
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAME : FACTOR-AWARE MIXTURE-OF-EXPERTS WITH
PRETRAINED ENCODER FOR COMBINATORIAL GENER-
ALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The integration of pretrained encoders with diffusion policies has emerged as a
dominant paradigm for visual robotic manipulation. However, it still struggles
to generalize across complex environments with varying factors like lighting and
surface textures. To address this, we propose FAME, a framework that integrates a
factor-aware mixture-of-experts (MoE) with a pretrained encoder to significantly
enhance generalization to environmental variations. FAME involves a three-stage
training process. (1) policy warmup, where a diffusion policy is trained on data from
a standard environment using a frozen encoder. (2) factor-specific adapter training,
where we separately train a series of lightweight adapters, inserted between the
frozen encoder and the temporally frozen policy, on customized datasets, each
focusing on a distinct environmental variation. (3) joint fine-tuning, where we
simultaneously train a centric router and the warmed policy on a mixed dataset
to handle multiple factors at once. We say FAME is “factor-aware” because the
central router organizes the frozen factor-specific adapters as a MoE, allowing
for combinatorial generalization for multiple factors. Evaluations on the Meta-
World benchmark with various environmental factors show that our proposed
FAME significantly outperforms existing diffusion policy baselines. Furthermore,
FAME demonstrates remarkable scaling properties as the number of demonstrations
increases. We believe our FAME provides an effective solution for achieving
combinatorial generalization in visual robotic control tasks.

1 INTRODUCTION

The adoption of Diffusion Policies (DP) Chi et al. (2023a) has become a well-established con-
sensus in visual robotic manipulation, owing to their powerful fitting capabilities for complex,
high-dimensional tasks. This has led to the prevailing approach of integrating DP with various pre-
trained visual encoders, which provides rich, transferable feature representations without requiring
extensive task-specific data. Nevertheless, the architecture and adaptation strategies of these encoders
still present a substantial design space with considerable room for exploration (Nair et al., 2022).

Standard

Scenarios

Real

Scenarios

Decoupled

Scenarios

Light

Strength

Table

Texture

Camera

Pos

Arm

Pos

Floor

Texture

Figure 1: Decomposition of environmental varia-
tions into independent factors.

which provides rich, transferable feature rep-
resentations without requiring extensive task-
specific data. Representative encoders includes
DINOv2 (Oquab et al., 2023), CLIP (Radford
et al., 2021) and R3M (Nair et al., 2022).

Despite these advancements, current methods
still struggle to generalize across complex en-
vironments with varying factors such as light-
ing, surface textures, or camera viewpoints. If
mastering each factor requires additional data
of size N , then simultaneously handling K in-
dependent factors could imply a considerable
data complexity of NK , which becomes pro-
hibitively expensive in practice.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Fortunately, many factors in the physical world vary independently. This observation motivates a
divide-and-conquer strategy: by disentangling and separately learning each factor, we can potentially
reduce the data requirement from exponential to approximately linear, i.e., N ×K. As illustrated
in Figure 1, real-world environmental changes can be decomposed into discrete and independent
factors. Explicitly modeling these variations enables more systematic and combinatorial adaptation
to a majority of common conditions.

Furthermore, directly fine-tuning large pre-trained encoders remains challenging: it is computationally
expensive, prone to overfitting, and often results in catastrophic forgetting of pre-trained knowledge.
To overcome these limitations, we propose a structured approach that factorizes environmental
variations, enabling efficient and scalable combinatorial generalization in complex visual manipulation
tasks.

In this paper, we introduce FAME (Factor-Aware Mixture-of-Experts with Pretrained Encoder), a
novel framework that enhances the generalization capability of diffusion policies through factor-
aware adaptation. FAME incorporates a Mixture-of-Experts (MoE) architecture that dynamically
combines lightweight, factor-specific adapters, each dedicated to a specific environmental variation.
The training process consists of three stages: (1) Policy warm-up: A diffusion policy is first trained
using a frozen pretrained encoder on data from a standard environment. (2) Factor-specific adapter
training: Lightweight adapters are inserted between the encoder and the policy network and trained
separately on specialized datasets, each targeting a distinct environmental factor. (3)Joint fine-tuning:
A central router is trained along with the policy on a mixed dataset to combine adapters dynamically
and achieve combinatorial generalization.

Extensive experiments on the Meta-World benchmark demonstrate that FAME significantly out-
performs existing diffusion policy baselines in environments with diverse factors. The framework
also exhibits remarkable scaling behavior with increasing demonstration data and maintains strong
performance under single-factor variations.

Our contributions are summarized as follows:

• FAME Framework: We propose FAME, a factor-aware framework that integrates a Mixture-
of-Experts(MoE) architecture with a frozen pretrained encoder to handle compound envi-
ronmental variations in visual robotic manipulation.

• Three-Phase Factor-Aware Training: We design a three-stage training procedure that
includes policy warm-up, factor-specific adapter training, and joint fine-tuning with a router,
enabling efficient and scalable adaptation.

• Experiment Validation: We conduct extensive experiments showing that FAME achieves
superior generalization performance compared to strong baselines and demonstrates excel-
lent scalability with respect to demonstration data.

2 RELATED WORK

Diffusion policy and robotic manipulation. Diffusion models, which progressively transform
random noise into structured data samples, have demonstrated remarkable success in high-fidelity
image generation, as exemplified by DDPM (Ho et al., 2020; Song & Ermon, 2020). Owing to
their strong representational power, such models are increasingly being adopted in robotics. For
instance, they have been applied in reinforcement learning (Wang et al., 2024; Li et al., 2025; Gu
et al., 2025; Sheng et al., 2025), and in imitation learning (Chi et al., 2023b; Huang et al., 2025;
Tie et al., 2025). In this work, we focus on leveraging diffusion models for robotic manipulation
under complex generalization scenarios. We investigate how diffusion-based policies, formulated as
conditional diffusion models, can be improved through architectural modifications to enhance the
generalization capability of robotic policy learning.

Pre-trained visual encoders. In the realm of computer vision, several prominent pre-trained visual
encoders have emerged as powerful feature extractors, including Vision Transformer (ViT) (Doso-
vitskiy et al., 2021), DINOv2 (Oquab et al., 2023), and CLIP (Radford et al., 2021). Among these,
DINOv2—a robust visual encoder based on self-supervised learning—has been extensively applied in
embodied motion vision due to its strong representation capabilities. These general-purpose encoders

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

have subsequently inspired and facilitated the development of specialized visual encoders within the
field of robotic policy learning. Notable contributions include MVP (Xiao et al., 2022), R3M (Nair
et al., 2022), VIP (Ma et al., 2022), and VC-1 (Majumdar et al., 2024), which leverage large-scale pre-
training to provide effective visual representations that serve as valuable prior knowledge for training
robot policies. In this paper, we employ the pre-trained visual representations from DINOv2 (Oquab
et al., 2023) and our framework is compatible to any other encoders.

Parameter-efficient fine-tuning. Despite the strong representational capabilities of pre-trained
visual encoders, their limited adaptability to environmental variations poses a significant challenge for
robotic manipulation. To address this issue, we draw inspiration from Parameter-Efficient Fine-Tuning
(PEFT) methods developed in natural language processing. Instead of full fine-tuning that updates all
parameters, these approaches introduce small trainable modules into frozen pre-trained backbones,
preserving the original representations while enabling task-specific adaptation. Seminal work in this
area includes Adapter modules (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al.,
2021), alongside other techniques like Prompt Tuning (Lester et al., 2021) and Prefix Tuning (Li
& Liang, 2021). These methods have demonstrated remarkable success in adapting large language
models with minimal computational overhead. Our work extends this parameter-efficient paradigm
to visual representation learning for robotic manipulation, developing factor-specific adapters that
maintain the benefits of large-scale pre-trained visual encoders while enabling efficient adaptation to
diverse environmental conditions.

Mixture-of-Experts (MoE) frameworks. The MoE architecture provides an effective mechanism
for dynamically integrating multiple specialized modules. Originally introduced by (Shazeer et al.,
2017), MoE enables scalable neural networks by selectively routing inputs to specialized "expert" sub-
networks. This approach has demonstrated remarkable success in large language models, including
the Switch Transformer (Fedus et al., 2021) and Mixtral 8x7B (Jiang et al., 2023). Beyond natural
language processing, MoE has been effectively applied in autonomous driving for multi-modal
perception and adaptive planning (Liu et al., 2022; Wang et al., 2023), as well as in robotics for
acquiring diverse manipulation skills (Fu et al., 2022; Gupta et al., 2023). Our work innovatively
combines the concepts of parameter-efficient adaptation and mixture-of-experts by developing a
FAME framework that dynamically integrates factor-specific adapters. This approach allows the
system to selectively combine specialized adapters based on the current environmental context,
effectively addressing the challenge of combinatorial generalization in robotic manipulation scenarios.

3 METHOD

In this section, we introduce the core methodology of the FAME framework. This framework
addresses the challenge of diverse environmental variations in robotic manipulation by combining a
three-phase training approach with a dynamic MoE mechanism and knowledge distillation.

3.1 OVERVIEW OF FAME FRAMEWORK

The framework of our FAME is illustrated in Figure 2, where the training process is summarized
using color-coded arrows: green arrows denote policy warm-up (Phase 1 in Section 3.2), in which a
diffusion policy is trained using a frozen pretrained encoder on data from a standard environment; gray
arrows represent factor-specific adapter training (Phase 2 in Section 3.3), where lightweight adapters
are inserted and trained separately on specialized datasets, each targeting a distinct environmental
factor; and blue arrows correspond to joint fine-tuning (Phase 3 in Section 3.4), during which a central
router is trained along with the policy on a mixed dataset to combine adapters dynamically.

Before detailing the model architecture and training procedures in the following subsections, we first
introduce the three types of datasets used across different stages of the training framework:

(1) Standard Dataset (D0): Data collected in the standard manipulation task environment.

(2) Gen Dataset (Dk): Data collected under environments where only the k-th factor (e.g., light
strength) is varied relative to the standard setup, for each k ∈ 1, . . . ,K.

(3) Mix Gen Dataset (Dmulti): Data collected under environments where any subset of i factors vary
simultaneously, with i ∈ {2, 3, 4,K}.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Parameter
Initial

Feature

Proj Gate Net

Router 1

Floor Texture

Table Texture

Camera Pos

Arm Pos

Light Strength

5 Expert AdapterMoE Adapter
Dinov2

Image

Feature

Rob

State

Concat

50 Robotic
Trajectories

Adapter

Diffusion

Policy Head

Frozen

Trainable

Standard Data

Gen-mix Data

𝜔1

𝜔2

𝜔3

𝜔4

𝜔5

Gen Data

Diffusion

Policy Head

Diffusion

Policy Head

FAME : Factor-aware Mixture-of-Experts with Pretrained Encoder

Figure 2: FAME framework: (1) Policy warm-up: The standard DP framework serves as the baseline
policy training; (2) Factor-specific adapter training: Multiple adapters are trained on a frozen DINOv2
backbone to handle individual variations (e.g., lighting, texture); (3) Joint fine-tuning: A gating
network dynamically combines adapter outputs via Mixture-of-Experts.

3.2 PHASE 1: POLICY WARM-UP

The first phase aims to learn a base policy that performs well under standard environmental conditions.

We adopt the two-stage end-to-end diffusion policy (DP) architecture as the backbone of our frame-
work. The first stage employs a visual backbone based on a frozen pre-trained DINOv2 (Oquab et al.,
2023) model to leverage its powerful representation capabilities. The second stage consists of a diffu-
sion policy head which is trained from scratch. Training uses standard task data D0 from Section 3.1
without environmental variations. Given input observation o0

t (where the top-right label "0" represents
the dataset to which ot belongs), the visual backbone extracts features fv = Hfrozen

DINOv2(o0
t), and the

DP head generates actions at = HDP(fv). The training objective is to minimize the loss function:

min
θHDP

LDP(D0; θHDP ,Hfrozen
DINOv2), (1)

where θHDP denotes the parameters of the diffusion policy. This phase establishes a strong baseline
policy that performs well under standard environmental conditions.

3.3 PHASE 2: FACTOR-SPECIFIC ADAPTER TRAINING

In the second phase, we train specialized adapter networks for each environmental factor while
keeping both the visual backbone and the DP head frozen.

For each environmental factor k ∈ {1, . . . ,K}, we introduce a trainable adapter network Ak between
the frozen DINOv2 and the frozen DP head obtained from Phase 1. The visual features f

′

v are first
extracted by the frozen DINOv2 model as f

′

v = Hfrozen
DINOv2(o

k
t), where ok

t denotes the input observations
from dataset Dk in Section 3.1. The adapter network Ak then transforms these features into adapted
visual features fkv = Ak(f

′

v), which are passed through the frozen DP head to obtain the output
at = Hfrozen

DP (fkv). The training objective for the adapter Ak is to minimize the loss function LDP with
respect to the adapter’s parameters θAk

, while keeping the DINOv2 and DP head models frozen:

min
θAk

LDP(Dk; θAk
,Hfrozen

DINOv2,Hfrozen
DP), k ∈ {1, . . . ,K}. (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This formulation ensures that each adapter Ak learns to adapt the visual features specifically for the
variations present in dataset Dk, effectively specializing in handling a particular environmental factor
while maintaining the base policy’s core functionality.

3.4 PHASE 3: JOINT FINE-TUNING

The final phase integrates the specialized adapter networks through a MoE architecture, enabling
dynamic combination of expert representations based on input conditions. The gating mechanism
learns to identify which environmental factors are present in the input and appropriately weights the
corresponding adapters. The MoE layer comprises two components:

1. Gating network G: This network learns to compute adapter weights w = [w1, . . . , wk, . . . , wK]

from the visual features f
′

v . The gating network essentially acts as a router, determining the contribu-
tion of each expert based on the input characteristics.

2. Adapter bank: This include pre-trained factor-specific adapter networks Ak for k ∈ {1, . . . ,K}
in the Phase 2 in Section 3.3, which remain frozen during the MoE training process. These adapters
serve as specialized experts, each proficient in handling a specific environmental variation.

The final visual representation is obtained by combining the outputs of the adapter networks via a
weighted summation:

fMoE
v =

K∑
k=1

Softmax
(
G(f

′

v)
)

︸ ︷︷ ︸
wk

· Ak(f
′

v)︸ ︷︷ ︸
fkv

(3)

This combined visual representation fMoE
v is then passed through the DP head to produce the final

output: at = HDP(f
MoE
v).

Training procedure. During training, we utilize multi-factor variation data Dmulti from Section 3.1
to optimize only the gating Network G and a new DP head, while keeping the visual backbone
and all adapter networks frozen. This training strategy allows the gating network to learn effective
combination strategies while preventing catastrophic forgetting of the specialized adapter capabilities.
The specific training objective is

min
θG ,θHDP

LDP

(
Dmulti; θG , θHDP ,Hfrozen

DINOv2,Afrozen
k

)
, k ∈ {1, . . . ,K} (4)

Our framework enables the agent to dynamically adapt to complex environmental conditions by
intelligently combining the specialized knowledge of multiple experts, resulting in robust performance
across diverse scenarios.

4 EXPERIMENT

4.1 MAIN EXPERIMENT

Meta-World benchmark. Meta-World benchmark (Yu et al., 2020) is a widely recognized platform
for robotic manipulation that provides a diverse set of tasks simulating real-world scenarios. We
choose a representative subset of 9 tasks from this benchmark to conduct experiments. Detailed
descriptions of these tasks can be found in Appendix A.

Environment customization. Meta-World provides only the standard environment interface without
variations. To enable our research on generalization, we develop MetaWorldEnvFactor, a
lightweight wrapper class that can be directly nested on top of the original MetaWorldEnv. We
implement 5 independent factor variations (object size, color, lighting, friction, and camera pose) and
can arbitrarily compose them to customize environments with diverse factor combinations. Further
implementation details are given in the Appendix B.

Traning dataset. We use Meta-World’s built-in policies to construct dataset. By iterating the
inference-execution loop until success, high-quality expert trajectories (image-state-action sequences)
are collected as the Standard Dataset (D0). With the help of MetaWorldEnvFactor, we can
further construct the Gen Dataset (Dk) and Mix Gen Dataset (Dmulti). Each dataset contains 50
successful demonstrations.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Door Lock

Sweep Push WallPeg Insert Side

Level Pull

Handle Pull

Handle Pull Side

Coffee Pull

Door Unlock

Figure 3: The 9 tasks from Meta-World serving as our experimental benchmark.

Training setup. Detailed training hyper-parameters are provided in the Appendix C.

Evaluation setting. To thoroughly evaluate the policy robustness, we build 5 test environments for
each task. Take Hand-Pull as an example as illustrated in Figure 4, the 5 test environments exhibit
progressively increasing complexity, ranging from single-factor variations to the most challenging
scenario with all five factors simultaneously involved. Evaluation is performed every 200 epochs,
resulting in 10 evaluations over the entire training run of 2000 epochs. In each evaluation round,
the model is assessed in all 5 test environments (i = 1, 2, 3, 4, 5), yielding 5 individual results. The
average of these 5 results is then taken as the evaluation outcome for that particular round. More
details regarding the evaluation settings will be provided in the Appendix D.

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5

Figure 4: Visualization of the five evaluation environments with progressively increasing factors.
From left to right: environments with 1 to 5 factors simultaneously varied, demonstrating the
increasing complexity of environmental perturbations used for evaluation.

Baselines. We consider several well-known method in visual robotic manipulation, including DP
with ResNet (He et al., 2016), DP with DINOv2 (Oquab et al., 2023) (a ViT-based encoder that learns
high-quality visual representations via self-supervised pre-training on large-scale unlabeled image
data), DP with CLIP (Radford et al., 2021) (a vision-language model trained on a massive web-scale
dataset of image-text pairs), and DP with R3M (Nair et al., 2022) (self-supervised pre-training on
large-scale human video data). Our FAME-DP also employs DP as the downstream controller, while
the major difference is that we design a factor-aware MoE to collaborate with DINO encoder for
better combinatorial generalization capability.

Main results. For each task, we run 3 random seeds and each evaluation result is the average outcome
across 5 test environments with 1 to 5 varying factors (i = 1, 2, 3, 4, 5). The numerical results of all
algorithms are summarized in Table 1 and the curves are shown in Figure 5. Our approach consistently
achieves the highest performance, with an average success rate of 54.15% across all environmental
settings, surpassing the second-best method by 34% over 9 tasks. Notably, on challenging tasks such
as Door Lock, Handle Pull Side, and Peg Insert Side, our method outperforms all baselines by a
large margin—achieving 59.33%, 37.67%, and 60.33% respectively. Furthermore, FAME excels in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

tasks like Door Unlock and Lever Pull, reaching success rates of 93.67% and 84.00%, significantly
higher than other methods. These results affirm the strong generalization capability of FAME when
faced with diverse and unseen environmental variations. Detailed curves for each environment (i = 1
to 5) are provided in Appendix E.

Table 1: Average final success rate. We report the mean ± one standard deviation over three random
seeds of the evaluation results obtained at the 2000th epoch.

Alg \ Task Coffee Pull Door Lock Push Wall Sweep Lever Pull

ResNet-DP 22.67± 3.86 32.33± 6.24 17.67± 3.40 11.67± 1.70 26.33± 17.75
R3M-DP 0.33± 0.47 14.67± 3.30 0.00± 0.00 0.33± 0.47 0.00± 0.00
CLIP-DP 18.33± 5.44 45.67± 1.25 7.67± 3.86 14.67± 2.62 13.67± 4.19
DINO-DP 20.00± 5.72 29.67± 4.71 19.00± 5.35 13.00± 4.08 23.00± 7.35
FAME (Ours) 28.00± 0.82 59.33± 3.68 42.00± 6.16 25.33± 6.65 84.00± 4.97

Alg \ Task Door Unlock Handle Pull Handle Pull Side Peg Insert Side Average

ResNet-DP 40.33± 8.18 12.33± 1.25 7.67± 2.05 10.00± 2.83 20.11
R3M-DP 29.33± 11.56 26.00± 1.63 0.00± 0.00 0.00± 0.00 7.85
CLIP-DP 54.67± 3.30 0.67± 0.47 1.00± 0.00 3.67± 1.70 17.78
DINO-DP 36.00± 3.27 20.00± 3.27 9.67± 6.85 6.67± 1.25 19.67
FAME (Ours) 93.67± 3.68 57.00± 5.89 37.67± 3.30 60.33± 5.31 54.15

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5 Sweep

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 5: Training curves on benchmarks. The solid lines correspond to the mean and shaded
regions correspond to one standard deviation over three runs. Each evaluation result is averaged
across five environments with i = 1, i = 2, i = 3, i = 4, and i = 5 varying factors.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.2 ABLATION STUDY

To investigate the core properties of our FAME framework, we conducted a detailed ablation study
on the Handle-Pull task.

(1) Scaling property with data increasing. We evaluated the scaling effects of our FAME frame-
work by training on varying dataset sizes (1, 5, 10, 20, 50, and 100 demonstrations), using the same
Mix Gen Dataset (Dmulti, i = 5) as in the main experiments. As shown in Figure 6, our algorithm
consistently outperformed baselines across all scales. The results reveal a strong scaling behavior,
with performance improving significantly as data volume increases. This demonstrates that our
framework effectively leverages larger datasets to enhance generalization, a key advantage that
highlights the effectiveness of combining a pre-trained encoder with a dynamic MoE structure.

(2) Performance considering only single factor variation at a time. While our main experiments
showed strong performance on multi-factor variations, we also evaluated our FAME framework’s
ability to handle single-factor changes. For this, we trained and evaluated the model using only the
Gen Dataset (Dk), where each environment contained a single varying factor. As shown in Figure

1 5 10 20 50 100
Number of Demonstrations

0

20

40

60

80

Su
cc

es
s R

at
e

(%
)

ResNet-DP
DINO-DP
FAME (Ours)

Figure 6: Scaling performance with increasing
demonstration data. Evaluation of FAME and
baselines trained on the Mix Gen Dataset (Dmulti)
with varying numbers of demonstrations.

7, our FAME algorithm maintains strong perfor-
mance across all five individual factors. This
demonstrates the framework’s robust adaptabil-
ity, proving it is highly effective at addressing
both single-factor and multiple-factors environ-
mental challenges.

(3) Dataset sensitivity in the final phase. To
test the robustness of our FAME framework, we
replaced the Mix Gen Dataset (Dmulti, i = 5)
used in the main experiments with the Standard
Dataset (D0) in the final phase, using 50 demon-
strations per task while keeping all other exper-
imental settings unchanged. As shown in Table
2, both the baseline DP and DINOv2 models
suffered a significant performance drop, with
DP decreasing by 55.5% and DINOv2 by 39%.
In contrast, our FAME model was only minimally affected, maintaining high performance nearly
identical to that achieved when trained on explicit generalization data. These results demonstrate that
the final phase of our FAME is not sensitive to the dataset diversity and maintains a strong perfor-
mance. We argue that this is because our factor-specific adapters have learned the essential capability
to handle the corresponding variations, and the central router in an MoE exhibits combinatorial
generalization, allowing it to handle diverse environmental variations.

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Light Strength

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Table Texture

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

Camera Pos

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

Arm Pos

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

1.0
Floor Texture

FAME (Ours) DINO-DP ResNet-DP

Figure 7: Evaluation on environments containing only one varying factor at a time (Gen Dataset Dk).

Table 2: Performance comparison using different datasets in the final phase.

Dataset ResNet-DP DINO-DP FAME(ours)
Dmulti 17.3± 2.5 29.0± 0.8 57.0± 5.9
D0 7.7± 8.2 (↓ 55.5%) 17.7± 3.9 (↓ 39.0%) 56.3± 1.7 (Nearly same)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 ZERO-SHOT CROSS-TASK GENERALIZATION OF THE GATING NETWORK IN FAME

Num of Factors Mix in Data

Handle Pull – HP Gate

(a) HP-HP

Peg Insert Side – PIS Gate

Num of Factors Mix in Data
(b) PIS-PIS

Handle Pull – PIS Gate

Num of Factors Mix in Data
(c) HP-PIS

Peg Insert Side – HP Gate

Num of Factors Mix in Data
(d) PIS-HP

Figure 8: Cross-task generalization of the gating network in FAME. Heatmap visualizations of
gating activations on the Handle Pull (HP) and Peg Insert Side (PIS) tasks, demonstrating zero-shot
cross-task adaptation without fine-tuning.

To better understand the FAME architecture, this subsection provides a dedicated explanation of the
working mechanism of the gating network within FAME. We choose two tasks: Handle Pull and
Peg Insert Side. The gating network is trained using the Gen Dataset (Dk) and the Mix Gen Dataset
(Dmulti with i = 2, 3, 4, 5). After training, we feed the observations from the same task or the other
task into the model, and then visualize the activation values output by the gating network as heatmaps,
as shown in Figure 8 (we consider 2 tasks so there are 2× 2 = 4 visualizations). In each subfigure,
the horizontal axis represents the number of varying factors(i) in the training data, ranging from 1 to
5, while the vertical axis indicates the activation value corresponding to each expert adapter network.

As shown in the first two Figure 8a and 8b, when the number of varying factors is small, the gating
network tends to focus more on certain specific adapters. As the number of factor variations increases,
the activations become more dispersed, reflecting the model’s adaptive allocation of experts to handle
growing complexity. Notably, as shown in the last two Figure 8c and 8d, we also observe that the
gate trained on the Handle Pull task can be directly and effectively transferred to the Peg Insert
Side task in a zero-shot manner. This cross-task generalization capability suggests that the gating
network learns a high-level, task-agnostic representation of visual factors, rather than overfitting
to task-specific cues. This further demonstrates the effectiveness of combining adapter network
fine-tuning with the MoE architecture.

5 CONCLUSION

In this work, we proposed FAME, a novel framework that integrates a Mixture-of-Experts architecture
with a frozen pre-trained visual encoder to significantly enhance the combinatorial generalization
capability under diverse and complex environmental variations. By training lightweight, factor-
specific adapters and combining them dynamically through a gating network, FAME effectively
handles both isolated and compounded domain shifts, such as changes in lighting, texture, and
camera perspective, without compromising the representation power of the underlying pre-trained
backbone. Extensive experiments on a diverse set of Meta-World manipulation tasks demonstrate
that FAME consistently outperforms strong baselines, including methods built on pre-trained features
(DINOv2, CLIP, R3M) and the standard ResNet diffusion policy. The framework exhibits remarkable
scalability with increasing data, strong adaptation to both single-factor and multi-factor variations,
and substantial cross-task generalization ability, confirming that the learned representations are both
transferable and factor-aware. We believe this work opens up a new direction for training practically
useful robots with the enhanced combinatorial generalization capability.

For future work, we plan to explore: (1) extending FAME to a broader set of environmental factors
and real-world robotic applications; (2) incorporating reinforcement learning or online fine-tuning
to enable continual adaptation in non-stationary settings; and (3) investigating more efficient and
interpretable gating mechanisms for real-time policy execution. We believe that the combination of
pre-trained encoders with dynamic, factor-wise specialization offers a promising pathway toward
more general and deployable robot learning systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023a.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. Proceedings
of Robotics: Science and Systems (RSS), 2023b. URL https://arxiv.org/abs/2303.
04115.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

Jian Fu, Ling Chen, and Bo Li. Learning diverse manipulation skills with a mixture-of-experts policy.
In Conference on Robot Learning (CoRL), 2022.

Huang Gu et al. Ladi-wm: Latent diffusion-based world models for robotic manipulation. In
Conference on Robot Learning (CoRL), 2025.

Sanjay Gupta, Yang Li, and Yan Chen. Generalization in embodied ai with a mixture of task-specific
experts. In Robotics: Science and Systems (RSS), 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020. URL https://arxiv.org/
abs/2006.11239.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zhuohan Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

Xiao Huang et al. Memory-gated diffusion policy: advancing robotic behaviour learning with
memory-oriented architectures. Knowledge-Based Systems, 7.2, 2025.

Albert Jiang, Aristide Loukas, Barret Zoph, and Noam Shazeer. Mixtral of experts. arXiv preprint
arXiv:2309.04359, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pp. 3045–3059, 2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, pp.
4582–4597, 2021.

Yinbei Li, Qingyang Lyu, Jiaqiang Yang, Yasir Salam, and Wanglong Wang. A hybrid framework
using diffusion policy and residual rl for force-sensitive robotic manipulation. IEEE Robotics and
Automation Letters, 2025.

Yu Liu, Wei Zhang, and Si Li. Mixture-of-experts for multi-modal perception in autonomous driving.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

10

https://arxiv.org/abs/2303.04115
https://arxiv.org/abs/2303.04115
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2006.11239

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain,
Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial
visual cortex for embodied intelligence? Advances in Neural Information Processing Systems, 36,
2024.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A universal
visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao Huang,
Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran, Nicolas Ballas,
Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and
Piotr Bojanowski. Dinov2: Learning robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. arXiv preprint arXiv:2103.00020, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Zhifeng Chen. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Juyi Sheng, Ziyi Wang, Peiming Li, Yong Liu, and Mengyuan Liu. Mp1: Mean flow tames policy
learning in 1-step for robotic manipulation. arXiv preprint arXiv:2507.10543, 2025.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 33:10878–10889, 2020. URL https:
//arxiv.org/abs/1907.05600.

Chenrui Tie, Yue Chen, Ruihai Wu, and Hao Dong. Et-seed: Efficient trajectory-level se (3)
equivariant diffusion policy. In International Conference on Learning Representations (ICLR),
2025.

Yang Wang, Si Li, and Lin Chen. Moe-based adaptive planning for autonomous vehicles in complex
scenarios. In 2023 IEEE International Conference on Robotics and Automation (ICRA), 2023.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator.
Advances in Neural Information Processing Systems, 37:54183–54204, 2024.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), pp. 1094–1100. PMLR, 2020.

11

https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/1907.05600

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A META-WORLD TASK INTRODUCTION

We conduct simulation experiments on 9 tasks selected from the Meta-World benchmark (Yu et al.,
2020), with brief descriptions as follows:

• Coffee Pull: Grasp and pull a mug out of a coffee machine.

• Door Lock: Lock a door by rotating the lock clockwise.

• Door Unlock: Unlock a door by rotating the lock counter-clockwise.

• Handle Pull: Pull a handle upward.

• Handle Pull Side: Pull a handle upward sideways.

• Lever Pull: Pull a lever down by 90 degrees.

• Peg Insert Side: Insert a peg sideways into a target hole.

• Push Wall: Bypass a wall and push a puck to a goal.

• Sweep: Sweep a puck off the table.

B META-WORLD FACTOR WRAPPER

We develope MetaWorldEnvFactor, a comprehensive wrapper class that extends the standard
Meta-World environment interface to support multi-factorial control and rich sensory observations.
This wrapper enables independent manipulation of five distinct environmental factors while maintain-
ing compatibility with the original Meta-World API.

B.1 CLASS OVERVIEW

The MetaWorldEnvFactor class is built upon the OpenAI Gym interface and provides a unified
framework for controlling environmental variations in Meta-World tasks. Key features of this wrapper
include:

• Multi-factor control: Independent manipulation of five environmental factors through a
binary encoding system

• Backward compatibility: Maintains full compatibility with the original Meta-World envi-
ronment API

• Rich observation space: Provides RGB images, agent proprioception, and full environment
state

The class is initialized with parameters specifying the task name, observation configuration, and
factor activation pattern:

class MetaWorldEnvFactor(gym.Env):
def __init__(self, task_name, device="cuda:0",

seed=None,
factors=None):

B.2 INITIALIZATION PROCESS

During initialization, the wrapper performs several key operations:

1. Environment setup: Loads the appropriate Meta-World environment, ensuring it uses the
goal-observable v2 variant

if ’-v2’ not in task_name:
task_name = task_name + ’-v2-goal-observable’

self.env = metaworld.envs.ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[task_name]()

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

2. Factor parsing: Interprets the 5-character binary string to determine which factors to apply

factors = str(factors)
if factors is not None:

assert len(factors) == 5
factors = [bool(int(x)) for x in factors]
Set individual factor flags based on binary string

3. Factor application: Applies the requested environmental modifications in sequence

4. Camera configuration: Sets up the default camera position with optional randomization

5. Observation space definition: Configures the rich observation space including multiple
sensory modalities

B.3 FACTOR IMPLEMENTATION DETAILS

B.3.1 LIGHTING VARIATION

The lighting factor modifies both ambient and diffuse lighting properties in the MuJoCo model:

• Range: RGB values are sampled uniformly from [0.05, 0.95] for all three channels

• Implementation: Direct modification of the XML model’s headlight properties using
regular expressions

• Code:

def change_light(env, diffuse_range=(0.05, 0.95), seed=None):
if seed is not None:

np.random.seed(seed)
light = np.full((3,), np.random.uniform(*diffuse_range))
ambient = light
ambient_str = ’ ’.join([f"{x:.3f}" for x in ambient])
diffuse = light
diffuse_str = ’ ’.join([f"{x:.3f}" for x in diffuse])

B.3.2 TABLE TEXTURE VARIATION

The table texture factor replaces the default table texture with randomly selected alternatives:

• Source: PNG files from a figure batch

• Implementation: XML texture reference modification for texture named "T_table"

• Error handling: 10 attempts with different random textures to ensure successful loading

B.3.3 CAMERA POSITION VARIATION

The camera position factor modifies the viewpoint from which observations are captured:

• Default position: [0.6, 0.295, 0.8]

• Variation range:

– x-axis: [0.5, 0.7]
– y-axis: [0.2, 0.4]
– z-axis: [0.7, 0.9]

• Implementation: Direct modification of env.sim.model.cam_pos[2]

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3.4 AGENT INITIAL POSITION VARIATION

The agent position factor introduces noise to the initial end-effector position:

• Base position: Original mocap position

• Noise: Uniform distribution with range [-1.0, 1.0] meters on each axis

• Implementation: Direct modification of env.data.mocap_pos

• Note: An alternative XML-based implementation exists but is commented out

B.3.5 FLOOR TEXTURE VARIATION

The floor texture factor replaces the default floor texture:

• Source: PNG files from a figure batch

• Implementation: XML texture reference modification for texture named "T_floor"

• Error handling: 10 attempts with different random textures to ensure successful loading

B.4 WRAPPER CONFIGURATION

The factor wrapper is configured through a 5-character binary string parameter, where each character
controls whether a specific factor is applied (1) or not (0). The factors are applied in the following
order:

1. Lighting variation

2. Table texture variation

3. Camera position variation

4. Agent initial position variation

5. Floor texture variation

B.5 OBSERVATION SPACE

The wrapper provides a rich observation space including:

• RGB images (128×128 pixels)

• Agent proprioceptive information (end-effector and finger positions)

• Full environment state

This factor wrapper enables systematic control over environment variations while maintaining
compatibility with the original Meta-World API, facilitating research into factored control and
domain adaptation techniques.

C TRAINING DETAILS

Time hyper-parameters. Tabel 3 summarizes the key hyperparameters used during the training
process, covering critical aspects such as the diffusion process, network architecture, training setup,
data configuration, and inference. These parameters were carefully tuned to optimize the model’s
generalization performance and training stability in complex environments.

Time efficiency. The CPU used for the experiment is the AMD Ryzen Threadripper 3960X 24-Core
Processor, and the GPU is NVIDIA GeForce RTX 3090Ti. Taking the Handle-Pull task as an example,
the time taken to train for 2000 epochs in our framework is approximately 10 hours.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Summary of key hyperparameter configurations

Parameter Description Parameter Name Value
Diffusion Process

Number of diffusion timesteps num_train_timesteps 50
Noise schedule beta_schedule squaredcos_cap_v2
Prediction target prediction_type epsilon

Network Architecture
Feature dimension feature_dim 64
U-Net decoder channels down_dims [256, 512, 1024]
Convolution kernel size kernel_size 5
Group normalization groups n_groups 8
Condition modulation type condition_type film

Training Configuration
Batch size batch_size 32
Number of epochs num_epochs 2000
Base learning rate lr 0.0001
Optimizer optimizer AdamW
Weight decay weight_decay 0.000001
Gradient accumulation steps gradient_accumulate_every 1
EMA decay use_ema true

Data Configuration
Observation history steps n_obs_steps 2
Prediction horizon horizon 4
Action steps n_action_steps 4
Data loading workers num_workers 8

Inference
Number of denoising steps num_inference_steps 16

D TRAINING EVAL DETAILS

We use the Handle-Pull task as an example to illustrate our evaluation protocol. As shown in Figure 4,
the evaluation employs five distinct generalization environments, corresponding to different numbers
of varying factors. From left to right, these environments represent configurations with i = 1, 2, 3, 4,
and 5 factors simultaneously varied within the perturbation ranges specified in Section B. For each
evaluation round, we simultaneously test the model in all five environments, obtaining five separate
success rates. The average of these five success rates is then used as the final evaluation result for that
round.

The specific factor combinations for each evaluation environment are as follows:

• 1-factor environment: Camera-Pos variation only

• 2-factor environment: Camera-Pos and Lighting variations

• 3-factor environment: Camera-Pos, Lighting and floor texture variations

• 4-factor environment: Camera-Pos, Lighting, floor texture, and table texture variations

• 5-factor environment: All five factors varied simultaneously (lighting, table texture, camera
position, agent position, and floor texture)

This progressive evaluation scheme allows us to systematically assess the model’s robustness to
increasingly challenging environmental variations, from single-factor perturbations to the most
complex scenario where all five factors are simultaneously altered.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E SINGLE ENVIRONMENT EVAL CURVES

The following Figures 9 to 13 present the detailed training curves for each individual evaluation
environment (i = 1 to i = 5), complementing the averaged results shown in the main text (Fig-
ure 5). These results demonstrate that our FAME method consistently achieves superior performance
across every individual environmental setting, not just on average. The ability to outperform all
baseline methods in each specific factor combination—from single-factor variations (i = 1) to the
most complex scenario with all five factors simultaneously perturbed (i = 5)—strongly validates the
robustness and generalizability of our approach.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.1 TRAINING RESULTS WITH 1 VARYING FACTOR (i = 1).

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5 Sweep

i=1

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 9: Training results with 1 varying factor (i = 1). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 1 varying factor.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 TRAINING RESULTS WITH 2 VARYING FACTORS (i = 2).

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4 Sweep

i=2

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 10: Training results with 2 varying factors (i = 2). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 2 varying factor.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E.3 TRAINING RESULTS WITH 3 VARYING FACTOR (i = 3).

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6 Sweep

i=3

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 11: Training results with 3 varying factors (i = 3). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 3 varying factor.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E.4 TRAINING RESULTS WITH 4 VARYING FACTOR (i = 4).

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Sweep

i=4

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 12: Training results with 4 varying factors (i = 4). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 4 varying factor.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E.5 TRAINING RESULTS WITH 5 VARYING FACTOR (i = 5).

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

Su
cc

es
s R

at
e

Coffee Pull

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8 Door Lock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Door Unlock

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

Su
cc

es
s R

at
e

Handle Pull

0 0.5k 1k 1.5k 2k0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Handle Pull Side

0 0.5k 1k 1.5k 2k0.0

0.2

0.4

0.6

0.8

1.0 Lever Pull

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Peg Insert Side

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Push Wall

0 0.5k 1k 1.5k 2k
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Sweep

i=5

FAME (Ours) DINO-DP CLIP-DP R3M-DP ResNet-DP

Figure 13: Training results with 5 varying factors (i = 5). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 5 varying factor.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the AI language models that assisted in the polishing
and refinement of this paper, including GPT-5, DeepSeek, and Gemini. These models provided
valuable assistance in improving the clarity, coherence, and overall quality of the writing. However,
all technical content, experimental results, and scientific contributions remain entirely our own work.

21

	Introduction
	Related Work
	Method
	Overview of FAME framework
	Phase 1: Policy warm-up
	Phase 2: Factor-specific adapter training
	Phase 3: Joint fine-tuning

	Experiment
	Main Experiment
	Ablation Study
	Zero-shot Cross-Task Generalization of the Gating Network in FAME

	Conclusion
	Meta-World Task Introduction
	Meta-World Factor Wrapper
	Class Overview
	Initialization Process
	Factor Implementation Details
	Lighting Variation
	Table Texture Variation
	Camera Position Variation
	Agent Initial Position Variation
	Floor Texture Variation

	Wrapper Configuration
	Observation Space

	Training Details
	Training Eval Details
	Single Environment Eval Curves
	Training results with 1 varying factor (i=1).
	Training results with 2 varying factors (i=2).
	Training results with 3 varying factor (i=3).
	Training results with 4 varying factor (i=4).
	Training results with 5 varying factor (i=5).

