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ABSTRACT

Learning from a stream of tasks usually pits plasticity against stability: acquir-
ing new knowledge often causes catastrophic forgetting of past information. Most
methods address this by summing competing loss terms, creating gradient con-
flicts that are managed with complex and often inefficient strategies such as ex-
ternal memory replay or parameter regularization. We propose a reformulation of
the continual learning objective using Douglas-Rachford Splitting (DRS). This re-
frames the learning process not as a direct trade-off, but as a negotiation between
two decoupled objectives: one promoting plasticity for new tasks and the other
enforcing stability of old knowledge. By iteratively finding a consensus through
their proximal operators, DRS provides a more principled and stable learning dy-
namic. Our approach achieves an efficient balance between stability and plasticity
without the need for auxiliary modules or complex add-ons, providing a simpler
yet more powerful paradigm for continual learning systems.

1 INTRODUCTION

Continual learning (CL) aims to train models on a sequence of tasks, emulating human-like learn-
ing, but is fundamentally constrained by the stability-plasticity dilemma (French, 1999; Knoblauch
et al., 2020). Models must be plastic enough to acquire new knowledge yet stable enough to retain
prior knowledge, avoiding catastrophic forgetting of past tasks (Thapa & Li, 2024; Bonnet et al.,
2025; Shen et al., 2024). Standard CL methods address this by adding a regularization term to the
task loss, LCL = Lnew-task + Rregularization. This coupling forces stability and plasticity into direct
competition: stronger regularization slows adaptation, while weaker regularization accelerates for-
getting (Elsayed & Mahmood, 2024; Yoo et al., 2024). The most successful approaches are often
complex workarounds. Replay methods mitigate forgetting by storing past data but at the cost of
significant memory growth (Wu et al., 2024; Yoo et al., 2024; Elsayed & Mahmood, 2024; Thapa
& Li, 2024; Eskandar et al., 2025). Architecture-based methods (Rusu et al., 2016; Konishi et al.,
2023; Lyle et al., 2024) isolate knowledge by adding new components for each task, leading to un-
sustainable model growth and restricting knowledge transfer. It’s like buying a new bookshelf for
every new book rather than learning how to organize them on one. These approaches focus on pre-
venting damage to prior knowledge rather than leveraging it to accelerate new learning. We argue
that the core issue lies not in the objectives themselves, but in the optimization strategy that forces
them into a direct tug-of-war (Polson et al., 2015; Feng et al., 2022; Bian et al., 2024). The solution,
therefore, is not to simply balance this conflict, but to change the nature of the interaction. Instead
of modifying the model architecture or adding complex components like memory buffers, we offer
a new insight into stability and plasticity objectives through the lens of operator splitting techniques.
We employ Douglas-Rachford Splitting (DRS) (Gabay & Mercier, 1976), a powerful algorithm that
reformulates the optimization of the task-fitting term (f) and the stability term (g) into a structured
negotiation. Under this formulation, a CL update would no longer be a simple gradient, instead, it
is a principled negotiation: finding a new set of model parameters θk+1 that balances proximity to
the solution of the new task and proximity to a state that respects old knowledge. In our model, sta-
bility and plasticity are interdependent, but not in the oppositional. Unlike prior splitting-based CL
(Polson et al., 2015; Yoo et al., 2024; Wang et al., 2025) that still balance penalties, our formulation
treats stability as a guide for plasticity, shaping learning rather than simply constraining it.

Our approach yields several key advantages: 1 DRS handles the two functions separately via their
proximal operators. Instead of mushing them together into a single loss function, the DRS finds
a solution point between f and g, which can leads to a more stable and negotiation between the
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(a) (b) (c)

Figure 1: The Stability-Plasticity dilemma in continual learning on EMNIST: (a) Illustrates the
trade-off between online average accuracy and plasticity across various methods. Methods closer to
the top-right corner better balance the ability to learn new tasks without forgetting. (b) Catastrophic
forgetting: average accuracy over seen tasks vs. task index. Forgetful methods drop or remain low;
a successful one maintain a consistently high curve throughout training. (c) Loss of plasticity: an
ideal learner should maintain a high, stable performance on new tasks regardless of how many it has
seen before. A downward-sloping curve on this plot is a sign that the model is losing its plasticity.

two objectives; 2 the use of a Bayesian prior provides a structured latent space that facilitates the
transfer of shared representations; 3 this is made robust by our use of a flexible Rényi divergence
to enforce consistency with the Bayesian prior. Together, these elements create a structured latent
space that facilitates knowledge transfer, shifting continual learning from a zero-sum trade-off to a
synergistic process. Fig. 1 illustrates two fundamental failures of continual learning: catastrophic
forgetting and loss of plasticity. The tasks are designed to be highly coherent, so features learned
in one task should accelerate performance on subsequent tasks. However, when trained with a
variational inference (Eq. 1), which include KL-divergence, the learner fails to improve across
tasks (Fig. 1a), showing repeated forgetting and relearning. A second issue is loss of plasticity, as
the model parameters become entrenched to protect old knowledge, its ability to learn new tasks
diminishes over time (Lyle et al., 2024; Lee et al., 2023; Bonnet et al., 2025). This is evident
in Fig. 1b, where accuracy on new tasks declines with task number. These results highlight the
limitations of treating CL as a simple trade-off and motivate the need for our proposed approach.

2 RELATED WORK

Continual learning (CL) is widely recognized as a foundational requirement for building adapt-
able and general artificial intelligence systems. A successful CL model must be able to acquire new
knowledge while preserving all previously seen tasks. However, standard neural networks, when
trained on a new task, tend to overwrite the parameters essential for past tasks, leading to a drastic
drop in performance on prior knowledge. This phenomenon is known as catastrophic forgetting
(French, 1999), which creates the core stability-plasticity dilemma. Most CL frameworks address
this by adding a stability constraint to the new task’s loss, forcing the two objectives into a direct
and often conflicting summation (Polson et al., 2015). The popular solution families include replay-
based methods (Rudner et al., 2022; Hayes et al., 2020; Eskandar et al., 2025), parameter isolation
methods (Konishi et al., 2023; Kang et al., 2022; Malviya et al., 2022), and regularization-based
methods (Batten et al., 2024; Dohare et al., 2024; Thapa & Li, 2024). Among these, regularization-
based methods have gained prominence due to their theoretically motivated approach to managing
the stability-plasticity trade-off (Van de Ven et al., 2024). These methods seek to preserve prior
knowledge by penalizing updates that would significantly alter parameters important for previously
learned tasks. A notable example, EWC (Kirkpatrick et al., 2017), employs the Fisher Information
Matrix to identify important weights and imposes a quadratic penalty on their changes. Similarly,
VCL (Nguyen et al., 2018) and its extensions (Ahn et al., 2019; Lee & Storkey, 2024; Dhir et al.,
2024; Thapa & Li, 2024) adopt a Bayesian perspective, regularizing the model’s posterior distribu-
tion between tasks to maintain knowledge retention. Further innovations like SFSVI (Rudner et al.,
2022) shift from parameter regularization to function space regularization. Despite these advances,
a critical limitation persists: the optimization process itself remains forgetful. Most approaches
combine task loss and memory regularization into a single objective and optimize it via standard
optimizers like SGD, which have no intrinsic mechanism to manage the conflict between compet-
ing objectives (Polson et al., 2015; Lee et al., 2023; Wang et al., 2025). As a result, models either
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overfit to the new task and forget (too much plasticity) or over-regularize and fail to adapt (too much
stability). Our work addresses this gap by building knowledge retention directly into the optimizer.
We are aligned with an emerging body of work (Polson et al., 2015; Yoo et al., 2024) that has begun
to explore operator splitting methods for CL.

Operator splitting solvers: Douglas-Rachford Splitting (DRS) (Douglas & Rachford, 1956;
Gabay & Mercier, 1976) is a classic operator splitting method developed for solving optimization
problems of the form: minx f(x) + g(x), where, f and g are two separate functions that maybe
difficult to optimize together, but handling each function individually is easier. DRS reformulates
the problem into two distinct subproblems that are solved sequentially using proximal operators.
This decompositional ability has made such methods highly popular for large-scale and complex
optimization (Stellato et al., 2020; Garstka et al., 2021; Mai et al., 2022; Aljadaany et al., 2019;
Tran Dinh et al., 2021; Anshika et al., 2024; Ozaslan & Jovanović, 2025). Given that catastrophic
forgetting can be framed as an optimization conflict between task adaptation f , and knowledge reten-
tion g, this splitting provides a principled solution. The DRS algorithm first computes a solution that
satisfies the plasticity objective, then refines this solution to be consistent with the stability objective.
A proximal operator blends the two solutions, ensuring a balanced update. This deep integration of
stability distinguishes our approach from other methods that have explored proximal objectives. For
instance, Yoo et al. (2024) use a proximal point objective to stabilize replay-based training, applying
a single proximal to the combined task and replay loss. In contrast, our DRS-based continual learner
is replay-free and performs a decoupling, splitting the objective into its distinct plasticity and stabil-
ity components and addressing them in a structured negotiation. In this way, knowledge retention is
embedded directly into the optimization process, not added as an external penalty.

Different from exiting approaches: First, in contrast to methods like UCL (Ahn et al., 2019), EWC
(Kirkpatrick et al., 2017), SB-MCL (Lee et al., 2024) that combine task and regularization losses
into a single objective optimized via standard SGD, we reframe the problem as an optimization
conflict resolved through Douglas-Rachford Splitting (DRS). This embeds knowledge retention into
the optimizer’s update rule. Second, our model is entirely replay-free. While coreset-based methods
(Borsos et al., 2020; Batra & Clark, 2024; Thapa & Li, 2024) store subsets of past tasks to preserve
knowledge, our model operates through the more efficient probabilistic mechanism of posterior
propagation, avoiding explicit data storage.

3 OUR APPROACH

3.1 PROBLEM OVERVIEW

We consider a sequence of tasks D= {D(1), . . . , D(T )}, where each D(t) = {(x(t)
n , y

(t)
n )}Nn=1 con-

sists of N input-target pairs. Our goal is to learn these tasks sequentially while preserving and
leveraging prior knowledge to achieve synergy, where old knowledge accelerates new learning. For
each input x(t)

n from a task D(t), an encoder (ϕ) infers a posterior distribution over a shared latent
space z by qϕ(z | x(t)

n ) =N (µϕ(x
(t)
n ), diag(σϕ(x

(t)
n )2)). A shared decoder (θ), then predicts the

output via the likelihood pθ(y
(t)
n |x(t)

n , z). To accumulate knowledge, we adopt a posterior-to-prior
propagation (Konishi et al., 2023; Bonnet et al., 2025): after learning task t − 1, its posterior be-
comes the prior for task t. Specifically, we start with a Gaussian prior, p(z |D(0))=N (0, I), and
for subsequent tasks (t> 1), we set the prior as p(z | D(1:t−1))= qϕt−1(z | D(t−1)). As detailed
in Appendix A.1, this prior is parameterized as a Gaussian aggregated over the previous dataset,
providing a compact summary of acquired knowledge. Then, the training objective for task t is

L(ϕ, θ) = Ez∼qϕ(z|D(t))[

N∑
n=1

log pθ(y
(t)
n | x(t)

n , z)]− λ

d∑
i=1

wi Dα(q
i
ϕ ∥ pi), (1)

The first term is the maximum likelihood (learning the current task) and the second term is stabil-
ity (alignment with the prior). The stability is a weighted Rényi divergence (Li & Turner, 2016)
between the posterior and prior for each latent dimension i. The weights, wi = (σi

p)
2/

∑
j(σ

j
p)

2,
relax the constraints on latent dimensions where the prior is uncertain (high variance) (σi

p), allowing
for plastic adaptation while enforcing stability on learned features. We restrict all distributions to
the Gaussian family, for which the Rényi divergence has a closed-form solution (Margossian et al.,
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Figure 2: Addressing Catastrophic forgetting with Douglas-Rachford Splitting (DRS). (a) SGD op-
timizes only for the current/new task, causing the latent posterior qϕ to drift toward the new distribu-
tion, leading to forgetting of past knowledge (θpast). (b) DRS constrains the posterior within a region
that supports both old and new task distributions, preserving prior knowledge. θpast, θnew, θsplit rep-
resents the past, new and the balanced posteriors. (c) Our optimization loop: task-specific learning,
retention, and a relaxation step that balances both forces. This structure avoids gradient interference
and supports continual learning across long task sequences. Our Algorithm is in (3.1.1).

2024) (see Appendix A.4.1). Most continual learning methods rely on KL-divergence (Dhir et al.,
2024; Bonnet et al., 2025; Eskandar et al., 2025), in Appendix A.4 we argue that Rényi divergence
provides a more flexible and effective constraint. However, our contribution is an optimization
scheme based on Douglas-Rachford Splitting (DRS) that decouples the plasticity and stability terms
into proximal subproblems, enabling synergistic learning of new tasks while preserving prior knowl-
edge.

3.1.1 DRS-BASED CONTINUAL LEARNER.

To optimize Eq. 1, we reformulate the problem to leverage the power of operator splitting, where

• f(ϕ, θ) = −Ez∼qϕ [
∑

log pθ(yn | xn, z)], (task-fitting / plasticity),

• g(ϕ) = λ
∑d

i=1 wi Dα (qiϕ ∥ pi), (prior-alignment / stability).

The term f depends on both ϕ (via qϕ) and θ (via pθ), while the stability g only depends on the
encoder ϕ. This structure makes the problem ideally suited for DRS, which handles the two terms in
separate proximal steps. The algorithm iterates over an auxiliary variable ui = (ϕi, θi), initialized
for task t as u0 = (ϕt−1, θt−1). For iterations i = 1, . . . , I , we perform the following steps

1. Task-Fitting Proximal (Plasticity): First, we compute the proximal operator for the plasticity
objective f , which updates the model parameters to learn the current task

xi = proxf (ui−1) = argmin
ϕ,θ

[f(ϕ, θ) +
1

2γ
∥(ϕ, θ)− ui−1∥2]. (2)

This step updates both ϕ and θ. As this problem is nonconvex (Aljadaany et al., 2019), we approxi-
mate the solution via gradient-based updates (using Adam) initialized from ui−1.

4
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2. Prior-Alignment Reflection (Stability): Next, we compute the proximal operator for g, applied
to a reflection of the plasticity output

yi = proxg(2xi − ui−1) = argmin
ϕ

[g(ϕ) +
1

2γ
∥ϕ− (2xϕ

i − uϕ
i−1)∥

2]. (3)

This step updates only the encoder ϕ to align its posterior with the prior, as detailed in Appendix
A.4.1. The decoder parameters θ are passed unchanged from the previous step (yi = (yϕi , x

θ
i )), pre-

serving their specialization on the new task. The encoder (ϕ) thus mediates between task fitting and
prior alignment, as ϕ defines both qϕ(z) and the divergence constraint. As we prove in Proposition
3.1, the Rényi divergence is essential for a robust, DRS-based continual learner.

3. Relaxed Update: Finally, we update the auxiliary variable by moving towards the refined state

ui = ui−1 + λr(yi − xi). (4)

This step interpolates between the plasticity xi and the stability refinement yi. After I iterations,
the final parameters for task t are set to (ϕt, θt) = xI , and knowledge is propagated by setting the
next prior as p(z | D(1:t)) = qϕt

(z | D(t)). Our model is detailed in Algorithm 3.1.1 and notation
details in Appendix A.2. As we prove in Proposition 3.2, this DRS-based optimization is guaranteed
to converge to a stationary point of the continual learning objective. Our model finds a principled
compromise between the competing goals of plasticity and stability. Specifically, stationary points
imply that both objectives (f, g) are simultaneously satisfied, and the vanishing discrepancy between
iterations shows that stability complements plasticity rather than conflicting with it.

Proposition 3.1. Let posterior q(z)=N (z|µq,Σq) and prior p(z)=N (z|µq,Σp) be Gaussian dis-
tributions. Consider the proximal operator problem, q⋆=argminq[D(q ∥ p)+ 1

2γD(q ∥ v)], where
v(z)=N (z|µv,Σv) is the plastic proposal. When µv lies outside the high-probability region of p,
the KL-divergence (DKL) becomes dominated by the stability term g, while the Rényi divergence,
proxgRD

maintains balance between plasticity and stability.

Proof. The proximal update solves the optimization problem minq[D(q ∥ p) + 1
2γ ∥µq − µv∥2],

(Galke et al., 2024). The KL divergence possesses a zero-forcing (Li & Turner, 2016) behavior,
meaning Dk(g ∥ p) → ∞ if g places mass where p(z)=0. When the plastic xi proposes parameters
µv far from the prior support p, any g⋆ with mean near µv will have significant mass, where p(z) ≈
0. The zero-forcing property forces the optimizer to ignore v and collapse g⋆ onto the prior’s support
to avoid infinite penalty (Margossian et al., 2024). In contrast, the Rényi divergence Dα(q ∥ p) =
1

α−1 log
∫
p(z)αq(z)1−αdz is zero-avoiding (Bresch & Stein, 2024; Galke et al., 2024). We consider

the same scenario, where the proposal v is far from the prior p. The term p(z)αq(z)1−α remains
bounded when p(z)≈0, so the penality is finite. The optimizer can thus find a compromise posterior
q⋆ near the proposal v, while paying a reasonable penalty for disagreeing with the prior; allowing
meaningful interpolation between µp and µv (see Appendix A.2).

Proposition 3.2. Let F (ω)=f(ω) + g(ω) be the continual learning objective, where f is the task-
learning term (plasticity), and g is the prior-alignment term (stability). Consider the DRS iterations
from Eqs. 2, 3 and 4

xk = proxf (uk), yk = proxg(2xk − uk), uk+1 = uk + λr(yk − xk),

then the following hold: (i) any fixed point of the DRS corresponds to a stationary point ω⋆, satisfy-
ing the first-order optimality condition 0∈∇f(ω⋆)+∂g(ω⋆); (ii) the iterates converge in the sense
that the discrepancy between the plasticity and stability steps vanishes, i.e., limk→∞ ∥xk−yk∥ = 0.

Proof. When our algorithm has found its optimal solution (fixed point u⋆), and stops changing, a
consequence of the update is that the plasticity (x⋆) and stability (y⋆) must have become identical
y⋆ = x⋆ ≜ w⋆, (see Appendix A.3.2). From the optimality conditions of the two proximal steps

• x⋆ = proxf (u
⋆) ⇒ u⋆ = w⋆ + γ∇f(w⋆),

• y⋆ = proxg(2x
⋆ − u⋆) ⇒ (2w⋆−u⋆)−w⋆

γ ∈ ∂g(w
⋆).
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Algorithm 1 Optimizing Continual Learning via Douglas-Rachford Splitting
Require: Sequence of datasets D(T ), iterations I , inner loop K for proxf , γ, λ.
1: Initialize ϕ(0), θ(0); prior p(z)← N(0, I).
2: for task t = 1 to T do
3: Receive data Dt = {(xn, yn)}Nn=1.
4: Set variable u0 ← (ϕt−1, θt−1).
5: for iteration i = 1 to I do
6: Step 1: Plasticity (Task-Fitting Proximal Step)
7: xi ← proxf (ui−1).
8: // Approximated with K gradient steps, initialized from ui−1.
9: Step 2: Stability (Prior-Alignment Reflection Step)

10: yi ← proxg(2xi − ui−1).
11: // Only updates encoder ϕ. Decoder is passed through yi = (yϕ

i , x
θ
i ).

12: Step 3: Relaxed Update
13: ui ← ui−1 + λ(yi − xi).
14: end for
15: // Update model and prior for the next task
16: Set final parameters for task t: (ϕt, θt)← xI .
17: Update prior for task t+ 1: p(z)← qϕt(z | D(t)).
18: end for
19: return final model parameter {ϕT , θT }.

Substituting the first into the second gives w⋆−(w⋆+γ∇f(w⋆))
γ ∈ ∂g(w

⋆), where yields −∇f(w⋆) ∈
∂g(w

⋆) ⇒ 0 ∈ f(w⋆) + ∂g(w
⋆). This is the first-order stationarity condition (Polson et al., 2015;

Aragón Artacho et al., 2020; Ozaslan & Jovanović, 2025) for the composite objective F , implying
that the adjustment to parameters is satisfied by stability and plasticity, ensuring coordination rather
than conflict. Additionally, the DRS update is a firmly non-expansive (Eckstein & Bertsekas, 1992;
Aljadaany et al., 2019), where the sequence of iterates is monotone with respect to the fixed points.
This provides the inequality: ∥uk+1 − u⋆∥2 ≤ ∥uk − u⋆∥2 − λr(2 − λr)∥xk − yk∥2. Since
∥uk − u⋆∥2 is non-increasing, so it converges monotonically (Anshika et al., 2024; Aragón Artacho
et al., 2020). As the sequence converges, the difference between consecutive terms must approach
zero lim(∥uk+1 − u⋆∥2 − ∥uk − u⋆∥2) = 0. For the inequality above to hold, the final term must
also vanish. Since λr(2− λr) > 0, we have limk→∞ ∥xk − yk∥=0 (more detail in Appendix A.3).

Discussion. Our theoretical analysis justifies the proposed learning strategy. The DRS-based con-
tinual learner is guaranteed to converge to a stationary point (a principled compromise between plas-
ticity and stability), evidenced by the vanishing discrepancy between the two steps (∥xk−yk∥ → 0).
More importantly, our analysis reveals that the robust negotiation is possible because of using Rényi
divergence. We proved that it remains well-posed when learning novel tasks, a scenario where the
standard KL divergence may fail (Galke et al., 2024; Bresch & Stein, 2024). Indeed, DRS has the
strongest theoretical guarantees in convex (Eckstein & Bertsekas, 1992; Garstka et al., 2021; Mai
et al., 2022) and nonconvex (Polson et al., 2015; Li & Pong, 2016; Aragón Artacho et al., 2020;
Tran Dinh et al., 2021) settings. By reformulating the problem at the optimization level, we create
a more effective continual learner that avoids the zero-sum trade-offs of prior methods. Additional
analyses, including computational complexity, are provided in Appendices A.3, A.4 and A.3.3.

4 EXPERIMENTS

We evaluate our model on EMNIST (Cohen et al., 2017), CIFAR-10/100 (Krizhevsky et al., 2009),
ImageNet (Deng et al., 2009), TinyImageNet (Wu et al., 2017) and Celeb (Guo et al., 2016) datasets
(details in Appendix B.1), with learners that use multi-layer perceptrons, convolutional neural net-
works (see Appendix B.2), and residual neural networks (He et al., 2016). For other baselines, we
used their codes and replacing their backbones to any of these for fair comparison. Our model is
compared to suitable baselines: EWC (Kirkpatrick et al., 2017), IBPCL (Kumar et al., 2021), A-
GEM (Chaudhry et al., 2019), SB-MCL (Lee et al., 2024), UCL (Ahn et al., 2019), TAG (Malviya
et al., 2022), EVCL (Batra & Clark, 2024), UPGD (Elsayed & Mahmood, 2024), POCL (Wu et al.,
2024), HAT (Serra et al., 2018), BAN (Thapa & Li, 2024), SPG (Konishi et al., 2023) and WSN
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Figure 3: Forgetting analysis over 100 tasks on the CASIA classification benchmark. Each sub-
plot summarizes average forgetting across 20-task intervals, and the final plot shows the average
forgetting across all 100 tasks. We compare LLH (likelihood only; no stability term), LKL (KL
regularizer), LRD (Rényi divergence, but standard gradient updates), and Ours (DRS + Rényi).

(Kang et al., 2022). The hyperparameters are set to γ = 0.5, and λ = 0.7. Here, we focus on the
key results and provide additional results in the Appendix C. Following the baselines, we evaluate
the performance using three metrics. Average Accuracy (ACC): The mean classification accuracy
across all tasks computed after training on each task. Backward Transfer (BT): The change in ac-
curacy on previous tasks after training on a new task, measuring forgetting (positive values indicate
improvement, negative indicate forgetting). Forward Transfer (FT): The improvement in accuracy
on a new task due to knowledge from previous tasks, assessing loss of plasticity.

4.1 RESULTS AGAINST CATASTROPHIC FORGETTING AND LOSS OF PLASTICITY

We evaluate our model on six benchmarks: CIFAR-100 split into 10 tasks (10 classes per task) and
20 tasks (5 classes per task), Tiny-ImageNet with 20 tasks (5 classes per task), ImageNet with 100
tasks (10 classes per task), CelebA with 10 tasks (celebrity identities), and EMNIST with 10 tasks
(handwritten symbols). For CIFAR-100, Tiny-ImageNet, and ImageNet, classes are disjoint across
tasks (each task has a distinct set of classes), where catastrophic forgetting is the primary challenge.
In contrast, CelebA and EMNIST share the same label space across tasks (joint tasks), where for-
ward/backward transfer is more critical than retention. All methods use ResNet-18 as the backbone.
Accuracy results are reported in Table 1. On the four disjoint-task benchmarks, our model achieves
the best average accuracy (65.7%), while demonstrating near-minimal forgetting with average BWT
-1.9 (in Table 2). In the joint-task setting, our approach achieves the highest accuracy (88.2%) and
the largest positive backward transfer (BWT +3.2), indicating that DRS + Rényi reaches a superior
stability-plasticity trade-off. The model also demonstrates strong forward transfer in Table 3, accel-
erating new task learning by up to +10.4. These metrics confirm that our approach achieves high
accuracy, low forgetting, and strong forward transfer, setting a new standard for continual learning.

4.2 FORGETTING ANALYSIS

Figure 3 analyzes forgetting behaviour on CASIA-100 (Liu et al., 2011), over 100 sequential tasks.
Following the metric from (Chaudhry et al., 2018), we measure forgetting for a task t as the drop in
its accuracy after the model has trained on subsequent tasks t′ > t. To visualize this long sequence,
the figure is split into five subplots, each showing the average forgetting over 20-task intervals;
the final plot summarizes the average forgetting across all 100 tasks. A small CNN with ReLU
activations is used (Appendix B.2). We compare our full DRS-based model against three baselines
trained with standard gradient-based updates (Eq. 1). Likelihood-Only (LLH ), where α = 0: The
model is trained only on the task-fitting term of Eq. (1), with no stability constraint. KL-based
(LKL): The model is trained on the full objective but with the standard KL divergence. Rényi-based
(LRD): The model is trained on the full objective with Rényi divergence, but without our proposed
DRS optimization (using the training objective in Eq. 1). The results demonstrate the superiority of
our proposed model. Using LLH shows catastrophic forgetting, as expected. For the earliest tasks
(1-20), its forgetting rate climbs sharply, reaching over 15% by the end of the sequence. Adding KL
divergence improves upon LH but still accumulates significant forgetting, exceeding 13% for the first
block of tasks. In contrast, our model demonstrates the least forgetting (close to zero), and remaining
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Disjoint tasks Joint tasks

Method C100 [10] C100 [20] TIN [20] IN [100] Avg. CelebA [10] EM [10] Avg.

Mix 75.1± 0.3 79.8± 0.4 52.1± 0.3 62.7± 0.4 67.4 87.9± 0.7 86.3± 0.7 87.1
Single 67.9± 2.1 77.0± 0.4 43.8± 2.6 46.3± 0.4 58.9 76.5± 1.9 81.3± 0.9 78.9

A-GEM 51.4± 1.2 56.9± 5.3 37.5± 0.6 34.2± 0.9 45.0 84.6± 2.1 86.9± 0.2 85.8
EWC 61.7± 1.0 65.1± 2.3 41.5± 0.9 28.2± 1.2 49.2 81.9± 2.4 86.8± 0.5 84.3
BAN 71.6± 0.5 78.4± 0.4 50.6± 0.4 57.6± 0.5 64.4 87.2± 0.7 87.6± 0.2 87.4
SB-MCL 72.3± 0.3 78.1± 0.2 50.8± 0.7 58.6± 0.8 64.9 86.9± 0.9 88.1± 0.3 87.5
HAT 71.2± 0.4 75.2± 0.5 45.8± 1.8 45.9± 1.5 59.6 79.6± 2.3 84.9± 0.8 82.3
SPG 69.2± 0.3 76.5± 0.8 49.7± 0.2 58.6± 0.5 63.5 87.1± 0.9 87.9± 0.2 87.5
IBPCL 68.7± 1.0 77.3± 0.9 48.6± 0.6 55.2± 0.7 62.5 85.2± 0.5 86.5± 0.4 85.9
UCL 64.9± 0.8 73.6± 0.6 46.5± 0.6 39.1± 0.7 56.1 86.4± 0.5 85.7± 1.2 86.0
UPGD 71.4± 0.2 77.5± 0.5 51.2± 0.3 58.0± 0.4 64.5 85.9± 0.4 87.5± 0.3 86.7
POCL 70.2± 0.6 79.0± 1.2 49.8± 0.6 57.2± 0.7 64.1 85.2± 0.9 87.1± 0.6 86.2
TAG 61.0± 0.5 68.7± 0.9 43.5± 0.7 45.8± 0.2 54.8 76.3± 1.9 84.5± 0.5 80.4
WSN 70.4± 0.2 77.5± 0.5 47.9± 0.4 52.1± 0.4 62.1 84.2± 1.1 86.7± 0.3 85.5
Ours 71.8± 0.3 79.5± 0.6 51.6± 0.4 59.7± 0.5 65.7 87.9± 0.5 88.6± 0.1 88.2

Table 1: Accuracy (%) results for joint and disjoint task settings on CIFAR-100 (C100 [10], C100
[20]), Tiny-ImageNet (TIN [20]), ImageNet (IN [100]), MS-Celeb (CelebA [10]), and EMNIST
(EM [10]) datasets. ‘Mix’ refers to training all tasks together, and ‘Single’ refers to learning a
separate model for each task. The results show that our model outperforms other methods across
most settings. Bold and underlined text represents the best and the second-best results, respectively.

Disjoint tasks Joint tasks

Method C100 [10] C100 [20] TIN [20] IN [100] Avg. CelebA [10] EM [10] Avg.

A-GEM -12.4 -19.5 -8.5 -14.7 -13.8 +0.5 +1.3 +0.9
EWC -6.1 -11.8 -6.9 -21.3 -11.5 -0.9 +1.2 +0.1
BAN -3.2 -4.7 -3.6 -2.5 -3.5 +2.1 +1.4 +1.7
SB-MCL -2.5 -3.9 -3.4 -2.3 -3.0 +2.9 +1.2 +2.0
SPG -4.7 -5.1 -3.9 -1.7 -3.9 +2.7 +0.8 +1.8
IBPCL -4.6 -6.1 -5.2 -4.6 -5.1 +1.6 +0.9 +1.3
UCL -5.9 -8.5 -7.6 -13.9 -9.0 +3.2 +0.8 +2.0
UPGD -2.6 -3.2 -2.8 -2.5 -2.8 +2.4 +1.5 +2.0
POCL -2.3 -2.9 -3.4 -3.5 -3.0 +2.1 +1.7 +1.9
TAG -0.9 -1.8 -1.3 -0.7 -1.2 +0.5 -0.1 +0.2

Ours -1.6 -2.3 -2.5 -1.3 -1.9 +3.9 +2.4 +3.2

Table 2: Backward transfer (BWT) result. Negative values indicate forgetting (degradation), while
positive values indicate improvement due to knowledge transfer. Our method achieves the best
average knowledge transfer (+ 3.2) on joint tasks and minimized forgetting (- 1.9) on disjoint tasks.
Bold and underlined text represents the best and the second-best results, respectively.

below 4% across all intervals. Even without DRS, Rényi outperforms KL (we demonstrate this in
Appendix A.4 and A.4.1), but the full combination is consistently best.

4.3 ABLATION STUDY

For ablation studies, we follow a simplified setting and use a two-layer MLP (1024-512, ReLU).
Each model is trained on CIFAR100 (20 tasks) using a total of 10,000 update steps. Results are
averaged over 5 seeds, and we report relative computation time and accuracy in Fig. 4. We focus
on two core components of our model: (i) stochastic Gaussian latent encoding, and (ii) divergence
parameter α. Effect of latent stochasticity: Our model samples z ∼ N (µϕ, σ

2
ϕ); the ablation uses

a deterministic latent z′ = µϕ (i.e., no sampling in the forward pass σϕ = 0) 1. Panel (b) shows
this reduces training time by about 9%, but it also leads to a performance drop, reducing average

1We still predict σϕ and use it in the stability term; only sampling is removed.
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Disjoint tasks Joint tasks

Method C-100 [10] C-100 [20] MIN [20] IN [100] Avg. CelebA [10] EM [10] Avg.

A-GEM -2.7 -0.8 -3.5 -0.6 -1.9 +8.1 +4.5 +6.3
EWC +0.6 -1.9 -4.3 -1.1 -1.7 +7.3 +4.9 +6.1
BAN +6.2 +4.8 +6.8 +9.2 +6.7 +9.8 +7.4 +8.6
SB-MCL +7.1 +4.3 +8.1 +8.7 +7.1 +10.5 +6.9 +8.7
SPG +5.7 +4.7 +7.6 +9.5 +6.9 +9.4 +5.7 +7.6
IBPCL +3.8 +3.1 +5.4 +6.3 +4.7 +8.6 +4.9 +6.8
UCL +4.1 +6.1 +7.8 +3.9 +5.5 +8.5 +3.7 +6.1
UPGD +5.6 +4.5 +7.6 +9.3 +6.8 +10.2 +7.8 +9.0
POCL +5.4 +5.2 +7.1 +7.9 +6.4 +10.8 +7.3 +9.1
TAG -4.3 -5.1 -4.6 -4.1 -4.5 -0.2 +3.7 +1.8

Ours +6.5 +5.9 +8.4 +10.7 +7.9 +12.3 +8.5 +10.4

Table 3: Forward transfer (FT) results on disjoint and joint tasks. Our model achieves the highest
average performance, outperforming the next best method (UPGD) by 10% and 16% respectively.
Bold and underlined text represents the best and the second-best results.

Figure 4: (a) Ablation study on CIFAR100 (20 tasks) benchmark. (a) Average accuracy across
different values of the divergence parameter α. The best result is achieved at α = 2.0, reach-
ing an average accuracy of ≈77%, while the lowest performance occurs at α = 0.0, dropping to
≈72%. (b) Relative training time for various methods using a RTX-3090 GPU. Our DRS-based
continual learner achieves competitive runtime while outperforming all baselines in accuracy. SGD
corresponds to standard optimization without DRS (i.e., direct minimization of Eq. 1). The variant
without latent sampling (z′) reduces compute time by 9%, but results in lower final accuracy. (c)
Performance of KL-divergence (baselines) vs. D-divergence (our model). Using KL (α = 1) de-
grades the performance, and our model (α = 2) consistently achieves higher accuracy and stability.

accuracy from 79.1% to 76.3%, highlighting the importance of uncertainty modeling in continual
learning. Effect of Rényi: We vary α ∈ {0.3, 0.5, 1.0, 2.0, 2.5}. Performance is lowest for small
α that are too permissive of forgetting, while the KL-divergence equivalent (α=1.0 red line) is also
suboptimal. The best performance is achieved in the range of α ∈ [2.0, 2.5], i.e, as predicted by the
prox weighting λwαγ

ασ2
p+(1−α)σ2

q
, which increases with α > 1, strengthening adaptive alignment (less

drift/forgetting). Panel (b) also shows our method is competitive or faster than many baselines.

5 CONCLUSION

Continual learning has long been framed as a trade-off between stability and plasticity, where
progress in one dimension comes at the expense of the other. In this paper, we challenged that
framing and showed that the true barrier lies in objective entanglement (gradients from new data
interfere with useful representations from prior tasks). To address this, we introduced a DRS-based
optimization strategy that decouples stability and plasticity via separate proximal operators. This
formulation reframes continual learning not as a zero-sum struggle, but as a synergistic process,
where prior knowledge guides and accelerates the acquisition of new knowledge. Across multiple
benchmarks, our method demonstrates superior performance in terms of stability, adaptability, and
computational efficiency when compared to state-of-the-art baselines.
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Ibrahim K Ozaslan and Mihailo R Jovanović. Accelerated forward–backward and douglas–rachford
splitting dynamics. Automatica, 175:112210, 2025.

Nicholas G Polson, Brandon T Willard, and Massoud Heidari. A statistical theory of deep learning
via proximal splitting. arXiv preprint arXiv:1509.06061, 2015.

Tim GJ Rudner, Freddie Bickford Smith, Qixuan Feng, Yee Whye Teh, and Yarin Gal. Contin-
ual learning via sequential function-space variational inference. In International Conference on
Machine Learning, pp. 18871–18887, 2022.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catastrophic
forgetting with hard attention to the task. In International conference on machine learning, pp.
4548–4557, 2018.

Yan Shen, Zhanghexuan Ji, Chunwei Ma, and Mingchen Gao. Continual domain adversarial adap-
tation via double-head discriminators. In International Conference on Artificial Intelligence and
Statistics, pp. 2584–2592, 2024.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. Osqp: An
operator splitting solver for quadratic programs. Mathematical Programming Computation, 12
(4):637–672, 2020.

Jeevan Thapa and Rui Li. Bayesian adaptation of network depth and width for continual learning.
In International Conference on Machine Learning, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Quoc Tran Dinh, Nhan H Pham, Dzung Phan, and Lam Nguyen. Feddr–randomized douglas-
rachford splitting algorithms for nonconvex federated composite optimization. Advances in Neu-
ral Information Processing Systems, 34:30326–30338, 2021.

Gido M Van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual learning and catas-
trophic forgetting. arXiv preprint arXiv:2403.05175, 2024.

Xuesong Wang, He Zhao, and Edwin V Bonilla. R\’enyi neural processes. International Conference
on Machine Learning, 2025.

Jiayu Wu, Qixiang Zhang, and Guoxi Xu. Tiny imagenet challenge. Technical report, 2017.

Yichen Wu, Hong Wang, Peilin Zhao, Yefeng Zheng, Ying Wei, and Long-Kai Huang. Mitigating
catastrophic forgetting in online continual learning by modeling previous task interrelations via
pareto optimization. In International Conference on Machine Learning, 2024.

Jason Yoo, Yunpeng Liu, Frank Wood, and Geoff Pleiss. Layerwise proximal replay: A proximal
point method for online continual learning. International Conference on Machine Learning, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 POSTERIOR AND PRIOR CONSTRUCTION

For each input x(t)
n from task t, the encoder ϕ outputs a Gaussian distribution over the latent variable

z as, qϕ(z | x
(t)
n ) = N

(
µϕ(x

(t)
n ), diag(σϕ(x

(t)
n )2)

)
.. At the dataset level, we approximate the

posterior as a mean-field product across examples qϕ(z | D(t)) ∝
∏N

n=1 qϕ(z | x
(t)
n ).. This

factorization is used in variational autoencoders methods (Dhir et al., 2024), where the encoder acts
as a shared network producing local posterior factors. For the prior, at the start of training, the prior
is chosen as an isotropic Gaussian, p(z | D(0)) = N (0, I). For each subsequent task (t > 1), we
adopt a Markovian update rule p(z | D(1:t−1)) ≈ qϕ(z | D(t−1)), i.e., the posterior of the previous
task serves as the prior for the current one. This compact approximation avoids the need to store all
past data, while carrying forward a summary of accumulated knowledge. An alternative approach,
explored in Bayesian CL (Dhir et al., 2024; Lee et al., 2024), relies on exponential-family posteriors
and conjugate priors. By the Fisher-Darmois-Koopman-Pitman theorem (Koopman, 1936), such
families admit exact posterior updates with sufficient statistics that do not grow with the dataset
size. Our model differs with these strategies since we do not require conjugacy and instead optimize
Gaussian posteriors via DRS. This makes our approach applicable to non-exponential families and
complex neural encoders, at the cost of approximate (gradient-based) updates.

A.2 HYPERPARAMENTS

Table 4: Summary of notation.
Symbol Description
D(t) = {(x(t)

n , y
(t)
n )}Nn=1 Dataset of task t with N samples

D = {D(1), . . . , D(T )} Sequence of T tasks
x
(t)
n ∈ Rm Input of sample n from task t

y
(t)
n ∈ Rk Target of sample n from task t
z ∈ Rd Latent variable (shared space across tasks)
ϕ Parameters of encoder network
θ Parameters of decoder network
qϕ(z | x) Encoder posterior, Gaussian with mean µϕ(x) and variance σϕ(x)

2

pθ(y | x, z) Decoder likelihood of target given input and latent
p(z | D(t)) Task-specific prior over latents (propagated from previous posterior)
f(ϕ, θ) Plasticity term: negative log-likelihood of current task
g(ϕ) Stability term: weighted divergence between posterior and prior
λ Weighting coefficient for stability term
Dα(· ∥ ·) Rényi divergence between two Gaussians
γ Proximal regularization parameter
ρ Relaxation parameter in DRS update
ui = (ϕi, θi) Auxiliary iterate in DRS optimization
xi = (ϕx

i , θ
x
i ) Proximal solution from task-fitting step

yi = (ϕy
i , θ

y
i ) Proximal solution from prior-alignment step

14
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A.3 THEORETICAL ANALYSIS

We analyze our DRS-based optimization scheme from three perspectives: (1) convergence theory
under DRS objectives, and (2) continual learning-specific stability-plasticity trade-offs. Together,
these results show that our method not only converges to a stationary point but also progressively
aligns stability and plasticity, reducing interference. (3) We also analyze its computational complex-
ity relative to common CL baselines.

A.3.1 PLASTICITY-STABILITY CONVERGENCE

Let the model parameters be ω = (ϕ, θ), and define the composite objective

F (ω) = f(ω) + g(ω),

where f is the nonconvex task-fitting term (plasticity) and g is the convex prior-alignment term
(stability). Each task t requires solving minω F (ω) using DRS iterations:

xk = proxγf (uk), (5)

yk = proxγg(2xk − uk), (6)

uk+1 = uk + λr(yk − xk). (7)

Assumptions.

1. (L-smoothness of f .) The task-fitting function f is differentiable with Lipschitz continu-
ous gradient for Lf > 0. That is, for any ω1, ω2 as: ∥∇f(ω1)−∇f(ω2)∥ ≤ Lf∥ω1−ω2∥.

2. (Convexity of g. ) The prior-alignment function g is convex, and lower semi-continuous.
We also assume its proximal operator, proxγg(·), can be computed efficiently (e.g., in
closed-form with α = 0.5).

3. (Coercivity. ) The overall objective function F (ω) is coercive, i.e., F (ω) → ∞ as ∥ω∥ →
∞, ensuring the iterates of our algorithm remain in a bounded set.

However, for nonconvex problems like ours, the goal is to prove convergence to a stationary point
(Polson et al., 2015; Eckstein & Bertsekas, 1992). A point ω∗ is a stationary point of F = f + g if
it satisfies the first-order optimality condition (Li & Pong, 2016): 0 ∈ ∇f(ω∗) + ∂g(ω∗), where ∂g
is the subdifferential of g.
Proposition A.1 (Convergence to a stationary point). Let Assumptions 1–3 hold. Let {uk} be the
sequence generated by DRS. Then:

1. The sequence {uk} remains bounded.

2. The objective decreases monotonically: there exists C > 0 such that

F (xk+1) ≤ F (xk)− C∥xk+1 − xk∥2.

3. Consequently,
∑∞

k=0 ∥xk+1 − xk∥2 < ∞, which implies ∥xk+1 − xk∥ → 0.

4. Any limit point of {xk} is a stationary point of F , i.e. 0 ∈ ∇f(ω⋆) + ∂g(ω⋆).

Proof. The proof follows standard DRS analysis using the Douglas-Rachford envelope (Ozaslan
& Jovanović, 2025; Polson et al., 2015). Assumption 1 ensures controlled descent of f , while
Assumption 2 ensures the stability prox is well-defined. For each iteration k, the output xk+1 is
better than xk. It can be shown from the properties of proximal operators and L-smoothness that
there exists a constant C > 0 such that, F (xk+1) ≤ F (xk) − C∥xk+1 − xk∥2 (Polson et al.,
2015). This inequality states that the objective value must decrease at each step, and the amount
of decrease is proportional to how much the iterate moved. A larger step implies a larger decrease
in the objective (Li & Pong, 2016). By summing the above inequality from k = 0 to N − 1,
we get:

∑N−1
k=0 C∥xk+1 − xk∥2 ≤ F (x0) − F (xN ). Since F is bounded below (by Assumption

3), the right-hand side is finite as N → ∞. This implies that the sum on the left is also finite∑∞
k=0 ∥xk+1−xk∥2 < ∞. A finite sum of positive terms implies that the terms themselves must go
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to zero. Therefore, ∥xk+1 − xk∥ → 0. This means the sequence of iterates settles down and stops
moving. Finally, we show that if the iterates stop moving, they must be at a stationary point. The
fixed-point condition of the DRS operator is equivalent to the first-order stationarity condition of the
original problem F (Li & Pong, 2016; Anshika et al., 2024; Polson et al., 2015; Tran Dinh et al.,
2021). Thus, any limit point of the sequence satisfies the stationarity condition, and our algorithm is
theoretically grounded.

Continual learning interpretation. In the main paper we demonstrate that our algorithm con-
verges to stationary points of the nonconvex CL objective. We now show, within each iteration,
DRS explicitly controls the interference between plasticity and stability updates.

Lemma A.1 (Interference control). Under the same assumptions as Proposition A.1, the disagree-
ment between the plasticity step xk and the stability-refined step yk satisfies

∥xk − yk∥2 ≤ 1

C

(
F (xk)− F (xk+1)

)
.

Proof. From Proposition A.1, each iteration decreases the objective by at least C∥xk+1 −xk∥2. On
the other hand, firm non-expansiveness of proximal operators implies that ∥xk − yk∥ is controlled
by ∥xk+1 − xk∥. Combining these gives the stated inequality. In summary, Proposition A.1 shows
that DRS converges to a stationary point of the CL objective. Lemma A.1 adds a continual learning
interpretation: the interference ∥xk − yk∥ between plasticity (new-task learning) and stability (prior
alignment) vanishes as the algorithm converges. Thus, old knowledge is not erased but instead
guides the optimization trajectory toward solutions that balance both stability and plasticity.

In our setting, f is the negative log-likelihood of a neural decoder and is therefore nonconvex.
Recent work shows that under mild assumptions (e.g., weak convexity or prox-regularity), the DRS
iteration still converges to stationary points (Li & Pong, 2016; Anshika et al., 2024; Aragón Artacho
et al., 2020; Aljadaany et al., 2019). Moreover, when proximal steps are computed inexactly via
gradient descent, convergence results for inexact splitting methods apply (Eckstein & Bertsekas,
1992; Aragón Artacho et al., 2020; Tran Dinh et al., 2021). Thus, while global optimality is lost
in the nonconvex case, our algorithm remains theoretically grounded: the iterates approach points
where the gradient of f + g vanishes.

A.3.2 HOW DOES y⋆ = x⋆ IN OUR PROOF

Consider the DRS update rule from Eq. 4: uk+1 = uk + λr(yk − xk). We are interested in a
fixed point u⋆ that our algorithm has converged. Indeed, the algorithm has converged when the
update rule stop changing, and produces is the same as the input it was given. By this definition
if we put uk = u⋆ into the rule, the output uk+1 must also be u⋆. So, the equation becomes:
u⋆ = u⋆ + λr(y

⋆ − x⋆). For the left side to equal the right side, the term being added on the right,
λr(y

⋆ − x⋆), must be equal to zero λr(y
⋆ − x⋆) = 0. This directly implies y⋆ = x⋆. Additionally,

x⋆ = proxf (u
⋆) and y⋆ = proxg(2x

⋆ − u⋆). are the results of the proximal steps when the main
variable u is at its fixed point u⋆.

A.3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

We analyze the per-iteration complexity of our model and compare it to standard CL baselines.
The per-iteration cost of DRS is dominated by the approximation of the task-fitting proximal op-
erator. Cost(proxf ): This is the main computational bottleneck. We approximate it with K steps
of a gradient-based optimizer (e.g., Adam) on a mini-batch of size B. The cost of a single for-
ward/backward pass is O(B). Therefore, the cost of this step is O(K · B). Cost(proxg): For our
chosen Gaussian families and Rieney divergence, this step has a closed-form solution. The cost in-
volves simple operations on the parameters of the encoder, which has a cost of O(d), where d is the
latent dimension. This is typically negligible compared to the cost of proxf . Cost(Update): The
final update is a simple vector addition, with cost proportional to the number of model parameters,
which is also negligible compared to proxf . Thus, total Cost per DRS iteration: ≈ O(K ·B).

However, standard SGD/Adam has O(B) cost per update. Our method is a factor of K more ex-
pensive per effective update. Cost of the Replay methods is O(Bnew + Breplay). If the replay
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buffer size is large, our method can be computationally cheaper while also avoiding the significant
memory cost (O(M) where M is buffer size). For the regularization-based methods (e.g., EWC)
is cost is O(B) + Cost(Regularizer). For EWC, calculating the diagonal Fisher Information Matrix
is Od(N.P ), where N is the dataset size and P is the number of parameters. This can be far more
expensive than our method’s O(K · B) cost. Our model has a computational cost that is a small, it
avoids the large memory overhead of replay methods and the often-prohibitive cost of calculating
complex regularizers like the Fisher matrix in EWC, offering a more efficient and scalable solution.

A.4 THE FLEXIBILITY OF RÉNYI DIVERGENCE (RD) IN CONTINUAL LEARNING

In CL, the challenge is to enforce that the new posterior, q(z), remains close to the old prior, p(z),
which represents past knowledge. The standard method (Kirkpatrick et al., 2017; Lee & Storkey,
2024; Bonnet et al., 2025; Dhir et al., 2024) uses the Kullback-Leibler (KL) divergence, DKL(q ∥
p). We argue that the Rényi α-divergence (RD) provides a more flexible and powerful constraint.
First we compute the RD between two distributions q(z) and p(z)

Dα(q ∥ p) =
1

α− 1
log

∫
p(z)αq(z)1−αdz (8)

where α ̸= 1, because as α → 1, the RD converges to the standard KL divergence (Bresch & Stein,
2024; Galke et al., 2024; Wang et al., 2025).

Proposition A.2 (Controlling stability with the α parameter). The RD Dα(q ∥ p) provides a tunable
penalty on the mismatch between the posterior q and the prior p. As α → 0, the divergence becomes
increasingly permissive of q placing probability mass where p has none. Conversely, as α → ∞,
it becomes infinitely sensitive to q placing any mass outside the support of p. This property allows
us to control the stability-plasticity trade-off. (i) Low α (e.g., α < 1): Prioritises plasticity. The
model is penalised less for exploring new latent configurations not covered by the prior, allowing it
to adapt more easily to new tasks. (ii) High α (e.g., α > 1): Prioritises stability. The model is
heavily penalised for deviating from the prior, strictly preserving past knowledge.

Proof. To prove this, we can analyse the behaviour of the integrand, p(z)αq(z)1−α, in different
regions of the probability space and for different values of α. Let’s consider two key scenarios for
a given point z. Case 1: Exploration (q explores where p is small). Suppose we have a region
where the new posterior q(z) is large, but the old prior p(z) is very small (e.g., p(z) ≈ ϵ where
ϵ → 0). This represents the model trying to learn a new feature not present in past tasks. The
contribution to the integral at this point is approximately ϵαq(z)1−α. If α → 0 (Low α): The term
becomes ϵ0q(z)1 = q(z). The penalty is determined by q(z) and is not suppressed by the small
prior p(z). The model is free to explore. If α → ∞ (High α): The term becomes ϵ∞q(z)−∞ → 0.
Any exploration where p(z) is small is aggressively penalised and its contribution to the integral
vanishes, forcing q(z) to be zero wherever p(z) is small. The model is forced to be stable.

Case 2: Forgetting (q forgets where p was large). Suppose we have a region where the prior p(z) was
large, but the new posterior q(z) is becoming very small (e.g., q(z) ≈ ϵ). This represents the model
forgetting a previously learned feature. The contribution to the integral is p(z)αϵ1−α. If α → 0
(Low α, specifically 0 < α < 1): The term 1 − α is positive. As ϵ → 0, the term ϵ1−α goes to
zero, and the integral in this region becomes small. This means the divergence is less sensitive to
q forgetting parts of the prior. It’s more tends to forgetting in favour of plasticity. If α > 1 (High
α): The term 1− α is negative. As ϵ → 0, the term ϵ1−α (e.g., ϵ−1) explodes towards infinity. This
creates an infinite penalty for forgetting, heavily forcing the model to maintain probability mass
wherever the prior had it.

This analysis proves that the RD directly controls the stability constraint. A low α results in a more
forgiving penalty, encouraging plasticity, while a high α results in a strict penalty, enforcing robust
stability. By treating α as a hyperparameter, the Rényi divergence allows to navigate the stability-
plasticity dilemma in a way that the fixed KL divergence (α = 1) cannot.
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A.4.1 EFFICIENCY OF RÉNYI DIVERGENCES

Proposition A.3 (Forgetting under DRS with Rényi Divergence). Let q(t)ϕ (z) be the variational

posterior after learning task t, and let p(t−1)(z) = q
(t−1)
ϕ (z) be the prior from task t − 1, both

Gaussian in a d-dimensional latent space. Suppose the stability term enforces a weighted α-Rényi
divergence with α = 0.5:

g(ϕ) = λ

d∑
i=1

wiD0.5(q
i
ϕ ∥ pi),

where wi are weights (e.g., prior variances as
∑d

i=1 wi = 1). Define forgetting as the Rényi diver-
gence between consecutive posteriors:

Ft ≜ D0.5(q
(t−1)
ϕ ∥ q(t)ϕ ).

Then, forgetting is bounded by:

Ft ≤
1

λ

d∑
i=1

wi.

Larger λ or wi reduce posterior drift, limiting forgetting and enabling prior knowledge to guide new
learning in a synergistic latent space.

Proof. The α-Rényi divergence for α = 0.5 is:

D0.5(q ∥ p) = −2 logEz∼p

[√
q(z)

p(z)

]
.

For Gaussian marginals qiϕ = N (µ
(t)
ϕ,i, σ

(t)2
ϕ,i ) and pi = q

(t−1),i
ϕ = N (µ

(t−1)
ϕ,i , σ

(t−1)2
ϕ,i ), the stability

term bounds (Li & Turner, 2016; Galke et al., 2024; Wang et al., 2025)

d∑
i=1

wiD0.5(q
i
ϕ ∥ pi) ≤

g(ϕ)

λ
.

Assuming independent marginals, forgetting is:

Ft = D0.5(q
(t−1)
ϕ ∥ q(t)ϕ ) =

d∑
i=1

D0.5(q
(t−1),i
ϕ ∥ q(t),iϕ ).

Since q
(t−1)
ϕ = p(t−1), and g(ϕ) ≤

∑d
i=1 wi (by optimization convergence and weight normaliza-

tion) (Wang et al., 2025), we have

Ft ≤
d∑

i=1

wiD0.5(q
i
ϕ ∥ pi) ≤

1

λ

d∑
i=1

wi . (9)

This bounds forgetting, ensuring stability supports synergy (Li & Turner, 2016; Galke et al., 2024).

B TRAINING SETTING

B.1 DATASET

B.2 ARCHITECTURAL DISCUSSION

As the backbone for our model, we employed two convolutional neural network (CNN) variants: a
simple CNN and a Residual Neural Network (ResNet-18). These architectures process input data
and support the encoder-decoder structure, with a 32-dimensional latent space z. The decoder is
shared across all learners, ensuring consistent output generation, while each encoder is designed for
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Table 5: Datasets details
Dataset #Tasks #Train #Validation #Test

CIFAR100 10, 20 45,000 5,000 10,000
TinyImageNet 20 90,000 10,000 10,000
ImageNet-100 100 1,000,000 100,000 50,000
CelebA m 400m 40m 80m
EMNIST m 3100m 310m 620m

Figure 5: This figure compares forgetting behavior across 100 tasks on ImageNet for different
approaches. Each subplot shows forgetting for a block of 10 tasks (e.g., Tasks 1–10, 11–20, ...,
91–100), with the final subplot aggregating all 100 tasks.

efficient feature extraction. For CNN encoder, we use two convolutional layers (8 filters, 3 × 3; 16
filters, 3 × 3 with stride 2), both with ReLU activation, followed by FC layers (128, 64 units) to
output µϕ and log σϕ for a 32D latent space. For ResNet encoder, we use a shallow architecture
with two residual blocks (each with two 3 × 3 conv layers, 16 filters, and ReLU), followed by
FC layers (128, 64 units) to output the 32D latent space. The decoder, shared across all learners,
comprises two fully connected layers (512 units, ReLU activation). The prior (p(z)) is initialized as
a standard Gaussian (N (0, I)) and updated as a task-specific Gaussians after each task, regularized
via D-divergence.

C ADDITIONAL EXPERIMENTS

Fig.5 shows the forgetting behavior across 100 sequential tasks on ImageNet-100 dataset. In con-
tinual learning, forgetting is quantified as the drop in performance on earlier tasks as new tasks are
learned. One standard metric is, forgetting metric (per task). Let Ai

i be accuracy on task i imme-
diately after learning task i, and AT

i be accuracy on task i after training up to task T (i.e., the final
accuracy on that task). Then forgetting for task i is Fi = Ai

i −AT
i , and the average over a group of

tasks (e.g., tasks 1–10) is Forgetting (%) = 1
|S|

∑
i∈S(A

i
i − AT

i )× 100, where S is the set of tasks
in that interval (e.g., {1, 2, 3, . . . , 10}). Each subplot (e.g., Task 1–10, Task 11–20) plots average
forgetting over those 10 tasks.

Fig.6 presents the forward transfer (FT) performance across different methods. Higher FT means
the model well learning the new task, i.e., positive influence from prior tasks. Our model shows
positive and consistently higher forward transfer across all datasets. In T-20 and I-100, WSN even
dip below zero, showing negative forward transfer (prior tasks hurt new tasks).
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Figure 6: This figure presents the forward transfer (%) performance across different methods on
four benchmarks. C-20: CIFAR-100 with 20 tasks, T-20: Tiny-ImageNet with 20 tasks, EM-20:
EMNIST with 20 tasks, and I-100: ImageNet with 100 tasks.
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