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Abstract

Current techniques for detecting AI-generated text are largely confined to manual
feature crafting and supervised binary classification paradigms. These methodolo-
gies typically lead to performance bottlenecks and unsatisfactory generalizability.
Consequently, these methods are often inapplicable for out-of-distribution (OOD)
data and newly emerged large language models (LLMs). In this paper, we revisit
the task of AI-generated text detection. We argue that the key to accomplishing
this task lies in distinguishing writing styles of different authors, rather than simply
classifying the text into human-written or AI-generated text. To this end, we pro-
pose DeTeCtive, a multi-task auxiliary, multi-level contrastive learning framework.
DeTeCtive is designed to facilitate the learning of distinct writing styles, combined
with a dense information retrieval pipeline for AI-generated text detection. Our
method is compatible with a range of text encoders. Extensive experiments demon-
strate that our method enhances the ability of various text encoders in detecting
AI-generated text across multiple benchmarks and achieves state-of-the-art results.
Notably, in OOD zero-shot evaluation, our method outperforms existing approaches
by a large margin. Moreover, we find our method boasts a Training-Free Incremen-
tal Adaptation (TFIA) capability towards OOD data, further enhancing its efficacy
in OOD detection scenarios. We will open-source our code and models in hopes
that our work will spark new thoughts in the field of AI-generated text detection,
ensuring safe application of LLMs and enhancing compliance.3

1 Introduction

Recently, the field of large language models (LLMs) [6, 12, 60, 69] has witnessed swift advancements,
bringing great convenience to both professional settings and daily life. However, the widespread use
of AI-generated text also poses threats to global information security, manifesting in the propagation
of disinformation, misinformation, and content that can incite harmful or destructive behaviors [16].
Hence, the detection of AI-generated text has ascended as a task of vital importance.

On the other hand, with the advancement of LLMs, the task of AI-generated text detection has elevated
into an escalating challenge. Early methods, such as watermarking methods [23, 32] and statistical-
based methods [63, 47] encountered performance bottlenecks due to their reliance on manually
hand-crafted forms. Moreover, the inherent inability to swiftly adapt to newly emerged LLMs
further restricts their effectiveness. In stark contrast, recent training-based methods [11, 27, 24] have
showcased notable improvements in performance. However, they remain constrained by the necessity
of precisely paired training data and exhibit unsatisfactory generalization in out-of-distribution (OOD)
detection scenarios due to the fixed binary classification formulation.
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In this paper, to overcome these challenges, we revisit AI-generated text detection and approach
the problem from a fresh perspective. Individual authors invariably exhibit unique writing styles,
collectively constituting a vast feature space of writing styles. Our key insight is that an LLM can
be viewed as a specific author, with the text it generates conforming consistently to its unique style.
In line with this key observation, we propose to reformulate AI-generated text detection as a task
of distinguishing diverse writing styles within the feature space, rather than merely treating it as a
binary classification problem between human-written and AI-generated. This reformulation presents
a fresh perspective from which to approach the detection of AI-generated text.

While distinguishing writing styles within a vast feature space may seem more challenging than
binary classification, we can take advantage of mature techniques within the field of Natural Language
Processing (NLP). Specifically, contrastive learning [9, 25, 21] employs a self-supervised approach
to identify similarities and differences between positive and negative samples, thereby acquiring
discriminative feature representations. These representations facilitate the differentiation of writing
styles, enabling us to comprehend the characteristic patterns of different sources.

Specifically, we propose a general framework that combines a novel multi-level contrastive learning
with multi-task learning tailored for AI-generated text detection. Our method enhances the writing-
style encoding capabilities of various models, including but not limited to BERT-based [18] and
T5-based [51] models. This framework is capable of calibrating the distances between samples
sharing different degrees of relatedness, thereby encoding distinctive features of text generated by
different authors (either humans or LLMs). During inference, we propose a pipeline anchored by
dense information retrieval [58, 66]. Firstly, we pre-encode data drawn from the training dataset,
extract features and store them within a feature database. Then, for any given query text, we simply
calculate the similarity between its encoded feature and each feature vector nestled in the feature
database. This measure is used to evaluate the degree of writing-style similarity. Finally, we employ
the K-Nearest Neighbors (KNN) [15] algorithm for classification prediction.

Applying our method across multiple commonly-used datasets consistently improves performance
with various text encoders compared to their zero-shot baselines, exceeding current solutions and
establishing new state-of-the-art benchmarks on each individual dataset. Impressively, our method
also demonstrates superior generalization capabilities when faced with OOD data emerging from
domains or models that are not encountered during the training phase. Specifically, the Average
Recall (AvgRec) metrics on the Unseen Models and Unseen Domains test sets from the Deepfake [39]
dataset outperform existing state-of-the-art solutions by 5.58% and 14.20%, respectively.

Additionally, we introduce Training-Free Incremental Adaptation (TFIA), a novel and efficient
scheme for boosting the generalization capability for OOD detection. Particularly, when confronted
with a batch of OOD data, our goal is to enhance the model’s adaptability to unseen domains using
these data. The existing solutions either involve retraining the model or fine-tuning it on the new data.
Contrastingly, under our framework, we discover that no further training is necessary. We simply
encode these data using our previously trained model and incorporate them into the existing database
to create an augmented database. Notably, within the aforementioned OOD detection scenarios,
TFIA contributes to a further improvement in model performance: The AvgRec score witnesses an
additional increase of 0.84% on Unseen Models, and a noteworthy 7.03% on Unseen Domains.

Extensive experiments across several datasets and models consistently demonstrate that our proposed
method outperforms previous approaches, establishing new state-of-the-art performance. This
superiority is maintained in both In-distribution and OOD detection scenarios. In summary, the
contributions of our study are manifold, and can be enumerated as follows:

• We propose a novel end-to-end framework for AI-generated text detection, wherein we
carefully devise a multi-task auxiliary, multi-level contrastive loss to learn fine-grained
features for distinguishing various writing styles.

• We present Training-Free Incremental Adaptation (TFIA), a key feature of our method.
Utilizing a modest amount of OOD data, TFIA enhances the model’s adaptability to new
domains without further training, offering significant advantages for practical applications.

• Our method achieves state-of-the-art performance on multiple datasets in both In-distribution
and OOD detection scenarios, substantially surpassing existing methods.
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• We validate the effectiveness of each component through a series of ablation studies and pro-
vide visualization results for further analysis. Furthermore, we perform detailed experiments
on TFIA and provide an empirical analysis.

2 Related Work

AI-generated text detection. Existing methods for AI-generated text detection generally fall into
the following three categories: (i) Watermarking methods: watermarking methods, which include rule
based [5, 30, 59] and deep learning based [17, 62] methods, involve embedding specific markers into
AI-generated content, which can later be used to verify its source. The soft watermarking method [32]
is an inference-time framework that involves grouping the vocabulary and decoding the next token
preferentially. [23] proposes a method of adding watermarks by embedding backdoors triggered by
special inputs into the model. UPV [41] is an unforgeable and publicly verifiable algorithm ensuring
security against forgery and unauthorized detection attempts. (ii) Statistical methods: applying
statistical metrics like entropy as thresholds to distinguish AI-generated text from human-written
text. HowkGPT [63] identifies text origins by comparing perplexity scores of human-written and
ChatGPT [6, 69] generated text. DetectGPT [47] utilizes the structural properties of the LLM’s
probability density for zero-shot detection of AI-generated text. Similarly, DetectLLM [56] employs
normalized perturbation log-ranks for identification, exhibiting less sensitivity to perturbations. (iii)
Supervised learning methods: GPT-Sentinel [11] incorporates a binary classifier into RoBERTa [43]
and T5 [51], which are directly trained on specific datasets. RADAR [27] employs an adversarial
learning approach. By continually iterating to improve the detector and generator (both of which are
LLMs), RADAR performs well in detecting both original and paraphrased AI-generated text. [55]
utilizes contrastive learning to learn style representations on human-written text and uses the learned
representations to identify different sources in a few-shot manner. Building on SCL [24] framework,
CoCo [42] incorporates coherency information into the text representation, enhancing the ability to
detect AI-generated text under resource-constrained conditions.

Contrastive learning for NLP. The success of MoCo [25] and SimCLR [9] in the field of Computer
Vision through contrastive learning has prompted research efforts to explore its potential in the
area of Natural Language Processing (NLP), resulting in the development of various strategies to
enhance text encoding capabilities via contrastive learning. IS-BERT [78] employs the DIM [26]
framework to learn text representations. The ArcCon loss [80] is proposed to further enhance
the model’s semantic discriminating ability. MixCSE [79] introduces an unsupervised method
for text representation learning, which incorporates a mixed negative sample strategy to boost the
model’s ability to discriminate complex semantics. VaSCL [75] adopts a more general approach
to procure hard negatives by defining an instance-level contrastive loss and integrating Gaussian
noise, it effectively enhances the model’s performance in an unsupervised manner. DCLR [82]
addresses the anisotropic problem brought about by negative samples in unsupervised sentence
representation learning by introducing noise-based negative samples and virtual adversarial training,
thereby improving the uniformity of the representation space. SimCSE [21] proposes to predict
the input sentence itself, utilizing standard dropout as noise in an unsupervised manner. They also
introduce a method for categorizing positive and hard negative sample pairs, thereby improving the
sentence representations.

3 Method

In this section, we provide a detailed description of the proposed method. We begin in Section 3.1 with
a definition of AI-generated text detection and an overview of our proposed framework. In Section 3.2,
we explore the design of the multi-task auxiliary multi-level contrastive learning, which are critical
components of our framework. Finally, in Section 3.3, we introduce Training-Free Incremental
Adaptation (TFIA), an efficient and effective strategy that leverages our method’s generalization
capability to handle out-of-distribution (OOD) data.

3.1 Framework Overview

In this work, we focus on the task of AI-generated text detection. Given a query text x with L tokens,
x = {w1, w2, ..., wL}, we aim to determine whether it is human-written or AI-generated. Existing
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Figure 1: Overview of DeTeCtive. (a) Training. With our proposed multi-task auxiliary multi-level
contrastive loss, the pre-trained text encoder is fine-tuned to distinguish various writing styles. (b)
Inference. We employ a similarity query-based method for classification and incorporate Training-
Free Incremental Adaptation (TFIA) for out-of-distribution (OOD) detection.

methods typically employ hand-crafted features [63, 47, 32] or adopt neural networks [11, 27, 24]
to learn discriminative features between human-written and AI-generated text, treating them as two
distinct categories. Ultimately, this task is reduced to a binary classification problem. While this
formulation appears simple and straightforward, it neglects a vital factor. Analogous to how different
novelists often demonstrate unique writing styles, it’s critical to consider that different LLMs, due to
variations in model architectures, training data and strategies, will inevitably infuse certain preferences
and biases. Consequently, these variations induce stylistic differences. Therefore, categorizing all the
texts generated by any LLM as the same category clearly overlooks these disparities.

To overcome this limitation, we present DeTeCtive, a general framework compatible with diverse
text encoders, as shown in Figure 1. By leveraging a method that incorporates a novel multi-level
contrastive learning with multi-task learning, DeTeCtive regulates the distance between samples of
varying relations within the feature space, enabling the model to learn distinctive features. During
inference, we adopt a dense information retrieval [66, 58] pipeline. The query text is classified
by comparing its similarity with existing data entries in the database via the K-Nearest Neighbors
(KNN) [15] algorithm.

3.2 Multi-task Auxiliary Multi-level Contrastive Learning

Optimization objective and justification. As discussed in Section 3.1, the distinctive writing
styles attributed to different authors constitute a vast feature space. We perceive each LLM as an
individual author. Consequently, AI-generated text detection evolves into a task of differentiating
diverse writing styles within this feature space. Driven by this insight, it becomes critical to discern
the similarities and discrepancies across varying writing styles. To effectuate this, we carefully devise
a multi-task auxiliary, multi-level contrastive loss to facilitate the learning of fine-grained features.

Specifically, LLMs developed by the same company often demonstrate similar preferences and
inherent biases, given the shared model designs, training strategies, and datasets utilized [60, 13, 76,
70]. Common techniquess [81] like the unified auto-regressive modeling approach can also introduce
some level of commonalities across company boundaries, though these may be less pronounced.
Drawing parallels, the multi-level similarities among LLMs can be seen as familial kinship relations
within an expansive family tree, distinguishing between those closely related and those more distant.
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We aim to capture these kinship relations with a text encoder, allowing the encoder to capture the
multi-level similarities and distinctions. Consequently, we expect the encoded features from different
sources to reflect their relations within the high-dimensional feature space as follows:

Ex∼Pi,y∼Pj
[Sim(Φ(x),Φ(y))] > Ex∼Pi,y∼Pj+1

[Sim(Φ(x),Φ(y))],∀1 ≤ i ≤ j < 4, (1)
where Sim denotes the similarity measurement, Φ(·) symbolizes the encoding function, and P1 to
P4 signify different text distributions. Specifically, P1 corresponds to the distribution generated by
a particular LLM, P2 to the distribution generated by LLMs developed by the same company, P3

to the distribution generated by any LLM, and P4 to the distribution of human-written text. This
configuration aims to ensure that closeness in distribution corresponds to heightened similarity after
encoding, encouraging the model to discern fine-grained multi-level relations.

Multi-level contrastive learning. According to the similarity constraints defined in Ineq. 1 above,
when processing a data batch containing N samples, for the ith sample Ti, we assign it with a label xi.
If the text is generated by an LLM, then xi = 0, otherwise, xi = 1. For those AI-generated text (i.e.,
xi = 0), we further label the model series and the specific model with yi and zi. Then, the encoding
function Φ(·) maps the text into a d-dimensional feature space Rd. For any two samples Ti and
Tj , we compute the cosine similarity between their encoded features through Sim(Φ(Ti),Φ(Tj)),
and define this similarity metric as S(i, j). For human-written text Ti(xi = 1), the similarity of
its encoding with other human-written text encodings should be greater than the similarity with
AI-generated ones, hence the following relationship should be satisfied:

S(i, j) > S(i, k),∀xj = 1, xk = 0. (2)
Similarly, for text Ti(xi = 0) generated by LLMs, Ineq. 1 suggests the existence of multi-level
similarities and differences internally within LLMs, expressed as follows:
S(i, j) > S(i, l) > S(i,m) > S(i, n),∀zi = zj , zi ̸= zl, yi = yl, yi ̸= ym, xi = xm, xi ̸= xn.

(3)
In order to achieve the above optimization objectives, we propose a method to solve these constraints
hierarchically. Specifically, for the first inequality in Ineq. 3, we consider the index l,m, n that
satisfies the conditions in the above constraints as a whole set, denoted as k, that is:

S(i, j) > S(i, k), ∀zi = zj , zi ̸= zk. (4)
For the remaining inequalities, similar conditions are set to satisfy the constraints, culminating in:

S(i, j) > S(i, k), ∀xi = 1, xi = xj , xi ̸= xk

S(i, j) > S(i, k), ∀xi = 0, zi = zj , zi ̸= zk
S(i, j) > S(i, k), ∀xi = 0, zi ̸= zj , yi = yj , yi ̸= yk
S(i, j) > S(i, k), ∀xi = 0, yi ̸= yj , xi = xj , xi ̸= xk.

(5)

To address the similarity constraints defined in Ineq. 5, we adopt a framework based on SimCLR [9]
and propose a method for defining positive and negative sample pairs, from which we derive the
corresponding contrastive learning loss. Unlike conventional contrastive losses, our positive sample
is not a single instance, but a collection of positive samples meeting the conditions. We consider the
positive sample similarity as the average value related to the entire set of positive samples from the
current sample’s perspective. The handling of negative samples echoes that of SimCLR, rendering
the contrastive learning loss as demonstrated in Eq. 6, where q signifies the current sample, K+ is a
set of positive samples, K− is a set of negative samples, τ indicates the temperature coefficient, and
NK+ represents the size of the positive sample set.

Lq = − log
exp

(∑
k∈K+

S(q,k)
τ /NK+

)
exp

(∑
k∈K+

S(q,k)
τ /NK+

)
+
∑

k∈K− exp
(

S(q,k)
τ

) . (6)

Different constraints correspond to varied positive and negative sample sets, and accordingly, multi-
level contrastive losses are calculated. Following the definition in Ineq. 5, these loss are denoted as
Lqi,1,Lqi,2,Lqi,3,Lqi,4, respectively. The overall multi-level contrastive loss Lmcl is as shown in
Eq. 7, where δ, α, β, and γ are coefficients used to adjust the weight between the multi-level relations.
Take note that we designate δ as the coefficient balancing human-written and LLMs-generated,
ensuring δ = α+ β + γ, in an effort to maintain equilibrium, and we set α = β = γ = 1.0.

Lmcl =

N∑
i=1

xi · (δ · Lqi,1) + (1− xi) · (α · Lqi,2 + β · Lqi,3 + γ · Lqi,4). (7)
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Through this carefully designed multi-level contrastive learning, we drive the model to learn fine-
grained features of different sources. This strategy empowers the model to discern diverse writing
styles, enhancing the accuracy and generalization of AI-generated text detection.

Multi-task auxiliary learning. Given that multi-task learning [7] enables the model to simultane-
ously learn multiple tasks online by sharing useful information between different tasks, it promotes the
model to learn more generic and discriminative features, hence enhancing the model’s generalization
ability. Therefore, based on the aforementioned contrastive learning framework, we integrate an
MLP classifier into the output layer of the encoder. This classifier performs a binary classification to
determine whether a given query text was generated by human or LLM. We introduce a cross-entropy
loss Lce to optimize this classifier as follows:

Lce = − 1

N

N∑
i=1

xi · log(pi) + (1− xi) · log(1− pi), (8)

where pi is the probability of the ith sample xi being classified as human-written. Therefore, the
overall multi-task auxiliary multi-level contrastive loss is defined as:

Lall = Lmcl + Lce. (9)

3.3 Training-Free Incremental Adaptation

With the rapid advancement of LLMs and their proliferating applications, new models continually
emerge, spanning an increasingly diverse range of domains. Existing AI-generated text detection
solutions, which typically treat the task as a binary classification problem [11, 24], encounter
difficulties in generalizing to new models and domains that yield out-of-distribution (OOD) data.
When confronted with OOD data, these approaches commonly require retraining the model, a
strategy that undeniably falls short of practicality in real-world applications. In light of this challenge,
we propose a novel solution based on our existing framework — the Training-Free Incremental
Adaptation (TFIA). This method allows our model to adapt to new domains or newly emerged LLMs
without any further training. Specifically, When encountering OOD data not covered in the training
set, we simply encode these data using our fine-tuned text encoder and incorporate the encoded
features into the existing feature database DE , forming an expanded feature database D′

E . During
inference, replacing the original database DE with the expanded feature database D′

E can enhance
the performance of the model when dealing with OOD data. TFIA amplifies DeTeCtive’s ability in
identifying OOD sources, effectively leveraging the model’s generalization capabilities. Through this
mechanism, the DeTeCtive framework can adapt to OOD data without any retraining. We validate
the effectiveness of TFIA through a series of experiments.

4 Experiments

In this section, we first introduce the utilized datasets, evaluation metrics, baseline methods, and
implementation details in Section 4.1. We then present main experimental results and other appli-
cations in Section 4.2 and Section 4.3, followed by ablation studies and Training-Free Incremental
Adaptation (TFIA) analysis in Section 4.4.

4.1 Experimental Setup

Datasets. In this study, we employ three widely-used and challenging datasets to evaluate our
proposed method. The Deepfake [39] dataset includes text generated by 27 different LLMs and
human-written content from multiple websites across 10 domains, encompassing 332K training
and 57K test data. It also outlines six diverse testing scenarios, covering an array of settings from
domain-specific to cross-domains, and out-of-distribution detection scenarios. The M4 [68] dataset
is a multi-domain, multi-model, and multi-language dataset encompassing data from 8 LLMs, 6
domains, and 9 languages. With machine text in its testing data paraphrased by OUTFOX [33],
which introduces more complexity to the task. We perform experiments in both monolingual and
multilingual settings, with the former containing 120K training and 34K testing data, and the latter
comprising 157K training and 42K testing data. Finally, we make use of the TuringBench [61]
dataset. TuringBench collects human-written text mainly from news titles and content, predominantly
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politics-related. Incorporating data from 19 LLMs within a single domain, it forms a dataset of 112K
training and 37K testing entries. For more detailed information, please refer to Appendix C.

Evaluation metrics. In line with existing works, we employ Average Recall (AvgRec) and the
F1-score as our primary evaluation metrics. AvgRec, the average of recall for human-written
(HumanRec) and AI-generated (MachineRec) text. Simple accuracy is inadequate for reflecting
a model’s performance on a minority class, especially in cases of data imbalance. The F1-score
considers both the precision and recall of the model, evaluating overall model performance by
computing the harmonic mean of these two. Together, these metrics present a comprehensive view of
the effectiveness in detecting AI-generated text.

Baseline methods. In the experiment assessing the compatibility of our method to various text
encoders, we use the zero-shot results of these pre-trained text encoders on the Cross-domains
& Cross-models subset of the Deepfake dataset as the baseline. We then compare these results
with the ones after fine-tuning with our method. In all subsequent experiments, for comparison
analysis, we utilize the pre-trained SimCSE-RoBERTa [21] model as our text encoder. We conduct
comparisons with several training-based methods across all three datasets. These incorporate methods
which train classifiers upon RoBERTa [43] and Longformer [2] models, the T5-Sentinel [10] method
that classifies using the output probability of the T5 [51] model, and the SCL [42] approach that
uses supervised contrastive learning to assist classification. Additionally, in all six scenarios of the
Deepfake dataset, we extend our comparison to include manual-feature-based methods encompassing
FastText [4] and GLTR [22], in addition to DetectGPT [47], a statistical-based method.

Implementation details. For all our method’s experiments, we use the interfaces and pre-trained
model weights from the HuggingFace transformers [28] library. We freeze the embedding layers
and only train the remaining model parameters. All experiments use the same hyperparameters and
an AdamW [44] optimizer with a cosine annealing learning rate schedule. The peak learning rate
is set at 2e-05, warmed up linearly for 2000 steps, and weight decay is set to 1e-04. The maximum
input token length is 512. We train for 50 epochs with batch size of 32 per GPU on 8 NVIDIA V100
GPUs. During inference, we implement with an efficient K-Nearest Neighbors (KNN) [15] algorithm
provided by the Faiss [46] library, to perform classification. For all comparative experiments, we use
their open-source code and default settings for training and testing, and then report the results.

4.2 Main Results

Firstly, we fine-tune multiple pre-trained text encoders on Cross-domains & Cross-models subset
of the Deepfake [39] dataset using our method to validate its broad compatibility. As shown in
Table 6, all models improve on their baselines, confirming our method’s effectiveness with diverse
text encoders in AI-generated text detection. Among them, the SimCSE-RoBERTa [21] model
achieves the second-best performance with relatively fewer parameters. Thus, we select this model as
our text encoder for all the subsequent experiments.

Subsequently, to validate the performance in comparison to existing approaches, and to ascertain its
robustness, we conduct experiments on three commonly-used datasets. These include the M4 [68]
dataset (M4-monolingual and M4-multilingual), TuringBench [61], and the Cross-domains & Cross-
models subset of Deepfake which is the largest and most challenging subset in the In-distribution
scenarios of Deepfake. The results are shown in Table 1. Our method achieves the state-of-the-art
performance on each dataset. Using the AvgRec metric for illustration, our method surpasses the
second-best method by 6.52% in the M4-monolingual setting and by 7.15% in the M4-multilingual
setting. Despite the comparatively lower difficulty of the earlier released TuringBench dataset,
where all comparative methods perform well, our model still outperforms the second-best by 0.15%.
Furthermore, in the Cross-domains & Cross-models subset of Deepfake, our method exceeds the
runner-up by 2.66%. Indicated by the aforementioned experimental results, our method performs
commendably across multiple datasets, demonstrating that the framework we propose is robust
against diverse data distributions and scenarios.

To verify the capability of our method in terms of domain adaptation and out-of-distribution (OOD)
detection, we conduct experiments on all six scenarios proposed in the Deepfake dataset. The dataset
is strictly divided into different subsets to ensure that the testing data used for any given scenario is not
used as training data for other settings. In In-distribution detection, comparison methods are trained
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Table 1: Experimental results on M4-monolingual [68], M4-multilingual [68], TuringBench [61] and
Deepfake’s Cross-domains & Cross-models subset [39]. The best number is highlighted in bold,
while the second best one is underlined.

Method M4-monolingual M4-multlingual TuringBench Deepfake
AvgRec F1 AvgRec F1 AvgRec F1 AvgRec F1

RoBERTa 88.70 88.44 80.01 84.44 99.59 99.29 87.30 88.37
SCL (ICLR 2021) 91.92 91.21 86.27 84.75 99.46 99.22 90.59 89.83
Longformer (ACL 2024) 80.99 81.42 84.68 83.00 99.40 98.95 90.53 89.76
T5-Sentinel (EMNLP 2023) 84.01 81.08 76.21 68.99 99.39 97.43 93.49 93.30
Binoculars (ICML 2024) 89.89 89.89 80.63 82.43 51.24 9.98 64.96 70.58
DeTeCTive (Ours) 98.44 98.38 93.42 93.05 99.74 99.35 96.15 96.16

Table 2: Experimental results of AvgRec on six scenarios proposed in Deepfake [39] dataset. In
Out-of-distribution detection, our method produces two results. The left one is the regular testing
result while the right one indicates the result combining with TFIA. The best number is highlighted
in bold, while the second best one is underlined. For detailed results, please refer to Table 12.

Detection Scenario Testbed Type Longformer GLTR DetectGPT FastText DeTeCtive (Ours)

In-distribution

Cross-domains & Cross-models 90.53 55.42 60.48 78.80 96.15
Cross-domains & Model-specific 96.10 77.58 62.31 83.02 96.73
Domain-specific & Cross-models 93.51 63.08 60.48 81.67 96.11
Domain-specific & Model-specific 96.60 87.45 86.37 94.54 99.77

Out-of-distribution Unseen Models 86.61 57.49 62.31 68.61 92.19/93.03
Unseen Domains 68.40 56.48 60.48 63.54 82.60/89.63

separately on each specific subset and then averaged to get the final results. Conversely, we only
train on the Cross-domains & Cross-models subset. During testing, we solely employ each scenario’s
training data as the database, skipping additional training on these data and progressing directly to
inference. Our method outperforms other methods in every setting. The precise experimental results
of AvgRec are presented in the first row of Table 2. For the Out-of-distribution detection, it is further
divided into two cases: Unseen Models and Unseen Domains. The testing set includes data from the
above two scenarios, which has not appeared in the training set. The AvgRec results are as shown in
the second row of Table 2, where our method surpasses the next by 5.58% and 14.2% respectively
in terms of AvgRec. The results demonstrate the good generalization performance of our method,
considerably outperforming existing methods. Finally, we devise a set of experiments where we
incorporate corresponding OOD data from training sets of the Cross-domains & Cross-models subset
into the database to aid detection. There is a substantial performance improvement in the Unseen
Domains scenario, with an additional 7.03% increase in AvgRec. For the Unseen Models, only a
slight improvement is observed, which can be attributed to the existing capability of identifying
similar models. This also highlights the effectiveness of the multi-level contrastive learning within our
method from another perspective. We refer to this finding as Training-Free Incremental Adaptation
(TFIA), and we delve deeper into the analysis of TFIA capability in Section 4.4.

4.3 More Applications

Attack robustness. In order to investigate the robustness of our method to paraphrasing attack, we
conduct experiments on the OUTFOX [33] dataset. The experiments are divided into three scenarios:
Non-attacked, DIPPER [35] attack, and OUTFOX attack, the results are presented in Table 3. From
the experimental results, it can be seen that our method achieves the best results under all three
settings, and the performance of our method does not decline much after being attacked, whereas
the performance of other methods declines significantly. The analysis is as follows, we believe that
our usage of the K-Nearest Neighbours (KNN) algorithm for classification offers our approach with
a level of fault tolerance. Thus, minor disturbances prompted by certain attacks do not engender
significant feature drift. Consequently, our method remains effective in detection. Therefore, these
experiments show that our method has good robustness against paraphrasing attack.

Authorship attribution detection. To further probe the efficacy of our method in the task of
authorship attribution detection, we conduct comprehensive experiments on TuringBench [35] dataset,
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Table 3: Experimental results on attack robustness on OUTFOX [33] dataset, including DIPPER [35]
attack and OUTFOX attack methods. The best number is highlighted in bold.

Attacker Non-attacked DIPPER OUTFOX
Detector AvgRec F1 AvgRec F1 AvgRec F1
RoBERTa-base 93.0 92.9 91.5 91.3 81.5 78.9
RoBERTa-large 90.8 90.7 94.3 94.4 73.9 68.3
HC3 Detector 74.9 73.8 41.3 5.5 39.8 0.7
OUTFOX 96.5 96.4 82.4 79.0 61.8 39.4
DeTeCTive (Ours) 99.1 99.1 97.7 97.5 97.0 96.9

Table 4: Experimental results of authorship attribution detection on TuringBench [61] dataset. The
best number is highlighted in bold.

Method Precision Accuracy Recall F1

Random Forest 58.93 61.47 60.53 58.47
SVM (3-grams) 71.24 72.99 72.23 71.49
WriteprintsRFC 45.78 49.43 48.51 46.51
Syntax-CNN 65.20 66.13 65.44 64.80
N-gram CNN 69.09 69.14 68.32 66.65
N-gram LSTM 66.94 68.98 68.24 66.46
OpenAI Detector 78.10 78.73 78.12 77.41
BertAA 77.96 78.12 77.50 77.58
BERT-Multinomial 80.31 80.78 80.21 79.96
RoBERTa-Multinomial 82.14 81.73 81.26 81.07
DeTeCtive (Ours) 84.04 82.75 82.59 83.05

comparing our method against various baseline solutions. As depicted in Table 4, our method
illustrates commendable performance in this task, substantiating its capacity to learn and apply
multi-level features effectively in a multi-class classification context.

4.4 Ablation studies and Analysis

Ablation studies. To systematically evaluate the effects of each component in our method, we
conduct a series of ablation studies as shown in Table 5. The experiments show that removing any loss
term results in a performance decrease. Notably, when the multi-level contrastive loss Lmcl in Eq. 9
we proposed is replaced by a plain contrastive loss Lpcl, the performance declines the most compared
to other loss terms, because only the human-written text and AI-generated text are treated as negative
sample pairs, without considering the internal relations. Furthermore, using a similarity-based KNN
classification scheme also enhances the performance.

Analysis on TFIA. We further explore how incrementally adding corresponding OOD samples
affects the performance, illustrated in Figure 2. The results demonstrate that as more OOD data are
incorporated into the database, the model’s performance improves consistently. Adding a modest
amount of OOD data can considerably enhance the performance, particularly noticeable in unseen

Table 5: Ablation studies on loss design and classification approach, all conducted on Deepfake’s
Cross-domains & Cross-models subset [39].

Ablation Components Configurations HumanRec MachineRec AvgRec* F1*

Loss desgin
(classification w/ KNN)

Lall (Baseline) 95.36 96.94 96.15 96.16
Lpcl + Lce 91.93 96.51 94.22 94.12

w/o Lce 93.03 96.99 95.01 94.95
w/ α = 0 93.89 96.61 95.25 95.22
w/ β = 0 92.85 97.03 94.94 94.87
w/ γ = 0 92.89 96.86 94.88 94.81

Classification approach w/ classification head 88.99 97.39 93.19 92.92
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Figure 2: Analysis of model performance changes with the addition of OOD data. The x-axis
represents the proportion of OOD data added, and the y-axis represents the AvgRec metric. (a)
presents the results for Unseen Models, and (b) for Unseen Domains.

Figure 3: UMAP [45] dimensionality reduction visualization results, Where UDR stands for Unsu-
pervised Dimensionality Reduction and SDR stands for Supervised Dimensionality Reduction.

domain scenarios. This suggests that in practical applications, TFIA could effectively mitigate the
unsatisfactory adaptability of current methods to OOD data. For more detailed information about the
TFIA experiments, please refer to Appendix E.

Visualizations of learned embeddings. To further verify our method’s capability to differentiate
various writing styles, we apply UMAP [45] for dimensionality reduction on text embeddings from
the test set of the Deepfake Cross-domains & Cross-models subset. As shown in Figure 3 (a), using
a pre-trained model directly fails to segregate embeddings of varying categories. In contrast, after
fine-tuning with our method, UMAP unsupervised dimensionality reduction is already capable of
clustering the features of various categories well, as shown in Figure 3 (b). With UMAP supervised
dimensionality reduction, as shown in Figure 3 (c) and (d), our model further reflects the multi-level
relations either between model families or individual models.

5 Conclusion

In this paper, we propose DeTeCtive, a novel method for AI-generated text detection, anchored by
a multi-task auxiliary multi-level contrastive learning framework. Through extensive experiments,
our method demonstrates state-of-the-art performance on three popular benchmarks, validating the
effectiveness of each component via ablation studies. We also uncover our method’s Training-Free
Incremental Adaptation (TFIA) capability, enriching its experimental analysis. We hope our work
brings new insights and findings for the task of AI-generated text detection.
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A Limitation and Future Work

In this paper, we have not thoroughly explored our method’s interpretability, which we believe is a
promising research direction. Follow-up research works can analyze the differences and similarities
between human-written text and AI-generated text based on our open-source model, and conduct
token-level interpretability research. Also, we have not carried out training on a larger corpus. We
believe that performing our method on a larger corpus could enhance the ability to identify writing
styles, thereby improving the model’s performance.

B Broader Impacts

The topic of this study is AI-generated text detection, a subject of significant importance for AI-safety.
With the rapid development of AI technology, particularly in Natural Language Processing (NLP),
the proliferation of AI-generated text raises concerns about global information security, as it may
contribute to the spread of disinformation, false information, and content that has the potential to
encourage harmful or destructive behaviors, making the detection and monitoring of AI-generated
text a pressing issue. The method presented in this paper achieves state-of-the-art performance on
several benchmarks. Particularly noteworthy is its superior performance in out-of-distribution (OOD)
detection, far surpassing existing methods. These advancements offer promising prospects for the
real-world application of AI-generated text detection algorithms. The methodological advancements
in this research endeavor to facilitate the safe and ethical usage of AI technologies, consequently
strengthening societal security.

C Dataset Details

C.1 Deepfake

The Deepfake [39] dataset collects human-written text from 10 domains. The AI-generated texts
are produced by 27 LLMs and have been categorized into 7 model sets, as shown in Table 7. These
texts are generated by three types of prompts: continuation prompts, topical prompts, and specified
prompts. Table 8 details the specific sources of the dataset and the splits of training, validation, and
testing sets. The Deepfake dataset contains 6 different scenarios, carefully divided to ensure that
the testing data used for any specific scenario would not be used as training data for other scenarios.
These scenarios are categorized into: In-distribution detection and Out-of-distribution detection as
follows.

In-distribution detection. In-distribution detection scenario includes four subsets:

• Domain-specific & Model-specific. Human-written texts come from a specific domain, and
AI-generated texts are from a specific GPT-J-6B [64] model. There are 10 testbeds based on
different domains.

• Domain-specific & Cross-models. Human-written texts come from a specific domain,
and AI-generated texts are from different models. There are 10 testbeds based on different
domains.

• Cross-domains & Model-specific. Human-written texts are from different domains, and
AI-generated texts are from a specific model set. There are 7 testbeds based on different
model sets.

• Cross-domains & Cross-models. All models and domains are mixed to create a general
subset.

Out-of-distribution detection. Out-of-distribution detection scenario includes two subsets:

• Unseen models. Texts generated by a specific model set are excluded from the training
set. Testing data only comes from the excluded model set. There are 7 testbeds based on
different excluded model sets.
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• Unseen domains. Texts from a specific domain are excluded from the training set, with
training data containing text from other domains. Testing data only comes from the excluded
domain. There are 10 testbeds based on different excluded domains.

C.2 M4

The M4 [68] dataset is a large-scale dataset featuring multi-domain, multi-model, and multilingual
characteristics, as shown in Table 9 and Table 10. This dataset includes text from Wikipedia,
WikiHow [34], Reddit [19], arXiv, and PeerRead [29]. Using human-written prompts, models like
ChatGPT [6], DaVinci-003 [6], LLaMA [60], FLAN-T5 [13], Cohere [36], Dolly-v2 [14], and
BLOOMz [49] generate text in 9 different languages, including English, Chinese, and Russian. [67]
organizes a competition to detect AI-generated text based on M4, including tasks such as whole-
paragraph detection and sentence-level detection. We use two scenarios designed for whole-paragraph
detection: monolingual and multilingual. In monolingual scenario, the test set includes unseen AI-
generated texts from GPT-4 [1], and are paraphrased by OUTFOX [33], which increases the difficulty
for detection. In multilingual scenario, the test set contains novel languages that have not appeared in
either training set or validation set, and AI-generated texts are also paraphrased.

C.3 TuringBench

The TuringBench [61] dataset provides a benchmark for systematically evaluating AI-generated text
detection. The human-written texts come from news titles and contents from CNN, Washington
Post, and Kaggle. Using these article titles, various LLMs, including the GPT series [6], GROVER
series [53], CTRL [31], XLM [37], and XLNET [72], generate articles similar to human-written text,
resulting in 200K articles with 20 labels, detailed in Table 11.

D Experiments on compatibility with diverse encoders

The results of fine-tuning various text encoders using our approach are shown in Table 6.

Table 6: Experimental results of applying our method to multiple text encoders on Cross-domains &
Cross-models subset of the Deepfake [39] dataset. The best number is highlighted in bold, while the
second best one is underlined.

Text Encoders Params Baseline Results Fine-tuned Results
AvgRec F1 AvgRec F1

E5base [65] 109M 72.88 73.57 94.65 (+21.77) 94.73 (+21.16)
BGEbase [71] 109M 64.41 61.66 93.95 (+29.54) 93.89 (+32.23)
GTElarge [40] 335M 65.77 62.55 95.20 (+29.43) 95.23 (+32.68)
BERTbase [18] 109M 77.43 76.61 94.53 (+17.10) 94.46 (+17.85)
BERTlarge 335M 75.65 74.85 95.32 (+19.67) 95.37 (+20.52)
RoBERTabase [43] 125M 77.91 76.93 95.04 (+17.13) 94.98 (+18.05)
FLAN-T5base [13] 223M 66.37 65.53 95.52 (+29.15) 95.48 (+29.95)
FLAN-T5large 750M 67.46 66.72 96.53 (+29.07) 96.53 (+29.81)
AnglE-BERTlarge [38] 335M 63.59 61.14 94.66 (+31.44) 94.70 (+33.56)
SimCSE-BERTbase 109M 68.22 68.96 94.13 (+25.91) 94.00 (+25.04)
SimCSE-RoBERTabase [21] 125M 66.44 64.36 96.15 (+29.71) 96.16 (+31.80)

E Detailed Description of Experiments on Deepfake dataset

Here, we provide a detailed description of experiments conducted under the six scenarios proposed in
Deepfake [39] dataset.

In In-distribution detection, Longformer [2] is trained separately on all testbeds of each specific
subset, with the final results averaged. FastText [4], GLTR [22], and DetectGPT [47] are directly
tested on all testbeds of each subset based on statistical features. Our model is solely trained on the
Cross-domains & Cross-models subset, while for the other three subsets, we use only the testbed
training data from each subset as the database for inference without additional training. Notably, the
Deepfake dataset is strictly divided to ensure that data used for a specific testing scenario is not used
as training data in other scenarios.
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In Out-of-distribution (OOD) detection, Longformer is trained separately on all testbeds of each
specific subset, with the final results averaged. FastText, GLTR, and DetectGPT are directly tested
on all testbeds of each test scenario based on statistical features, also with the final results averaged.
We train on the training set provided for each testbed, and use these data as the database for testing.
The final results are obtained by averaging all the scores. Our method’s detailed results for different
testbeds in each scenario are shown in Table 13.

To validate the model’s Training-Free Incremental Adaptation (TFIA) capability, we design the
following experiments. Firstly, it is worth noting that the Deepfake dataset includes data from 10
domains and 7 model sets. In each OOD testbed, the training set excludes data from a specific
domain or model set, while the test set consists of data from the domain or model set that is excluded
in the training set. For example, in unseen models, there are 7 testbeds. For the first testbed of
unseen models in Table 13, the training set excludes data from the LLaMA series, while the test set is
composed of data from the LLaMA model set. In OOD testing, the training data from the remaining
six model sets is used as the database for testing. To validate the TFIA capability, we add training
data from the LLaMA model set to the OOD database, noting that the added training data does not
appear in the test set, ensuring that no testing data leakage occurred during our testing.

Additionally, in Figure 2, we further explore the TFIA capability by gradually adding unseen model or
domain data into the database, analyzing the impact of the added data quantity on model performance.
For the Unseen-Domains-XSum testbed of unseen domains in Table 13, we gradually add XSum-
domain training data at increments of 5%, 10%, and 15% until the training set data for that domain is
exhausted, reaching a ratio of 100%.
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Table 7: Models included in Deepfake [39].

Model Set Models

OpenAI GPT [6] GPT-3.5-Turbo, Text-DaVinci-002, Text-DaVinci-003

Meta LLaMA [60] LLaMA-13B, LLaMA-30B, LLaMA-65B, LLaMA-7B

Facebook OPT [76]
OPT-125M,OPT-350M, OPT-1.3B, OPT-IML-Max-1.3B, OPT-2.7B

OPT-6.7B, OPT-13B, OPT-30B, OPT-IML-30B

GLM-130B [74] GLM-130B

Google FLAN-T5 [13]
FLAN-T5-Small,FLAN-T5-Base, FLAN-T5-Large

FLAN-T5-XL,FLAN-T5-XXL

BigScience BLOOM-7B [49], T0-3B [54], T0-11B

EleutherAI GPT-J [64], GPT-NeoX [3]

Table 8: The specific origins and splits of Deepfake [39].
Dataset CMV [57] Yelp [77] XSum [50] TLDR ELI5 [19]

Train 4,461/21,130 32,321/21,048 4,729/26,372 2,832/20,490 17,529/26,272
Valid 2,549/2,616 2,700/2,630 3,298/3,297 2,540/2,520 3,300/3,283
Test 2,431/2,531 2,685/2,557 3,288/3,261 2,536/2,451 3,193/3,215

WP [20] ROC [48] HellaSwag [73] SQuAD [52] SciGen [8] all
6,768/26,339 3,287/26,289 3,129/25,584 15,905/21,489 4,644/21,541 95,596/236,554
3,296/3,288 3,286/3,288 3,291/3,190 2,536/2,690 2,671/2,670 29,467/29,462
3,243/3,192 3,275/3,207 3,292/3,078 2,509/2,535 2,563/2,338 29,015/28,365

Table 9: Data statistics of M4 Monolingual setting over Train/Dev/Test splits.
Split Source DaVinci-003 ChatGPT Cohere Dolly-v2 BLOOMz GPT-4 Machine Human

Train

Wikipedia 3,000 2,995 2,336 2,702 - - 11,033 14,497
Wikihow 3,000 3,000 3,000 3,000 - - 12,000 15,499
Reddit 3,000 3,000 3,000 3,000 - - 12,000 15,500
arXiv 2,999 3,000 3,000 3,000 - - 11,999 15,498
PeerRead 2,344 2,344 2,342 2,344 - - 9,374 2,357

Dev

Wikipedia - - - - 500 - 500 500
Wikihow - - - - 500 - 500 500
Reddit - - - - 500 - 500 500
arXiv - - - - 500 - 500 500
PeerRead - - - - 500 - 500 500

Test Outfox 3,000 3,000 3,000 3,000 3,000 3,000 18,000 16,272
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Table 10: Data statistics of M4 Multilingual setting over Train/Dev/Test splits.
Split Language DaVinci-003 ChatGPT LLaMA 2 Jais Other Machine Human

Train

English 11,999 11,995 - - 35,036 59,030 62,994
Chinese 2,964 2,970 - - - 5,934 6,000
Urdu - 2,899 - - - 2,899 3,000
Bulgarian 3,000 3,000 - - - 6,000 6,000
Indonesian - 3,000 - - - 3,000 3,000

Dev
Russian 500 500 - - - 1,000 1,000
Arabic - 500 - - - 500 500
German - 500 - - - 500 500

Test

English 3,000 3,000 - - 9,000 15,000 13,200
Arabic - 1,000 - 100 - 1,100 1,000
German - 3,000 - - - 3,000 3,000
Italian - - 3,000 - - 3,000 3,000

Table 11: The number of data samples generated by each generator in TuringBench [61].

Text Generator Data samples

Human 8,854
GPT-1 8,309
GPT-2_small 8,164
GPT-2_medium 8,164
GPT-2_large 8,164
GPT-2_xl 8,309
GPT-2_PyTorch 8,854
GPT-3 8,164
GROVER_base 8,854
GROVER_large 8,164
GROVER_mega 8,164
CTRL 8,121
XLM 8,852
XLNET_base 8,854
XLNET_large 8,134
FAIR_wmt19 8,164
FAIR_wmt20 8,309
TRANSFORMER_XL 8,306
PPLM_distil 8,854
PPLM_gpt2 8,854
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Table 12: The detailed results on six scenarios of Deepfake [39] dataset. The best number is
highlighted in bold, while the second best one is underlined. In the table, the value of N/A indicates
that we are unable to infer specific results based on the data from the Deepfake paper [39]. The
notation "w/C&C database" represents the results combined with TFIA.

Settings Methods HumanRec MachineRec AvgRec* F1*

In-distribution Detection
FastText 94.72 94.36 94.54 N/A

Domain-specific GLTR 90.96 83.94 87.45 N/A
& Model-specific Longformer 97.30 95.91 96.60 N/A

DetectGPT 91.68 81.06 86.37 N/A
DeTeCtive (ours) 99.78 99.77 99.77 99.79

FastText 88.96 77.08 83.02 N/A
Cross-domains GLTR 75.61 79.56 77.58 N/A

& Model-specific Longformer 95.25 96.94 96.10 N/A
DetectGPT 48.67 75.95 62.31 N/A

DeTeCtive (ours) 96.51 96.95 96.73 96.73
FastText 89.43 73.91 81.67 N/A

Domain-specific GLTR 37.25 88.90 63.08 N/A
& Cross-models Longformer 89.78 97.24 93.51 N/A

DetectGPT 86.92 34.05 60.48 N/A
DeTeCtive (ours) 95.16 97.06 96.11 96.11

FastText 86.34 71.26 78.80 80.53
Cross-domains GLTR 12.42 98.42 55.42 21.80
& Cross-models Longformer 82.80 98.27 90.53 89.76

DetectGPT 86.92 34.05 60.48 69.16
DeTeCtive (ours) 95.36 96.94 96.15 96.16

Out-of-distribution Detection

Unseen Models

FastText 83.12 54.09 68.61 N/A
GLTR 25.77 89.21 57.49 N/A

Longformer 83.31 89.09 86.61 N/A
DetectGPT 48.67 75.95 62.31 N/A

DeTeCtive (ours) 93.90 90.48 92.19 92.46
w/ C&C database 92.69 93.36 93.03 93.05

Unseen Domains

FastText 54.29 72.79 63.54 N/A
GLTR 15.84 97.12 56.48 N/A

Longformer 38.05 98.75 68.40 N/A
DetectGPT 86.92 34.05 60.48 N/A

DeTeCtive (ours) 68.22 96.99 82.60 76.73
w/ C&C database 84.09 95.17 89.63 88.74
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Table 13: Detailed results on all testbeds in each scenario of Deepfake [39] dataset.
Settings Sub-settings HumanRec MachineRec AvgRec* F1*

In-distribution Detection
CMV 100.0 100.0 100.0 100.0
ELI5 100.0 98.89 99.44 99.51

HellaSwag 99.05 100.0 99.52 99.52
ROC 100.0 100.0 100.0 100.0

Domain-specific Scigen 100.0 100.0 100.0 100.0
& Model-specific SQuAD 100.0 100.0 100.0 100.0

TLDR 98.73 100.0 99.37 99.36
WP 100.0 100.0 100.0 100.0

XSum 100.0 100.0 100.0 100.0
Yelp 100.0 98.78 99.39 99.51

Average 99.78 99.77 99.77 99.79
LLaMA 95.42 96.87 96.15 96.12

Cross-domains BigScience 97.07 97.77 97.42 97.42
& Model-specific FLAN-T5 96.39 93.07 94.73 94.82

GLM-130B 94.46 95.86 95.16 95.13
EleutherAI 98.62 99.65 99.14 99.13

OpenAI 95.59 97.00 96.29 96.27
OPT 97.99 98.44 98.22 98.21

Average 96.51 96.95 96.73 96.73
CMV 96.92 98.77 97.85 97.80
ELI5 94.52 95.18 94.85 94.81

HellaSwag 93.48 97.71 95.59 95.58
ROC 94.99 96.48 95.74 95.75

Domain-specific Scigen 95.28 98.71 96.99 97.01
& Cross-models SQuAD 96.58 96.88 96.73 96.73

TLDR 90.16 97.75 93.96 93.76
WP 98.55 99.55 99.05 99.04

XSum 94.28 98.86 96.57 96.50
Yelp 96.79 90.73 93.76 94.11

Average 95.16 97.06 96.11 96.11
Cross-domains Average 95.36 96.94 96.15 96.16& Cross-models

Out-of-distribution Detection

Unseen models

LLaMA 94.45 93.93 94.19 94.21
BigScience 93.81 94.76 94.28 94.26
FLAN-T5 93.24 79.85 86.54 87.38

GLM-130B 94.35 94.56 94.45 94.45
EleutherAI 93.91 99.72 96.82 96.72

OpenAI 94.50 76.26 85.38 86.60
OPT 93.04 94.30 93.67 93.63

Average 93.90 90.48 92.19 92.46

Unseen domains

CMV 93.55 97.37 95.46 95.32
ELI5 81.12 96.87 88.99 88.04

HellaSwag 54.59 93.81 74.20 68.09
ROC 23.15 99.03 61.09 37.30

Scigen 84.49 95.69 90.09 89.73
SQuAD 68.26 98.48 83.37 80.41
TLDR 69.03 95.74 82.39 69.03

WP 87.35 97.55 92.45 92.02
XSum 49.92 96.80 73.36 65.22
Yelp 70.71 98.51 84.61 82.15

Average 68.22 96.99 82.60 76.73
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of the paper are summarized in the last paragraph
of section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work is discussed in section A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The implementation details are illustrated in section 4.1. And we commit to
open-source our code and model weights.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data we used are publicly available as discussed in section 4.1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are illustrated in section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Given the massive amount of experiments conducted in this paper, providing
error bars would be computationally prohibitive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resources are described in section 4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential societal impacts of the work are discussed in section B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite and credit the code, data, models and vital libraries we used in the
paper, such as implementation details in section 4.1.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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