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Abstract001

The study of machine learning-based logical002
query answering enables reasoning with large-003
scale and incomplete knowledge graphs. This004
paper advances this area of research by ad-005
dressing the uncertainty inherent in knowledge.006
While the uncertain nature of knowledge is007
widely recognized in the real world, it does008
not align seamlessly with the first-order logic009
that underpins existing studies. To bridge this010
gap, we explore the soft queries on uncertain011
knowledge, inspired by the framework of soft012
constraint programming. We propose a neu-013
ral symbolic approach that incorporates both014
forward inference and backward calibration to015
answer soft queries on large-scale, incomplete,016
and uncertain knowledge graphs. Theoretical017
discussions demonstrate that our method avoids018
catastrophic cascading errors in the forward in-019
ference while maintaining the same complexity020
as state-of-the-art symbolic methods for com-021
plex logical queries. Empirical results validate022
the superior performance of our backward cali-023
bration compared to extended query embedding024
methods and neural symbolic approaches.025

1 Introduction026

Representing and reasoning with factual knowl-027

edge are essential functionalities of artificial intelli-028

gence systems. As a powerful way of knowledge029

representation, Knowledge Graphs (KGs) (Miller,030

1995; Suchanek et al., 2007; Vrandečić and031

Krötzsch, 2014) use nodes to represent entities032

and edges to encode the relations between enti-033

ties. Recently, Complex Query Answering (CQA)034

over KGs has attracted considerable attention be-035

cause this task requires multi-hop logical reasoning036

over KGs and supports many applications (Ren037

et al., 2023). This task requires answering the ex-038

istential First Order Logic (FOL) query, involving039

existential quantification (∃), conjunction (∧), dis-040

junction (∨), and negation (¬). While answering041

FOL queries has been extensively researched by042

database community (Riesen et al., 2010; Hartig 043

and Heese, 2007), such studies overlook the in- 044

completeness of most KGs. Consequently, con- 045

ventional graph traversal methods for relational 046

database queries may neglect certain answers due 047

to the missing links of KGs. In recent studies 048

on complex logical queries on knowledge graphs, 049

the generalizability of machine learning models is 050

leveraged to predict the missing links of observed 051

KGs and conduct first-order logic reasoning (Ren 052

and Leskovec, 2020; Arakelyan et al., 2021a; Liu 053

et al., 2021; Wang et al., 2023b). This combina- 054

tion of machine learning and logic enables further 055

possibilities in data management (Ren et al., 2023). 056

Uncertain knowledge is widely observed from 057

the daily events (Zhang et al., 2020) to the in- 058

teraction of biological systems (Szklarczyk et al., 059

2023). Besides, uncertainty is also particularly 060

pervasive in KGs because KGs are constructed by 061

information extraction models that could introduce 062

errors (Angeli et al., 2015; Ponte and Croft, 2017) 063

and from large corpses that could be noisy (Carlson 064

et al., 2010). To represent the uncertain knowledge, 065

confidence values p are associated with facts in 066

many well-established KGs (Carlson et al., 2010; 067

Speer et al., 2017; Szklarczyk et al., 2023), known 068

as the uncertain KG. We illustrate an uncertain KG 069

concerning job candidates in Figure 1. To address 070

the incompleteness of uncertain KGs, recent stud- 071

ies estimate the confidence values of missing facts 072

with the generalization power of ML models (Chen 073

et al., 2019; Pai and Costabello, 2021). 074

To reason with uncertainty, many extensions of 075

first-order logic have been made to cope with the 076

uncertainty in knowledge representation systems 077

formally (Adams, 1996). It is noteworthy to men- 078

tion that the study of probabilistic databases also 079

extends the relational databases with a confidence 080

value p ∈ [0, 1] (Cavallo and Pittarelli, 1987; Suciu 081

et al., 2022). From a machine learning perspec- 082

tive, however, previous studies in open world prob- 083
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Figure 1: (a) Examples of two soft queries in the candidate search procedure. The soft queries introduced in this
paper are jointly defined by first-order logic and soft requirements. Particularly, soft requirements (necessity and
importance) are introduced to characterize fine-grained decision-making preferences, distinguishing them from
first-order queries. (b) Incomplete uncertain KG for to what extent a candidate possesses a skill. Solid lines indicate
the observed knowledge, while dashed lines indicate the unobserved data. Values indicate confidence level, where
the higher value indicates the fact is more likely to be true.

abilistic databases are limited from two aspects:084

(1) They assume uniform uncertainty for all unob-085

served knowledge (Ceylan et al., 2021), leading to086

weaker characterization of the incomplete knowl-087

edge without the generalization. (2) They focus088

on first-order logic, which might be insufficient to089

describe practical reasoning processes with uncer-090

tainty. To address the limitations, we extend the091

complex query answering to uncertain KG and pro-092

pose soft queries combining query sturcture and093

soft requirements, as shown in Example 1.094

Example 1 (Soft query with soft requirements ).095

Figure 1 demonstrates an example using soft re-096

quirements to depict a query in real-life scenarios.097

The [0, 1] values in uncertain KG describe how098

well a candidate masters a specific skill. Differ-099

ent importance in Figure 1 is used to model the100

employers’ preferences for two roles of jobs. We101

can see that the two jobs have different necessi-102

ties because of the different necessity criteria of103

employers. The necessity from [0, 1] suggests the104

minimum requirement for the condition to be satis-105

fied. The importance over the range [0,∞) reflects106

the importance of a given condition.107

This paper studies the machine learning method108

for reasoning with incomplete and uncertain knowl-109

edge, advancing previous studies in symbolic prob-110

abilistic databases. Its contribution is threefold.111

Contribution 1: A novel and practical setting.112

We propose a novel setting of Soft Queries on Un-113

certain KG (SQUK). Our setting extends the previ-114

ous setting of complex logical queries on KGs in115

two ways: (1) For the incomplete knowledge base,116

SQUK extends the incomplete KG to incomplete117

and uncertain KG. (2) For the language describing118

reasoning, SQUK extends first-order language to119

uncertainty-aware soft queries with soft require-120

ments, which are motivated by real-world reason-121

ing with uncertainty (see Example 1) and the estab-122

lishment in soft constraint programming (Schiex, 123

1992; Rossi et al., 2006). We also introduce the 124

formal definition in Section 3. The comparison of 125

SQUK against other settings is detailed in Table 1. 126

Contribution 2: ML method for soft queries. We 127

bridge machine learning and SQUK by proposing 128

Soft Reasoning with calibrated Confidence values 129

(SRC), which uses Uncertain Knowledge Graph 130

Embeddings (UKGEs) to tackle the unobserved 131

information and achieves the same computational 132

complexity as the state-of-the-art inference algo- 133

rithms (Bai et al., 2023; Yin et al., 2024). The error 134

analysis is also conducted for SRC under mild as- 135

sumptions, characterizing how the performance is 136

affected by UKGEs and the query structures. Based 137

on our analysis, we suggest calibrating the confi- 138

dence by debiasing and learning, which further 139

boosts the performance of SRC. 140

Contribution 3: Extensive empirical studies. 141

We also conduct extensive empirical studies to 142

benchmark the performance of a broad spectrum 143

of methods under the UKGE (Chen et al., 2019) 144

settings. The calibrated SRC is compared against 145

baselines including Query Embedding (Ren and 146

Leskovec, 2020) methods with Number Embed- 147

dings (QE+NE) (Vaswani et al., 2017) and sym- 148

bolic search method (Yin et al., 2024). In particu- 149

lar, we compared the differences between QE+NE 150

and SRC under various soft query settings, demon- 151

strating the advantage of SRC. We also make a fair 152

comparison with large language models on anno- 153

tated soft queries in a natural language setting. 154

We highlight the uniqueness of the SQUK setting 155

by examining the differences between uncertain 156

KGs and KGs, comparing soft queries with logi- 157

cal queries, and addressing the challenges posed 158

by two versions of incomplete knowledge. These 159

differences are also summarized in Table 1. Addi- 160

tionally, we present the related work concerning 161
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Table 1: Comparison of different problem settings. FO: First Order, EFO: Existential First Order.

Problem Settings Language of reasoning Uncertainty of Knowledge Unobserved Knowledge

Relational database FO - -
Probablistic database FO Confidence value p -
Open world probablistic database FO Confidence value p Uniformed pu for all unobserved facts
Complex logical queries on KG EFO - ML generalization to unobserved facts
Soft queries on uncertain KG (Ours) EFO + Soft requirements Confidence value p ML generalization to unobserved facts and confidence p

complex logical query answering and uncertain162

knowledge graph embedding in Appendex A.163

2 Background164

Uncertain KGs enhance traditional KGs by aug-165

menting each triple fact with a confidence value,166

thereby facilitating the modeling of uncertain167

knowledge, which is particularly useful in vari-168

ous domains. Figure 1 illustrates uncertainty in169

job backgrounds. We formally define an uncertain170

knowledge graph as a set of knowledge as follows:171

Definition 1 (Uncertain knowledge graph). Let E172

be the set of entities and R be the set of relations,173

an uncertain knowledge graph G is a set of quadru-174

ple {(si, ri, oi, pi)}, where si, oi ∈ E are entities,175

ri ∈ E is relation and pi ∈ [0, 1]1 represents the176

confidence value for the relation fact (si, ri, oi).177

This confidence value pi indicates the degree of178

certainty regarding the truth of the fact.179

Following the closed-world assumption (Reiter,180

1981) and treating all unobserved facts as false,181

we can derive the weight graph form for uncertain182

KG and represent it with the confidence function183

P : E ×R× E 7→ [0, 1] as follows:184

P (hi, ri, ti) =

{
pi (hi, ri, ti, pi) ∈ G,
0 otherwise.

(1)185

Uncertain KGs also suffer incomplete is-186

sues (Chen et al., 2019, 2021a), with observed187

knowledge representing only a small portion of188

the total facts. The assumption that all unseen rela-189

tional facts are false is inappropriate in real-world190

scenarios. To address this challenge, previous re-191

search on uncertain KGs has proposed a machine192

learning task to predict the confidence scores of193

these unseen relational facts (Chen et al., 2019,194

2021a). Typically, the observed knowledge in un-195

certain KGs is split into three nested sets of facts,196

where Gtrain ⊊ Gvalid ⊊ Gtest. The training set Gtrain197

is used to train the model, while the validation and198

1The values of uncertain KGs also indicate the strength or
importance. For simplify, previous work (Pai and Costabello,
2021) normalized the range of values into the interval [0, 1].

test sets are used to evaluate its performance in 199

predicting the confidence scores of unseen facts. 200

Uncertain Knowledge Graph Embeddings 201

(UKGEs) (Chen et al., 2019, 2021a) have been 202

the mainstream methods for predicting unseen re- 203

lational facts in uncertain KGs, as they learn low- 204

dimensional representations that effectively capture 205

the semantics between relations and facts, demon- 206

strating strong generalizability. UKGEs are trained 207

on partial facts Gtrain and approximate the confi- 208

dence function P deriving from complete facts, 209

defined as the following confidence function: 210

Definition 2. An UKGE parameterizes a differen- 211

tiable confidence function P̂ : E ×R×E 7→ [0, 1]. 212

In practice, obtaining complete facts is challeng- 213

ing, so Ptest induced by Gtest are usually substituted 214

for P , which adhere to previous approaches (Chen 215

et al., 2019; Pai and Costabello, 2021). We present 216

the connection between this setting and the open- 217

world assumption in Appendix D. 218

3 Soft Queries 219

The uncertainty inherent in KGs can be modeled 220

using confidence values for each knowledge. How- 221

ever, current complex logical queries are defined 222

on a boolean basis 2, which is not compatible with 223

uncertain KGs. This uncertainty necessitates new 224

definitions for logical operations and answer sets. 225

In this section, we introduce the definition of our 226

extended soft queries. 227

3.1 Syntax and semantic 228

Definition 3 (Syntax of soft queries). Soft queries 229

is the disjunction of soft soft conjunctive query ϕi: 230

Φ(y) = ϕ1(y) ∨⃝ · · · ∨⃝ ϕq(y), (2) 231

where y is the free variable. Each ϕi(y) is the 232
conjunction of soft atomic formula: 233

ϕi(y) = ∃x1, . . . , xn.ai1 ∧⃝ · · · ∧⃝ aij , i = 1, ..., q, (3) 234

where x1, . . . , xn represent existentially quantified 235

variables. Each ai is a soft atomic formula of the 236

2For details on logical queries, please refer to Appendix C.
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form (h, r, t, α, β) or its negation ¬(h, r, t, α, β).237

Here, r denotes the relation, h and t can be either238

an entity in E or a variable in {y, x1, ..., xn}. α239

represents the necessity value, and β represents the240

importance value. The ∧⃝ represents the notation241

of soft conjunction operation.242

Definition 4 (Substitution). For a soft query in-243

volving variables, the substitution replaces all oc-244

currences of the variable x (or y) with any entity245

s ∈ E simultaneously, denoted as s/x (or s/y).246

We denote ϕ(s) for the result of substituting s for247

the free variable y. When all variables in the soft248

query ϕ have been substituted, we refer to it as the249

substituted query. Next, we define the semantics of250

the soft queries, starting with the soft atomic for-251

mula. Specially, the soft atomic formula involves252

two novelty concepts: α necessity and β impor-253

tance, which are inspired form soft Constraint Sat-254

isfaction Problems (CSPs) (Rossi et al., 2006) to255

manipulate the uncertainty of facts. We introduce256

the related work of soft CSPs in Appendix E.257

1. The α necessity component draws inspiration258

from possibilistic CSPs (Schiex, 1992) and is de-259

signed to capture necessity criteria. It serves the260

purpose of filtering out unnecessary constraints and261

involves a thresholding operation. The threshold-262

ing operation [p]α is defined as follows:263

[p]α =

{
p p ≥ α,

0 otherwise.
(4)264

2. The β importance component is influenced by265

weighted CSPs (Bistarelli et al., 1999) to describe266

perference, which is the weight employed to adjust267

the relative significance of different conditions.268

Definition 5 (Semantic of soft queries). Given a269

semiring (R+,⊕,⊗, 0 ) over R+, the confidence270

function P induced by an uncertain knowledge271

graph G, and a soft query ϕ, let s and o be entities272

in E . The confidence value U(ϕ, P ) is recursively273

defined as follows:274

1. If ϕ is the substituted soft atomic query275

(s, r, o, α, β), then U(ϕ, P ) = β[P (s, r, o)]α;276

2. If ϕ is the negation of the substituted soft277

atomic ¬(s, r, o, α, β), thenU(ϕ, P ) = β[1−278

P (s, r, o)]α;279

3. If ϕ = ∃xiψ(y;xi) is the soft query involv-280

ing existentially quantified variables, then281

U(ϕ, P ) = ⊕s∈EU(ϕ(y; s/xi), P );282

4. If ϕ is the conjunctive query (ϕ1 ∧⃝ ϕ2), then283

U(ϕ, P ) = U(ϕ1, P )⊗ U(ϕ2, P ).284

5. If Φ is the disjunctive query (Φ1 ∨⃝ Φ2), then 285

U(Φ, P ) = U(Φ1, P )⊕ U(Φ2, P ). 286

To align with the semantics of the confidence 287

value, we instantiate the semiring as (⊗,⊕, 0 ) = 288

(+,max,−∞). We present the discussion of semir- 289

ing in the previous soft CSP Appendix E. 290

3.2 Example to explain the soft queries , as 291

well as the necessity and importance 292

Let HAS be the relation abbreviation describing 293

a candidate who possesses a skill, while LEAD, 294

DEV, and ML represent the skills of leadership, de- 295

velopment, and machine learning, respectively. We 296

introduce an example using soft queries to model 297

search candidates for two positions: Junior Soft- 298

ware Developer and Principal Investigator in Ma- 299

chine Learning. The two jobs require different 300

expertise in development and machine learning, 301

but both requires leadership skills. Although both 302

jobs require leadership, the Principal Investigator 303

in Machine Learning places a greater emphasis on 304

it compared to the Junior Software Developer. This 305

can be modeled by the importance β, which as- 306

signs greater importance to leadership in its query. 307

The necessity α can serve as the threshold to filter 308

out candidates who do not meet the required skills. 309
Thus we introduce the soft queries for the two 310

job as following: 311

ϕJSD(y) =¬(y, HAS, LEAD, 0.7, 1)) ∧⃝ (y, HAS, DEV, 0.5, 3), 312

ϕPI(y) =(y, HAS, LEAD, 0.7, 3) ∧⃝ (y, HAS, ML, 0.9, 1)). 313

For the JSD job, Person 1 is overqualified because 314

her leadership style suits more senior ones, while 315

Person 2 is the perfect candidate. Persons 1 and 2 316

are unsuitable for the PI job because of their limited 317

ML research skills. Person 3 is suitable for ML re- 318

search, but the observed knowledge (solid lines in 319

Figure 1) is insufficient to check whether s/he is a 320

good developer. With the machine learning model, 321

the tendency for candidates not to possess Dev and 322

ML skills simultaneously can be learned. There- 323

fore, the ML model might estimate Person 3 has 324

dev skill with the confidence value 0.1 (indicated 325

in the dashed line in Figure 1), making him/her not 326

a good candidate for the JSD job. 327

3.3 Soft query graph and utility vector 328

Definition 6 (Soft Query Graph). Given a soft 329

query ϕ(y;x1, ..., xn) = ∃x1, ..., xn.a1 ∧⃝ · · · ∧⃝ 330

am, the soft query graph Gϕ is defined by tu- 331

ples induced by soft atomic formulas or its 332

negation: Gϕ = {(hi, ri, ti, αi, βi,NEGi)}mi=1, 333
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where (hi, ri, ti, αi, βi,NEGi)) is induced by334

(hi, ri, ti, αi, βi) or ¬(hi, ri, ti, αi, βi). NEGi is335

the bool variable indicating if ai is negated.336

If h (or t) is a variable, we say the corresponding337

node in Gϕ is a variable node. V (Gϕ) indicates338

the set of all variable nodes in Gϕ. If h (or t)339

is an entity, we say the corresponding node is an340

constant node. The leaf node is a node that is only341

connected to one other node in the query graph.342

Compared to the operation tree in complex logical343

queries (Ren and Leskovec, 2020), the soft query344

graph can model any conjunctive soft queries.345

By the semantic, we can compute the utility of s346

for the soft query ϕ. The utility of all the entities347

can be represented as a vector conveniently.348

Definition 7 (Utility Vector). Given a confidence349

function P induced by an uncertain knowledge350

graph G and a soft query ϕ, the utility vector of351

the soft query, denoted as u ∈ R|E|, is defined as:352

ui = U(Φ(si/y), P ), (5)353

where si denotes the entity indexed by i.354

3.4 Challenge355

The uncertainty of knowledge within uncertain356

KGs is modeled by confidence values, resulted357

in logical operations such as conjunction, disjunc-358

tion, negation, and existential quantification are rep-359

resented by arithmetic operations like semi-rings.360

This introduces greater challenges compared to sim-361

ple boolean operations. Another challenge in an-362

swering soft queries is that the confidence values363

of incomplete relational facts can impact query re-364

sults and even yield new answers. Similar to the365

necessity of machine learning generalization for366

complex logical queries on KGs, a machine learn-367

ing approach is also essential to mitigate missing368

information in uncertain KGs.369

4 Methodology370

In this section, we propose Soft Reasoning with371

calibrated Confidence values (SRC) to facilitate372

reasoning with various query structures and soft re-373

quirements. SRC is a symbolic reasoning method374

that utilizes UKGE to provide confidence values.375

Since UKGE inevitably has prediction errors, we376

present a mild assumption regarding the UKGE377

error bound in Equation (7). Our error analysis378

over SRC indicates that the inference error is man-379

ageable as the complexity of the query structure380

increases. To further reduce this error, we introduce381

Algorithm 1 SRC (simple acyclic case)

Require: Input soft query graph Gϕ and initialize
{Cz}.

Ensure: Output utility vector û(Gϕ, {Cz})
(Gϕ, {Cz})← REMOVECONSTNODE(Gϕ, {Cz})
while There exists a leaf node do

(Gϕ, {Cz})← REMOVELEAFNODE(Gϕ, {Cz})
end while
Get the utility vector by retrieving Cy.

two orthogonal calibration strategies: Debiasing 382

(D) and Learning (L). 383

4.1 Forward inference 384

The main paper discusses soft queries in which 385

the query graphs are acyclic simple graphs. Cases 386

with the complete case (cycles and self-loops) are 387

detailed in Appendix G. 388

Given the soft query ϕ, SRC efficiently de- 389

rives the utility vector U(ϕ, P̂ ) based on the con- 390

fidence function P̂ approximated by UKGE. The 391

core idea is to progressively prune the edges of the 392

soft query graph while preserving the constraints 393

of the remaining edges, ensuring that the final util- 394

ity vector remains unchanged. State vectors are 395

used to record the constraints of the pruned edges 396

during the inference process. Specifically, each 397

variable node z ∈ Gϕ is described by a state vector 398

Cz ∈ R|E|. The notation (Gϕ, {Cz : z ∈ V (Gϕ)}) 399

denotes a soft query graph with state vectors. 400
We define equivalent transformations as T : 401

T (Gϕ, {Cz : z ∈ V (Gϕ)}) = (Gψ, {C′
z : z ∈ V (Gψ)}), (6) 402

where Gψ is a subgraph of Gϕ (with at least one 403

edge eliminated), C ′
z is the updated state vector, 404

and T guarantees the utility vector û unchanged. 405

Two lemmas are presented to induce two equiva- 406

lent transformations, denoted as Te and Tl, respec- 407

tively. The proof can refer to Appendix G. 408

Lemma 1. For each constant node in Gϕ, an 409

O(|E|) transformation Tc exists to remove it. 410

Realization of the equivalent transformation Tc 411

induces a function REMOVECONSTNODE. 412

Lemma 2. For each leaf node in Gϕ, an O(|E|2) 413

transformation Tl exists to remove it. 414

Realization of the equivalent transformation Tl 415

induces a function REMOVELEAFNODE. 416

The procedure of SRC for simple and acyclic 417

soft query graphs is presented in Algorithm 1. We 418

first remove the constant nodes by Lemma 1. Then, 419
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we can find the leaf node and remove it step by step420

according to Lemma 2. Until the soft query only421

contains a free variable, the state vector Cy of the422

free variable is the desired utility vector.423

Complexity analysis. The space complexity of424

inference algorithm is O(|R||E|2). Additionally,425

let ne represent the number of edges involving the426

existential variable and other variables, and nr de-427

note the count of remaining edges. When solv-428

ing queries without cycles, the time complexity429

is O(ne|E|2 + nr|E|). The complexity of SRCis430

directly related to the size of the knowledge base,431

similar to previous works (Bai et al., 2023; Yin432

et al., 2024). By leveraging the sparsity of knowl-433

edge graphs (Xiao and Cao, 2024) and incorpo-434

rating beam search techniques (Arakelyan et al.,435

2021b), we can enhance the efficiency of symbolic436

search for large-scale uncertain knowledge graphs.437

4.2 Error analysis438

To facilitate the error analysis of our algorithm, the439

error bound ε(δ) is assumed as the following.440

Assumption 1. We assume the following uniform441
error-bound for some kind of norm:442

Pr

(
max
(s,r,o)

∥P̂ (s, r, o)− P(s, r, o)∥ > δ

)
< ε(δ), (7)443

where ε(δ) is the tail probability of the uniform444

error δ.445

We look into the error of each soft atomic query:446

Theorem 1. For any soft atomic query ψ =
(h, r, y, α, β), let the uniform inference error be

max
ψ,s∈E

∥U(ψ(s/y), P̂ )−U(ψ(s/y),P)∥ = ϵ(α, β)

Then we estimate the distribution of ϵ(α, β) by the447
uniform error-bound ε(δ) provided in Equation (7)448
and assume the probability density function of P is449
f(ξ) :450

Pr (ϵ(α, β) > δ) < ε(
δ

β
) + (1 − ε(

δ

β
))

∫ 1

0

ε(|α − ξ|)f(ξ)dξ.451

Moreover, the numerical stability is guaranteed:452

Theorem 2. For a soft conjunctive query ϕ =453
∃x1, ..., xn.a1 ∧⃝ · · · ∧⃝ am, where ai =454
(hi, ri, ti, αi, βi), and any entity s ∈ E , the error455
accumulated is at most linear:456

∥U(ϕ(s), P̂ )− U(ϕ(s),P)∥ ≤ Σm
i=1ϵ(αi, βi). (8)457

This conclusion ensures that there is no catas-458

trophic cascading error in our forward inference459

algorithm. The proof of all the above theorems can460

refer to Appendix M.461

4.3 Two calibration strategies 462

Debiasing. The confidence function P̂ of UKGE is 463

biased towards zero. We propose a debiasing strat- 464

egy for the inference. That is, we modify the soft 465

requirements α as α−∆α. We can see this simple 466

debiasing strategy improves the performance. SRC 467

with this strategy is denoted as SRC(D). 468

Learning. The pre-trained UKGE is not optimal 469

for SRC in the incomplete uncertain KGs. We pro- 470

pose the calibration by learning (L) strategy by 471

learning the calibrated confidence function. Specif- 472

ically, we calibrate the confidence function P̂c by 473

learnable affine transformation (Arakelyan et al., 474

2023) as following: 475

P̂c(s, r, o) = P̂ (s, r, o)(1+ρθ(s, r, o))+λθ(s, r, o).
(9) 476

The parameterization can refer to Appendix F. 477

As implied by both Theorem 1 and Theorem 2, 478

the error of SRC is rooted in the error bound of 479

UKGE. As we can see from Equation (8) the error 480

bound is governed by both ε and the integral of ε 481

over the domain [0,max(α, 1− α)]. An important 482

implication is that when α = 0, the integral of 483

ε will be fully [0, 1]3. Therefore, our theoretical 484

analysis motivates the goal of calibration as the 485

minimization of the mean squared error between 486

the predicted utility and the observed utility of an- 487

swers: 488

L =
∑

u(s)>0

(U(ϕ(s), P̂c)− U(ϕ(s),P))2, (10) 489

where U(ϕ(s), P̂c) represents the predicted utility 490

vector of a soft query ϕ according to Definition 7. 491

SRC with this strategy is denoted as SRC(L). 492

Notably, we only need to train the calibration 493

transformation in the cases of α = 0, achieving a 494

simpler training strategy but better generalization 495

capability when compared to the QE+NE baselines, 496

as will be presented in Appendix B. 497

5 SQUK Dataset Construction 498

We provide a brief overview of dataset construction 499

and the details can refer to Appendix J. 500

5.1 Useful queries and evaluation protocols 501

The validation/test uncertain knowledge graph in- 502

corporates new facts that will update the utility 503

3The case of α = 1 ruled out almost all uncertain cases,
which is not applicable in differentiable learning.
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1P 2I 2IN 2IL2P

2M3IN IP 2U UPIMINP

Train:
Operator Queries

Valid/Test :
Composed Queries

Figure 2: Query structures of query types. The white, yellow, and red circles represent constant, existential, and
free nodes, respectively. The negative atomic formulas are represented by red edges, while atomic formulas are
represented by black edges. Like the previous naming convention (Ren and Leskovec, 2020; Yin et al., 2024), we
use ”P” for projection, “I” for intersection, “N” for negation, “M” for multi-edge, and “L” for existential leaf.

vectors of specific soft queries. Only these par-504

ticular queries are considered meaningful and in-505

cluded in the evaluation. The evaluation of soft506

queries not only considers recall but also accounts507

for the values of the recalled answers. Therefore,508

we adopt metrics from the learning-to-rank frame-509

work (Liu et al., 2009) as our evaluation protocol,510

which includes Mean Average Precision (MAP),511

Normalized Discounted Cumulative Gain (NDCG),512

Spearman’s rank correlation coefficient (ρ), and513

Kendall’s rank correlation coefficient (τ ).514

We choose 1P, 2P, 2I, 2IN, and 2IL as train query515

types and add 3IN, INP, IP, 2M, and IM as valida-516

tion/test query types . The training query types en-517

compass basic operations, allowing us to evaluate518

the ability of machine learning methods to gener-519

alize to commonly used unseen query types (Yin520

et al., 2024). We visualize the query graph structure521

of these types in Figure 2.522

5.2 Uncertain KGs523

We utilize three standard uncertain KGs:524

CN15k (Chen et al., 2019) for encompassing525

commonsense, PPI5k (Chen et al., 2019) for526

biology, and O*NET20K (Pai and Costabello,527

2021) for employment domains. These uncertain528

KGs are noisy and incomplete, requiring the ML529

models to predict the confidence values.530

5.3 Soft requirements531

For the α parameter, we establish connections with532

the percentile value of the relation to represent the533

necessity value effectively. We assign specific per-534

centiles to different necessity levels: the 25th, 50th,535

and 75th percentiles correspond to “low”, “normal”,536

and “high” necessity criteria, respectively. We en-537

sure that a “zero” requirement is assigned when538

the necessity criteria reaches 0. We also introduce539

a hybrid strategy that randomly selects necessity540

values, enabling a comprehensive evaluation.541

For the β importance setting, we employ two 542

strategies: “equal” and “random”. Under the 543

“equal” strategy, all importance values are assigned 544

an importance value of 1.0. In contrast, the “ran- 545

dom” strategy introduces variability by assigning 546

random decimal numbers between 0 and 1 to repre- 547

sent the importance of each soft atomic formula. 548

6 Experiments 549

In this section, we empirically explore how to an- 550

swer soft queries. We mainly compare our method 551

with generalized Sota CQA models on SQUK 552

dataset, including commonly used query embed- 553

ding models and advanced symbolic search meth- 554

ods. Additionally, we evaluate the performance of 555

advanced commercial LLMs on soft queries with 556

clear natural language descriptions. The imple- 557

mentation details of these experiments are in Ap- 558

pendix F. We also conduct the ablation study regard 559

of the impact of two parameters α and β on both 560

kinds of approaches , which is presented in Ap- 561

pendix B due to page limitations. 562

6.1 Main results 563

Baselines We select two mainstream CQA meth- 564

ods as baselines: query embedding and symbolic 565

search. Specifically, we focus on two classical 566

query embedding methods: LogicE (Luus et al., 567

2021) and ConE (Zhang et al., 2021). To enable 568

soft queries, we incorporate the relation projection 569

network with Number Embedding (NE) and ad- 570

just the loss function accordingly. 4 The forward 571

inference of our method, SRC, is directly general- 572

ized from SOTA symbolic methods FIT (Yin et al., 573

2024), which serve as baselines for search methods. 574

Models analysis. The main results are presented in 575

Table 2, demonstrating that our proposed method 576

significantly outperforms both query embedding 577

4Detailed information can be found in Appendix I.
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Table 2: Result of answering soft queries. Logic+NE and ConE+NE refer to the query embedding with number
embedding extensions. SRC is our inference method, and SRC(D), SRC(L), and SRC(D+L) is explained in
Section 4.3.

uncertain KG Models τ AVG. ρ AVG. MAP AVG. NDCG
1P 2P 2I 2IN 2IL 2M 2U 3IN IP IM INP UP AVG.

CN15k

LogicE+NE 9.1 -1.5 4.8 6.0 18.3 5.1 -14.1 3.5 -2.4 6.4 -0.9 9.6 4.8 5.8 7.0 11.2
ConE+NE 5.3 4.3 3.5 6.3 18.4 6.9 20.5 2.9 1.8 10.4 1.7 14.9 8.1 10.0 7.7 13.2

SRC 15.0 2.4 -0.0 2.1 10.7 9.2 25.5 -2.0 -9.0 7.9 -4.4 13.0 5.9 8.9 9.2 15.5
SRC(D) 16.6 11.8 -0.6 6.9 10.9 11.7 34.4 0.1 5.2 12.5 4.7 24.2 11.5 15.1 12.9 21.8
SRC(L) 15.8 11.8 -0.4 2.4 11.0 12.4 32.3 -0.8 3.6 11.1 1.1 22.8 10.3 13.7 12.6 21.1

SRC(D+L) 15.6 13.4 -0.3 5.2 11.2 13.5 36.8 -0.4 8.2 12.2 4.8 28.2 12.4 16.2 13.7 23.2

PPI5k

LogicE+NE 20.5 22.6 17.1 10.4 24.4 20.0 30.4 9.1 12.4 14.1 -2.6 32.9 14.8 20.7 8.0 16.4
ConE+NE 29.2 42.5 26.4 20.7 32.6 33.9 35.9 16.6 36.6 29.4 22.5 42.2 30.7 40.8 44.1 49.2

SRC 66.6 70.9 49.9 42.7 71.0 42.9 71.6 32.7 65.6 37.1 57.2 70.4 56.5 66.7 68.4 70.7
SRC(D) 66.7 68.7 53.1 44.9 73.1 46.7 73.3 37.7 63.7 41.3 56.9 69.9 58.0 68.5 64.0 69.8
SRC(L) 66.8 71.7 52.7 43.4 72.8 43.8 72.7 34.4 66.6 38.3 58.0 71.4 57.7 67.8 69.8 71.6

SRC(D+L) 66.9 69.0 53.5 45.1 73.5 46.9 73.4 38.1 63.8 41.6 57.1 69.9 58.2 68.7 64.1 70.1

O*NET20k

LogicE+NE 6.3 9.5 43.5 3.9 36.6 9.7 15.3 8.3 11.1 8.8 3.8 -9.8 13.8 18.5 3.5 6.4
ConE+NE 30.8 41.9 57.0 21.8 46.0 37.7 49.7 48.0 22.7 21.7 14.2 53.1 36.8 47.2 27.5 38.7

SRC 72.0 54.9 68.6 67.6 67.3 36.9 76.0 59.2 47.6 29.1 48.9 52.4 57.3 65.3 27.1 41.3
SRC(D) 71.7 55.2 74.3 67.7 70.9 49.3 80.1 65.0 52.7 44.7 48.9 55.4 61.8 70.2 26.6 41.5
SRC(L) 71.6 56.7 69.8 66.8 68.4 38.2 77.6 59.9 51.3 32.1 49.8 55.4 58.7 66.5 27.6 41.8

SRC(D+L) 71.7 55.6 74.3 67.5 71.0 49.7 80.2 65.0 52.9 45.2 49.2 55.9 61.9 70.5 26.7 41.7

Table 3: The accuracy of manually annotated queries.

Model GPT-3.5-turbo GPT-4-preview SRC

Accuracy 34.3 37.8 48.9

methods and directly generalized symbolic meth-578

ods. By leveraging the two calibration strategies,579

debiasing (D) and learning (L), as explained in580

Section 4.3, our method achieves superior results581

across most KGs and metrics on average.582

Query structure analysis. Although ConE per-583

forms well on some trained query types, it strug-584

gles with newly emerged query types and those585

involving negation, such as INP and IM. In con-586

trast, our method exhibits excellent performance587

across the majority of query types, demonstrating588

robust combinatorial generalization capabilities on589

complex queries. Our method particularly excels590

in handling challenging query types that involve591

existential variables, such as 2P, 2M, IM, and INP,592

highlighting its advantages in these scenarios.593

6.2 The comparison with LLMs594

We devise an evaluation framework to assess the595

performance of LLMs, benchmarking their power-596

ful reasoning abilities over uncertain knowledge.597

To ensure fairness of the comparison, we consider598

the queries sampled from CN15k and we choose599

four candidate answers for each query. These600

queries have also been manually filtered and la-601

beled to ensure clearness and correctness. We de-602

scribe the syntax and semantics of soft queries us-603

ing natural language, prompting LLMs to select the604

most suitable answer. The details on this setting605

construction can refer to Appendix L.606

The results, shown in Table 3, indicate that 607

even the simple symbolic SRC achieves signifi- 608

cantly higher accuracy compared to GPT-3.5-turbo 609

and GPT-4-preview. This demonstrates that large 610

language models (LLMs) struggle with complex 611

arithmetic operations involving uncertain values of 612

knowledge. Our evaluation is fair, as the required 613

uncertain knowledge is derived from well-known 614

commonsense KGs ConceptNet, and the logical op- 615

erations are expressed in natural language. Never- 616

theless, even advanced commercial LLMs struggle 617

to select the highest-scoring answer. This further 618

emphasizes the difficulties presented by the pro- 619

posed soft queries and highlights the ongoing need 620

for the development of symbolic approaches. 621

7 Conclusion 622

In this paper, we introduce a novel setting, soft 623

queries on uncertain knowledge graphs, which fur- 624

ther extends the context of complex logical queries 625

on knowledge graphs. The soft queries consider 626

the incompleteness of large-scale uncertain KGs 627

and require the incorporation of ML methods to es- 628

timate scores for new relational linking while han- 629

dling semiring algebraic structures. Our proposed 630

soft queries also propose the soft requirements in- 631

spired by soft constraint satisfaction problems to 632

control the uncertainty of knowledge. To facilitate 633

the research of soft queries, we construct a soft 634

query answering dataset consisting of three uncer- 635

tain knowledge graphs. Furthermore, we propose a 636

new neural-symbolic approach with both forward 637

inference and backward calibration. Both theoreti- 638

cal analysis and experimental results demonstrate 639

that our method has satisfactory performance. 640
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8 Limitation641

Soft queries extend complex logical queries over642

Knowledge Graphs (KGs) by incorporating soft643

requirements within uncertain KGs. However, the644

scope of the proposed soft queries is limited, as it645

primarily focuses on conjunctive queries. While646

conjunctive queries form the foundation of com-647

plex logical queries, this restriction may hinder the648

expressiveness and applicability of the proposed649

soft queries. Furthermore, the dataset does not in-650

clude cyclic queries, which are NP-complete, even651

though their complexity can be more easily ad-652

dressed.653

9 Potential Impact654

Soft queries have the potential to perpetuate exist-655

ing biases present in the underlying knowledge656

graphs. If these graphs contain skewed or dis-657

criminatory information, the results generated by658

soft queries may reflect and amplify these biases,659

leading to unfair outcomes in applications such as660

hiring, credit scoring, or law enforcement. This661

raises significant ethical concerns about fairness,662

as marginalized groups may be disproportionately663

affected by biased query results, resulting in sys-664

temic inequality.665

The utilization of soft queries to extract infor-666

mation from knowledge graphs can pose serious667

privacy risks. If queries access sensitive personal668

data without proper safeguards, there is a potential669

for unauthorized disclosures that violate individu-670

als’ privacy rights. This concern is heightened in671

contexts where the data might be used for profiling672

or surveillance, making it imperative to establish673

robust privacy protections and ethical guidelines674

to ensure that individuals’ information is handled675

responsibly and transparently.676
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Appendix915

A Related Work916

A.1 Complex logical queries917

Answering complex logical queries over knowledge graphs is naturally extended from link prediction and918

aims to handle queries with complex conditions beyond simple link queries. This task gradually grows919

by extending the scope of complex logical queries, ranging from conjunctive queries (Hamilton et al.,920

2018) to Existential Positive First-Order (EPFO) queries (Ren et al., 2020), Existential First-Order (EFO)921

queries (Ren and Leskovec, 2020), real Existential First-Order queries (Yin et al., 2024). The primary922

method is query embedding, which maps queries and entities to a low-dimensional space. The form of923

embedding has been well investigated, such as vectors (Hamilton et al., 2018; Chen et al., 2022; Bai924

et al., 2022), geometric regions (Ren et al., 2020; Zhang et al., 2021), and probabilistic distributions (Ren925

and Leskovec, 2020; Choudhary et al., 2021; Yang et al., 2022a; Wang et al., 2023a). These methods926

not only explore knowledge graphs embedding but also leverage neural logical operators to generate the927

embedding of complex logical queries.928

There are also neural-symbolic models to answer complex logical queries. Gradient optimization929

techniques were employed to estimate the embedding existential variables (Amayuelas et al., 2021;930

Arakelyan et al., 2023). Graph neural network (Zhu et al., 2022) was adapted to execute relational projects931

and use logical operations over fuzzy sets to deal with more complex queries. Efficient search algorithms932

based on link predictor over knowledge graphs were presented (Yin et al., 2024; Bai et al., 2023). While933

symbolic methods demonstrate good performance and offer interpretability for intermediate variables,934

they often struggle to scale with larger graphs due to their high computational complexity.935

Many other models and datasets are proposed to enable answering queries with good performance936

and additional features, see the comprehensive survey (Ren et al., 2023). However, to the best of our937

knowledge, there is currently no existing query framework specifically designed for uncertain knowledge938

graphs.939

A.2 Uncertain knowledge graph embedding940

Uncertain knowledge graph embedding methods aim to map entities and relations into low-dimensional941

space, enabling the prediction of unknown link information along with confidence values. There are two942

primary research directions in this field.943

The first line of research focuses on predicting the confidence score of uncertain relation facts. UKGE944

(Chen et al., 2019) was the pioneering effort to model triple plausibility as the activated product of945

these embedding vectors. UKGE incorporates soft probabilistic logic rules to provide the plausibility of946

unseen facts. Building upon this, BEUrRE (Chen et al., 2021a) utilizes complex geometric boxes with947

probabilistic semantics to represent entities and achieve better performance. Semi-supervised learning948

were applied (Chen et al., 2021b)to predict the associated confidence scores of positive and negative949

samples. And Graph neural networks were used (?Liang, 2023) to represent and predict uncertain950

knowledge graphs.951

The other line of research aims to address link prediction on uncertain knowledge graphs by fitting952

the likelihood of uncertain facts. To adjust the similar task, FocusE (Pai and Costabello, 2021) was953

introduced, an additional layer to the knowledge graph embedding architecture. They provide variants954

of classical embedding methods such as TransE (Bordes et al., 2013), DistMult (Yang et al., 2015), and955

ComplEx (Trouillon et al., 2016).956

B Ablation study: The impact of soft requirements957

The two parameters, α and β play a crucial role in controlling soft constraints, thus we construct settings958

with varying values. Specifically, we select “zero”(Z) and “random”(R) for α, and “equal”(E) and959

“random”(R) for β, as explained in Section 5.3. Moreover, we sample 12 query types from O*NET20k960

KG. The detailed construction is in Appendix K. For ConE, we train it on each setting and test it across961

all settings. As for SRC, we directly test it on all settings.962
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Table 4: The mean NDCG of varing α and β.

Model Train
Test

AVG.
Z+E Z+R N+E N+R

ConE+NE

Z+E 39.3 35.6 31.9 31.5 34.6
Z+R 39.0 42.2 27.8 28.7 34.4
N+E 26.6 23.6 46.3 44.1 35.2
N+R 14.0 7.5 43.5 42.2 26.8

SRC - 34.3 37.2 46.7 45.8 41.0

The results in Table 4 demonstrate that SRC outperforms ConE trained on four different settings in 963

terms of average scores. In the “Z+E” and “Z+R” settings, although ConE achieves higher scores when 964

trained and tested within the same setting, its performance considerably declines when generalizing to 965

other settings. Our method SRC exhibits consistent performance across various settings due to its strong 966

generalization by theoretical foundations in Section 4.2. 967

C Logical queries on knowledge graphs 968

Definition 8 (Knowledge graphs). Let E be the set of entities and R be the set of relations. A knowledge 969

graph is a set of triples G = {(si, ri, oi)}, where si, oi ∈ E are entities and ri ∈ E is relation. 970

The fundamental challenge of knowledge graphs lies in dealing with the Open World Assumption 971

(OWA). Unlike the Closed World Assumption (CWA), which considers only observed triples as facts, 972

OWA acknowledges that unobserved triples may also be valid. 973

The study of logical queries on KG considers the Existential First-Order (EFO) queries, usually with 974

one free variable (Ren and Leskovec, 2020; Wang et al., 2021; Yin et al., 2024). 975

Definition 9 (Syntax of existential first-order queries). The disjunctive normal form of an existential 976

first-order query Γ is: 977

Γ(y) = γ1(y) ∨ · · · ∨ γq(y), (11) 978

where y is the variable to be answered. Each γi(y) is a conjunctive query that is expanded as 979

γi(y) = ∃x1, . . . , xn.ai1 ∧ · · · ∧ aimi , i = 1, ..., q, (12) 980

where x1, . . . , xn are existentially quantified variables, each aij = r(h, t) or aij = ¬r(h, t), j = 1, ...,mi 981

is an atomic query, r is the relation, h and t are either an entity in E or a variable in {y, x1, ..., xn}. 982

Definition 10. Γ(s/y) denotes the substitution of the entity s for the variable y. 983

When all free variables are substituted, a query Γ(y) is transformed into a sentence Γ(s/y). Given G, 984

answering a query Γ(y) means finding all substitutions, such that the sentence Γ(s/y) is entailed by G, 985

i.e., G |= Γ(s/y). The answer set is defined as 986

Definition 11 (The Answer Set of first-orde Query). The answer set of an first-orde query is defined by 987

A[Φ(y)] = {a ∈ E| Φ(a) is True} (13) 988

The answers in answer set derived from Gtrain is easy answers. hard answers are the answers in the set 989

difference between the answers from Gvalid and Gtrain (Wang et al., 2021; Ren et al., 2023). The traditional 990

graph-matching methods can not find the answers introduced by new facts (Riesen et al., 2010). Thus, we 991

should develop new methods. 992
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C.1 ML-based method for logical queries on KG993

Recent works are dedicated to introducing ML methods, i.e., knowledge graph embeddings, to generalize994

from G to Ĝ, so that it approximates Gtest.995

Query Embeddings (QE). Query embedding methods generally map the query Γ as an embedding (Ren996

and Leskovec, 2020; Liu et al., 2021; Wang et al., 2023b). One dominant way is to “translate” the997

procedure of solving logical formulas in Equation (11) into the set operations, such as set projection,998

intersection, union, and complement. Then, the neural networks are designed to model such set operations999

in the embedding space. We can see that direct modeling of set operations is incompatible with the1000

concept of necessity and importance introduced in Section 3.1001

Inference methods. Other methods solve the open world query answering methods in a two-step1002

approach (Arakelyan et al., 2021a; Bai et al., 2023; Yin et al., 2024). In the first step, the pre-trained1003

knowledge graph embedding estimates the Gtest. Then, the answers are derived by the fuzzy logic1004

inference or optimization. These methods rely on the standard logic calculation and cannot be directly1005

applied to our SQUK setting introduced in Section 3.1006

D Connection with Open World Assumption1007

Evaluating queries over deductive question-answering systems generally follows either the closed-world1008

assumption (CWA) or the open-world assumption (OWA) (Reiter, 1981). Under CWA, only known facts1009

are considered true, whereas OWA assumes that the absence of knowledge does not imply falsity (Reiter,1010

1986). Since knowledge graphs (KGs) are often incomplete, knowledge graph completion (KGC) has1011

been proposed to address this challenge. In KGC, the observed knowledge in KGs is divided into three1012

nested subsets: Gtrain ⊂ Gvalid ⊂ Gtest. The KGC model is trained on the Gtrain subset and evaluated on the1013

Gvalid subset to assess its performance. For complex logical query answering, the evaluation considers1014

"hard answers," defined as the set difference between the answers from Gvalid and Gtrain (Wang et al.,1015

2021; Ren et al., 2023). This approach assesses the model’s ability to handle incomplete knowledge and1016

make inferences beyond the observed facts in the training set. The evaluation of complex logical query1017

answering extends beyond CWA but does not fully align with OWA. The same applies to the evaluation of1018

soft query answering. Evaluating under the Open-World Assumption represents a promising avenue for1019

future work (Yang et al., 2022b).1020

E Constraint Satisfaction Problem and Soft Constraint Satisfaction Problems1021

Constraint Satisfaction Problems (CSP) is a mathematical question defined as a set of objects whose1022

state must satisfy several constraints or limitations. Each instance of it can be represented as a triple1023

(Z,D,C), where Z = (z1, · · · , zn) is a finite tuple of n variables, D = (D1, · · · , Dn) is the tuple of1024

the domains corresponding to variables in Z, and C = {(C1
1 , C

2
1 ), · · · , (C1

t , C
2
t )} is the finite set of t1025

constraints. Di is the domain of zi, and C1
i ⊂ Z is the scope of the i-th constraint and C2

i specifies how1026

the assignments allowed by this constraint. In general definitions, the constraints in classical Constraint1027

Satisfaction Problems are hard, meaning that none of them can be violated.1028

Many problems can be viewed as CSP, which include workforce scheduling and the toy 8-queens1029

problem. Conjunctive queries are a special case to be reduced as CSP under open-world assumptions if1030

we set the constant variable’s domain as itself, set the domain of the existential variable and free variable1031

as the entity set E of knowledge graphs, and treat atomic formula or its negation as binary constraint by1032

knowledge graph.1033

Soft Constraint Satisfaction Problems1034

Though CSP is a very powerful formulation, it fails when real-life problems need to describe the1035

preference of constraint. It usually returns null answers for problems with many constraints, which are1036

called over-constraints. To tackle the above weakness, many versions of Soft Constraint Satisfaction1037

Problems (SCSP) are developed, such as fuzzy CSP, weighted CSP, and probabilistic CSP, which all follow1038

a common semiring structure, where two semiring operations ×s,+s are utilized to model constraint1039

projection and combination respectively. Based on this theoretical background, we propose soft queries1040
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Table 5: Different specific soft CSP frameworks modeled as c-semirings.

Semiring E ×s +s

Classical {T, F} ∧ ∨
Fuzzy [0, 1] min max

k-weighted {0, . . . , k} + min
Probabilistic [0, 1] xy max

Valued E ⊕ minv

0.3
0.1
0.5

Lemma 5.3
Enumerate a 
variable in cycle

Lemma 5.3 Lemma 5.4

Group

1.8
1.4
2.5

1.7
1.2
2.5

0.8
0.4
1.0

0.5
0.7
1.2

0
0
0

0.3
0.1
0.5

0
0
0

0.1
0.3
0.2

0.3
0.1
0.5

0
0
0

0
0
0

0
0
0

Figure 3: A toy model to present the process of SRC algorithm.

based on SCSP. The proposed soft queries will have the advantages of SCSPs and can handle the numeric 1041

facts representing uncertainty. 1042

F Details of Implementation 1043

Our experiments are run on the Nvidia V100-32G. 1044

F.1 adaptive scoring 1045

Let Es, Er, and Et be the embedding vectors of entity s, relation r, and entity t respectively. We 1046

parameterize the adaptive scoring calibration using the following learnable affine transformations: 1047

ρθ(s, r, o) =W 1
1Es + b11 +W 1

2Er + b12 +W 1
3Et + b13, (14) 1048

λθ(s, r, o) =W 2
1Es + b21 +W 2

2Er + b22 +W 2
3Et + b23, (15) 1049

where {W i
j , b

i
j} for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3 are the learnable parameters. 1050

F.2 Uncertain knowledge graph embedding 1051

We reproduce previous results (Chen et al., 2019, 2021a) and use the same embedding dimension. We 1052

search the other parameters including the learning rate from {1e− 3, 5e− 4, 1e− 4} and regularization 1053

term λ from {0.1, 0.01, 0.05}. 1054

F.3 Query embedding with number embedding 1055

We follow the same hyperparameter of origin paper (Luus et al., 2021; Zhang et al., 2021) but search the 1056

learning rate and margin. The embedding dimension of number embedding is the same as the dimension 1057

of entity embedding. 1058

F.4 Two strategies of calibration 1059

For learning strategy, we search learning rate from {5e− 4, 5e− 5, 1e− 5}. For Debiasing strategy, we 1060

search ϵ from {0.05, 0.1, 0.15}. 1061
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G Details of Soft Reasoning with Calibrated Confidence Values1062

G.1 Uncertain value definition1063

By indexing all entities and relations, we represent s, r, and o as integers. Confidence score prediction1064

over uncertain knowledge graphs can be conceptualized by the neural link predictor as |R| relation1065

matrices P̂r ∈ R|E|×|E|, where P̂r(s, o) is the predicted score of fact triple (s, r, o) and n is the number of1066

entities. We denote Ur(s) as a vector formed by the elements of the s-th row. The symbol + also denotes1067

element-wise plus operation when used in vector-vector or matrix-matrix operations. We also define two1068

new plus operations in matrix-vector operations.1069

Definition 12. Given a matrix M1 ∈ R|E|×|E| and a vector b ∈ R|E|, We define two new addition1070

operations: column-wise addition and row-wise addition as following:1071

M2 = M1 +r b,M2(s, o) = M1(s, o) + b(s), (16)1072

M2 = M1 +c b,M2(s, o) = M1(s, o) + b(o). (17)1073

Definition 13 (Membership function). Given a soft query and a variable x, µ(x,Cx) is a membership1074

function to check the current confidence value, where Û(µ(s/x,Cx)) = Cx(s).1075

G.2 Details of the inference of SRC1076

Since the effect α and β are equivalent to modifying the uncertain values, we will focus on explaining how1077

the method works in the basic scenario where α = 0.0 and β = 1.0. Our goal is to infer the utility vector1078

Û [ϕ(y)] by estimating the confidence value Û [ϕ](o) = [P̂ |=s ϕ(o/y)], for all o ∈ E . In the following1079

content, we will cut the query graph step by step while recording any lost information on the remaining1080

nodes. After removing nodes from the soft query ϕ, we denote the remaining sub-query graph as ψ.1081

G.2.1 Step 1. Initialization.1082

We initialize each variable x as a candidate state vector C with all zero elements, denoted as C = 0 ∈ R|E|1083

This vector records the candidates and their corresponding values. Throughout the algorithmic process,1084

the vectors C are updated iteratively, ultimately yielding the final answers represented by the resulting1085

vector Cy.1086

G.2.2 Step 2. Remove constant nodes.1087

For constant nodes in a query graph, we can easily remove their whole edges and update the information1088

to connected nodes by the following lemma.1089

Lemma 3. For the constant nodes in a soft query, there exists an O(|E|) transformation Tc to remove1090

them.1091

Proof. Without loss of generality, we consider the situation that a constant node with entity e connects an1092

existential variable x that there is only one positive edge from e to x, one negative edge from e to x, and1093

one positive edge from x to e. To simplify, we also denote e as the related grounded entity.1094

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r1(e, x) ∧ ¬r2(e, x) ∧ r3(x, e) ∧ ψ(o/y))1095

= max
s∈E

[Cx(s) + P̂r1(e, s) + (1− P̂r2)(e, s) (18)1096

+ P̂ Tr3(e, s) + Û(ψ(o/y; s/x))]1097

= max
s∈E

[C ′
x(s) + Û(ψ(o/y; s/x))],1098

where C ′
x = Cx + P̂r1(e) + (1 − P̂r2)(e) + P̂ Tr3(e) is updated candidate vector and 1 ∈ R|E|×|E| is all1099

one matrix. The situation where a constant node connects a free variable node is similar and even easier1100

to handle.1101

In the above derivation, we retain the value of answers by updating the candidate state vector of an1102

existential variable.1103
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G.2.3 Step 3. Remove self-loop edges. 1104

Lemma 4. For a soft query having self-loop edges, there exists an O(|E|) transformation Tc to remove 1105

self-loop edges. 1106

Proof. Without loss of generality, we consider the situation in which an existential variable x contains 1107

one positive loop. 1108

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r(x, x) ∧ ψ(o/y;x)) 1109

= max
s∈E

[Cx(s) + P̂r(s, s) + Û(ψ(o/y; s/x))] 1110

= max
s∈E

[C ′
x(s) + Û(ψ(o/y; s/x))], 1111

where C ′
x = Cx + diag(P̂r) and diag(P̂r) is a vector formed by the diagonal elements of matrix P̂r. 1112

Previous research (Yin et al., 2024) has demonstrated the difficulty of sampling high-quality self-loop 1113

queries due to the rarity of self-loop relations in real-life knowledge graphs. Similarly, in our specific 1114

uncertain knowledge graph, it is challenging to sample meaningful queries. 1115

G.2.4 Step 4. Remove leaf nodes. 1116

The leaf node u, which is only connected to one other node v in the soft query graph. After removing the 1117

constant nodes, if the query graph contains no circles, we can get the utility vector by removing the leaf 1118

nodes step by step. Next, we present how to handle leaf nodes by the three lemmas. 1119

Lemma 5. If the leaf node u is an existential variable x and v is the free variable y, there exists an 1120

O(|E|2) transformation Tl to shrink its graph. 1121

Û [ϕ](o) = Û(∃x.µ(x,Cx) ∧ r(x, o) ∧ µ(o, Cy) ∧ ψ(o/y)) 1122

= max
s∈E

[Cx(s) + P̂r(s, o) + Cy(o) + Û(ψ(o/y))] 1123

= max
s∈E

[Cx(s) + P̂r(s, o) + Cy(o)] + Û(ψ(o/y)) 1124

= C ′
y(o) + Û(ψ(o/y)), 1125

where C ′
y(o) = maxs∈E M1(s, o) and M1 = [(P̂r +c Cy) +r Cx]. 1126

Lemma 6. If the leaf node u is a free variable y and v is the existential variable x, we can first solve the 1127

subgraph obtained by removing u, and then remove v. 1128

Proof. Denote ψ is the subgraph obtained by removing u, we treat y as the free variable to get its utility 1129

vector Û(ψ(y)). Then we can remove u by the following. 1130

Û [ϕ](o) = Û(µ(o, Cy) ∧ [∃x.r(x, o) ∧ ψ(x)]) 1131

= Cy(o) + Û(∃x.r(x, o) ∧ ψ(x)) 1132

= Cy(o) + max
s∈E

[P̂r(s, o) + Û(ψ(o))] 1133

= Cy(o) + max
s∈E

M2(s, o), (19) 1134

where M2 = P̂r +c Û [ψ]. 1135

Lemma 7. If the leaf node u and its connected node v both are the existential variable, we can remove 1136

the leaf node u when the existential quantifier is maximization. 1137
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Proof. It will be difficult when trying to cut the leaf node x1,1138

Û [ϕ](o) = Û(∃x1, x2.µ(x1, Cx1) ∧ r(x1, x2) ∧ µ(x2, Cx2) ∧ ψ(o))1139

= max
s1∈E,s2∈E

[Cx1(s1) + P̂r(s1, s2) + Cx2(s2) + Û(ψ(o, s2/x2))]1140

= max
s2∈E

max
s1∈E

[Cx1(s1) + P̂r(s1, s2) + Cx2(s2) + Û(ψ(o, s2/x2))]. (20)1141

While the existential quantifier is maximization, it is noteworthy that for any s1, s2, o ∈ E ,1142

max
s1∈E

[M3(s1, s2) + Û(ψ(o; s2/x2))] = max
s1∈E

[M3(s1, s2)] + Û(ψ(o; s2/x2))1143

= C ′
x2(s2) + Û(ψ(o; s2/x2)), (21)1144

where M3 = (P̂r +r Cx1) +c Cx2 and C ′
x2(s2) = maxs1∈E [M3(s1, s2)].1145

Therefore, we can remove x1 by updating x2 as follows,1146

Û [ϕ](o) = max
s2∈E

[C ′
x2(s2) + Û(ψ(o/y; s2/x2))]. (22)1147

1148

Combining the above three lemmas, we can step by step find a leaf node and remove it when the query1149

graph has no cycles.1150

Lemma 8. If the soft query contains no circles, we can get the utility vector by removing leaf nodes when1151

the existential quantifier is maximization.1152

G.2.5 Step 5. Enumerate on the cycle.1153

To the best of our knowledge, the only precise approach for addressing cyclic queries is perform-1154

ing enumeration over one existential node involved in the cycle, which reads Û(∃x.ϕ(o/y;x)) =1155

maxs∈E Û(ϕ(o/y; s/x)). Then, we apply Step 4 to remove this fixed existential variable since this1156

variable is equivalent to the constant variable. The query graph breaks this cycle and becomes smaller.1157

The remaining query can be solved by applying Step 4. When solving cyclic queries, the time complexity1158

of this algorithm is exponential.1159

G.2.6 Step 6. Getting the utility vector.1160

Following the aforementioned steps, the query graph will only contain the free node y, resulting in the1161

formula µ(y, Cy). By definition, the desired utility vector will be Cy, which provides the confidence1162

values of all the candidate entities.1163

H Uncertain Knowledge Graph Embeddings1164

We introduce the backbone models for uncertain knowledge graph embedding. The results of changing1165

the backbone are presented in Table 6.1166

UKGE (Chen, 2023) is a vector embedding model designed for uncertain knowledge graphs. It has1167

been tested on three tasks: confidence prediction, relational fact ranking, and relational fact classification.1168

To address the sparsity issue in the graph, UKGE utilizes probabilistic soft logic, allowing for the inclusion1169

of additional unseen relational facts during training.1170

BEUrRE (Chen et al., 2021a) is a probabilistic box embedding model that has been evaluated on two1171

tasks: confidence prediction and relational fact ranking. This model represents each entity as a box and1172

captures relations between two entities through affine transformations applied to the head and tail entity1173

boxes.1174

I Float Embedding for query Embedding1175

To enable query embedding methods to handle soft requirements in soft queries, we employ floating-1176

point encoding to map floating-point numbers into vectors. These vectors are then added to the relation1177

projection in the query embedding method.1178
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Table 6: The results of answering complex soft queries with different backbone models.

Models Metrics 1P 2P 2I 2IN 2IL 2M 2U 3IN IP IM INP UP AVG

CN15k

SRC (UKGE)

MAP 20.6 7.1 7.9 14.4 14.6 3.3 14.7 7.7 6.2 3.2 4.2 6.5 9.2
NDCG 27.7 15.4 10.1 23.8 22.6 7.9 24.3 10.4 11.1 6.9 10.5 14.9 15.5

ρ 21.9 6.4 0.2 5.9 14.3 11.2 32.0 -1.5 -7.0 8.4 -2.3 17.4 8.9
τ 15.0 2.4 -0.0 2.1 10.7 9.2 25.5 -2.0 -9.0 7.9 -4.4 13.0 5.9

SRC (BEUrRE)

MAP 32.2 11.5 13.2 25.9 29.2 3.9 26.6 13.9 12.8 5.3 8.4 11.6 16.2
NDCG 41.5 21.3 15.3 37.4 39.7 9.7 40.5 17.6 19.0 10.4 17.1 22.8 24.3

ρ 25.7 13.9 -2.3 11.6 19.0 17.4 33.5 -0.3 -0.4 21.3 5.2 21.5 13.8
τ 18.7 8.7 -3.5 7.7 14.8 14.7 27.2 -1.9 -3.6 20.3 1.8 16.3 10.1

PPI5k

SRC (BEUrRE)

MAP 78.2 78.4 72.9 67.0 72.0 52.0 73.7 58.6 76.4 54.2 69.2 67.8 68.4
NDCG 80.8 78.2 77.3 68.7 78.0 52.3 79.9 62.9 76.2 52.4 69.4 72.4 70.7

ρ 77.7 82.3 57.9 50.9 80.6 54.3 83.0 38.8 76.2 47.6 68.3 82.2 66.7
τ 66.6 70.9 49.9 42.7 71.0 42.9 71.6 32.7 65.6 37.1 57.2 70.4 56.5

SRC (BEUrRE)

MAP 71.0 67.8 63.3 56.3 63.6 51.8 66.3 49.4 67.7 52.6 57.7 58.8 60.5
NDCG 74.8 70.5 68.7 61.5 70.0 49.7 74.2 55.5 68.5 49.1 61.8 66.5 64.2

ρ 72.7 76.4 51.6 47.1 73.9 51.3 77.3 39.0 68.5 43.2 63.2 75.0 61.6
τ 59.7 62.3 41.8 37.7 61.9 39.4 64.2 32.0 55.8 32.6 50.6 61.5 50.0

O*NET20k

SRC (BEUrRE)

MAP 24.9 6.4 70.6 26.0 63.3 5.6 32.8 68.5 7.7 7.3 5.2 7.7 27.1
NDCG 44.9 19.5 80.4 46.1 74.0 17.2 57.2 76.3 19.2 17.1 17.7 24.6 41.3

ρ 77.9 64.8 79.1 73.7 79.6 43.7 83.3 69.4 53.8 33.3 58.0 60.7 65.3
τ 72.0 54.9 68.6 67.6 67.3 36.9 76.0 59.2 47.6 29.1 48.9 52.4 57.3

SRC (BEUrRE)

MAP 29.0 8.3 65.2 29.6 55.2 7.2 32.3 62.1 9.9 8.8 6.9 9.6 27.1
NDCG 53.4 29.2 78.8 52.4 71.0 21.5 60.2 72.7 26.5 20.4 25.5 34.1 45.8

ρ 69.0 59.1 78.1 63.6 76.4 40.1 78.3 66.8 47.6 30.4 51.2 57.2 60.2
τ 58.4 47.1 66.6 53.6 62.8 32.0 67.4 55.9 39.2 24.9 40.5 46.8 49.9

I.1 Float embedding 1179

We consider the sinusoidal encoding g : R → Rd introduced in Transformer (Vaswani et al., 2017) and 1180

map the values of α and β into vector embedding, which can be formulated as: 1181

g(vi) =

{
sin(vi/1000

i/(2k)) i = 2k,

cos(vi/1000
i/(2k)) i = 2k + 1,

(23) 1182

where d is the embedding dimension. 1183

I.2 Modified relation projection 1184

The query embedding methods usually learn a Multi-Layer Perceptron (MLP) for each relation r, which 1185

reads as: 1186

S′ = MLPr(S), (24) 1187

where S is an embedding. Furthermore, the modified relation projection can be expressed as: 1188

S′ = MLPr(S + g(α) + g(β)) (25) 1189

Here, g(α) and g(β) are the embedding of soft requirements α and β, respectively. By incorporating 1190

g(α) and g(β) into the relation project net, we enhance the representation of relation projection to better 1191

capture the soft requirement. 1192

J Details in the Main Dataset Construction 1193

J.1 Uncertain knowledge graphs 1194

We sample soft queries from three standard uncertain knowledge graphs5, covering diverse domains such 1195

as common sense knowledge, bioinformatics, and the employment domain. 1196

CN15k (Chen et al., 2019) is a subset of the ConceptNet (Speer et al., 2017), a semantic network 1197

aimed at comprehending connections between words and phrases. 1198

5We leave the exploration of Nl27k (Chen et al., 2019) for future work as it involves an inductive setting where the valid/test
graphs contain unseen relations.
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Table 7: The Statistics of the knowledge graphs. We provided the counts of each knowledge graph’s nodes and
edges. Additionally, we presented the mean and standard deviation of the scores.

Uncertain KG Entities Relations Facts AVG. STD.

CN15k 15,000 36 204984 0.629 0.231
PPI5k 4999 7 230929 0.415 0.213

O*NET20k 20,643 19 418304 0.301 0.260

Table 8: The statistics of valid/test queries on the main dataset. Different query types have the same number in given
uncertain knowledge graph.

KG CN15k PPI5k O*NET20k

valid 3000 2000 2000
test 3000 2000 2000

PPI5k (Chen et al., 2019) is a subset of STRING (Szklarczyk et al., 2023), which illustrates protein-1199

protein association networks collected from organisms. It assigns probabilities to the intersections among1200

proteins.1201

O*NET20K (Pai and Costabello, 2021) is a subset of O*NET, a dataset that describes labeled binary1202

relations between job descriptions and skills. The associated values are to evaluate the importance of the1203

link within the triple.1204

We present the statistics of these three uncertain knowledge graphs in Table 7.1205

J.2 Soft requirements1206

In the main experiment, we aim for the sampled data to allow the machine learning methods to generalize to1207

various scenarios of soft requirements. Therefore, for α necessity, we employ a hybrid strategy, randomly1208

selecting from four modes (“zero”, “low”, “normal”, “high”) for each query. As for β importance, we1209

utilize a random strategy, randomly choosing a decimal value for different atomic soft formulas in each1210

query.1211

J.3 Query types1212

The goal of our proposed dataset is to represent the family of existential first-order soft queries systemati-1213

cally. However, including too many query formulas poses challenges in analyzing and evaluating. We1214

select query graphs including operations as train queries and unitize composed query graphs to evaluate1215

the combinatorial generalization.1216

For training queries, we choose 1P, 2P, 2I, and 2IN, which include soft operators. Additionally, we1217

select 2P for chain queries (Hamilton et al., 2018), 2M for multi-edge graphs (Yin et al., 2024), and 2IL1218

for graphs containing ungrounded anchors (Yin et al., 2024). More complex soft query graphs can be1219

generated from these basic graphs. We present the statistics of sampled queries in Table 8 and Tabel 9.1220

Table 9: The statistics of train queries on the main dataset.

KG 1P 2P 2I 2IN 2IL

CN15k 52887 52900 52900 5300 5300
PPI5k 9724 9750 9754 1500 1500
PPI5k 18266 18300 18300 1850 1850
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J.4 Evaluation protocol 1221

The open world assumption in uncertain knowledge graphs not only establishes new links between entities 1222

but can also potentially refine the values of existing triples. As more observed facts become available, 1223

the answers to soft queries not only increase in number but also undergo modifications in terms of their 1224

priority. Therefore, to evaluate the relevance judgment, we select several popular metrics commonly used 1225

in information retrieval (Liu et al., 2009), including MAP, DCG, NDCG, and Kendall’s tau. 1226

For each q, we denote the set of answers as A, where ai ∈ A represents the i-th answer based on its 1227

score, and r(a), a ∈ A denotes the predicted ranking of answer a ∈ A. Our objective is to focus on the 1228

precision of answers and the associated predicted ranking information. 1229

Mean Average Precision (MAP): To define MAP, we first introduce Precision at a given position, 1230

defined as: 1231

P@k(q) = |{a ∈ A|r(a) ≥ k}|/k. (26) 1232

Then, Average Precision is defined as follows: 1233

AP(q) = (

|A|∑
k=1

P@k(q) · lk)/|A|, (27) 1234

where lk is a binary judgment indicating the relevance of the answer at the kth position. Mean Average 1235

Precision is the average AP value across all test queries. 1236

Discounted Cumulative Gain (DCG): To calculate the DCG, we utilize the Reciprocal Rank as a 1237

relative score for the answers: 1238

R(ai) = 1/r(ai). (28) 1239

To incorporate the ranking position, we introduce an explicit position discount factor ηi. The DCG is then 1240

computed as: 1241

DCG@k(q) =
k∑
i=1

R(ai)η(i), (29) 1242

where η(i) is commonly expressed as η(i) = 1/ log2(i+ 1). 1243

Normalized Discounted Cumulative Gain (NDCG): By normalizing the ideal Discounted Cumulative 1244

Gain denoted as Zk, we obtain NDCG: 1245

NDCG@k(q) = DCG@k(q)/Zk. (30) 1246

Kendall’s tau: Kendall’s tau is a statistical measure that quantifies the correspondence between two rank- 1247

ings. Values close to 1 indicate strong agreement, while values close to −1 indicate strong disagreement. 1248

K Details in Varying Soft Requirements Setting 1249

In this setting, we aim to test the model’s generalization ability on soft requirements under different 1250

strategies. We have chosen a pair of different strategies for each of the two parameters, resulting in a 1251

total of four groups. Specifically, we selected "zero" and "normal" for parameter "a," and "equal" and 1252

"normal" for parameter "b." Detailed statistics for this setting can be found in the table below. For each 1253

group, we follow the procedure and sample train, valid, and test queries. We present the additional results 1254

in Table 10. 1255

L Details of Large Language Model Evaluation Setting 1256

Since the entities and relations in CN15k are English words and phrases, the queries sampled from CN15k 1257

can be well understood by LLM. In our evaluation, we manually marked and removed meaningless queries. 1258

To facilitate our testing process, we selected only four candidate entities for each query. These four 1259

candidate entities have large distinctions in terms of scores. To avoid unexpected situations, we manually 1260

checked all chosen queries and confirmed that their correct answers could be selected without ambiguity. 1261

We present the total numbers and types of selected queries in Table 11. 1262
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Table 10: The additional results of varying soft requirements

Mode Z+E Z+R N+E N+R
Metric NDCG τ NDCG τ NDCG τ NDCG τ

ConE Z+E 39.3 8.0 35.6 11.6 31.9 30.4 31.5 28.9

ConE Z+R 39.0 6.7 42.2 14.9 27.8 29.0 28.7 30.3

ConE N+E 26.6 32.8 23.6 27.4 46.3 38.7 44.1 36.7

ConE N+R 14.0 24.7 7.5 14.4 43.5 38.7 42.2 38.6

SRC 34.3 47.8 37.2 41.5 46.7 51.8 45.8 49.9

Query type 1P 2P 2I 2IN 2IL 2M 3IN IP IM SUM

Number 100 50 100 50 15 10 15 15 15 370

Table 11: The number of annotated queries.

We articulate the syntax and semantics of our proposed soft queries by using clear natural language.1263

The provided prompts are presented in the subsequent subsection. Through combining queries with1264

prompts, we enable LLM to select the most appropriate answer.1265

L.1 Prompt1266

1267

# Background1268

Given a soft query containing a free variable f, there are four candidate entities for1269

this variable and you need to choose the best of them to satisfy the soft query most. In1270

order to do so, you can first compute the confidence value to see whether the chosen1271

candidate entity satisfies the soft query after substituting the free variable with a1272

given candidate entity. After computing the confidence values for each corresponding1273

candidate entity, you need to pick the entity that leads to the highest confidence value.1274

The detailed steps are described below:1275

1276

## Definition of Soft Atomic Constraint:1277

A soft atomic constraint c, a.k.a. a soft atomic formula or its negation, is in the form1278

of (h, r, t, \alpha, \beta) or \\neg (h, r, t, \alpha, \beta).1279

1280

### Notation Description:1281

In each constraint, we have four different types of variables.1282

1. r is a relation;1283

2. h and t are two terms. Each term represents an entity or a variable whose values1284

are entities. And free variable is a term.1285

3. \alpha is called the necessity value, which represents the minimal requirement1286

of the uncertainty degree of this constraint. It can be any decimal between 0.0 and1287

1.0. If the confidence value is less than the necessity value, the constraint is1288

not satisfied, and thus the final confidence value becomes negative infinity;1289

4. \beta represents the priority of this constraint and can be any decimal1290

between 0.0 and 1.0.1291

1292

### Confidence Value of Soft Constraints V(c):1293

1. The triple (h,r,t) comes from the relation fact in the knowledge graph. In our1294

setting, the relation fact r(h,t) is not boolean, and it has a confidence value1295

in the range [0.0,1.0] according to its plausibility. When the constraint is1296

negative, you need to first estimate r(h,t)—the confidence value of r(h,t)—and1297

use 1-r(h,t) as the final confidence value for this negative constraint.1298
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2. \alpha is the threshold in our filter function, working as follows: 1299

f(v, \alpha) = v, if v \geq \alpha, 1300

-\infty, if v < \alpha. 1301

3. \beta is a coefficient. 1302

1303

Thus, the final equation becomes: 1304

V(h, r, t, \alpha, \beta) = \beta \times f(r(h,t), \alpha), 1305

V(\\neg (h, r, t, \alpha, \beta)) = \beta \times f(1-r(h,t), \alpha). 1306

1307

## Definition of Conjunctive Queries \phi: 1308

Soft conjunctive queries are composed of soft constraints. 1309

1310

### Notation Description: 1311

Conjunctive query \phi = c_1 \land \dots \land c_n, where c_i is a soft constraint. 1312

1313

### Confidence Value of Soft Conjunctive Queries V(\phi) : 1314

First, you need to compute the confidence values of all soft constraints in 1315

this soft conjunctive query. Then, you can simply sum up these confidence 1316

values as the final confidence value of the soft conjunctive query as follows: 1317

V(\phi) = \sum_i V(c_i). 1318

1319

If the conjunctive query has an existential variable e, you should find an 1320

entity to replace it and then compute the confidence value of this query. 1321

1322

# Output Format 1323

Please output your response in the JSON format, where the first element 1324

is the best candidate entity among the four options, and the second element 1325

is your explanation for your choice. 1326

1327

# Question 1328

Soft query:(h_1,r_1,f,\alpha_1,\beta_1) \land (h_2,r_2,f,\alpha_2,\beta_2) 1329

Four candidate entities: s_1, s_2, s_3, s_4 1330

1331

Please return the best candidate for f1 to satisfy the above soft query. 1332

1333

M Proof for Error Analysis 1334

M.1 Proof of Theorem 1 1335

Firstly, we give the proof of Theorem 1: 1336

Proof. Consider the atomic query ψ = (a, (α, β)). Firstly, we consider whether the soft atomic query is 1337

positive or negative. 1338

Let us assume a = r(y, o), with y be the only free variable 1339

Then for arbitrary r, h, t, α, β: 1340

Pr
(
∥Û [ψ](s)− U [ψ](s)∥ > δ)

)
= Pr

(
β∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ > δ

)
(31) 1341

= Pr

(
∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ >

δ

β

)
(32) 1342

We note that even if a = ¬r(y, o), the result is the same: 1343
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Pr
(
∥Û [ψ](s)− U [ψ](s)∥ > δ)

)
= Pr

(
β∥[1− P̂ (s, r, o)]α + [P(s, r, o)]α − 1∥ > δ

)
1344

= Pr

(
∥[P̂ (s, r, o)]α − [P(s, r, o)]α∥ >

δ

β

)
1345

For convenience, we write x̂, x as the abbreviation of P̂ (s, r, o),P(s, r, o), correspondingly, then the1346

initial formula becomes:1347

Pr

(
∥x̂− x∥ > δ

β

)
1348

= Pr

(
∥x̂− x∥ > δ

β
| x̂ > α, x > α

)
Pr(x̂, x > α) + Pr

(
∥x̂∥ > δ

β
| x̂ > α, x < α

)
Pr (x̂ > α, x < α)1349

+ Pr

(
∥x∥ > δ

β
| x̂ < α, x > α

)
Pr(x̂ < α, x > α) + Pr

(
∥0∥ > δ

β
| x̂ < α, x < α

)
Pr(x̂ < α, x < α)1350

≤ ε(
δ

β
) Pr(x̂ > α, x > α) + Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)1351

= ε(
δ

β
) + (1− ε(

δ

β
))[Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)]− ε(

δ

β
) Pr(x̂ < α, x < α)1352

≤ ε(
δ

β
) + (1− ε(

δ

β
))[Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)]1353

Moreover, we use the Total Probability Theorem once again and assume f(ξ) as the probability density1354

function of x:1355

Pr(x̂ > α, x < α) + Pr(x̂ < α, x > α)1356

=

∫ 1

0
Pr(x̂ > α | x = ξ < α)f(ξ)dξ +

∫ 1

0
Pr(x̂ < α | x = ξ > α)f(ξ)dξ1357

=

∫ α

0
Pr(x̂ > α | x = ξ)f(ξ)dξ +

∫ 1

α
Pr(x̂ < α | x = ξ)f(ξ)dξ1358

By noting that if x̂ > α while x = ξ < α, it must have |x̂− x| > α− ξ, we know that:1359

Pr(x̂ < α | x = ξ > α) ≤ Pr(|x̂− x| > α− ξ)

Therefore1360

∫ α

0
Pr(x̂ > α | x = ξ)f(ξ)dξ +

∫ 1

α
Pr(x̂ < α | x = ξ)f(ξ)dξ1361

≤
∫ α

0
Pr(|x̂− x| > α− ξ)f(ξ)dξ +

∫ 1

α
Pr(|x̂− x| > ξ − α)f(ξ)dξ1362

≤
∫ α

0
ε(α− ξ)f(ξ)dξ +

∫ 1

α
ε(ξ − α)f(ξ)dξ1363

=

∫ 1

0
ε(|α− ξ|)f(ξ)dξ1364

Therefore we finish the proof.1365

1366
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M.2 Proof of Theorem 2 1367

Then for Theorem 2, consider the query ϕ = ∃x1, ..., xn.ψ1 ∧⃝ · · · ∧⃝ ψm, where ψi = (ai, (αi, βi)), the 1368

final error should be no more than a linear combination of each soft atomic query: 1369

Proof.

∥Û [ϕ](s)− U [ϕ](s)∥ 1370

= ∥ max
x1=s1,··· ,xn=sn

(Û [ψ1](s) + · · ·+ Û [ψm](s))− max
x1=s1,··· ,xn=sn

(U [ψ1](s) + · · ·+ U [ψm](s))∥ 1371

≤ ∥ max
x1=s1,··· ,xn=sn

(
[Û [ψ1](s)− U [ψ1](s)] + · · ·+ [Û [ψm](s)− U [ψm](s)]

)
∥ 1372

≤ max
x1=s1,··· ,xn=sn

(
∥Û [ψ1](s)− U [ψ1](s)∥+ · · ·+ ∥Û [ψm](s)− U [ψm](s)∥

)
1373

≤ Σmi=1ϵ(αi, βi) 1374

The final line relies on the definition of ϵ, which gives the upper bound of error that only depends on 1375

α, β. 1376
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