 6.3 3.1 10.4 3.1 6.3 8.3
NegTaskVector+ 35.4 16.7 19.8 12.5 7.3 24.0 5.2 5.2 11.5
LINGTEA (ours) 19.8 6.3 6.3 4.2 7.3 7.3 5.2 9.4 6.3

BLOOM-3B

Oracle 17.7 6.3 12.5 8.3 1.0 8.3 4.2 3.1 0.0

Table 10: Probing Accuracy (%) of Forget Set in BMLAMA-53.

High-Resource Mid-Resource
Model Method EN FR ES PT AR VI CA HI BN

Original 29.9 15.9 17.1 16.8 16.1 18.9 21.4 15.9 15.3
GradAscent+ 30.3 15.7 17.3 15.3 15.8 19.3 20.5 14.3 14.9
NegTaskVector+ 30.1 16.9 18.0 18.0 16.5 20.6 21.0 15.3 16.2
LINGTEA (ours) 29.4 17.5 18.1 16.9 15.9 18.2 20.2 13.8 16.6

XGLM-564M

Oracle 28.6 14.0 16.1 14.9 13.9 22.6 19.7 12.0 13.4
Original 34.7 19.3 24.2 25.5 18.1 22.6 27.1 15.6 15.8
GradAscent+ 35.4 21.1 23.0 23.4 16.4 22.4 26.3 14.0 12.8
NegTaskVector+ 33.4 19.0 21.6 21.1 18.5 21.8 24.6 14.8 17.1
LINGTEA (ours) 37.1 25.2 29.6 25.4 17.8 24.3 29.4 17.5 17.8

XGLM-2.9B

Oracle 43.3 23.4 28.3 30.6 20.1 32.8 35.9 18.7 17.6
Original 28.5 16.6 21.0 17.7 11.2 20.2 16.0 11.2 9.9
GradAscent+ 28.5 15.3 18.9 17.3 11.2 20.9 15.3 10.1 9.6
NegTaskVector+ 29.0 16.8 20.4 16.6 11.3 21.5 16.0 10.5 9.8
LINGTEA (ours) 27.4 16.7 19.3 17.4 11.2 20.2 16.2 10.5 9.8

BLOOM-560M

Oracle 29.6 18.5 19.3 18.1 10.9 23.5 15.2 9.8 10.1
Original 46.6 26.4 31.3 29.5 16.8 30.2 24.1 13.3 10.8
GradAscent+ 40.8 21.9 25.2 25.5 15.2 30.1 21.4 12.1 11.1
NegTaskVector+ 47.2 23.0 30.0 25.9 15.0 29.5 21.7 11.4 10.6
LINGTEA (ours) 47.1 34.2 36.1 33.8 19.8 36.0 30.5 13.5 10.9

BLOOM-3B

Oracle 46.1 42.2 39.6 33.7 19.8 39.0 32.2 16.3 12.0

Table 11: Probing Accuracy (%) of Test Set in BMLAMA-53.

14



High-Resource Mid-Resource
Model Method EN FR ES PT AR VI CA HI BN

Original 122.0 108.7 151.4 100.6 110.4 113.1 114.7 73.5 48.0
GradAscent+ 187.2 173.2 262.3 156.6 118.1 159.5 170.1 77.8 51.3
NegTaskVector+ 150.7 136.3 194.0 116.4 131.9 132.0 122.2 90.6 59.2
LINGTEA (ours) 185.3 177.6 282.1 168.0 103.2 167.1 176.4 72.7 57.1

XGLM-564M

Oracle 71681.6 192.6 196.4 137.0 195.8 15205.2 1241.5 568.3 405.8
Original 90.9 80.7 109.4 84.7 45.3 93.6 77.6 36.4 31.7
GradAscent+ 133.5 125.8 244.5 166.2 352.6 140.5 126.6 195.5 244.3
NegTaskVector+ 124.6 121.4 179.3 140.8 60.9 133.9 118.8 54.0 43.9
LINGTEA (ours) 908.6 744.5 673.2 766.7 163.9 1043.4 483.2 356.8 600.0

XGLM-2.9B

Oracle 1274.7 100.9 250.8 290.4 85.9 2035.9 1228.4 6126.5 1593.2
Original 145.8 112.4 170.3 227.0 85.7 129.4 239.6 183.3 379.6
GradAscent+ 238.8 174.5 293.0 369.0 98.5 167.7 403.7 225.9 464.2
NegTaskVector+ 184.9 128.0 211.3 272.2 91.0 137.8 289.7 236.3 468.2
LINGTEA (ours) 267.5 174.2 354.9 486.0 113.4 209.9 471.3 313.8 691.1

BLOOM-560M

Oracle 629.3 159.6 316.1 536.6 168.9 32890.0 257.1 506.5 1704.6
Original 68.9 71.1 80.6 115.9 45.8 60.8 99.2 77.5 108.3
GradAscent+ 645.1 515.1 1045.2 1090.3 157.3 280.6 682.4 229.9 294.9
NegTaskVector+ 110.8 118.3 150.4 221.1 64.5 87.9 179.1 168.3 202.8
LINGTEA (ours) 1077.3 585.5 1243.3 1606.7 185.9 287.7 621.1 400.6 1156.0

BLOOM-3B

Oracle 2708.9 398.0 555.1 506.2 61.5 405.0 304.1 3234.7 1795.7

Table 12: Perplexity of Forget Set in BMLAMA-53.

High-Resource Mid-Resource
Model Method EN FR ES PT AR VI CA HI BN

Original 152.8 122.2 170.4 113.9 115.2 153.2 122.5 99.3 66.0
GradAscent+ 187.8 154.3 223.5 140.6 110.8 184.8 149.0 91.4 62.0
NegTaskVector+ 145.9 120.4 165.0 102.5 116.4 145.6 105.7 99.0 66.3
LINGTEA (ours) 165.5 139.4 196.3 112.6 92.6 153.2 131.5 73.8 60.7

XGLM-564M

Oracle 1249.1 141.7 185.1 135.9 148.6 1226.1 224.1 222.0 150.3
Original 112.7 95.1 121.5 94.1 51.6 114.2 85.7 52.9 38.8
GradAscent+ 127.5 116.1 170.1 125.8 314.0 146.4 108.5 204.4 156.0
NegTaskVector+ 120.2 110.1 142.7 109.7 57.3 128.8 95.6 58.9 39.9
LINGTEA (ours) 156.5 104.5 129.0 128.3 73.7 251.9 94.8 135.0 164.4

XGLM-2.9B

Oracle 176.1 83.3 92.2 67.4 79.5 216.8 80.9 235.6 84.3
Original 202.6 134.3 210.6 220.8 93.3 139.1 267.7 169.5 333.8
GradAscent+ 237.6 163.8 243.2 274.5 95.9 145.8 336.2 170.2 336.1
NegTaskVector+ 204.7 130.4 188.1 211.1 86.4 127.5 265.0 170.1 325.3
LINGTEA (ours) 206.4 134.1 195.1 241.0 91.2 151.1 317.3 189.1 418.4

BLOOM-560M

Oracle 204.4 101.3 139.5 163.4 84.2 509.5 237.1 164.2 393.9
Original 89.5 86.4 92.6 105.9 47.1 63.9 98.5 83.7 117.5
GradAscent+ 258.6 208.3 218.2 228.3 77.4 108.9 235.2 116.6 169.6
NegTaskVector+ 104.4 106.4 109.3 128.8 51.1 71.2 120.6 101.8 137.2
LINGTEA (ours) 137.0 84.6 118.4 107.3 56.0 86.3 114.3 119.2 297.3

BLOOM-3B

Oracle 136.5 65.7 65.1 81.9 37.6 67.8 74.8 150.5 193.5

Table 13: Perplexity of Test Set in BMLAMA-53.

15


	Introduction
	Related Work
	Machine Unlearning
	Knowledge Unlearning
	Cross-Lingual Transfer

	Methodology
	Problem Definition
	Knowledge Unlearning
	Language-Adaptive Unlearning

	Experimental Setup
	Datasets
	Baselines
	Evaluation Metrics
	Implementation Details

	Results and Analyses
	Token Sequence Unlearning
	Factual Knowledge Unlearning
	Effect of Adaptive Unlearning
	Retaining World Knowledge
	Scaling the Number of Samples to Forget

	Conclusion
	Additional Details for LingTea
	Hyperparameters
	Amount of Data Trained Per Language

	Per-Language Performance
	Token Sequence Unlearning Results for Each Language
	Factual Knowledge Unlearning Results for Each Language


