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Abstract

The gold standard for the identification of causal effects are randomized controlled
trials (RCT), but RCTs may not always be feasible to conduct. When treatments
depend on a threshold however, such as the blood sugar threshold for diabetes diag-
nosis, we can still sometimes estimate causal effects with regression discontinuities
(RDs). RDs are valid when units just above and below the threshold have the
same distribution of covariates and thus no confounding in the presence of noise,
establishing an as-if randomization. In practice however, implementing RD studies
can be difficult as identifying treatment thresholds require considerable domain ex-
pertise – furthermore, the thresholds may differ across subgroups (e.g., the blood
sugar threshold for diabetes may differ across demographics), and ignoring these
differences can lower statistical power. Finding the thresholds and to whom they
apply is an important problem currently solved manually by domain experts, and
data-driven approaches are needed when domain expertise is not sufficient. Here,
we introduce Regression Discontinuity SubGroup Discovery (RDSGD), a machine-
learning method that identifies statistically powerful and interpretable subgroups
for RD thresholds. Using a medical claims dataset with over 60 million patients,
we apply RDSGD to multiple clinical contexts and identify subgroups with in-
creased compliance to treatment assignment thresholds. As treatment thresholds
matter for many diseases and policy decisions, RDSGD can be a powerful tool for
discovering new avenues for causal estimation.
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1 Introduction

Many questions in data science are ultimately causal in nature, yet evaluating causal questions
through experimental randomization can be costly or otherwise infeasible (Musci and Stuart, 2019).
There are numerous methods that estimate causality from observational data, but many rely on the
key assumption of no unobserved confounding, which is generally difficult to justify in realistic data
settings (Hernán and Robins, 2020). However, econometricians have been developing study designs
that can make credible causal claims from observational data (Leamer, 1983; Angrist and Pischke,
2010). These study designs address confounding by exploiting naturally occurring randomness in
the data, so-called quasi-experiments (Angrist and Pischke, 2008; Liu et al., 2021).

We focus on the regression discontinuity (RD), a specific quasi-experimental method for evaluating
causal effects from observational data where a cutoff in an observed continuous running variable
determines treatment assignment (Hahn et al., 2001). Such a situation may arise when treatment
depends on a threshold. For example, when a patient’s blood sugar level (measured by A1C %) is
above 6.5%, they are diagnosed as diabetic (American Diabetes Association, 2010) and hence eligible
for treatment assignment. Critically, RDs are more robust to confounding than other observational
causal inference methods (Lee and Lemieux, 2009), as the cutoff in treatment assignment provides
“as-if” randomization for individuals just above and just below the cutoff: a patient with an A1C
of 6.5%, on average, is not materially different from a patient with an A1C of 6.4%, yet the
former is diagnosed with diabetes and treated for the disease while the latter is not. If other
covariates smoothly vary with the running variable, then the “just below" subjects arguably have
the same (observed and unobserved) covariate distribution as the “just above" subjects. Because
of this “as-if” randomization, RDs allow us to estimate treatment effects at the threshold without
explicit randomization. RD opportunities are present in education (Valentine et al., 2017), political
science (Skovron and Titiunik, 2017), criminal justice (Berk and Rauma, 1983), and are particularly
natural in medicine, where thresholds govern decisions in many diseases, e.g. diabetes, coronary
artery disease, and cancer (Petersen et al., 2020; Scott et al., 2022; Oeffinger et al., 2015).

Despite the ubiquity of such RD opportunities, RDs are underutilized (Moscoe et al., 2015; Mari-
nescu et al., 2018). Because a priori knowledge of the treatment threshold is needed to use an RD,
the typical study design approach is a “top-down” process, in which a domain expert hypothesizes
that a particular data-generating process might yield an RD, followed by verification of study valid-
ity by examining the data. Often enough, the RD opportunity is underpowered due to sample size
limitations (Naidech et al., 2020; McKenzie, 2016). Identifying potential RDs is an ad-hoc process
that relies heavily on human intuition and domain expertise, and thus does not scale well to the
vast amounts of high-dimensional data we have available today.

This holds especially true as treatment thresholds in practice are often multi-faceted, with hetero-
geneity in treatment assignment as a function of other covariates. For example, in medicine, though
diagnostic criteria for diabetes ostensibly are made only according to blood sugar levels, the risk for
the disease varies by gender, race, and age categories, leading to different clinical decisions where
official guidelines may not always be followed. Ignoring these differences can lower statistical power.
As treatment assignment thresholds become more complex, it becomes difficult for domain experts
to generate study designs and verify them. Given the many domains where RDDs are a useful tool
for causal inference, a “bottom-up” data-driven approach would streamline and scale RD study
discovery, unlocking opportunities for more interpretable and well-powered causal studies.
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Figure 1: This work develops RDSGD, a machine learning method for discovering RD op-
portunities that improve study feasibility by searching for subgroups with higher TAU com-
pliance. We show our colon cancer case study (Section 6) as an example.

Here we propose a data-driven method, Regression Discontinuity Subgroup Discovery (RDSGD), to
learn RD subgroups with different treatment assignment thresholds (see Figure 1 for an illustration
of our approach). We frame regression discontinuity discovery similarly to the task of conditional
average treatment effect (CATE) estimation (Section 3). Note that our method differs from CATE
estimation by focusing on heterogeneity in treatment assignment rather than in treatment effects.
We introduce a novel framework targeting higher effective sample sizes of the discovered subgroups
to maximize statistical power and maintain interpretability (Section 4). We show the utility of
our approach through both synthetic experiments (Section 5) and a case study using a medical
claims dataset consisting of over 60 million patients (Section 6). We apply our method to three
clinical contexts and discover subgroups for each setting, with some that are validated by domain
knowledge and others that show promise for potential studies. RDSGD can not only discover new
opportunities for quasi-experimental studies but also provide actionable interpretability in the form
of treatment assignment subgroups, which can be easily understood by practitioners (Section 7).

2 Related Work

Automatic regression discontinuity discovery has been explored in related contexts. Porter and Yu
(2015) propose a statistical testing framework for regression discontinuity treatment effect inference
where the discontinuity point is unknown. In particularly relevant work, Herlands et al. (2018)
define an automated RD search procedure called local regression discontinuity discovery (LoRD3)
that first requires fitting a “smooth” background function to the probability of treatment, and then
computing test statistics for candidate RDs based on the residuals of the background function.
However, neither LoRD3 nor Porter and Yu (2015)’s approach consider heterogeneity in treatment
assignment. Our method is the first RD discovery algorithm that frames heterogeneity in additional
covariates which affect treatment as a machine learning task.

Other bodies of work consider treatment effect discovery (McFowland III et al., 2018; Ogallo et al.,
2021) and CATE estimation for posthoc subgroup analysis (Spiess and Syrgkanis, 2021; Lipkovich
et al., 2017), which require randomized controlled experiments with interventions. Though there
are some parallels with our work, our method focuses on the treatment assignment estimation
problem (in contrast to the treatment effect estimation problem), making our method amenable to
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the discovery of causal inference opportunities agnostic of the downstream outcome. Furthermore,
our method only requires observational data that are amenable to regression discontinuity analysis.

Within the regression discontinuity literature, recent work examines the use of covariates in RDs,
highlighting the potential for efficiency gains in inference (Cattaneo et al., 2022) and tree-based
CATE estimation for a given RD cutoff (Reguly, 2021). Our method advances this space by framing
RD study discovery as a data-driven task that utilizes covariates to uncover the most promising
RD candidates.

Specifically, we take a novel approach by: 1) formulating the discovery procedure as treatment
assignment uptake (TAU) estimation and 2) identifying heterogeneous subgroups with a higher
effective sample size for both improved interpretability and statistical power. Our method improves
on prior work by using ML to identify statistically powerful interpretable subgroups for RD studies.

3 RD Discovery Framework

In the following section we build upon well-established (and Nobel-prize awarded) econometric
estimation frameworks (Imbens, 2014; Angrist and Pischke, 2008) as well as the conditional average
treatment effect (CATE) estimation literature (Athey and Imbens, 2016; Chernozhukov et al., 2018)
to frame our RD discovery procedure. We then target the effective sample size of the discovered
RD and show how optimizing this quantity increases statistical power.

3.1 Regression Discontinuity Preliminaries

Here we review the potential outcomes framework for analyzing regression discontinuities (RDs);
see, e.g. Imbens and Lemieux (2007) and Cattaneo et al. (2019a) for comprehensive overviews of
RDs. We define the following notation for an individual i:

Xi = running variable for individual i
c = assignment threshold for Xi

W⃗i = vector of pre-treatment covariates for individual i
Zi = 1[Xi ≥ c], threshold indicator for individual i
Yi = observed outcome for individual i

Ti(·) = potential treatment assignment for individual i
Yi(·) = potential outcome for individual i

We note here that the potential treatment assignments are defined in terms of the threshold indicator
Ti(Zi). Ti(1) corresponds to the potential treatment assignment for Xi ≥ c, and Ti(0) to Xi < c.
We focus on the “fuzzy” regression discontinuity (FRD) case, which assumes that the probability of
treatment assignment uptake jumps at c, but not necessarily from 0 to 1 (Hahn et al., 2001) (without
loss of generality, we also assume that the jump in probability at the threshold is positive) (Hahn
et al., 2001):
Assumption 1 (FRD). The limits x− = limx↑c E[T |X = x] and x+ = limx↓c E[T |X = x] exist,
and τ = x+ − x− is non-zero, 0 < τ < 1.
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We also define compliers as individuals for which Ti(1) > Ti(0), namely that they receive the
treatment when above the threshold, and do not receive treatment when below the threshold.
Under the assumptions of continuity, monotonicity, and threshold excludability (Lee and Lemieux
(2009), Appendix B.1), the treatment effect estimate γ can be written as a ratio:

γ = λ

τ
= limx↓c E[Y |X = x] − limx↑c E[Y |X = x]

limx↓c E[T |X = x] − limx↑c E[T |X = x] (1)

Where λ is the jump in outcome Y at the cutoff c, and τ is the jump in treatment assignment
uptake (TAU).

In practice, Equation 1 is often estimated by fitting two local linear regressions using the disconti-
nuity indicator Z within a bandwidth h to the left and right of the cutoff: a “first-stage” treatment
regression for τ and a “second-stage” outcome regression for λ (Imbens and Lemieux, 2007), with
data-driven methods developed to select the bandwidth h (Imbens and Kalyanaraman, 2009).

As a running example throughout the text, we consider evaluating the effect of breast cancer
screening age guidelines, which recommend beginning screening at age 40 for women (Oeffinger
et al., 2015). Setting the recommended screening age is an important decision that can impact
millions of patients in the U.S. However, evaluating the causal impact of a particular screening
age through a randomized experiment would be difficult logistically as it would disrupt standards
of clinical practice. Because the screening decision T is made based on the continuous variable
age X being above the threshold of c = 40 years, such a causal question can be evaluated using
a regression discontinuity design, and has been done in prior work (Kadiyala and Strumpf, 2016).
Additionally, since compliance with the threshold assignment is imperfect (not everyone at the age
of 40 will deterministically be screened for breast cancer), the scenario lends itself naturally to the
fuzzy RD framework of τ estimation we consider here.

Figure 2: The anatomy of the RD first stage
regression, where a local linear regression is
used to estimate TAU τ . A local linear regression
with threshold indicator Z = 1[Xi ≥ c] is fit using
data within the shaded bandwidth of X ∈ [h−c, h+c]
(Eq. 2). An analogous regression with outcome Y on
the vertical axis is used to estimate λ.

To formulate a data-driven RD discovery pro-
cedure, we now turn our attention to the “first-
stage” task of estimating τ in the context of
predicting a unit’s compliance status.

3.2 Treatment Assignment Uptake (TAU)

As the goal of our method is to identify RD
opportunities rather than explicitly estimating
treatment effects, we focus on estimating treat-
ment assignment uptake (TAU) τ , and in par-
ticular will look to maximize TAU using het-
erogeneity in observed covariates. In our breast
cancer example, the TAU increases with greater
adherence to the clinical guidelines: the more
women who begin screening at the age of 40, the
larger the discontinuity is in treatment assign-
ment uptake. τ is often modeled using a local
linear regression within a bandwidth h around
the cutoff c (Hahn et al., 2001):
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T = τcZ + β0 + β1(1 − Z)(X − c) + β2Z(X − c) + ϵ (2)

Where treatment assignment uptake τc is indexed by the cutoff c, ϵ is homoskedastic noise, and
samples are within Xi ∈ [c − h, c+ h] (Figure 2). We use this linear probability model estimation
strategy in order to ensure causal validity, which is commonly used in the econometric literature
as an efficient approach to estimate treatment assignment (though other non-parametric methods
can be used as well) (Imbens and Lemieux, 2007). Our RD study discovery task is formalized as
a hypothesis test of the existence of a treatment discontinuity at threshold c: H0 : τc = 0, HA :
τc ̸= 0, which can be tested via significance of the estimated τ̂c in Equation 2. Our estimation and
subsequent maximization of TAU can be equivalently framed as estimation of compliance probability
for subgroups at the threshold (Aronow and Carnegie, 2013) (see Appendix B.2):
Proposition 1. For a given bandwidth h and cutoff c, estimating τ̂c is equivalent to estimating the
probability of compliance P (T (1) > T (0)).

We leverage this connection to maximize TAU heterogeneity and discover the most promising
subgroups for RD analysis.

3.3 Heterogeneity in TAU

Beyond identifying candidate thresholds c that produce significant TAU estimates, we want to
find heterogeneous subgroups among our sample population at a given cutpoint c to propose more
statistically powerful RD studies. This problem can be seen as conditional compliance estima-
tion (Kennedy et al., 2020), where we identify the individuals (the compliers) to which the threshold
cutoff applies, using the other pre-treatment covariates W⃗ . In our breast cancer screening example,
we would clearly want to exclude all men, lest their inclusion reduce the treatment discontinuity
due to their non-compliance with the screening guideline. Other factors such as family history or
genetic risk may also influence whether individuals adhere to the guideline.

In order to identify such subgroups, we define the heterogeneous TAU estimation task. Given the
standard FRD assumptions presented in Section 3.1, Kennedy et al. (2020) and Coussens and Spiess
(2021) have shown that estimating the probability a unit is a complier, τc(W⃗i) (their TAU proba-
bility), can be framed as conditional average treatment effect (CATE) estimation (Appendix B.3):
Proposition 2. τc(W⃗i) given c can be identified as the conditional probability of compliance.

P (T (1) > T (0)|W⃗ ) = τc(W⃗ ) (3)

Heterogeneous TAU τc(W⃗ ) can thus be estimated using data-driven machine learning methods
developed in recent years for CATE estimation (e.g., Chernozhukov et al. (2018); Oprescu et al.
(2019), and Padilla et al. (2021)). The machine-learned estimates of τc(W⃗ ) will be unbiased due to
the sample-splitting honesty property of such estimators (Athey and Imbens, 2016; Chernozhukov
et al., 2018). We can thus estimate τc(W⃗ ) for a given RD threshold c.

Because our goal is to identify subgroups of individuals where treatment assignment uptake varies,
we choose to use tree-based approaches (Oprescu et al., 2019; Athey et al., 2019) for the estimation
problem, which provide valid, honest, and interpretable subgroup populations defined by the learned
causal tree’s nodes. In particular, we can distill a tree-based model that estimates τ̂(W⃗ ) into a
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single decision tree, and extract heterogeneous subgroups that correspond to the learned tree’s
nodes (Athey and Imbens, 2016; Battocchi et al., 2019). Tree-based CATE models thus provide a
data-driven approach for identifying interpretable subgroups that have heterogeneous TAU.

3.4 From TAU to effective sample size

Though we have established the TAU objective for heterogeneous treatment uptake at a threshold
and an approach to identify subgroups using CATE estimators, to actually increase power in finite
samples we cannot only account for τc(W⃗ ); we also need to consider the sample size of the subgroup.
Solely maximizing for TAU when discovering subgroups may not yield higher power, as it is possible
for such an objective to select unfeasibly small subgroups with higher TAU: in our breast cancer
example, a subgroup of ten women may have a higher TAU than a subgroup of size 1,000 with
50% women, but we would much prefer the latter subgroup in terms of study feasibility. Thus,
we propose to target the effective sample size (Liu et al., 2022; Heng et al., 2020) of a given
subgroup G ηG, which explicitly accounts for both the TAU as well as the size of the subgroup. Let
P = (W⃗i, Zi, Ti, Xi)NP

i=1 represent the “baseline population” samples i.e., all of the samples within
the bandwidth h for a cutoff c where NP is the sample size, and G = (W⃗j , Zj , Tj , Xj)NG

i=1 represent
the samples that are part of a subgroup G, where NG is the sample size. The TAU for a subgroup
G is defined as τG := τc(W⃗G), where W⃗G are the pre-treatment covariates that define a sample’s
membership in group G; similarly, τP is the TAU for all of the samples in the baseline population.
Letting EG[·] be expectations over subgroup G, the effective sample size ηG is then:

ηG = NGτ
2
G = NG(EG[T |Z = 1] − EG[T |Z = 0])2 (4)

The intuition behind ηG is that only units compliant with the threshold indicator Z contribute to
the treatment effect estimation. Non-compliers contribute noise to the estimate, so the “effective”
sample is the nominal sample size scaled by a quantity of τG, which is the probability of compliance
with the threshold indicator (Proposition 1). We want to maximize this as the variance of a fuzzy RD
estimator will decrease as the effective sample size increases (Coussens and Spiess, 2021; Liu et al.,
2022; Heng et al., 2020). Power thus increases as effective sample size increases (Appendix B.4):
Proposition 3. Power is a non-decreasing function of ηG, regardless of subgroup size G.

Figure 3: Optimizing for effective sample size
(left) increases statistical power regardless of
subgroup sample size. We simulate 1,000 random
subgroups and show power against the effective sam-
ple size ηG (left) and treatment assignment uptake
(τG) (right), where the shading indicates different sub-
group sizes as a proportion of the total population.

Maximizing effective sample size η is a superior
objective to maximizing heterogeneous TAU
alone as it is possible to select a small subgroup
G that has a high TAU but will still have lower
power than the baseline population sample. We
demonstrate this empirically in Figure 3, which
together with Proposition 3 motivates the use
of ηG in our algorithm.

3.5 A test statistic for effective sample size

When discovering subgroups with higher effec-
tive sample size than the baseline population,
we want to ensure that the differences are not
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Figure 4: RDs with heterogeneous cutoffs have smaller TAU (a), but RDSGD can correctly
identify cutoffs with hetereogeneity (b). a) treatment probabilities across running variables X (95%
CIs). b) representation of RDSGD (Algorithm 1), where causal trees are fit to each candidate threshold Z

which generate subgroups with higher effective sample sizes (step 1) and statistically significant subgroups
are selected (orange nodes, step 2).

due to noise in the selected samples. We thus test if the effective sample size for a subgroup G
is greater than that of the whole population P : H0 : ηG − ηP = 0, HA : ηG − ηP > 0. The corre-
sponding test statistic is:

tη = ηG − ηP√
Var[ηG − ηP ]

(5)

Though Var[ηG − ηP ] can be difficult to derive as groups G and P are overlapping, we leverage
properties of influence functions (Newey and McFadden, 1994; Kahn, 2022) to construct a consistent
estimator for this variance term (Appendix B.5). As empirical η (Equation 4) can be easily
calculated using sample means, we can estimate tη. We verify this test statistic behaves correctly
asymptotically under the null hypothesis (Figure B.1). We can thus leverage heterogeneity in
treatment assignment uptake for improved study power.

4 Methodology

We calculate the effective sample size presented in Section 3 to implement our RDSGD (Regression
Discontinuity SubGroup Discovery) method, which is outlined in Algorithm 1 and visualized in
Figure 4. RDSGD comprises of two main steps: 1) identification of candidate thresholds and
subgroups with higher effective sample size, and 2) subsequent selection of subgroups1. As we use
a data-driven process to select the subgroups to test (Kuchibhotla et al., 2022; Athey and Imbens,
2016), to enable valid inference in this two-step procedure we assume the existence of two separate
datasets S1, S2 through sample splitting or a holdout set.

1Source code and the data needed to reproduce all figures are available at: https://github.com/tliu526/rdsgd.

8

https://github.com/tliu526/rdsgd


Published in Transactions on Machine Learning Research (10/2023)

4.1 Identifying Discontinuities and Subgroups

To discover regression discontinuities with potential heterogeneity, we first identify candidate thresh-
olds. Given a set of cutpoints CX = {c1, c2, ...} for a running variable X, RDSGD analyzes thresh-
olds c ∈ CX . It first generates threshold indicator Z := 1[X ≥ c] and selects a bandwidth hc

(Algorithm 1, step 1a), which can be chosen by the user or by a data-driven selection process (Cat-
taneo et al., 2019a; Imbens and Kalyanaraman, 2009).

Algorithm 1: RD SubGroup Discovery (RDSGD)

1. Identify discontinuities and subgroups.
For c ∈ CX :

(a) Select bandwidth hc of analysis and generate threshold indicator Z := 1[X ≥ c]
(b) Select baseline population P = {(W⃗i, Zi, Ti, Xi) | i ∈ [c − hc, c + hc]} from S1 and compute

effective sample size η̂P

(c) Fit subgroup tree model f̂ estimating τ̂(W⃗ ) (Eq. 3)
(d) Obtain subgroups Gs,c = {(W⃗i, Zi, Ti, Xi) | i ∈ s} from S1 and η̂Gs for each node s in f̂

(e) Output subgroups with stat. sig. greater effective sample size Gc = {Gs,c | η̂Gs > η̂P }

2. Select subgroups.
(a) For each subgroup definition Gs,c ∈

⋃
c∈CX

Gc:
i. Select data XG = {Xj | (j ∈ Gs,c)} from S2

ii. Fit local linear estimator T̂ (XG, c) (Eq. 2), obtain TAU estimate τ̂G and p-value pτ̂G

(b) Compute corrected significance level α̃

(c) Output discovered cutoffs and subgroups: DX = {(c, Gs,c) | (pτ̂G < α̃)

RDSGD then computes the baseline effective sample size η̂P (step 1b) from data sample S1. Because
X is real-valued, it can theoretically yield infinite potential cutpoints. However, in many situations
(such as the clinical contexts we consider) the grid of candidate cutpoints for X can be sensibly
defined in terms of the running variable e.g., in whole years for age-based clinical guidelines or at
the precision of lab result readings. Where the candidate cutpoints do not have a sensible definition,
other methods such as LoRD3 (Herlands et al., 2018) can be used to provide CX (Section 2).

Next, RDSGD generates subgroups for each c based on the pre-treatment covariates W⃗ by estimat-
ing τ̂c(W⃗ ) from S1 for the given cutoff and bandwidth (Steps 1c-d). As discussed in Section 3.3,
RDSGD uses a causal tree approach to estimate τ̂c(W⃗ ) and produces candidate subgroups Gs,c for
a given cutoff c for RD study evaluation. RDSGD then determines if the subgroup effective sample
size η̂G,s (Section 3.5) is statistically greater than the baseline η̂P (Step 1e).

4.2 Selecting subgroups

Once we have candidate heterogeneous subgroups, we need to select the most promising subgroups
in terms of study power while preserving statistical validity by using the separate sample S2 to
test. Given a subgroup Gs,c for a cutpoint c, RDSGD evaluates the local linear regression for TAU
to test for the discontinuous jump indicative of a potential RD study (Step 2a). In order for the
TAU test to be valid, RDSGD must account for the multiple comparisons across the set GX of all
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(a) RDSGD improves the statistical power of
discovering RD opportunities by considering
heterogeneity. We simulate RDs over 500 trials for
each τ and record the number of correct discoveries
at c1 and c2 for an empirical power estimate.

(b) RDSGD discovers more powerful sub-
groups over baseline in higher dimensions. We
run 500 trials with τ = 0.5, recording mean power
and comparing with baseline powers.

dim(W⃗ ) c1 power c2 power

baseline 0.52 0.48
2 0.79±0.15 0.78±0.15
4 0.78±0.15 0.77±0.16
8 0.79±0.16 0.78±0.16
16 0.78±0.15 0.78±0.15

Figure 5: Synthetic experiments demonstrate the benefit of RDSGD.

the subgroups considered for running variable X, including the candidate subgroups generated in
Step 1d. RDSGD thus applies a Bonferroni correction to produce the adjusted significance level
α̃ (Step 2b). Finally, RDSGD outputs discovered subgroups and cutoffs based on α̃ (Step 2c).
By leveraging connections between 1) TAU estimation and machine-learned CATE estimation as
well as 2) our statistical testing framework for effective sample size (Sections 3.4-3.5), RDSGD is a
data-driven RD discovery procedure that uses potential heterogeneity among subgroups to identify
more powerful RD studies (Algorithm 1, Figure 4).

5 Synthetic Experiments

We first validate RDSGD using synthetic data where multiple discontinuities in a given running
variable can be distinguished via heterogeneity in other observable covariates. We compare RDSGD
to a baseline method that only tests the TAU regression of Equation 2 for each cutpoint c (Algo-
rithm A) and thus does not consider heterogeneity. We also make comparisons to the LoRD3
method proposed by Herlands et al. (2018). Full simulation details can be found in Appendix C.

5.1 Heterogeneity in One Covariate

Data Generation. Here we generate data where half of the units in our sample follow a fuzzy RD
threshold for running variable X ∈ [0, 1] at c1 = 0.25, Z = 1[X ≥ c1], while the other half follow a
fuzzy RD threshold at c2 = 0.75, Z = 1[X ≥ c2]. The threshold a particular unit follows can be
identified by observed covariate W ∈ [0, 1], with units W < 0.50 following threshold c1 and units
W ≥ 0.50 following threshold c2 (Appendix C.1-C.3). Such a scenario might arise in real-world
settings where the clinical threshold varies depending on other patient attributes; from our running
breast cancer example, women with high risk of breast cancer due to hereditary factors (W = 1)
should begin screening earlier than the recommended age of 40 for women without risk factors
(W = 0) (Center for Disease Control, 2021). The TAUs at c1 and c2 will appear much smaller if
covariate W is not accounted for, thus this synthetic data scenario is one where we would expect
RDSGD to be useful.
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Power Calculations. To quantify RDSGD’s performance, we calculate the theoretical power
that can be achieved for a given RD study. Given the regression framework for TAU estimation
(Equation 2), we analytically derive the theoretically achievable power levels (Appendix B.6). We
can then use these power calculations and our synthetic data to evaluate the baseline method,
LoRD3, and RDSGD. We simulate RD datasets as described above, evaluating empirical power for
each ground-truth τ ∈ [0.2, 0.3, ..., 0.7], to correctly identify discontinuities at c1 and c2.

Simulated results. Our empirical results show the benefit of RDSGD (Figure 5a). We also
calculate the theoretical power without considering heterogeneity in W (red dashed lines) and find
that the baseline method (Algorithm A.1, blue lines) matches that power level across τ . RDSGD
(Algorithm 1, orange lines) improves upon the baseline method as well as LoRD3 (Appendix C.4).
RDSGD maintains empirical false positive rates below the nominal α = 0.05 for all τ levels due
to the multiple testing corrections (Figure C.3). Empirical power for RDSGD approaches the
theoretical power when heterogeneity in W is accounted for (dashed green lines). The gap between
the power levels of RDSGD and the theoretical power is expected, as we lose power due to testing
corrections and the data-driven tree fitting, which does not perform an exhaustive search.

5.2 Heterogeneity in Multiple Covariates

The improvement in power over baseline also extends to multidimensional heterogeneity (Table 5b),
where we increase the dimensionality of the covariates dim(W⃗ ) ∈ [2, 4, 8, 16] that determine whether
an individual complies with cutoff c1 or c2 and record the power of the discovered subgroups
(Appendix C.5). Though power (as expected) decreases slightly as dim(W⃗ ) increases, RDSGD
scales well to higher dimensions, as the average subgroup powers for both cutoffs across all dim(W⃗ )
are greater than the baseline theoretical powers. These simulation results (Figure 5a, Table 5b)
provide empirical evidence that RDSGD can improve RD discovery in the presence of heterogeneity.

6 Case Study: Medical Claims Data

To evaluate RDSGD in real-world settings, we target a variety of clinical contexts where we believe
RDs exist: breast cancer screening, colon cancer screening, and diabetes diagnosis. We use Optum’s
de-identified Clinformatics® Data Mart Database (2007-2018), which contains claims data on diag-
noses, procedures, prescriptions, and lab results. We use all adults with demographic data, roughly
60 million unique patients over the twelve-year period. We note that each clinical setting uses a
different subset as there are inclusion criteria that are specific to that setting, e.g. the presence of
a lab result. Full details on demographics and sample selection can be found in Appendix D.

6.1 Data Extraction and Featurization

For each clinical setting, we target a specific running variable X that corresponds to a treatment T
(see the first two columns of Table 1). We use LOINC, CPT, and ICD codes (McDonald et al., 2003;
WHO, 2016) to identify lab results, procedures, and diagnoses. To convert longitudinal data in the
claims database into tabular form, we index a patient by the first recorded presence of the running
variable (Appendix D.2). We then assume a fixed time window after the running variable is recorded
for the treatment to occur, in order to account for lags in claims data reporting. If the treatment
of interest appears for the patient within the window, they are coded as “treated,” otherwise they
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Table 1: Discovered RD thresholds and subgroups in medical claims data. We report τ̂
and η̂ (higher is better in both cases) for baseline RDs and discovered subgroups.

Clinical
guideline

Running
variable Threshold Subgroup

discovered
Baseline
τ̂ (SE)

RDSGD
τ̂ (SE)

Baseline
η̂

RDSGD
η̂

Breast cancer
screening Age ≥40 Gender

= Female 0.039 (0.0013) 0.088 (0.003) 471.7 1074.6

Colon cancer
screening Age ≥50 Encounter date

> 2014-05-07 0.062 (0.002) 0.12 (0.002) 1335.1 1759.0

Type 2 diabetes
diagnosis A1C % ≥6.5 Encounter date

> 2010-06-07 0.093 (0.005) 0.12 (0.006) 1212.1 1533.6

are “untreated.” For example, in the setting where we wish to estimate the “treatment” uptake of
diabetes diagnosis, we find a patient’s first recorded A1C measurement and then search the database
for a Type II diabetes diagnosis within the following week. In the screening settings where age is
the running variable, we use a patient’s age at their first preventative care visit.

We additionally query the claims database for covariates that may impact TAU heterogeneity. For
all clinical settings, we consider heterogeneity across patient demographics (age, gender, race), socio-
economic status (education level, household income) and claims-specific features (initial encounter
date, insurance type). Our data extraction method provides a pipeline for converting raw claims
data into feature matrices for RDSGD.

We use the EconML package (Battocchi et al., 2019) to estimate the heterogeneous TAU tree model
needed for RDSGD (Algorithm 1, step 1d). We split our data into equally sized samples S1, S2 for
each clinical context. Due to our larger sample size, most candidate RDs that RDSGD returns will
have power approaching 1, so here we compare the estimated TAU and effective sample size η of
the discovered subgroups to the baseline RD without considering heterogeneity.

6.2 Results

Figure 6: RDSGD discovers subgroups that
improve TAU in different clinical settings. We
show the discovered cutoff and the probability of
treatment for the entire sample (blue) and for sub-
group discovered by RDSGD (orange).

The most promising discovered RD thresh-
olds and subgroups for each clinical setting are
shown in Table 1, with treatment probability
point plots shown in Figure 6.

Breast Cancer. RDSGD correctly identifies
that breast cancer screening only applies to
women age 40 (Oeffinger et al., 2015), doubling
the effective sample size from 471.7 to 1074.6.

Colon Cancer. RDSGD correctly identifies
the recommended screening age of 50 for colon
cancer, and additionally discovered a subgroup
of patients who were more likely to be screened
at the threshold; these individuals had an en-

counter date later than 2014-05-07, producing a subgroup with a higher effective sample size than
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the baseline population (1335.1 vs. 1759.0). This could be due to increased adherence to screen-
ing from a guideline update that occurred approximately in the same time period (US Preventive
Services Task Force, 2016).

Type 2 Diabetes. RDSGD identifies the A1C cutoff of 6.5% for diabetes diagnosis (American
Diabetes Association, 2010), and also identifies a subgroup more likely to be compliant with the
cutoff, increasing the effective sample size from 1212.1 to 1533.6. This subgroup excludes patients
who have encounters before 2010-06-07, which aligns with clinical practice intuition as A1C was
not introduced as a diagnostic criteria until 2010.

7 Discussion

Here we have proposed RDSGD, a method for regression discontinuity (RD) discovery that produces
interpretable subgroups by optimizing for the effective sample size through a machine learning
framework. We demonstrate through synthetic studies how RDSGD provides power improvements
in the presence of heterogeneity. We apply RDSGD to a variety of clinical settings, both validating
our method as well as discovering new RDs to investigate. We now discuss how our method fits
into real-world workflows as well as highlight limitations and future work.

7.1 Real-World Workflows

RDSGD is most useful in scenarios for treatment effect estimation when explicit randomization
of the treatment is not possible. While our method only discovers RD opportunities within the
data (the so-called treatment assignment regression, Section 3.1) and does not make treatment
effect estimates, the primary goal is to identify quasi-experimental randomness that can be used to
estimate the downstream effects of the given treatment T on an outcome of interest Y . For example,
in our A1C diabetes case study, a practitioner may wish to study the effect of the A1C cutoff on
different outcomes, such as metformin prescription rate or heart attack incidence. By identifying
both the cutoff as well as subgroups where the effective sample size is stronger, any downstream
treatment effect estimation a practitioner wishes to conduct has both: 1) an identified variable
that provides quasi-experimental randomness and 2) an interpretable cohort to which it applies.
By performing causal inference opportunity discovery, our method increases research efficiency and
scalability by identifying the most promising RD studies to pursue.

We encourage researchers to think about RDSGD as a scientific discovery tool: instead of driving
a manual process where practitioners have to generate RD candidates based on domain expertise
alone, RDSGD produces candidates from the data which the practitioners can then verify. This
not only accelerates research using larger observational data as it is much easier to verify potential
candidates rather than generate them, but also provides a means to increase research efficiency.
For a researcher, there is opportunity cost in terms of time and effort when analyzing an RD, and
our method can inform which studies they should pursue, as well as which studies they potentially
should not pursue. For example, Naidech et al. (2020) investigates a seemingly promising RD
opportunity in stroke guidelines, but due to sample size and compliance issues had inconclusive
results. RDSGD could have complementary utility by providing an early signal to practitioners on
which opportunities may not ultimately be fruitful if their hypothesized cutoff does not appear as
a subgroup. We note that the “bottom-up” data-driven approach we advocate for may reduce the
power of subsequent studies that use the discovered design if the design was known apriori due to
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the use of sample splitting. However, we believe this tradeoff is worthwhile in many situations when
RD designs are unknown to identify the most promising opportunities for new causal studies.

We believe that our method is well-positioned to discover RDs that depend on a moderate number
of covariates – this is particularly relevant within the medical domain as clinical practice evolves to
become more nuanced. To give an example in existing work, Scott et al. 2021 [6] use cardiovascular
risk score cutoffs as an RD design to study the effect of statins on adverse outcomes; they perform
manual analogues of our subgroup method by 1) identifying hospitals that have better adherence
to the score cutoff guidelines and 2) by excluding patients with very high cardiovascular risk and
comorbidities that might interfere with the treatment discontinuity e.g., patients with diabetes are
not recommended to be prescribed statins. Furthermore, as we show in our case studies (Section 6),
when working with longitudinal datasets it is possible that the candidate RD cutoffs may shift over
time due to changes in clinical best practice, and it is important to surface such shifts to the
practitioner. We note that these subgroup examples we give here are relatively low dimensional.
We want to caution that highly complex RDs that are found via our data-driven discovery approach
might have limited empirical value, and warrant careful attention before being categorized as valid
studies. Nevertheless, RD subgroups that are defined by a moderate number of covariates may
still be missed if only the running variable is considered in isolation from the other pre-treatment
variables, and it is these scenarios that RDSGD fits well.

Furthermore, RDSGD could be used to investigate implicit differences in treatment assignment.
Because the subgroups produced by RDSGD define clear inclusion criteria based on the path of
the fitted causal tree, it can be used to identify sources of bias in treatment decisions such as those
documented in FitzGerald and Hurst (2017); Hausmann et al. (2013); Hoffman et al. (2016).

7.2 Limitations and Future Work

We highlight some limitations and opportunities for future work. First, we do not make treatment
effect estimates as part of our method and defer that step to practitioners, who are free to choose
which outcome Y they wish to study. Care must be taken when moving forward to treatment effect
estimation (γ, Section 3.1). When making treatment effect estimates with identified cutoffs we need
to be mindful of the exclusion restriction assumption Imbens and Lemieux (2007), which can be
violated when the cutoff decision Z affects the outcome Y outside of its affects on T . Critically,
validation tests specific to RDs, such as whether the running variable has been manipulated and
continuity in the covariates, also need to be run to ensure an appropriate causal design (McCrary,
2008; Imbens and Lemieux, 2007). It is straightforward to apply tests of RD validity post our
method, and they are important verification steps a practitioner needs to conduct after selecting a
discovered RD subgroup to evaluate.

Moreover, there are limitations in using medical claims data, as there may be selection biases in
healthcare utilization as well as potential under-reporting of diagnoses and treatments of inter-
est (Jensen et al., 2015). Thus, when moving forward with RD studies identified by RDSGD,
practitioners need to work closely with domain experts to ensure that causal validity is maintained.

We also note that because RDSGD uses causal tree-based methods to identify heterogeneous TAU
subgroups, it is inherently greedy (see Figure 5a where RDSGD approaches, but does not achieve
max power). Though our use of trees was a deliberate design decision made to maintain inter-
pretability and scalabililty to large datasets (Wu et al., 2022), future work could investigate other
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methods that are optimal in terms of TAU maximization: for example, applying policy learning
methods that maximize power in randomized trials to RDs (Spiess and Syrgkanis, 2021). Fur-
thermore, as we use sample splitting to ensure valid inference, additional efficiency gains could be
achieved in extensions through cross-fitting, conditional inference, or other bias correction meth-
ods (Kuchibhotla et al., 2022; Zhao et al., 2023).

Though we have focused on clinical use cases in our motivation and case study, we emphasize that
RDSGD can be utilized in any settings where treatment assignment heterogeneity in RD thresholds
may exist, such as in education (Chay et al., 2005; Goodman, 2008), political science (Klašnja and
Titiunik, 2017), and labor market programs (Lalive, 2007), among others (Cattaneo et al., 2016).
Future work could look to apply RDSGD to these contexts. Our method could also be extended to
identify regression kink designs, another related framework popular in economics, where there is a
kinkpoint rather than a discontinuity at treatment threshold (Card et al., 2015).

7.3 Conclusion

Here we introduce RDSGD, a machine-learning method for RD discovery which identifies inter-
pretable subgroups with higher effective sample size, increasing study feasibility. RDSGD is effec-
tive on both simulated and real data, and could provide new avenues for more credible observational
causal studies across medicine and social science through quasi-experimental designs.

Statement of Broader Impact

Data-driven RD discovery promises to enable more studies that estimate treatment effects from
observational data, providing valuable causal estimates when conducting a randomized experiment
would be expensive, unethical, or infeasible. However, there is some risk in using our method, shared
with much of ML, as it can leverage and propagate biases in the data. For example, if a demographic
indicator predicts non-compliance, whether true or due to e.g. dataset bias, the treatment effect
estimates made in RD studies utilizing our method would exclude the non-compliant group. This
could disadvantage that group as the study would not apply to them. The discovered subgroups
need to be scrutinized for potentially perpetuating bias, and one advantage of our method is the
transparency of to whom the discovered thresholds apply to. Healthcare data are of particular
interest, which we utilize as examples throughout this work, and disparities against minority groups
in such data are common (Murthy et al., 2004). Data could also include selection biases (such as
demographic variation in healthcare utilization resulting in differences in collected claims data), and
we must be mindful of these sources of bias when interpreting results. To mitigate these potential
harms, practitioners should carefully consider the source of their data and whenever possible verify
their results with a different dataset e.g., claims data from a different healthcare system. When
using data-driven methods like RDSGD for causal analysis from observational data, stakeholders
must weigh the strength of evidence supporting the causal claim as well as the result’s external
validity before making decisions based off of the study.
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A Baseline algorithm details

We give the full baseline RD discovery procedure used for comparison with RDSGD in Algo-
rithm A.1.

Algorithm A.1: Baseline method: RD threshold discovery

1. For c ∈ CX :

(a) Select bandwidth hc for treatment regression (Section 3.1)
(b) Select data X = {Xi | Xi ∈ [c− hc, c+ hc]}
(c) Fit estimator T̂ (X, c) of Equation 2 to obtain TAU estimate τ̂c and output p-value pτ̂c

2. Compute corrected corrected significance level α̃ = α/|CX |

3. Output discovered cutoffs and bandwidths: DX = {(c, hc) | pτ̂c < α̃}

B Mathematical details

B.1 FRD and IV assumptions

We assume the following standard FRD assumptions for valid estimation (Lee and Lemieux, 2009)
to identify Equation 1:

• Continuity. Both the potential outcomes Y (1) and Y (0) are continuous as a function of
the running variable X:

E[Yi(1)|X], E[Yi(0)|X] continuous over domain of X (6)

• Monotonicity. X crossing the cutoff cannot simultaneously cause some units to take up
and others to reject the treatment (also known as the “no defiers” assumption):

T (1) ≥ T (0) (7)

• Excludability of crossing the threshold. X crossing the cutoff cannot impact Y except
through impacting the treatment:

Y (T = t, Z = z) = Y (T = t) (8)

Where Y (T = t, Z = z) is the potential outcome to be observed if T = t and Z = z.

Given the equivalence between FRDs and IVs (Imbens, 2014), two-stage least squares (TSLS)
estimation uses analogous assumptions:

• Consistency. If Z = z and T = t, then the observed outcomes of T and Y are the
potential outcomes under Z = z and T = t.
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T = ZT (1) + (1 − Z)T (0) (9)
Y = TY (1) + (1 − T )Y (0) (10)

• Unconfounded instrument. The instrument is unconfounded with the potential treat-
ment given the observed covariates.

Z ⊥ T (1), T (0) | W⃗ (11)

• Monotonicity. The instrument cannot simultaneously cause some units to take up and
others to reject the treatment.

T (1) ≥ T (0) (12)

• Exclusion restriction. The instrument cannot impact Y except through the treatment:

Y (T = t, Z = z) = Y (T = t) (13)

B.2 Proposition 1 details: compliance and TAU equivalence

Imbens and Lemieux (2007); Hahn et al. (2001) show how a fuzzy regression discontinuity estimated
via local linear regression for a given cutoff c and fixed bandwidth h is numerically equivalent to a
two-stage least squares (TSLS) estimation problem with the following additional regressors:

 1
1[Xi < c](Xi − c)
1[Xi ≥ c](Xi − c)

 (14)

Note that the instrument Zi is defined as Zi = 1[Xi ≥ c], the same as our RD cutoff indicator.
These regressors thus give the form of the treatment regression in Equation 2.

Imbens and Rubin (2015) further show that under IV assumptions of consistency, unconfounded
instrument and monotonicity (Appendix B.1), the treatment effect estimate can be expressed as:

γIV = E[Yi(1) − Yi(0)|unit i is a complier] · πcomply
πcomply

(15)

Where P (T (1) > T (0)) = πcomply is the probability of compliance. Within the data bandwidth of
analysis h, we can equivalently write τ of Equation 1 in terms of Z (Hahn et al., 2001):

τ = E[T |Z = 1] − E[T |Z = 0]
= P (T = 1|Z = 1) − P (T = 1|Z = 0)
= 1 − P (T = 0|Z = 1) − P (T = 1|Z = 0)
= 1 − πnever taker − πalways taker, (unconfounded instrument)
= πcomply, (monotonicity) (16)
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Where πalways taker and πnever taker are the proportions of always-takers and never-takers. We then
have that τ is equivalent to the probability of compliance, and that the first stage (denominator of
γIV from Equation 15) regression of the TSLS framework estimates the probability of compliance.
Thus we can use the TSLS framework for our analysis and estimation of RD TAU.

B.3 Proposition 2 details: conditional compliance identification

Identification of the conditional probability of compliance follows a similar argument as Ap-
pendix B.2. Given the cutoff choice c generating Z = 1[X ≥ c] and a fixed bandwidth h, we
can use the equivalent analysis of Z as an IV like we do in Appendix B.2. The conditional proba-
bility of compliance is given by:

P
(
T (1) > T (0)|W⃗

)
From monotonicity, there are no defiers (units where T (1) < T (0)). We can thus write:

P (T (1) > T (0)|W⃗ )

= 1 − P
(
T (1) = 1, T (0) = 1|W⃗

)
− P

(
T (1) = 0, T (0) = 0|W⃗

)
(17)

The latter two terms are the probability of always-takers and never-takers given covariates W⃗ ,
respectively. From the unconfounded instrument assumption, these quantities can be identified
(converted from causal quantities to estimable statistical quantities) (Imbens and Rubin, 2015):

P (T (1) = 1, T (0) = 1|W⃗ ) = P (T = 1|Z = 0, W⃗ )
P (T (1) = 0, T (0) = 0|W⃗ ) = P (T = 0|Z = 1, W⃗ )

This then gives:

P (T (1) > T (0)|W⃗ ) = 1 − P (T = 1|Z = 0, W⃗ ) − P (T = 0|Z = 1, W⃗ )
= 1 − P (T = 1|Z = 0, W⃗ ) − (1 − P (T = 1|Z = 1, W⃗ ))
= P (T = 1|Z = 1, W⃗ ) − P (T = 1|Z = 0, W⃗ ) (18)

Allowing us to identify the conditional probability of compliance, and thus the conditional TAU
τc(W⃗ ) as desired.

Equivalence of CATE and heterogeneity TAU. Next, we make a connection between the
conditional TAU and conditional average treatment estimation (CATE).

The CATE of a treatment T on outcome Y is given by:

CATE = E[Y |T = 1, W⃗ ] − E[Y |T = 0, W⃗ ] (19)

Given the two-stage process of RD treatment effect estimation, we not only have potential outcomes
Y (·) but also potential treatments T (·). We can thus equivalently analyze the “treatment effect”
the cutoff indicator Z has on “outcome” T , yielding Equation 3. The same standard fuzzy RD
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assumptions that enable estimation of the treatment effect γ at cutoff c (Section 3.1) also enable
estimation of the heterogeneous TAU τc(W⃗ ) through CATE estimation frameworks (Kennedy et al.,
2020; Coussens and Spiess, 2021).

B.4 Proposition 3 details: power and effective sample size

We describe the relationship between η and power. From Cattaneo et al. (2019b), we have the
following power function for an α-level two-sided test for τ given a local linear treatment regression:

β(τ) = 1 + Φ
(

τ√
V

− zα/2

)
− Φ

( τ√
V

+ zα/2

)
(20)

where Φ is the Normal distribution CDF, zt is its tth percentile (e.g. za = Φ−1(a)), and V is
the variance of τ . Next, leveraging the equivalence between instrumental variable (IV) analysis
and fuzzy regression discontintuities (FRD) established in Proposition 1, the variance of an FRD
estimator under constant treatment effects has been shown to be (Coussens and Spiess, 2021):

V = Var[Y |Z, compliers]
ηE[Z](1 − E[Z]) (21)

Thus, variance decreases as η increases. We note that even under the relaxation of the constant
treatment effects assumption, Heng et al. (2020) and Baiocchi et al. (2014) have shown that the
IV variance with n samples is at least as large as the variance with η samples of known compliers.
Thus, the two-sided power function is non-decreasing as V decreases, and hence when η increases.
Freeman et al. (2013) also equivalently show this relationship between IV power and η in their
power calculation analysis of Mendelian randomization studies.

Note that our statements are of the power non-decreasing as a function of τ because power is
bounded (β(τ) ∈ [0, 1]). We show empirically in Figure 3 that power in practice increases as η̂
increases, regardless of the size of the subgroup. Data simulated in Figure B.1 follow the TAU
regression data generation described in Appendix C.1 with n = 1000, τ = 0.2, and a bandwidth of
0.5. Random subgroups of sizes uniformly distributed between 450 and 950 are drawn to show the
relationship between τG and ηG and power across varying G sizes.

B.5 Effective sample size test statistic derivation

From Section 3.5, in order to construct a test statistic for Equation 5 we need a consistent estimator
of Var[ηG − ηP ]:

Var[ηG − ηP ] = Var[ηG] + Var[ηP ] − 2Cov[ηG, ηP ] (22)

We use influence functions to empirically estimate this variance term (Newey and McFadden, 1994).
To derive the influence function for ηG, we first give the influence function of a sample i on τG,
which can be seen as a difference-in-means estimator (Imbens and Rubin, 2015; Kahn, 2022):

ψτG,i = 1[Zi = 1] NG

N1G
(Ti − T 1G) − 1[Zi = 0] NG

N0G
(Ti − T 0G) (23)
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Where 1[·] is the indicator function and NzG is the number of samples in subgroup G where Z = z.
We can then apply the influence function chain rule (Kahn, 2022) to obtain the influence function
for ηG. For an estimator θ̂ such that θ̂ = T (θ̂j , ..., θ̂n), the influence function of θ̂ is:

ψθ̂,i =
n∑
j

∂T

∂θ̂i

ψθ̂j ,i (24)

The influence function ψηG,i of ηG for a given sample in subgroup G is thus:

ψηG,i = ∂

∂τ̂G
NGτ̂

2
G

= 2NGτ̂GψτG,i

= 2NGτ̂G

(
1[Zi = 1] NG

N1G
(Ti − T 1G) − 1[Zi = 0] NG

N0G
(Ti − T 0G)

)
(25)

Note that in following text we refer to ψηG,i as ψG,i to reduce notational clutter.

ψG,i consists of products and differences of empirical means over different subgroups which are
straightforward and fast to compute. Following the properties of influence functions (Newey and
McFadden, 1994; Erickson and Whited, 2002), we can next derive the variance-covariance matrix
of ηP , ηG as follows. Let:

Ψ =
[
ψ⃗P , ψ⃗G

]
NP ×2

(26)

where ψ⃗G is a vector of length NP with values at the ith index of ψG,i if i ∈ G and 0 otherwise.
As the distribution of an estimator θ is equivalent to 1√

N

∑N
i ψθ,i (Erickson and Whited, 2002), we

have:

√
NP

(
η̂P − ηP

η̂G − ηG

)
= 1√

NP

NP∑
i

(
ψηP ,i

ψηG,i

)
d−→ N

((
0
0

)
,E

(
ψ2

ηP ,i ψηP ,iψηG,i

ψηP ,iψηG,i ψ2
ηG,i

))
(27)

Kahn (2022) then shows that the following variance-covariance matrix gives us the variances of ηG,
ηP on the diagonal and the covariance of ηG and ηP on the off-diagonal:

V = 1
N2

P

(
ΨT Ψ

)
(28)

The elements of V give us empirical, consistent estimates of Var[ηG], Var[ηP ], and Cov[ηG, ηP ],
allowing us to calculate tη (Equation 5).

As a sanity check, we verify that the distribution of the computed test statistic under the null
hypothesis behaves correctly in empirical simulations (Figure B.1). Data simulated in Figure B.1
follow the TAU regression data generation described in Appendix C.1 with n = 200, τ = 0.5, and a
bandwidth of 0.5. Random overlapping subgroups of size 100 are drawn to test the null distribution.

26



Published in Transactions on Machine Learning Research (10/2023)

Figure B.1: Our overlapping η hypothesis test produces well-behaved null distributions, yielding
valid p-values. We conduct six different simulations with varying numbers of trials under the null
hypothesis that the overlapping groups have the same effective sample size.

B.6 Closed-form power calculations

We use Equation 20 shown in Appendix B.6 to compute the theoretical power of a treatment re-
gression. To calculate V , Imbens and Lemieux (2007) give a closed form solution for the asymptotic
variance of the treatment regression, assuming a symmetric bandwidth h:

V = 8 · pbw
n

(σ2
T,l + σ2

T,u) (29)

where n is the total sample size, σ2
T,l is the TAU variance below the cutoff, σ2

T,u is the TAU variance
above the cutoff, and pbw is the fraction of units in the sample in the bandwidth h.

Since T is binary, we have that:

σ2
T,l = lim

x↑c
V ar(T |X = x) = µT,l · (1 − µT,l)

σ2
T,u = lim

x↓c
V ar(T |X = x) = µT,u · (1 − µT,u)

where µT,l = limx↑c Pr(T = 1|X = x) and µT,u = limx↓c Pr(T = 1|X = x). µT,u and µT,l can
be computed given our simulated data generating process, giving us a closed form solution of the
theoretical power that can be achieved in our synthetic experiments.

C Synthetic experiment details

C.1 TAU regression setup

For our blended RD simulation scenario, data are generated in the following manner. Let Xi ∼
Unif(0, 1) be the running variable for unit i. We generate threshold indicator Zi = 1[Xi > c], where
c is the chosen treatment threshold. Each unit’s probability of treatment assignment is defined as:

pi = τZi + νXi + η + ψi (30)

where τ is the true TAU, ν the coefficient determining the running variable’s effect on the outcome,
η a constant, and ψi a Gaussian noise term. For each generated data set, we vary τ and draw

27



Published in Transactions on Machine Learning Research (10/2023)

Figure C.2: Heterogeneity in TAU can be observed when considering the additional
covariate W . Left is a pointplot of TAU probabilities as a function of the running variable X (the
same as pictured in Figure 4) for a single trial of our simulation, with error bars as 95% CIs and a
nominal τ = 0.7. Right is a density plot of treated units as a function of both X and W .

ν ∼ N(0, 0.1) and set η = 0.2, ν = 0.05. pi values are clamped to [0, 1], with an individual’s
treatment assignment then defined as Ti ∼ Bern(pi).

C.2 Blended RD in one covariate

For the simulation setting shown in Section 5, for each unit we additionally draw Wi ∼ Unif(0, 1),
with the cutoff c a unit complies with being determined by:

c =
{

0.25 if Wi < 0.5
0.75 if Wi ≥ 0.5

(31)

For each trial of our synthetic experiment, we draw 1000 units for each sample S1, S2 with half of
the units complying with the lower cutoff and half complying with the upper cutoff. Differences in
TAU can be observed when visualizing heterogeneity in Wi (Figure C.2).

C.3 Treatment assignment uptake reduction in the presence of heterogeneity

As our simulated data contains two equally-sized populations that comply with different cutoffs,
the observed τ will effectively be reduced by half, since for each cutoff c1, c2, half of the units do
not comply with the jump in TAU at that point. For example, at a given τ and n, we can estimate
the observed TAU at c1 for our sample by computing µT,u − µT,l:

µT,u = lim
x↓c1

Pr(T = 1|X = x)

=
ν · c1 · n+ η · n+ (τ · n

2 )
n

= νc1 + η + 1
2τ

µT,l = lim
x↑c1

Pr(T = 1|X = x)

= ν · c1 · n+ η · n
n

= νc1 + η

Thus we have µT,u − µT,l = 1
2τ .
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C.4 Heterogeneity in one covariate: simulation details

Figure C.3: RDSGD maintains false positive
rates below the nominal α level. We simulate
RDs with multiple running variables over 500 trials
for each τ and record the number of false discoveries.

Results presented in Section 5.1 use data gen-
erated according to Appendix C.1-C.2. We use
a fixed bandwidth h = 0.25 to ensure that
the closed form theoretical powers calculated
in Appendix B.6 are valid. Causal forests were
fit according to default parameters specified in
the EconML package (Battocchi et al., 2019)
(with honesty enabled for valid and unbiased
inference), and a fixed depth of 3 and mini-
mum leaf size of 100 were used for subsequent
CATE causal trees distilled from the forests to
ensure subgroups remained interpretable. We
note that the causal forest implementation in
EconML by default runs a two-fold cross val-
idation internally when selecting hyperparam-
eters for the LogisticRegressionCV scikit-learn
models for treatment, which searches over L2
regularization parameters in a grid of 10 values

between 1e−4 and 1e4 using the default accuracy criterion. Seeds were passed to machine learning
models to ensure reproducibility. All 500 trials were seeded with their trial number, and once imple-
mentation was complete experiments were run twice to validate reproducibility. We run Herlands
et al. (2018)’s RD discovery method, LoRD3, according to recommended parameters in their code
repository, setting (in their notation) k = 100 and z = {X,W} so that information from both X
and W are used. All simulations were run on a Ubuntu 20.04 LTS server, with a 24-core Intel
i9-7920X CPU and 94 GB RAM.

The false positive rates shown in Figure C.3 are computed based on the number of significant
discontinuities discovered that do not equal c1 or c2 divided by the total number of tests over
the 500 trials for each τ level. As our empirical power metric amounts to a count of “successful”
detections of statistically significant discontinuities at c1 and c2 out of the 500 trials, we use a χ2

test (or corresponding Fisher’s exact test if count numbers are not sufficient) to compare RDSGD’s
performance with the baseline discovery method. All the differences between RDSGD and the
baseline algorithm are statistically significant with p < 0.001 With the exception of the τ = 0.2
case, and the differences between LoRD3 and RDSGD are statistically significant at all τ levels.

C.5 Heterogeneity in multiple covariates: simulation details

Results presented in Section 5.2 used data generated according to Appendix C.1. Instead of having a
single covariate govern the choice of c as in Appendix C.2, we generate dim(W⃗ ) covariates W1,W2, ...
for each unit i using scikit-learn’s make_regression() method, producing output ωi. We then scale
ωi to fall in the range [0, 1] with sample mean 0.5, and determine which cutoff a unit complies with
by:
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c =
{

0.25 if ωi < 0.5
0.75 if ωi ≥ 0.5

(32)

We fix ground truth τ = 0.5 for the simulation trials and calculate the baseline oracle power
according to Appendix B.6. All hyperparameters, hardware, and seeding strategy for the 500 trials
are the same as described in Appendix C.4.

All statistically significant subgroups discovered by RDSGD are recorded, and their power is com-
puted according to Equation 20. Means and standard deviations reported in Table 5b are taken
across all trials. For significance testing, we use a one-sample t-test comparing the subgroups in
each cell of Table 5b with their corresponding baseline oracle powers. All tests were statistically
significant at p < 0.001.

D Clinical setting and cohort details

D.1 Justifying use of private claims dataset

In order to evaluate RDSGD in a real-world setting where our clinical collaborators can help verify
discovered candidate RD studies, we needed a large-scale clinical data source that spanned general
healthcare settings with enough data granularity on individuals so our method can leverage potential
TAU heterogeneity across common demographic covariates (described in Appendix D.2). The
claims dataset that we use has the advantage of having an array of disease classes and visibility
into patient information in general healthcare settings, as opposed to publicly available datasets
such as MIMIC which focuses on a very specific context (critical care). Working with such detailed
patient information necessitates adherence to federal HIPAA privacy rules concerning privacy, which
restrict access to “protectable health information"; we do however provide descriptive statistics of
the presented in Table D.1 as well as anonymized datasets that are sufficient to recreate all figures
in this paper.

D.2 Data extraction per clinical setting

Breast cancer screening. We extract a patient’s first recorded routine preventative care visit
as designated by ICD and CPT codes. The treatment indicator T for a patient is whether they
received a breast cancer screen as designated by ICD code within 7 days of the recorded encounter
date. The running variable X is the patient’s age at the initial encounter date (note that in order
to protect patient privacy, the claims database only has resolution to a patient’s year of birth). We
consider candidate thresholds of CX = [40, 45, ..., 60] with the data-driven bandwidth selected to
be 4, at age increments of 5 years to align with typical screening guideline values.

Colon cancer screening. Similar to the breast cancer setting, we use a patient’s first recorded
routine preventative care visit. The treatment indicator T for a patient is whether they received a
colon cancer screen within 7 days of the recorded encounter date, and age is the running variable
X with candidate thresholds of CX = [40, 45, ..., 60] and bandwidth 4, at age increments of 5 years
to align with typical screening guideline values.

Type 2 diabetes diagnosis. We extract patient’s first recorded A1C measure as designated
by LOINC codes and use it as the running variable X. The treatment indicator T for a patient
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is whether a type II diabetes diagnosis ICD code appears in their record within 30 days of the
first recorded A1C measure. We consider candidate thresholds of CX = [5.0, 5.1, 5.2, ..., 7.5] and a
data-driven bandwidth selected to be 0.4 as this is the standard range of A1C values, with the lab
readings having precision to one decimal place.

In all three clinical settings, we exclude patients that have a recorded treatment indicator code
prior to their initial encounter date, as well as patients that do not have recorded demographic
information. The following covariates are included as W⃗ for each patient (unordered categorical
variables are one-hot encoded, while ordinal variables are coded as integers): gender, encounter
date, insurance type (Medicare vs commercial), race, education level, and household income range.

D.3 Full result and cohort details

Claims data analyses were run on a secure CentOS Linux 7 server with a 40-core Intel Xeon E5-
4650 CPU and 504 GB RAM. We follow the same hyperparameter and model training strategy as
described in Appendix C.4. For the RD candidate cutoff identified in each clinical setting, we show
the best subgroup in terms of effective sample size in Table 1. We describe the demographics of
patients within the RD bandwidth of analysis in Table D.1.

Table D.1: Demographic details for each clinical setting within RD bandwidth.

Breast cancer
screen, age ≥ 40

Colon cancer
screen, age ≥ 50

Type 2 diabetes
diagnosis, A1C ≥ 6.5

Sample size 315,225 346,191 133,826

Mean age (SD) 39.9 (1.98) 49.9 (1.98) 59.6 (13.4)

Gender (%)
Male 169,050 (53.6) 171,601 (49.6) 61,583 (46.0)
Female 146,175 (46.4) 174,590 (50.4) 72,242 (54.0)

Race (%)
White 212,441 (67.4) 247,169 (74.3) 77,945 (58.2)
Black 32,700 (10.4) 33,387 (9.6) 23,159 (17.3)
Asian 26,158 (8.3) 16,578 (4.8) 10,481 (7.8)
Hispanic 43,926 (13.9) 39,057 (11.3) 22,241 (16.6)

Education level (%)
Less than 12th grade 1,285 (0.4) 1,349 (0.4) 1,098 (0.8)
High school diploma 59,943 (19.0) 73,995 (21.4) 40,783 (30.5)
Less than Bachelor’s 166,612 (52.9) 187,171 (54.1) 71,527 (53.4)
Bachelor’s degree plus 87,385 (27.7) 83,676 (24.2) 20,418 (15.3)

Household income (%)
<$40k 47,529 (15.1) 50,651 (14.6) 35,456 (26.5)
$40k - 49k 17,756 (5.6) 19,290 (5.6) 11,312 (8.5)
$50k - 59k 18,388 (5.8) 21,196 (6.1) 12,234 (9.1)
$60k - 74k 28,648 (9.1) 33,265 (9.6) 15,938 (12.0)
$75k - 99k 47,319 (15.0) 56,234 (16.2) 21,417 (16.0)
>$100k 155,585 (49.4) 165,555 (47.8) 37,469 (27.9)
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