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ABSTRACT

The integration of pretrained encoders with diffusion policies has emerged as a
dominant paradigm for visual robotic manipulation. However, it still struggles
to generalize across complex environments with varying factors like lighting and
surface textures. To address this, we propose FAME, a framework that integrates a
factor-aware mixture-of-experts (MoE) with a pretrained encoder to significantly
enhance generalization to environmental variations. FAME involves a three-stage
training process. (1) policy warmup, where a diffusion policy is trained on data from
a standard environment using a frozen encoder. (2) factor-specific adapter training,
where we separately train a series of lightweight adapters, inserted between the
frozen encoder and the temporally frozen policy, on customized datasets, each
focusing on a distinct environmental variation. (3) joint fine-tuning, where we
simultaneously train a centric router and the warmed policy on a mixed dataset
to handle multiple factors at once. We say FAME is “factor-aware” because the
central router organizes the frozen factor-specific adapters as a MoE, allowing
for combinatorial generalization for multiple factors. Evaluations on the Meta-
World benchmark with various environmental factors show that our proposed
FAME significantly outperforms existing diffusion policy baselines. Furthermore,
FAME demonstrates remarkable scaling properties as the number of demonstrations
increases. We believe our FAME provides an effective solution for achieving
combinatorial generalization in visual robotic control tasks.

1 INTRODUCTION

The adoption of Diffusion Policies (DP) Chi et al. (2023a) has become a well-established con-
sensus in visual robotic manipulation, owing to their powerful fitting capabilities for complex,
high-dimensional tasks. This has led to the prevailing approach of integrating DP with various pre-
trained visual encoders, which provides rich, transferable feature representations without requiring
extensive task-specific data. Nevertheless, the architecture and adaptation strategies of these encoders
still present a substantial design space with considerable room for exploration (Nair et al., 2022).
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Figure 1: Decomposition of environmental varia-
tions into independent factors.

which provides rich, transferable feature rep-
resentations without requiring extensive task-
specific data. Representative encoders includes
DINOv2 (Oquab et al., 2023), CLIP (Radford
et al., 2021) and R3M (Nair et al., 2022).

Despite these advancements, current methods
still struggle to generalize across complex en-
vironments with varying factors such as light-
ing, surface textures, or camera viewpoints. If
mastering each factor requires additional data
of size N , then simultaneously handling K in-
dependent factors could imply a considerable
data complexity of NK , which becomes pro-
hibitively expensive in practice.
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Fortunately, many factors in the physical world vary independently. This observation motivates a
divide-and-conquer strategy: by disentangling and separately learning each factor, we can potentially
reduce the data requirement from exponential to approximately linear, i.e., N ×K. As illustrated
in Figure 1, real-world environmental changes can be decomposed into discrete and independent
factors. Explicitly modeling these variations enables more systematic and combinatorial adaptation
to a majority of common conditions.

Furthermore, directly fine-tuning large pre-trained encoders remains challenging: it is computationally
expensive, prone to overfitting, and often results in catastrophic forgetting of pre-trained knowledge.
To overcome these limitations, we propose a structured approach that factorizes environmental
variations, enabling efficient and scalable combinatorial generalization in complex visual manipulation
tasks.

In this paper, we introduce FAME (Factor-Aware Mixture-of-Experts with Pretrained Encoder), a
novel framework that enhances the generalization capability of diffusion policies through factor-
aware adaptation. FAME incorporates a Mixture-of-Experts (MoE) architecture that dynamically
combines lightweight, factor-specific adapters, each dedicated to a specific environmental variation.
The training process consists of three stages: (1) Policy warm-up: A diffusion policy is first trained
using a frozen pretrained encoder on data from a standard environment. (2) Factor-specific adapter
training: Lightweight adapters are inserted between the encoder and the policy network and trained
separately on specialized datasets, each targeting a distinct environmental factor. (3)Joint fine-tuning:
A central router is trained along with the policy on a mixed dataset to combine adapters dynamically
and achieve combinatorial generalization.

Extensive experiments on the Meta-World benchmark demonstrate that FAME significantly out-
performs existing diffusion policy baselines in environments with diverse factors. The framework
also exhibits remarkable scaling behavior with increasing demonstration data and maintains strong
performance under single-factor variations.

Our contributions are summarized as follows:

• FAME Framework: We propose FAME, a factor-aware framework that integrates a Mixture-
of-Experts(MoE) architecture with a frozen pretrained encoder to handle compound envi-
ronmental variations in visual robotic manipulation.

• Three-Phase Factor-Aware Training: We design a three-stage training procedure that
includes policy warm-up, factor-specific adapter training, and joint fine-tuning with a router,
enabling efficient and scalable adaptation.

• Experiment Validation: We conduct extensive experiments showing that FAME achieves
superior generalization performance compared to strong baselines and demonstrates excel-
lent scalability with respect to demonstration data.

2 RELATED WORK

Diffusion policy and robotic manipulation. Diffusion models, which progressively transform
random noise into structured data samples, have demonstrated remarkable success in high-fidelity
image generation, as exemplified by DDPM (Ho et al., 2020; Song & Ermon, 2020). Owing to
their strong representational power, such models are increasingly being adopted in robotics. For
instance, they have been applied in reinforcement learning (Wang et al., 2024; Li et al., 2025; Gu
et al., 2025; Sheng et al., 2025), and in imitation learning (Chi et al., 2023b; Huang et al., 2025;
Tie et al., 2025). In this work, we focus on leveraging diffusion models for robotic manipulation
under complex generalization scenarios. We investigate how diffusion-based policies, formulated as
conditional diffusion models, can be improved through architectural modifications to enhance the
generalization capability of robotic policy learning.

Pre-trained visual encoders. In the realm of computer vision, several prominent pre-trained visual
encoders have emerged as powerful feature extractors, including Vision Transformer (ViT) (Doso-
vitskiy et al., 2021), DINOv2 (Oquab et al., 2023), and CLIP (Radford et al., 2021). Among these,
DINOv2—a robust visual encoder based on self-supervised learning—has been extensively applied in
embodied motion vision due to its strong representation capabilities. These general-purpose encoders
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have subsequently inspired and facilitated the development of specialized visual encoders within the
field of robotic policy learning. Notable contributions include MVP (Xiao et al., 2022), R3M (Nair
et al., 2022), VIP (Ma et al., 2022), and VC-1 (Majumdar et al., 2024), which leverage large-scale pre-
training to provide effective visual representations that serve as valuable prior knowledge for training
robot policies. In this paper, we employ the pre-trained visual representations from DINOv2 (Oquab
et al., 2023) and our framework is compatible to any other encoders.

Parameter-efficient fine-tuning. Despite the strong representational capabilities of pre-trained
visual encoders, their limited adaptability to environmental variations poses a significant challenge for
robotic manipulation. To address this issue, we draw inspiration from Parameter-Efficient Fine-Tuning
(PEFT) methods developed in natural language processing. Instead of full fine-tuning that updates all
parameters, these approaches introduce small trainable modules into frozen pre-trained backbones,
preserving the original representations while enabling task-specific adaptation. Seminal work in this
area includes Adapter modules (Houlsby et al., 2019) and Low-Rank Adaptation (LoRA) (Hu et al.,
2021), alongside other techniques like Prompt Tuning (Lester et al., 2021) and Prefix Tuning (Li
& Liang, 2021). These methods have demonstrated remarkable success in adapting large language
models with minimal computational overhead. Our work extends this parameter-efficient paradigm
to visual representation learning for robotic manipulation, developing factor-specific adapters that
maintain the benefits of large-scale pre-trained visual encoders while enabling efficient adaptation to
diverse environmental conditions.

Mixture-of-Experts (MoE) frameworks. The MoE architecture provides an effective mechanism
for dynamically integrating multiple specialized modules. Originally introduced by (Shazeer et al.,
2017), MoE enables scalable neural networks by selectively routing inputs to specialized "expert" sub-
networks. This approach has demonstrated remarkable success in large language models, including
the Switch Transformer (Fedus et al., 2021) and Mixtral 8x7B (Jiang et al., 2023). Beyond natural
language processing, MoE has been effectively applied in autonomous driving for multi-modal
perception and adaptive planning (Liu et al., 2022; Wang et al., 2023), as well as in robotics for
acquiring diverse manipulation skills (Fu et al., 2022; Gupta et al., 2023). Our work innovatively
combines the concepts of parameter-efficient adaptation and mixture-of-experts by developing a
FAME framework that dynamically integrates factor-specific adapters. This approach allows the
system to selectively combine specialized adapters based on the current environmental context,
effectively addressing the challenge of combinatorial generalization in robotic manipulation scenarios.

3 METHOD

In this section, we introduce the core methodology of the FAME framework. This framework
addresses the challenge of diverse environmental variations in robotic manipulation by combining a
three-phase training approach with a dynamic MoE mechanism and knowledge distillation.

3.1 OVERVIEW OF FAME FRAMEWORK

The framework of our FAME is illustrated in Figure 2, where the training process is summarized
using color-coded arrows: green arrows denote policy warm-up (Phase 1 in Section 3.2), in which a
diffusion policy is trained using a frozen pretrained encoder on data from a standard environment; gray
arrows represent factor-specific adapter training (Phase 2 in Section 3.3), where lightweight adapters
are inserted and trained separately on specialized datasets, each targeting a distinct environmental
factor; and blue arrows correspond to joint fine-tuning (Phase 3 in Section 3.4), during which a central
router is trained along with the policy on a mixed dataset to combine adapters dynamically.

Before detailing the model architecture and training procedures in the following subsections, we first
introduce the three types of datasets used across different stages of the training framework:

(1) Standard Dataset (D0): Data collected in the standard manipulation task environment.

(2) Gen Dataset (Dk): Data collected under environments where only the k-th factor (e.g., light
strength) is varied relative to the standard setup, for each k ∈ 1, . . . ,K.

(3) Mix Gen Dataset (Dmulti): Data collected under environments where any subset of i factors vary
simultaneously, with i ∈ {2, 3, 4,K}.

3
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Figure 2: FAME framework: (1) Policy warm-up: The standard DP framework serves as the baseline
policy training; (2) Factor-specific adapter training: Multiple adapters are trained on a frozen DINOv2
backbone to handle individual variations (e.g., lighting, texture); (3) Joint fine-tuning: A gating
network dynamically combines adapter outputs via Mixture-of-Experts.

3.2 PHASE 1: POLICY WARM-UP

The first phase aims to learn a base policy that performs well under standard environmental conditions.

We adopt the two-stage end-to-end diffusion policy (DP) architecture as the backbone of our frame-
work. The first stage employs a visual backbone based on a frozen pre-trained DINOv2 (Oquab et al.,
2023) model to leverage its powerful representation capabilities. The second stage consists of a diffu-
sion policy head which is trained from scratch. Training uses standard task data D0 from Section 3.1
without environmental variations. Given input observation o0

t (where the top-right label "0" represents
the dataset to which ot belongs), the visual backbone extracts features fv = Hfrozen

DINOv2(o0
t ), and the

DP head generates actions at = HDP(fv). The training objective is to minimize the loss function:

min
θHDP

LDP(D0; θHDP ,Hfrozen
DINOv2), (1)

where θHDP denotes the parameters of the diffusion policy. This phase establishes a strong baseline
policy that performs well under standard environmental conditions.

3.3 PHASE 2: FACTOR-SPECIFIC ADAPTER TRAINING

In the second phase, we train specialized adapter networks for each environmental factor while
keeping both the visual backbone and the DP head frozen.

For each environmental factor k ∈ {1, . . . ,K}, we introduce a trainable adapter network Ak between
the frozen DINOv2 and the frozen DP head obtained from Phase 1. The visual features f

′

v are first
extracted by the frozen DINOv2 model as f

′

v = Hfrozen
DINOv2(o

k
t ), where ok

t denotes the input observations
from dataset Dk in Section 3.1. The adapter network Ak then transforms these features into adapted
visual features fkv = Ak(f

′

v), which are passed through the frozen DP head to obtain the output
at = Hfrozen

DP (fkv ). The training objective for the adapter Ak is to minimize the loss function LDP with
respect to the adapter’s parameters θAk

, while keeping the DINOv2 and DP head models frozen:

min
θAk

LDP(Dk; θAk
,Hfrozen

DINOv2,Hfrozen
DP ), k ∈ {1, . . . ,K}. (2)
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This formulation ensures that each adapter Ak learns to adapt the visual features specifically for the
variations present in dataset Dk, effectively specializing in handling a particular environmental factor
while maintaining the base policy’s core functionality.

3.4 PHASE 3: JOINT FINE-TUNING

The final phase integrates the specialized adapter networks through a MoE architecture, enabling
dynamic combination of expert representations based on input conditions. The gating mechanism
learns to identify which environmental factors are present in the input and appropriately weights the
corresponding adapters. The MoE layer comprises two components:

1. Gating network G: This network learns to compute adapter weights w = [w1, . . . , wk, . . . , wK ]

from the visual features f
′

v . The gating network essentially acts as a router, determining the contribu-
tion of each expert based on the input characteristics.

2. Adapter bank: This include pre-trained factor-specific adapter networks Ak for k ∈ {1, . . . ,K}
in the Phase 2 in Section 3.3, which remain frozen during the MoE training process. These adapters
serve as specialized experts, each proficient in handling a specific environmental variation.

The final visual representation is obtained by combining the outputs of the adapter networks via a
weighted summation:

fMoE
v =

K∑
k=1

Softmax
(
G(f

′

v)
)

︸ ︷︷ ︸
wk

· Ak(f
′

v)︸ ︷︷ ︸
fkv

(3)

This combined visual representation fMoE
v is then passed through the DP head to produce the final

output: at = HDP(f
MoE
v ).

Training procedure. During training, we utilize multi-factor variation data Dmulti from Section 3.1
to optimize only the gating Network G and a new DP head, while keeping the visual backbone
and all adapter networks frozen. This training strategy allows the gating network to learn effective
combination strategies while preventing catastrophic forgetting of the specialized adapter capabilities.
The specific training objective is

min
θG ,θHDP

LDP

(
Dmulti; θG , θHDP ,Hfrozen

DINOv2,Afrozen
k

)
, k ∈ {1, . . . ,K} (4)

Our framework enables the agent to dynamically adapt to complex environmental conditions by
intelligently combining the specialized knowledge of multiple experts, resulting in robust performance
across diverse scenarios.

4 EXPERIMENT

4.1 MAIN EXPERIMENT

Meta-World benchmark. Meta-World benchmark (Yu et al., 2020) is a widely recognized platform
for robotic manipulation that provides a diverse set of tasks simulating real-world scenarios. We
choose a representative subset of 9 tasks from this benchmark to conduct experiments. Detailed
descriptions of these tasks can be found in Appendix A.

Environment customization. Meta-World provides only the standard environment interface without
variations. To enable our research on generalization, we develop MetaWorldEnvFactor, a
lightweight wrapper class that can be directly nested on top of the original MetaWorldEnv. We
implement 5 independent factor variations (object size, color, lighting, friction, and camera pose) and
can arbitrarily compose them to customize environments with diverse factor combinations. Further
implementation details are given in the Appendix B.

Traning dataset. We use Meta-World’s built-in policies to construct dataset. By iterating the
inference-execution loop until success, high-quality expert trajectories (image-state-action sequences)
are collected as the Standard Dataset (D0). With the help of MetaWorldEnvFactor, we can
further construct the Gen Dataset (Dk) and Mix Gen Dataset (Dmulti). Each dataset contains 50
successful demonstrations.

5
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Figure 3: The 9 tasks from Meta-World serving as our experimental benchmark.

Training setup. Detailed training hyper-parameters are provided in the Appendix C.

Evaluation setting. To thoroughly evaluate the policy robustness, we build 5 test environments for
each task. Take Hand-Pull as an example as illustrated in Figure 4, the 5 test environments exhibit
progressively increasing complexity, ranging from single-factor variations to the most challenging
scenario with all five factors simultaneously involved. Evaluation is performed every 200 epochs,
resulting in 10 evaluations over the entire training run of 2000 epochs. In each evaluation round,
the model is assessed in all 5 test environments (i = 1, 2, 3, 4, 5), yielding 5 individual results. The
average of these 5 results is then taken as the evaluation outcome for that particular round. More
details regarding the evaluation settings will be provided in the Appendix D.

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4 𝑖 = 5

Figure 4: Visualization of the five evaluation environments with progressively increasing factors.
From left to right: environments with 1 to 5 factors simultaneously varied, demonstrating the
increasing complexity of environmental perturbations used for evaluation.

Baselines. We consider several well-known method in visual robotic manipulation, including DP
with ResNet (He et al., 2016), DP with DINOv2 (Oquab et al., 2023) (a ViT-based encoder that learns
high-quality visual representations via self-supervised pre-training on large-scale unlabeled image
data), DP with CLIP (Radford et al., 2021) (a vision-language model trained on a massive web-scale
dataset of image-text pairs), and DP with R3M (Nair et al., 2022) (self-supervised pre-training on
large-scale human video data). Our FAME-DP also employs DP as the downstream controller, while
the major difference is that we design a factor-aware MoE to collaborate with DINO encoder for
better combinatorial generalization capability.

Main results. For each task, we run 3 random seeds and each evaluation result is the average outcome
across 5 test environments with 1 to 5 varying factors (i = 1, 2, 3, 4, 5). The numerical results of all
algorithms are summarized in Table 1 and the curves are shown in Figure 5. Our approach consistently
achieves the highest performance, with an average success rate of 54.15% across all environmental
settings, surpassing the second-best method by 34% over 9 tasks. Notably, on challenging tasks such
as Door Lock, Handle Pull Side, and Peg Insert Side, our method outperforms all baselines by a
large margin—achieving 59.33%, 37.67%, and 60.33% respectively. Furthermore, FAME excels in
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tasks like Door Unlock and Lever Pull, reaching success rates of 93.67% and 84.00%, significantly
higher than other methods. These results affirm the strong generalization capability of FAME when
faced with diverse and unseen environmental variations. Detailed curves for each environment (i = 1
to 5) are provided in Appendix E.

Table 1: Average final success rate. We report the mean ± one standard deviation over three random
seeds of the evaluation results obtained at the 2000th epoch.

Alg \ Task Coffee Pull Door Lock Push Wall Sweep Lever Pull

ResNet-DP 22.67± 3.86 32.33± 6.24 17.67± 3.40 11.67± 1.70 26.33± 17.75
R3M-DP 0.33± 0.47 14.67± 3.30 0.00± 0.00 0.33± 0.47 0.00± 0.00
CLIP-DP 18.33± 5.44 45.67± 1.25 7.67± 3.86 14.67± 2.62 13.67± 4.19
DINO-DP 20.00± 5.72 29.67± 4.71 19.00± 5.35 13.00± 4.08 23.00± 7.35
FAME (Ours) 28.00± 0.82 59.33± 3.68 42.00± 6.16 25.33± 6.65 84.00± 4.97

Alg \ Task Door Unlock Handle Pull Handle Pull Side Peg Insert Side Average

ResNet-DP 40.33± 8.18 12.33± 1.25 7.67± 2.05 10.00± 2.83 20.11
R3M-DP 29.33± 11.56 26.00± 1.63 0.00± 0.00 0.00± 0.00 7.85
CLIP-DP 54.67± 3.30 0.67± 0.47 1.00± 0.00 3.67± 1.70 17.78
DINO-DP 36.00± 3.27 20.00± 3.27 9.67± 6.85 6.67± 1.25 19.67
FAME (Ours) 93.67± 3.68 57.00± 5.89 37.67± 3.30 60.33± 5.31 54.15
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Figure 5: Training curves on benchmarks. The solid lines correspond to the mean and shaded
regions correspond to one standard deviation over three runs. Each evaluation result is averaged
across five environments with i = 1, i = 2, i = 3, i = 4, and i = 5 varying factors.
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4.2 ABLATION STUDY

To investigate the core properties of our FAME framework, we conducted a detailed ablation study
on the Handle-Pull task.

(1) Scaling property with data increasing. We evaluated the scaling effects of our FAME frame-
work by training on varying dataset sizes (1, 5, 10, 20, 50, and 100 demonstrations), using the same
Mix Gen Dataset (Dmulti, i = 5) as in the main experiments. As shown in Figure 6, our algorithm
consistently outperformed baselines across all scales. The results reveal a strong scaling behavior,
with performance improving significantly as data volume increases. This demonstrates that our
framework effectively leverages larger datasets to enhance generalization, a key advantage that
highlights the effectiveness of combining a pre-trained encoder with a dynamic MoE structure.

(2) Performance considering only single factor variation at a time. While our main experiments
showed strong performance on multi-factor variations, we also evaluated our FAME framework’s
ability to handle single-factor changes. For this, we trained and evaluated the model using only the
Gen Dataset (Dk), where each environment contained a single varying factor. As shown in Figure
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Figure 6: Scaling performance with increasing
demonstration data. Evaluation of FAME and
baselines trained on the Mix Gen Dataset (Dmulti)
with varying numbers of demonstrations.

7, our FAME algorithm maintains strong perfor-
mance across all five individual factors. This
demonstrates the framework’s robust adaptabil-
ity, proving it is highly effective at addressing
both single-factor and multiple-factors environ-
mental challenges.

(3) Dataset sensitivity in the final phase. To
test the robustness of our FAME framework, we
replaced the Mix Gen Dataset (Dmulti, i = 5)
used in the main experiments with the Standard
Dataset (D0) in the final phase, using 50 demon-
strations per task while keeping all other exper-
imental settings unchanged. As shown in Table
2, both the baseline DP and DINOv2 models
suffered a significant performance drop, with
DP decreasing by 55.5% and DINOv2 by 39%.
In contrast, our FAME model was only minimally affected, maintaining high performance nearly
identical to that achieved when trained on explicit generalization data. These results demonstrate that
the final phase of our FAME is not sensitive to the dataset diversity and maintains a strong perfor-
mance. We argue that this is because our factor-specific adapters have learned the essential capability
to handle the corresponding variations, and the central router in an MoE exhibits combinatorial
generalization, allowing it to handle diverse environmental variations.
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Figure 7: Evaluation on environments containing only one varying factor at a time (Gen Dataset Dk).

Table 2: Performance comparison using different datasets in the final phase.

Dataset ResNet-DP DINO-DP FAME(ours)
Dmulti 17.3± 2.5 29.0± 0.8 57.0± 5.9
D0 7.7± 8.2 (↓ 55.5%) 17.7± 3.9 (↓ 39.0%) 56.3± 1.7 (Nearly same)
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4.3 ZERO-SHOT CROSS-TASK GENERALIZATION OF THE GATING NETWORK IN FAME

Num of Factors Mix in Data

Handle Pull – HP Gate

(a) HP-HP

Peg Insert Side – PIS Gate

Num of Factors Mix in Data
(b) PIS-PIS

Handle Pull – PIS Gate

Num of Factors Mix in Data
(c) HP-PIS

Peg Insert Side – HP Gate

Num of Factors Mix in Data
(d) PIS-HP

Figure 8: Cross-task generalization of the gating network in FAME. Heatmap visualizations of
gating activations on the Handle Pull (HP) and Peg Insert Side (PIS) tasks, demonstrating zero-shot
cross-task adaptation without fine-tuning.

To better understand the FAME architecture, this subsection provides a dedicated explanation of the
working mechanism of the gating network within FAME. We choose two tasks: Handle Pull and
Peg Insert Side. The gating network is trained using the Gen Dataset (Dk) and the Mix Gen Dataset
(Dmulti with i = 2, 3, 4, 5). After training, we feed the observations from the same task or the other
task into the model, and then visualize the activation values output by the gating network as heatmaps,
as shown in Figure 8 (we consider 2 tasks so there are 2× 2 = 4 visualizations). In each subfigure,
the horizontal axis represents the number of varying factors(i) in the training data, ranging from 1 to
5, while the vertical axis indicates the activation value corresponding to each expert adapter network.

As shown in the first two Figure 8a and 8b, when the number of varying factors is small, the gating
network tends to focus more on certain specific adapters. As the number of factor variations increases,
the activations become more dispersed, reflecting the model’s adaptive allocation of experts to handle
growing complexity. Notably, as shown in the last two Figure 8c and 8d, we also observe that the
gate trained on the Handle Pull task can be directly and effectively transferred to the Peg Insert
Side task in a zero-shot manner. This cross-task generalization capability suggests that the gating
network learns a high-level, task-agnostic representation of visual factors, rather than overfitting
to task-specific cues. This further demonstrates the effectiveness of combining adapter network
fine-tuning with the MoE architecture.

5 CONCLUSION

In this work, we proposed FAME, a novel framework that integrates a Mixture-of-Experts architecture
with a frozen pre-trained visual encoder to significantly enhance the combinatorial generalization
capability under diverse and complex environmental variations. By training lightweight, factor-
specific adapters and combining them dynamically through a gating network, FAME effectively
handles both isolated and compounded domain shifts, such as changes in lighting, texture, and
camera perspective, without compromising the representation power of the underlying pre-trained
backbone. Extensive experiments on a diverse set of Meta-World manipulation tasks demonstrate
that FAME consistently outperforms strong baselines, including methods built on pre-trained features
(DINOv2, CLIP, R3M) and the standard ResNet diffusion policy. The framework exhibits remarkable
scalability with increasing data, strong adaptation to both single-factor and multi-factor variations,
and substantial cross-task generalization ability, confirming that the learned representations are both
transferable and factor-aware. We believe this work opens up a new direction for training practically
useful robots with the enhanced combinatorial generalization capability.

For future work, we plan to explore: (1) extending FAME to a broader set of environmental factors
and real-world robotic applications; (2) incorporating reinforcement learning or online fine-tuning
to enable continual adaptation in non-stationary settings; and (3) investigating more efficient and
interpretable gating mechanisms for real-time policy execution. We believe that the combination of
pre-trained encoders with dynamic, factor-wise specialization offers a promising pathway toward
more general and deployable robot learning systems.
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A META-WORLD TASK INTRODUCTION

We conduct simulation experiments on 9 tasks selected from the Meta-World benchmark (Yu et al.,
2020), with brief descriptions as follows:

• Coffee Pull: Grasp and pull a mug out of a coffee machine.

• Door Lock: Lock a door by rotating the lock clockwise.

• Door Unlock: Unlock a door by rotating the lock counter-clockwise.

• Handle Pull: Pull a handle upward.

• Handle Pull Side: Pull a handle upward sideways.

• Lever Pull: Pull a lever down by 90 degrees.

• Peg Insert Side: Insert a peg sideways into a target hole.

• Push Wall: Bypass a wall and push a puck to a goal.

• Sweep: Sweep a puck off the table.

B META-WORLD FACTOR WRAPPER

We develope MetaWorldEnvFactor, a comprehensive wrapper class that extends the standard
Meta-World environment interface to support multi-factorial control and rich sensory observations.
This wrapper enables independent manipulation of five distinct environmental factors while maintain-
ing compatibility with the original Meta-World API.

B.1 CLASS OVERVIEW

The MetaWorldEnvFactor class is built upon the OpenAI Gym interface and provides a unified
framework for controlling environmental variations in Meta-World tasks. Key features of this wrapper
include:

• Multi-factor control: Independent manipulation of five environmental factors through a
binary encoding system

• Backward compatibility: Maintains full compatibility with the original Meta-World envi-
ronment API

• Rich observation space: Provides RGB images, agent proprioception, and full environment
state

The class is initialized with parameters specifying the task name, observation configuration, and
factor activation pattern:

class MetaWorldEnvFactor(gym.Env):
def __init__(self, task_name, device="cuda:0",

seed=None,
factors=None):

B.2 INITIALIZATION PROCESS

During initialization, the wrapper performs several key operations:

1. Environment setup: Loads the appropriate Meta-World environment, ensuring it uses the
goal-observable v2 variant

if ’-v2’ not in task_name:
task_name = task_name + ’-v2-goal-observable’

self.env = metaworld.envs.ALL_V2_ENVIRONMENTS_GOAL_OBSERVABLE[task_name]()
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2. Factor parsing: Interprets the 5-character binary string to determine which factors to apply

factors = str(factors)
if factors is not None:

assert len(factors) == 5
factors = [bool(int(x)) for x in factors]
# Set individual factor flags based on binary string

3. Factor application: Applies the requested environmental modifications in sequence

4. Camera configuration: Sets up the default camera position with optional randomization

5. Observation space definition: Configures the rich observation space including multiple
sensory modalities

B.3 FACTOR IMPLEMENTATION DETAILS

B.3.1 LIGHTING VARIATION

The lighting factor modifies both ambient and diffuse lighting properties in the MuJoCo model:

• Range: RGB values are sampled uniformly from [0.05, 0.95] for all three channels

• Implementation: Direct modification of the XML model’s headlight properties using
regular expressions

• Code:

def change_light(env, diffuse_range=(0.05, 0.95), seed=None):
if seed is not None:

np.random.seed(seed)
light = np.full((3, ), np.random.uniform(*diffuse_range))
ambient = light
ambient_str = ’ ’.join([f"{x:.3f}" for x in ambient])
diffuse = light
diffuse_str = ’ ’.join([f"{x:.3f}" for x in diffuse])

B.3.2 TABLE TEXTURE VARIATION

The table texture factor replaces the default table texture with randomly selected alternatives:

• Source: PNG files from a figure batch

• Implementation: XML texture reference modification for texture named "T_table"

• Error handling: 10 attempts with different random textures to ensure successful loading

B.3.3 CAMERA POSITION VARIATION

The camera position factor modifies the viewpoint from which observations are captured:

• Default position: [0.6, 0.295, 0.8]

• Variation range:

– x-axis: [0.5, 0.7]
– y-axis: [0.2, 0.4]
– z-axis: [0.7, 0.9]

• Implementation: Direct modification of env.sim.model.cam_pos[2]

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.3.4 AGENT INITIAL POSITION VARIATION

The agent position factor introduces noise to the initial end-effector position:

• Base position: Original mocap position

• Noise: Uniform distribution with range [-1.0, 1.0] meters on each axis

• Implementation: Direct modification of env.data.mocap_pos

• Note: An alternative XML-based implementation exists but is commented out

B.3.5 FLOOR TEXTURE VARIATION

The floor texture factor replaces the default floor texture:

• Source: PNG files from a figure batch

• Implementation: XML texture reference modification for texture named "T_floor"

• Error handling: 10 attempts with different random textures to ensure successful loading

B.4 WRAPPER CONFIGURATION

The factor wrapper is configured through a 5-character binary string parameter, where each character
controls whether a specific factor is applied (1) or not (0). The factors are applied in the following
order:

1. Lighting variation

2. Table texture variation

3. Camera position variation

4. Agent initial position variation

5. Floor texture variation

B.5 OBSERVATION SPACE

The wrapper provides a rich observation space including:

• RGB images (128×128 pixels)

• Agent proprioceptive information (end-effector and finger positions)

• Full environment state

This factor wrapper enables systematic control over environment variations while maintaining
compatibility with the original Meta-World API, facilitating research into factored control and
domain adaptation techniques.

C TRAINING DETAILS

Time hyper-parameters. Tabel 3 summarizes the key hyperparameters used during the training
process, covering critical aspects such as the diffusion process, network architecture, training setup,
data configuration, and inference. These parameters were carefully tuned to optimize the model’s
generalization performance and training stability in complex environments.

Time efficiency. The CPU used for the experiment is the AMD Ryzen Threadripper 3960X 24-Core
Processor, and the GPU is NVIDIA GeForce RTX 3090Ti. Taking the Handle-Pull task as an example,
the time taken to train for 2000 epochs in our framework is approximately 10 hours.
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Table 3: Summary of key hyperparameter configurations

Parameter Description Parameter Name Value
Diffusion Process

Number of diffusion timesteps num_train_timesteps 50
Noise schedule beta_schedule squaredcos_cap_v2
Prediction target prediction_type epsilon

Network Architecture
Feature dimension feature_dim 64
U-Net decoder channels down_dims [256, 512, 1024]
Convolution kernel size kernel_size 5
Group normalization groups n_groups 8
Condition modulation type condition_type film

Training Configuration
Batch size batch_size 32
Number of epochs num_epochs 2000
Base learning rate lr 0.0001
Optimizer optimizer AdamW
Weight decay weight_decay 0.000001
Gradient accumulation steps gradient_accumulate_every 1
EMA decay use_ema true

Data Configuration
Observation history steps n_obs_steps 2
Prediction horizon horizon 4
Action steps n_action_steps 4
Data loading workers num_workers 8

Inference
Number of denoising steps num_inference_steps 16

D TRAINING EVAL DETAILS

We use the Handle-Pull task as an example to illustrate our evaluation protocol. As shown in Figure 4,
the evaluation employs five distinct generalization environments, corresponding to different numbers
of varying factors. From left to right, these environments represent configurations with i = 1, 2, 3, 4,
and 5 factors simultaneously varied within the perturbation ranges specified in Section B. For each
evaluation round, we simultaneously test the model in all five environments, obtaining five separate
success rates. The average of these five success rates is then used as the final evaluation result for that
round.

The specific factor combinations for each evaluation environment are as follows:

• 1-factor environment: Camera-Pos variation only

• 2-factor environment: Camera-Pos and Lighting variations

• 3-factor environment: Camera-Pos, Lighting and floor texture variations

• 4-factor environment: Camera-Pos, Lighting, floor texture, and table texture variations

• 5-factor environment: All five factors varied simultaneously (lighting, table texture, camera
position, agent position, and floor texture)

This progressive evaluation scheme allows us to systematically assess the model’s robustness to
increasingly challenging environmental variations, from single-factor perturbations to the most
complex scenario where all five factors are simultaneously altered.
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E SINGLE ENVIRONMENT EVAL CURVES

The following Figures 9 to 13 present the detailed training curves for each individual evaluation
environment (i = 1 to i = 5), complementing the averaged results shown in the main text (Fig-
ure 5). These results demonstrate that our FAME method consistently achieves superior performance
across every individual environmental setting, not just on average. The ability to outperform all
baseline methods in each specific factor combination—from single-factor variations (i = 1) to the
most complex scenario with all five factors simultaneously perturbed (i = 5)—strongly validates the
robustness and generalizability of our approach.
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E.1 TRAINING RESULTS WITH 1 VARYING FACTOR (i = 1).
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Figure 9: Training results with 1 varying factor (i = 1). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 1 varying factor.
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E.2 TRAINING RESULTS WITH 2 VARYING FACTORS (i = 2).
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Figure 10: Training results with 2 varying factors (i = 2). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 2 varying factor.
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E.3 TRAINING RESULTS WITH 3 VARYING FACTOR (i = 3).
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Figure 11: Training results with 3 varying factors (i = 3). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 3 varying factor.
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E.4 TRAINING RESULTS WITH 4 VARYING FACTOR (i = 4).
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Figure 12: Training results with 4 varying factors (i = 4). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 4 varying factor.
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E.5 TRAINING RESULTS WITH 5 VARYING FACTOR (i = 5).
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Figure 13: Training results with 5 varying factors (i = 5). The solid lines correspond to the mean
and shaded regions correspond to one standard deviation over three runs. Each evaluation result is
obtained from the environment with only i = 5 varying factor.
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