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ABSTRACT

Recent developments in neural architecture search (NAS) emphasize the significance
of considering robust architectures against malicious data. However, there is a
notable absence of benchmark evaluations and theoretical guarantees for searching
these robust architectures, especially when adversarial training is considered. In
this work, we aim to address these two challenges, making twofold contributions.
First, we release a comprehensive data set that encompasses both clean accuracy and
robust accuracy for a vast array of adversarially trained networks from the NAS-
Bench-201 search space on image datasets. Then, leveraging the neural tangent
kernel (NTK) tool from deep learning theory, we establish a generalization theory
for searching architecture in terms of clean accuracy and robust accuracy under
multi-objective adversarial training. We firmly believe that our benchmark and
theoretical insights will significantly benefit the NAS community through reliable
reproducibility, efficient assessment, and theoretical foundation, particularly in the
pursuit of robust architectures. 1

1 INTRODUCTION

The success of deep learning can be partly attributed to the expert-designed architectures, e.g.,
ResNet (He et al., 2016), Vision Transformer (Dosovitskiy et al., 2021), and GPT (Brown et al.,
2020), which spurred research in the field of Neural Architecture Search (NAS) (Baker et al., 2017;
Zoph & Le, 2017; Suganuma et al., 2017; Real et al., 2019; Liu et al., 2019). The target of NAS is
to automate the process of discovering powerful network architectures from a search space using
well-designed algorithms. This automated approach holds the promise of unveiling highly effec-
tive architectures with promising performance that might have been overlooked in manually crafted
designs (Zela et al., 2020; Wang et al., 2021; Ye et al., 2022).

Nevertheless, merely pursuing architectures with high clean accuracy, as the primary target of NAS,
is insufficient due to the vulnerability of neural networks to adversarial attacks, where even small
perturbations can have a detrimental impact on performance (Szegedy et al., 2013). Consequently,
there is a growing interest in exploring robust architectures through the lens of NAS (Guo et al.,
2020; Mok et al., 2021; Hosseini et al., 2021; Huang et al., 2022). These approaches aim to discover
architectures that exhibit both high performance and robustness under existing adversarial training
strategies (Goodfellow et al., 2015; Madry et al., 2018).

When studying the topic of robust neural architecture search, we find that there are some remaining
challenges unsolved both empirically and theoretically. From a practical point of view, the accuracy of
architecture found by NAS algorithms can be directly evaluated using existing benchmarks through
a look-up approach, which significantly facilitates the evolution of the NAS community (Ying et al.,
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1Our project page is available at https://tt2408.github.io/nasrobbench201hp.
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2019; Duan et al., 2021; Dong & Yang, 2020; Hirose et al., 2021; Zela et al., 2022; Bansal et al., 2022;
Jung et al., 2023). However, these benchmarks are constructed under standard training, leaving the
adversarially trained benchmark missing. This requirement is urgent within the NAS community
because 1) it would accelerate and standardize the process of delivering robust NAS algorithms (Guo
et al., 2020; Mok et al., 2021), since our benchmark can be used as a look-up table; 2) the ranking of
robust architectures shows some inconsistency based on whether adversarial training is involved, as
we show in Table 1. Therefore, one main target of this work is to build a NAS benchmark tailored for
adversarial training, which would be beneficial to reliable reproducibility and efficient assessment.

Beyond the need for a benchmark, the theoretical guarantees for architectures obtained through NAS
under adversarial training remain elusive. Prior literature (Oymak et al., 2021; Zhu et al., 2022a)
establishes the generalization guarantee of the searched architecture under standard training based on
neural tangent kernel (NTK) (Jacot et al., 2018). However, when involving adversarial training, it is
unclear how to derive NTK under the multi-objective objective with standard training and adversarial
training. Which NTK(s) can be employed to connect and further impact clean accuracy and robust
accuracy? These questions pose an intriguing theoretical challenge to the community as well.

Based on our discussions above, we summarize the contributions and insights as follows:

• We release the first adversarially trained NAS benchmark called NAS-RobBench-201. This benchmark
evaluates the robust performance of architectures within the commonly used NAS-Bench-201 (Dong
& Yang, 2020) search space in NAS community, which includes 6,466 unrepeated network archi-
tectures. 107k GPU hours are required to build the benchmark on three datasets (CIFAR-10/100,
ImageNet-16-120) under adversarial training. The entire results of all architectures are included
in the supplementary material and will be public to foster the development of NAS algorithms for
robust architecture.

• We provide a comprehensive assessment of the benchmark, e.g., the performance of different NAS
algorithms, the analysis of selected nodes from top architectures, and the correlation between clean
accuracy and robust accuracy. We also test the correlation between various NTK metrics and
accuracies, which demonstrates the utility of NTK(s) for architecture search.

• We consider a general theoretical analysis framework for the searched architecture under a multi-
objective setting, including standard training and adversarial training, from a broad search space, cf.
Theorem 1. Our framework allows for fully-connected neural networks (FCNNs) and convolutional
neural networks (CNNs) with activation function search, skip connection search, and filter size search
(in CNNs). Our results indicate that clean accuracy is determined by a joint NTK that includes partly
a clean NTK and a robust NTK while the robust accuracy is always influenced by a joint NTK with
the robust NTK and its “twice” perturbed version2. For a complete theoretical analysis, we provide
the estimation of the lower bound of the minimum eigenvalue of such joint NTK, which significantly
affects the (robust) generalization performance with guarantees.

By addressing these empirical and theoretical challenges, our benchmark comprehensively evaluates
robust architectures under adversarial training for practitioners. Simultaneously, our theory provides
a solid foundation for designing robust NAS algorithms. Overall, this work aims to contribute to
the advancement of NAS, particularly in the realm of robust architecture search, as well as broader
architecture design.

2 RELATED WORK

In this section, we present a brief summary of the related literature, while a comprehensive overview
and discussion of our contributions with respect to prior work are deferred to Appendix B.

Adversarial example and defense. Since the seminal work of Szegedy et al. (2013) illustrated that
neural networks are vulnerable to inputs with small perturbations, several approaches have emerged to
defend against such attacks (Goodfellow et al., 2015; Madry et al., 2018; Xu et al., 2018; Xie et al.,
2019; Zhang et al., 2019; Xiao et al., 2020). Adversarial training (Goodfellow et al., 2015; Madry et al.,
2018) is one of the most effective defense mechanisms that minimizes the empirical training loss based

2We call “clean NTK” the standard NTK w.r.t clean input while “robust NTK” refers to the NTK with adversarial
input. The “twice” perturbed version refers to the input where adversarial noise is added twice.
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Figure 1: Visualization of the NAS-Bench-201 search space. Top left: A neural cell with 4 nodes and 6
edges. Top right: 5 predefined operations that can be selected as the edge in the cell. Bottom: Macro
structure of each candidate architecture in the benchmark.

on the adversarial data, which is obtained by solving a maximum problem. Goodfellow et al. (2015)
use Fast Gradient Sign Method (FGSM), a one-step method, to generate the adversarial data. However,
FGSM relies on the linearization of loss around data points and the resulting model is still vulnerable to
other more sophisticated adversaries. Multi-step methods are subsequently proposed to further improve
the robustness, e.g., multi-step FGSM (Kurakin et al., 2018), multi-step PGD (Madry et al., 2018). To
mitigate the effect of hyper-parameters in PGD and the overestimation of robustness (Athalye et al.,
2018), Croce & Hein (2020b) propose two variants of parameter-free PGD attack, namely, APGDCE
and APGDDLR, where CE stands for cross-entropy loss and DLR indicates difference of logits ratio
(DLR) loss. Both APGDCE and APGDDLR attacks dynamically adapt the step-size of PGD based
on the loss at each step. Furthermore, to enhance the diversity of robust evaluation, Croce & Hein
(2020b) introduce Auto-attack, which is the integration of APGDCE, APGDDLR, Adaptive Boundary
Attack (FAB) (Croce & Hein, 2020a), and black-box Square Attack (Andriushchenko et al., 2020).
Other methods of generating adversarial examples include L-BFGS (Szegedy et al., 2013), C&W

attack (Carlini & Wagner, 2017).

NAS and benchmarks. Over the years, significant strides have been made towards developing NAS
algorithms from various perspectives, e.g., differentiable search with weight sharing (Liu et al., 2019;
Zela et al., 2020; Ye et al., 2022), NTK-based methods (Chen et al., 2021; Xu et al., 2021; Mok
et al., 2022; Zhu et al., 2022a). Most recent work on NAS for robust architecture belongs to the
first category (Guo et al., 2020; Mok et al., 2021). Along with the evolution of NAS algorithms, the
development of NAS benchmarks is also important for an efficient and fair comparison. Regarding
clean accuracy, several tabular benchmarks, e.g., NAS-Bench-101 (Ying et al., 2019), TransNAS-
Bench-101 (Duan et al., 2021), NAS-Bench-201 (Dong & Yang, 2020) and NAS-Bench-301 (Zela et al.,
2022) have been proposed that include the performance under standard training on image classification
tasks. More recently, Jung et al. (2023) extend NAS-Bench-201 towards robustness by evaluating the
performance in NAS-Bench-201 space in terms of various attacks. However, all of these benchmarks
are under standard training, which motivates us to release the first NAS benchmark that contains the
performance under adversarial training.

NTK. Originally proposed by Jacot et al. (2018), NTK connects the training dynamics of over-
parameterized neural networks to kernel regression. In theory, NTK provides a tractable analysis for
several phenomena in deep learning. For example, the generalization guarantee of over-parameterized
FCNN under standard training has been established in Cao & Gu (2019); Zhu et al. (2022a). In this
work, we extend the scope of NTK-based generalization guarantee to multi-objective training, which
covers the case of both standard training and adversarial training.

3 NAS-ROBBENCH-201

In this section, we first describe the construction of the benchmark, including details on search space,
datasets, training setup, and evaluation metrics. Next, we present a comprehensive statistical analysis
of the built benchmark. More details can be found in the supplementary.

3



Published as a conference paper at ICLR 2024

Clea
n

FG
SM

, 3/
25

5

PG
D, 3/

25
5

FG
SM

, 8/
25

5

PG
D, 8/

25
5

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 %

CIFAR-10

Clea
n

FG
SM

, 3/
25

5

PG
D, 3/

25
5

FG
SM

, 8/
25

5

PG
D, 8/

25
5

0

10

20

30

40

50

Ac
cu

ra
cy

 %

CIFAR-100

Clea
n

FG
SM

, 3/
25

5

PG
D, 3/

25
5

FG
SM

, 8/
25

5

PG
D, 8/

25
5

0

2

4

6

8

10

12

14

Ac
cu

ra
cy

 %

 ImageNet-16-120

Figure 2: Boxplots for both clean and robust accuracy of all 6466 non-isomorphic architectures in the
considered search space. Red line indicates the accuracy of a random guess.
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(b) Ranking of different metrics.
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(c) Ranking across datasets.

Figure 3: (a) Distribution of accuracy on CIFAR-10. The peak in the distribution of clean accuracy is
much more notable than that of FGSM and PGD. (b) The architecture ranking on CIFAR-10 sorted
by robust metric and clean metric correlate well for lower ranking (see larger x-axis) but there still
exists a difference for higher ranking. Both (a) and (b) motivate the NAS for robust architecture in
terms of robust accuracy instead of clean accuracy. (c) Architecture ranking of average robust accuracy
on 3 datasets, sorted by the average robust accuracy on CIFAR-10. The architectures present similar
performance across different datasets, which motivates transferable NAS under adversarial training.

Table 1: Spearman coefficient between various accuracies on CIFAR-10 on NAS-RobBench-201 and
the benchmark of Jung et al. (2023). Specifically, the first three columns/rows (without *) indicate
the clean, PGD (8/255), and FGSM (8/255) accuracies in NAS-RobBench-201, while the last three
columns/rows (with *) indicate the corresponding accuracies in Jung et al. (2023).

Clean PGD FGSM Clean* PGD* FGSM*

Clean 1.000 0.985 0.989 0.977 0.313 0.898
PGD 0.985 1.000 0.998 0.970 0.382 0.937

FGSM 0.989 0.998 1.000 0.974 0.371 0.931
Clean* 0.977 0.970 0.974 1.000 0.322 0.891
PGD* 0.313 0.382 0.371 0.322 1.000 0.487

FGSM* 0.898 0.937 0.931 0.891 0.487 1.000

3.1 BENCHMARK CONSTRUCTION

Search space. We construct our benchmark based on a commonly-used cell-based search space
in the NAS community: NAS-Bench-201 (Dong & Yang, 2020), which consists of 6 edges and
5 operators as depicted in Figure 1. Each edge can be selected from the following operator:
{3 × 3 Convolution, 1 × 1 Convolution, Zeroize, Skip connect, 1 × 1 Average pooling}, which results
in 56 =15625 architectures while only 6466 architectures are non-isomorphic. Therefore, we only
train and evaluate 6466 architectures.

Dataset. We evaluate each network architecture on (a) CIFAR-10 (Krizhevsky et al., 2009), (b) CIFAR-
100 (Krizhevsky et al., 2009), and (c) ImageNet-16-120 (Chrabaszcz et al., 2017). Both CIFAR-10
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Figure 4: The operators of each edge in the top-10 architectures (average robust accuracy) on NAS-
RobBench-201. The definition of edge number (#1∼#6) and operators are illustrated in Figure 1.

and CIFAR-100 contain 60,000 RGB images of resolution 32×32, where 50,000 images are in the
training set and 10,000 images are in the test set. Each image in CIFAR-10 is annotated with 1 out
of the 10 categories while there are 100 categories in CIFAR-100. ImageNet-16-120 is a variant of
ImageNet that down-samples the images to resolution 16×16 and selects images within the classes
[1,120]. In total, there are 151,700 images in the training set and 6,000 images in the test set. Data
augmentation is applied for the training set. On CIFAR-10 and CIFAR-100, we apply a random crop
for the original patch with 4 pixels padding on the border, a random flip with a probability of 0.5, and
standard normalization. On ImageNet-16-120, we apply similar augmentations via random crop with 2
pixels padding. The data is normalized before the attack, following the setup in Zhang et al. (2019);
Rice et al. (2020).

Training procedure. We adopt a standard adversarial training setup via mini-batch SGD with a
step-size of 0.05, momentum of 0.9, weight decay of 10−4, and batch size of 256. We train each
network for 50 epochs where one-cycle step-size schedule with maximum step-size 0.1 (Smith &
Topin, 2019), which is proposed for faster convergence. Each run is repeated for 3 different seeds.
Regarding the adversarial attack during training, we follow a common setting, i.e., 7 steps of projected
gradient descent (PGD) with step-size 2/255 and perturbation radius ρ=8/255 (Madry et al., 2018).
We apply the same setup for all of the aforementioned datasets. In total, we adversarially train and
evaluate 6466×3×3≈ 58k architectures by a number of NVIDIA T4 Tensor Core GPUs. One seed for
one dataset consumes approximately 34 hours on 350 GPUs. Consequently, 3 datasets and 3 seeds take
around 34×350×3×3≈ 107k GPU hours.

Evaluation metrics. We evaluate the clean accuracy and robust accuracy of each architecture after train-
ing. Specifically, we measure the robust accuracy based on fast gradient sign method (FGSM) (Goodfel-
low et al., 2015) and PGD attack with ℓ∞ constraint attack with perturbation radius ρ∈{3/255,8/255}.
For PGD attack, we adopt 20 steps with step-size 2.5×ρ/20. Additionally, we evaluate each architec-
ture under AutoAttack with perturbation radius ρ=8/255.

3.2 STATISTICS OF THE BENCHMARK

Overall preview of the benchmark. In Figure 2, we show the boxplots of the clean accuracy and robust
accuracy of all architectures in the search space, respectively. Notice that there exists a non-negligible
gap between the performance of different architectures, e.g., ranging from 40%∼70% accuracy under
FGSM attack on CIFAR-10. Therefore, designing the architecture holds immense significance given
the wide spectrum of achievable accuracy values. In Figure 3a, we plot the distribution of the clean
accuracy and robust accuracy on CIFAR-10 in the proposed NAS-RobBench-201. We observe that the
distribution of FGSM accuracy and PGD accuracy is similar while the peak in the distribution of clean
accuracy is much more notable than that of FGSM and PGD. Overall, the architecture ranking sorted
by robust metric and clean metric correlate well, as shown in Figure 3b.

Effect of operators selection on robustness. To see the impact of operators in robust architecture
design, in Figure 4, we present the selected operators at each edge of the top-10 architectures in

5



Published as a conference paper at ICLR 2024

Table 2: Result of different NAS algorithms on the proposed NAS-RobBench-201. “Optimal” refers to
the architecture with the highest average robust accuracy among the benchmark. “Attack scheme” in
the first column indicates how the accuracy is measured during the searching phase of these baseline
methods.

Attack scheme Method Clean FGSM
(3/255)

PGD
(3/255)

FGSM
(8/255)

PGD
(8/255)

- Optimal 0.794 0.698 0.692 0.537 0.482

Clean
Regularized Evolution 0.791 0.693 0.688 0.530 0.476

Random Search 0.779 0.682 0.676 0.520 0.470
Local Search 0.796 0.697 0.692 0.533 0.478

FGSM (8/255)
Regularized Evolution 0.790 0.693 0.688 0.532 0.478

Random Search 0.774 0.679 0.674 0.521 0.471
Local Search 0.794 0.695 0.689 0.535 0.481

PGD (8/255)
Regularized Evolution 0.789 0.692 0.686 0.531 0.478

Random Search 0.771 0.676 0.671 0.520 0.471
Local Search 0.794 0.695 0.689 0.535 0.481

CIFAR-10 dataset. The top-10 criterion is the average robust accuracy, which is the mean of all robust
metrics mentioned in Section 3.1. Overall, these top architectures have similar operator selections at
each edge. We can see there exists a frequently selected operator for each edge. For instance, the 3×3
convolution operation appears to be the best choice for the majority of edges, except for edge 4, where
the skip-connection operation demonstrates its optimality.

Architecture ranking across different datasets. Figure 3c depicts the architecture ranking based
on the average robust accuracy across CIFAR-10/100 and ImageNet-16. The result reveals a high
correlation across various datasets, thereby inspiring the exploration of searching on a smaller dataset
to find a robust architecture for larger datasets.

Comparison with the existing benchmark (Jung et al., 2023). The closest benchmark to ours is
built by Jung et al. (2023), where the robust evaluation of each architecture under standard training is
given. In Table 1, we present the Spearman coefficient among different accuracies. The observation
underscores the significance of adversarial training within our benchmark. Specifically, it suggests that
employing Jung et al. (2023) to identify a resilient architecture may not guarantee its robustness under
adversarial training. Moreover, in Figure 8 of the appendix, we can see a notable difference between
these two benchmarks in terms of top architectures id and selected nodes.

NAS algorithms on the benchmark. Let us illustrate how to use the proposed NAS-RobBench-201
for NAS algorithms. As an example, we test several NAS algorithms on CIFAR-10. The search-based
NAS algorithms include regularized evolution (Real et al., 2019), local search (White et al., 2021)
and random search (Li & Talwalkar, 2020). We run each algorithm 100 times with 150 queries and
report the mean accuracy in Table 2. We can observe that by searching the robust metrics, e.g., FGSM
and PGD, these methods are able to find a more robust architecture than using clean accuracy metrics.
Additionally, local search performs better than other methods. Evaluation results on more NAS
approaches including differentiable search approaches (Liu et al., 2019; Mok et al., 2021) and train-free
approaches (Xu et al., 2021; Zhu et al., 2022a; Shu et al., 2022; Mellor et al., 2021) are deferred to
Table 7 of the appendix.

4 ROBUST GENERALIZATION GUARANTEES UNDER NAS

Till now, we have built NAS-RobBench-201 to search robust architectures under adversarial training.
To expedite the search process, NTK-based NAS algorithms allow for a train-free style in which
neural architectures can be initially screened based on the minimum eigenvalue of NTK as well as its
variants, e.g., Chen et al. (2021); Xu et al. (2021); Mok et al. (2022); Zhu et al. (2022a). Admittedly, it’s
worth noting that these methods build upon early analysis on FCNNs under standard training within
the learning theory community (Du et al., 2019c; Cao & Gu, 2019; Lee et al., 2019). Consequently,
our subsequent theoretical results aim to provide a solid groundwork for the development of NTK-
based robust NAS algorithms. Below, the problem setting is introduced in Section 4.1. The (robust)
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generalization guarantees of FCNNs as well as CNNs are present in Section 4.2. Detailed definitions
for the notations can be found in Appendix A.

4.1 PROBLEM SETTING

We consider a search space suitable for residual FCNNs and residual CNNs. To be specific, the class of
L-layer (L≥3) residual FCNN with input x∈Rd and output f(x,W )∈R is defined as follows:

f1=σ1(W1x), fl=
1

L
σl(Wlfl−1)+αl−1fl−1, 2≤ l≤L−1,

fL=⟨wL,fL−1⟩, f(x,W )=fL,
(1)

where W1∈Rm×d, Wl∈Rm×m, l=2,...,L−1 and wL∈Rm are learnable weights under Gaussian
initialization i.e., W (i,j)

l ∼N (0,1/m), for l∈ [L]. This is the typical NTK initialization to ensure the
convergence of the NTK (Allen-Zhu et al., 2019; Zhu et al., 2022a). We use W :=(W1,...,wL)∈W
to represent the collection of all weights. The binary parameter αl∈{0,1} determines whether a skip
connection is used and σl(·) represents an activation function in the lth layer. Similarly, we define
L-layer (L ≥ 3) residual CNNs with input X ∈ Rd×p, where d denotes the input channels and p
represents the pixels, and output f(X,W )∈R as follows:

F1=σ1(W1∗X), Fl=
1

L
σl(W l∗Fl−1)+αl−1Fl−1, 2≤ l≤L−1,

FL=⟨WL,FL−1⟩, f(X,W )=FL,
(2)

where W1∈Rκ×m×d,W l∈Rκ×m×m, l=2,...,L−1, and WL∈Rm×p are learnable weights with m
channels and κ filter size. We define the convolutional operator between X and W1 as:

(W1∗X)(i,j)=

κ∑
u=1

d∑
v=1

W(u,i,v)
1 X(v,j+u−κ+1

2 ),for i∈ [m],j∈ [p],

where we use zero-padding, i.e., X(v,c)=0 for c<1 or c>p.

Firstly, we introduce the following two standard assumptions to establish the theoretical result.

Assumption 1 (Normalization of inputs). We assume the input space of FCNN is: X ⊆ {x ∈ Rd :
∥x∥2=1}. Similarly, the input space of CNN is: X ⊆{X∈Rd×p :∥X∥F=1}.

Assumption 2 (Lipschitz of activation functions). We assume there exist two positive constants Cl,Lip

and CLip such that |σl(0)|≤Cl,Lip≤CLip with l∈ [L] and for any z,z′∈R:

|σl(z)−σl(z
′)|≤Cl,Lip|z−z′|≤CLip|z−z′|,

where CLip is the maximum value of the Lipschitz constants of all activation functions in the networks.

Remarks: a) The first assumption is standard in deep learning theory and attainable in practice as we
can always scale the input (Zhang et al., 2020). b) The second assumption covers a range of commonly
used activation functions, e.g., ReLU, LeakyReLU, or sigmoid (Du et al., 2019a).

Based on our description, the search space for the class of FCNNs and CNNs includes: a) Activation
function search: any activation function σl that satisfies Assumption 2. b) Skip connection search:
whether αl is zero or one. c) Convolutional filter size search: the value of κ.

Below we describe the adversarial training of FCNN while the corresponding one for CNN can be
defined in the same way by changing the input as X .

Definition 1 (ρ-Bounded adversary). An adversary Aρ :X×R×W→X is ρ-bounded for ρ>0 if it
satisfies: Aρ(x,y,W )∈B̂(x,ρ). We denote by A∗

ρ the worst-case ρ-bounded adversary given a loss
function ℓ: A∗

ρ(x,y,W ) :=argmaxx̂∈B̂(x,ρ)ℓ(yf(x̂,W )).

For notational simplicity, we simplify the above notations as Aρ(x,W ) and A∗
ρ(x,W ) by omitting the

label y. Without loss of generality, we restrict our input x as well as its perturbation set B̂(x,ρ) within
the surface of the unit ball S :={x∈Rd :∥x∥2=1} (Gao et al., 2019).
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We employ the cross-entropy loss ℓ(z) := log[1+exp(−z)] for training. We consider the following
multi-objective function involving with the standard training loss Lclean(W ) under empirical risk
minimization and adversarial training loss Lrobust(W ) with adversary in Definition 1:

min
W

(1−β)
1

N

N∑
i=1

ℓ[yif(xi,W )]︸ ︷︷ ︸
:=Lclean(W )

+β
1

N

N∑
i=1

ℓ[yif(Aρ(xi,W ),W )]︸ ︷︷ ︸
:=Lrobust(W )

, (3)

where the regularization parameter β ∈ [0,1] is for a trade-off between the standard training and
adversarial training. The β = 0 case refers to the standard training and β = 1 corresponds to the
adversarial training. Based on our description, the neural network training by stochastic gradient
descent (SGD) with a step-size γ is shown in Algorithm 1.

4.2 GENERALIZATION BOUNDS

NTK plays an important role in understanding the generalization of neural networks (Jacot et al., 2018).
Specifically, the NTK is defined as the inner product of the network Jacobian w.r.t the weights at
initialization with infinite width, i.e., k(xi,xj)=limm→∞

〈
∂f(xi,W

[1])
∂vec(W ) ,

∂f(xj ,W
[1])

∂vec(W )

〉
. To present the

generalization theory, let us denote the NTK matrix for clean accuracy as:

Kall :=(1−β)2K+β(1−β)(K̄ρ+K̄⊤
ρ )+β2K̂ρ, (4)

where K(i,j)=k(xi,xj) is called the clean NTK, K̄(i,j)
ρ =k(xi,A∗

ρ(xj ,W
[1])) is the cross NTK, and

K̂
(i,j)
ρ =k(A∗

ρ(xi,W
[1]),A∗

ρ(xj ,W
[1])) is the robust NTK, for any i,j∈ [N ]. Similarly, denote the

NTK for robust accuracy as:

K̃all=(1−β)2K̂ρ+β(1−β)(K̄2ρ+K̄⊤
2ρ)+β2K̂2ρ, (5)

where the robust NTK K̂ρ has been defined in Eq. (4), K̄(i,j)
2ρ =k(A∗

ρ(xi,W
[1]),x̂j), and K̂

(i,j)
2ρ =

k(x̂i,x̂j), for i,j ∈ [N ], with x̂j =A∗
ρ(A∗

ρ(xj ,W
[1]),W [1]) under “twice” perturbation. Note that

the formulation of “twice” perturbation allows seeking a perturbed point outside the radius of ρ,
indicating stronger adversarial data is used. Such perturbation is essentially different from doubling
the step size under a single ρ. Interestingly, such a scheme has the benefit of avoiding catastrophic
overfitting (de Jorge et al., 2022). Accordingly, we have the following theorem on generalization
bounds for clean/robust accuracy with the proof deferred to Appendix C.
Theorem 1 (Generalization bound of FCNN by NAS). Denote the expected clean 0-1 loss
as Lclean

0−1 (W ) := E(x,y)[1 {yf(x,W )<0}] , and expected robust 0-1 loss as Lrobust
0−1 (W ) :=

E(x,y)[1{yf(Aρ(x,W ),W )<0}]. Consider the residual FCNNs in Eq. (1) by activation function
search and skip connection search, under Assumption 1 and 2 with CLip. If one runs Algorithm 1 with

a step-size γ=ν

√
min{y⊤(Kall)−1y,y⊤(K̃all)−1y}/(

√
CLipe

CLipm
√
N) for small enough abso-

lute constant ν and width m≥m⋆, where m⋆ depends on (N,L,CLip,λmin(Kall),λmin(K̃all),β,ρ,δ),
then for any ρ≤1, with probability at least 1−δ over the randomness of W [1], we obtain:

EW̄

(
Lclean
0−1 (W̄ )

)
≲Õ

√L2y⊤K−1
all y

N

+O

(√
log(1/δ)

N

)
,

EW̄

(
Lrobust
0−1 (W̄ )

)
≲Õ

√L2y⊤K̃−1
all y

N

+O

(√
log(1/δ)

N

)
,

(6)

where λmin(·) indicates the minimum eigenvalue of the NTK matrix, the expectation in the LHS is taken
over the uniform sample of W̄ from {W [1],...,W [N ]}, as illustrated in Algorithm 1.

Remarks: a) By courant minimax principle (Golub & Van Loan, 1996), we can further have
y⊤Kall

−1y≤ y⊤y
λmin(Kall)

, and y⊤K̂−1
all y≤ y⊤y

λmin(K̂all)
. Cao & Gu (2019); Zhu et al. (2022b) prove
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Algorithm 1: Multi-objective adversarial training with stochastic gradient descent

Input: data distribution D, adversary Aρ, step size γ, iteration N , initialized weight W [1].
for i=1 to N do

Sample (xi,yi) from D.
W [i+1]=W [i]−γ ·(1−β)∇W ℓ

(
yif(xi,W

[i])
)
−γ ·β∇W ℓ

(
yif(Aρ(xi,W

[i]),W [i])
)

.
end for
Randomly choose W̄ uniformly from

{
W [1],...,W [N ]

}
.

Output: W̄ .

for FCNN under standard training that the standard generalization error is affected by only λmin(K).
As a comparison, our result exhibits that under multi-objective training, the generalization error is
controlled by a mixed kernel Kall with regularization factor β. We can recover their result by taking
β=0, i.e., standard training under the clean NTK. Taking β=1 falls in the case of adversarial training
with robust NTK. c) Our theory demonstrates that the clean accuracy is affected by both the clean NTK
and robust NTK, but the robust generalization bound is influenced by the robust NTK and its “twice”
perturbation version.

Here we extend our generalization bound to CNN with proof postponed to Appendix E.

Corollary 1. Consider the residual CNN defined in Eq. (2). If one applies Algorithm 1
with a step-size γ = ν min{y⊤(Kall)

−1y, y⊤(K̃all)
−1y}/(

√
CLippκe

CLip
√
κm

√
N) for

some small enough absolute constant ν and the width m ≥ m⋆, where m⋆ depends on
(N,L,p,κ,CLip,λmin(Kall),λmin(K̃all), β,ρ, δ), then under Assumption 1 and 2, for any ρ ≤ 1,
with probability at least 1−δ, one has the generalization result as in Eq. (6).

Remarks: Notice that the filter size κ affects the step-size and the required over-parameterization
condition. A larger filter size enables larger step-sizes to achieve a faster convergence rate, which aligns
with practical insights (Ding et al., 2022).

4.3 CORRELATION BETWEEN NTK AND ACCURACY ON NAS-ROBBENCH-201
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Figure 5: Spearman coefficient between NTK-scores and
various metrics. Labels with 2ρ in the x-axis indicate
the scores w.r.t the robust twice NTK while labels with ρ
indicates the score w.r.t the robust NTK.

In Figure 5, we plot the Spearman corre-
lation between different NTK scores and
various accuracy metrics. Specifically, we
use adversarial data with PGD attack to
construct the kernel K̂ρ defined in Eq. (4).
Then, to efficiently compute λmin, we es-
timate it by its Frobenius norm as in Xu
et al. (2021), and we simply name it NTK-
score. Specifically, we focus on 5 distinct
NTK variants, including clean NTK, robust
NTKs with ρ ∈ {3/255,8/255}, and the
corresponding robust twice NTKs. Regard-
ing the robust twice NTK, we first perform
one PGD attack on the raw image data to
generate the adversarial data, and then we
perform the same attack on this adversarial
data again and use it to construct the NTK.
Our findings reveal that robust NTKs ex-
hibit a notably stronger correlation when
compared to standard NTK under adversar-
ial training. More interestingly, we observe
that the correlation is increasing for met-
rics with larger perturbation. Such findings
persist when examining NTKs with FGSM
attack, as we elaborate in Appendix F.
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5 CONCLUSION

In this paper, to facilitate the research of the NAS community, we release NAS-RobBench-201 that
includes the robust evaluation result of 6466 architectures on 3 image datasets under adversarial training.
Furthermore, we study the robust generalization guarantee of both FCNN and CNN for NAS. Our
result reveals how various NTKs can affect the robustness of neural networks, which can motivate new
designs of robust NAS approaches. The first limitation is that our benchmark and theoretical results do
not explore the cutting-edge (vision) Transformers. Additionally, our NTK-based analysis studies the
neural network in the linear regime, which can not fully explain its success in practice (Allen-Zhu et al.,
2019; Yang & Hu, 2021). Nevertheless, we believe both our benchmark and theoretical analysis can be
useful for practitioners in exploring robust architectures.
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CONTENTS OF THE APPENDIX

The Appendix is organized as follows:

• In Appendix A, we summarize the symbols and notation used in this paper.
• A comprehensive overview of related literatures can be found in Appendix B.1. A detailed clarifica-

tion of the distinctions between our work and prior research is present in Appendix B.2.
• In Appendix C, we include the proof for the generalization bound of FCNNs.
• The proof for the lower bound on the minimum eigenvalue of the NTK is present in Appendix D.
• The extension of theoretical results to CNN can be found at Appendix E.
• Further details on the experiment are developed in Appendix F.
• Limitations and societal impact of this work are discussed in Appendix G and Appendix H, respec-

tively.

A SYMBOLS AND NOTATION

Vectors/matrices/tensors are symbolized by lowercase/uppercase/calligraphic boldface letters, e.g.,
w, W , W . We use ∥·∥F and ∥·∥2 to represent the Frobenius norm and the spectral norm of a matrix,
respectively. The Euclidean norm of a vector is symbolized by ∥·∥2. The superscript with brackets is
used to represent a particular element of a vector/matrix/tensor, e.g., w(i) is the i-th element of w. The
superscript with brackets symbolizes the variables at different training step, e.g., W [t]. Regarding the
subscript, we denote by Wl the learnable weights at l-th layer, xi the i-th input data. [L] is defined as a
shorthand of {1,2,...,L} for any positive integer L. We denote by X ⊂Rd and Y⊂R the input space
and the output space, respectively. The training data (xi,yi) is drawn from a probability measure D on
X×Y . For an input x∈X , we symbolize its ρ-neighborhood by

B̂(x,ρ) :={x̂∈X :∥x̂−x∥2≤ρ}∩X .

For any W ∈W , we define its τ -neighborhood as follows:

B(W ,τ) :={W ′∈W :∥W ′
l −Wl∥F≤τ,l∈ [L]}.

We summarize the core symbols and notation in Table 3.

B COMPLETE RELATED WORK AND OUR CONTRIBUTION

B.1 COMPLETE RELATED WORK

Adversarial example and defense. Since the seminal work of (Szegedy et al., 2013) illustrated that
neural networks are vulnerable to inputs with small perturbations, several approaches have emerged to
defend against such attacks, e.g., adversarial training (Goodfellow et al., 2015; Madry et al., 2018),
feature denoising (Xu et al., 2018; Xie et al., 2019), modifying network architecture (Xiao et al.,
2020), regularizing Lipschitz constant (Cisse et al., 2017) or input gradient (Ross & Doshi-Velez,
2018). Adversarial training is one of the most effective defense mechanisms that minimizes the
empirical training loss based on the adversarial data, which is obtained by solving a maximum problem.
Goodfellow et al. (2015) use Fast Gradient Sign Method (FGSM), a one-step method, to generate
the adversarial data. However, FGSM relies on the linearization of loss around data points and the
resulting model is still vulnerable to other more sophisticated adversaries. Multi-step methods are
subsequently proposed to further improve the robustness, e.g., multi-step FGSM (Kurakin et al., 2018),
multi-step PGD (Madry et al., 2018). Other methods of generating adversarial examples include
L-BFGS (Szegedy et al., 2013), C&W attack (Carlini & Wagner, 2017).

NAS and benchmarks. Over the years, significant strides have been made towards develop-
ing NAS algorithms, which have been explored from various angles, e.g., differentiable search with
weight-sharing (Liu et al., 2019; Zela et al., 2020; Ye et al., 2022), reinforcement learning (Baker et al.,
2017; Zoph & Le, 2017; Zoph et al., 2018), evolutionary algorithm (Suganuma et al., 2017; Real et al.,
2017; 2019), NTK-based methods (Chen et al., 2021; Xu et al., 2021; Mok et al., 2022; Zhu et al.,
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Table 3: Core symbols and notations used in this paper.

Symbol Dimension(s) Definition
N (µ,σ) - Gaussian distribution with mean µ and variance σ

[L] - Shorthand of {1,2,...,L}
O, o, Ω and Θ - Standard Bachmann–Landau order notation

∥w∥2 - Euclidean norms of vector w
∥W ∥2 - Spectral norms of matrix W
∥W ∥F - Frobenius norms of matrix W

λmin(W ), λmax(W ) - Minimum and maximum eigenvalues of matrix W
σmin(W ),σmax(W ) - Minimum and Maximum singular values of matrix W

w(i) - i-th element of vector w
W (i,j) - (i,j)-th element of matrix W
W [t] - matrix W at time step t
N - Number of training data points
d - Dimension (channel) of the input in FCNN (CNN)
m - Width (Channel) of intermediate layers in FCNN (CNN)
p - Pixel of the input in CNN
κ - Filter size in CNN
xi Rd The i-th data point
yi R The i-th target
DX - Input data distribution
DY - Target data distribution
σl(·) - Element-wise activation function at l-th layer in FCNN

W1, Wl, wL Rm×d, Rm×m, Rm Learnable weights in FCNN, l=2,...,L−1
W :=(W1,...,wL) Collection of all learnable weights in FCNN

Dl Rm×m Diagonal matrix, Dl=Diag(σl
′(Wlfl−1)), for l∈ [L−1] in FCNN

2022a). Most recent work on NAS for robust architecture belongs to the first category. Guo et al. (2020)
first trains a huge network that contains every edge in the cell of the search space and then obtains a
specific robust architecture based on this trained network. Mok et al. (2021) propose a robust NAS
method by imposing a regularized term in the DARTS objective to ensure a smoother loss landscape.
These algorithms are different from the NTK-based methods, where we can select a robust architecture
based on the NTK metrics without training a huge network.

Along with the evolution of NAS algorithms, the development of NAS benchmarks is also important
for an efficient and fair comparison. Regarding clean accuracy, several tabular benchmarks, e.g., NAS-
Bench-101 (Ying et al., 2019), TransNAS-Bench-101 (Duan et al., 2021), NAS-Bench-201 (Dong &
Yang, 2020) and NAS-Bench-301 (Zela et al., 2022), have been proposed that include the evaluation
performance of architectures under standard training on image classification tasks. More recently, Jung
et al. (2023) extend the scope of the benchmark towards robustness by evaluating the performance of
the pre-trained architecture in NAS-Bench-201 in terms of various adversarial attacks. However, all of
these benchmarks are under standard training, which motivates us to release the first NAS benchmark
that contains the performance of each architecture under adversarial training.

Neural tangent kernel. Neural tangent kernel (NTK) was first proposed by Jacot et al. (2018)
that connects the training dynamics of over-parameterized neural network, where the number of
parameters is greater than the number of training data, to kernel regression. In theory, NTK provides a
tractable analysis for several phenomena in deep learning, e.g., convergence (Allen-Zhu et al., 2019),
generalization (Huang et al., 2020), and spectral bias (Cao et al., 2019; Choraria et al., 2022). The study
on the NTK has been expanded to a range of neural networks including, fully-connected networks (Jacot
et al., 2018), convolutional networks (Bietti & Mairal, 2019), and graph networks (Du et al., 2019b).
The analysis has also been extended from standard training to adversarial training. In particular, Gao
et al. (2019) prove the convergence of FCNN with quadratic ReLU activation function, relying on the
NTK theory, which suggests that the weights of the network are close to their initialization (Jacot et al.,
2018). Zhang et al. (2020) provide a refined analysis for FCNN with ReLU activation functions and
prove that polynomial width suffices instead of exponential width. More recently, Wang et al. (2022)
present a convergence analysis convergence of 2-layer FCNN under certified robust training. From
the generalization perspective, the guarantee of over-parameterized FCNN under standard training
has been established in Cao & Gu (2019); Zhu et al. (2022a). In this work, we extend the scope of
generalization guarantee of over-parameterized networks to multi-objective training, which covers
the case of both standard training and adversarial training. Meanwhile, Huang et al. (2021) studies
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the impact of network width and depth on the robustness of adversarially trained DNNs. From the
theoretical side, Huang et al. (2021) is based on the Lipschitz constant for robustness evaluation while
our analysis builds a general framework for the generalization guarantees on both clean and robust
accuracy

NTK has brought insights into several practical applications. For example, in NAS, (Xu et al., 2021;
Shu et al., 2022; Zhu et al., 2022a) show that one can use NTK as a guideline to select architectures
without training. As a kernel, NTK can be used in supervised learning and has demonstrated remarkable
performance over neural networks on small datasets (Arora et al., 2020). Lastly, NTK has also shown
its potential in virtual drug screening, image impainting (Radhakrishnan et al., 2022), and MRI
reconstruction (Tancik et al., 2020).

Let us now provide further intuition on why training neural networks via gradient descent can be
connected to the NTK. Let us denote the loss as ℓ(W ) = 1

2

∑N
n=1(f(xn;W )−yn)

2. By choosing

an infinitesimally small learning rate, one has the following gradient flow: dW [t]

dt =−∇ℓ(W [t]). By

simple chain rule, we can observe that the network outputs admit the following dynamics: df(W [t])
dt =

−K [t](f(W [t])−y), where K [t]=
(

∂f(W [t])
∂W

)(
∂f(W [t])

∂W

)⊤
∈RN×N is the NTK at t step. Hence,

NTK can be used to characterize the training process of neural networks.

B.2 CONTRIBUTIONS AND RELATIONSHIP TO PRIOR WORK

In this section, we clarify the contribution of our work when compared to the prior work on robust NAS.
Specifically, our work makes contributions both theoretically and empirically.

From the theoretical side, our work differs from previous theoretical work (Zhu et al., 2022a; Cao &
Gu, 2019) in the following aspects:

• Problem setting: Cao & Gu (2019) build the generalization bound of FCNN via NTK and (Zhu et al.,
2022a) extend this result under the activation function search and skip connection search. Instead, our
work studies the robust generalization bound of both FCNN/CNN under multi-objective adversarial
training. How to handle the multi-objective, clean/robust accuracy, more general architecture search
(CNN) is still unknown in prior theoretical work.

• Results: Differently from Zhu et al. (2022a); Cao & Gu (2019) that are based on the sole NTK for
generalization guarantees, our result demonstrates that, under adversarial training, the generalization
performance (clean accuracy and robust accuracy) is affected by several NTKs. Concretely, the clean
accuracy is determined by one clean NTK and robust NTK; while robust accuracy is determined by
robust NTK and its “twice” perturbation version.

• The technical difficulties lie in a) how to build the proof framework under multi-objective training by
the well-designed joint of NTKs and b) how to tackle the coupling relationship among several NTKs
and derive the lower bound of the minimum eigenvalue of NTKs. Accordingly, our work builds the
generalization guarantees of the searched architecture under multi-objective adversarial training.
Our results demonstrate the effect of different search schemes, perturbation radius, and the balance
parameter, which doesn’t exist in previous literature.

From the application side, we release an adversarially trained benchmark on the NAS-bench201 search
space, which differs from previous benchmark in the following aspects:

• Motivation: As a comparison, existing benchmarks on the NAS-bench201 search space are built
on standard training (Dong & Yang, 2020; Jung et al., 2023). Since robust NAS algorithms usually
include the evaluation results under adversarial training (Guo et al., 2020; Mok et al., 2021), our bench-
mark facilitates a direct retrieval of these results for reliable reproducibility and efficient assessment.

• Statistical result: In Table 1, we present the rank correlation among different accuracies within our
proposed benchmark as well as the benchmark in (Jung et al., 2023). The observation underscores the
significance of adversarial training within our benchmark. Specifically, it suggests that employing
Jung et al. (2023) to identify a resilient architecture may not guarantee its robustness under the
context of adversarial training. Additionally, in Figure 8, we can see a notable difference between
these two benchmarks in terms of top architectures id and selected nodes.
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• Lastly, we investigate the correlation between various NTK metrics and the robust accuracy of the
architecture in the benchmark. By integrating this result with our theoretical generalization bound,
we can inspire practitioners to craft more robust and potent algorithms.

C PROOF OF THE GENERALIZATION OF RESIDUAL FCNN

C.1 SOME AUXILIARY LEMMAS

Lemma 1 (Corollary 5.35 in Vershynin (2012)). Given a matrix W ∈Rm1×m2 where each element is
sampled independently from N (0,1), for every ζ≥0, with probability at least 1−2exp(−ζ2/2) one
has:

√
m1−

√
m2−ζ≤σmin(W )≤σmax(W )≤

√
m1+

√
m2+ζ,

where σmax(W ) and σmin(W ) represents the maximum singular value and the minimum singular
value of W , respectively.

Lemma 2 (Upper bound of spectral norms of initial weight). Given a weight matrix W [1]
l ∈Rm1×m2

where m1≥m2 and each element is sampled independently from N (0, 1
m1

), then with probability at
least 1−2exp(−m1/2), one has:

∥W [1]
l ∥2≤3.

Proof of Lemma 2. Following Lemma 1, w.p. at least 1−2exp(−ζ2/2), one has:

∥W [1]
l ∥2≤

√
1

m1
(
√
m1+

√
m2+ζ).

Setting ζ=
√
m1 and using the fact that m1≥m2 completes the proof.

Lemma 3 (The order of the network output at initialization). Fix any l∈ [1,L−1] and x, when the
width satisfies m=Ω(N/δ), with probability at least 1−2lexp(−m/2)−δ over the randomness of
{W [1]

i }li=1, we have:

Cfmin≤
∥∥∥fl(x,W

[1])
∥∥∥
2
≤Cfmax,

where Cfmax and Cfmax are some Θ(1) constant.

Proof. The result can be obtained by simply applying Lemma 2 for the initial weights and Lemma C.1
in Du et al. (2019a).

The following lemma shows that the perturbation of x can be considered as an equivalent perturbation
of the weights.

Lemma 4. Given any fixed inputx∈X , with probability at least 1−2e−m/2 over random initialization,
for any x̂∈X satisfying ∥x−x̂∥2≤ρ, and any W ∈B̂(W [1],τ), there exists W̃ ∈B(W [1],τ+3ρ+
τρ) such that:

fl(x̂,W )=fl(x,W̃ ), 1≤ l≤L−1,

Dl(x̂,W )=Dl(x,W̃ ), 1≤ l≤L−1,

f(x̂,W )=f(x,W̃ ).

Proof. Let us define:

W̃1=W1+
W1(x̂−x)x⊤

∥x∥22
.

Obviously, W̃1 satisfies W̃1x=W1x̂. Then setting W̃2,...,W̃L equal to W2,...,WL will make the
output of the following layers equal. Besides, by Lemma 2, with probability 1−2e−m/2, one has∥∥∥W [1]

1

∥∥∥
2
≤3 and thus
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∥∥∥W̃1−W1

∥∥∥
F
=

∥∥∥∥∥W1(x̂−x)x⊤

∥x∥22

∥∥∥∥∥
F

≤
∥W1(x̂−x)∥2∥x∥2

∥x∥22
=∥W1∥2∥x̂−x∥2

≤
(∥∥∥W [1]

1

∥∥∥
2
+τ
)
ρ≤3ρ+ρτ,

which indicates that
∥∥∥W̃−W

∥∥∥
F
≤ 3ρ+ ρτ w.p. Lastly, by triangle inequality, with probability

1−2e−m/2, we have:∥∥∥W̃−W̃ [1]
∥∥∥
F
≤
∥∥∥W̃−W

∥∥∥
F
+
∥∥∥W−W̃ [1]

∥∥∥
F
≤τ+3ρ+τρ,

which completes the proof.

The following lemma shows that the network output does not change too much if the weights are close
to that in initialization.

Lemma 5. For W̃ ∈B(W [1],τ) with τ ≤ 3, if the width satisfies m=Ω(N/δ), with probability at
least 1−2(L−1)exp(−m/2)−δ, one has:∥∥∥fL−1(x,W̃ )−fL−1(x,W

[1])
∥∥∥
2
≤e6CLip(CLip+Cfmax)τ .

Proof. To simplify the notation, in the following proof, the variable with ·̃ is related to W̃ , and without
·̃ is related to W [1]. For the output of the first layer, we have:∥∥∥f̃1−f1

∥∥∥
2
=
∥∥∥σ1(W̃1x)−σ1(W1x)

∥∥∥
2
≤CLip

∥∥∥W̃1−W1

∥∥∥
2
∥x∥2≤τCLip.

For the l-th layer (l∈{2,3,...,L−1}), we have:∥∥∥f̃l−fl

∥∥∥
2∥∥∥∥ 1Lσl(W̃lf̃l−1)+αl−1f̃l−1−

1

L
σl(Wlfl−1)−αl−1fl−1

∥∥∥∥
2

≤ 1

L

∥∥∥σl(W̃lf̃l−1)−σl(Wlfl−1)
∥∥∥
2
+αl−1

∥∥∥f̃l−1−fl−1

∥∥∥
2

(By triangle inequality)

≤ CLip

L

∥∥∥W̃lf̃l−1−Wlfl−1

∥∥∥
2
+
∥∥∥f̃l−1−fl−1

∥∥∥
2

(By the Lipschitz continuity of σl)

=
CLip

L

∥∥∥Wl(f̃l−1−fl−1)+(W̃l−Wl)f̃l−1

∥∥∥
2
+
∥∥∥f̃l−1−fl−1

∥∥∥
2

≤ CLip

L

{
∥Wl∥2

∥∥∥f̃l−1−fl−1

∥∥∥
2
+
∥∥∥W̃l−Wl

∥∥∥
2

∥∥∥f̃l−1

∥∥∥
2

}
+
∥∥∥f̃l−1−fl−1

∥∥∥
2

≤(
CLip

L
∥Wl∥2+1)

∥∥∥f̃l−1−fl−1

∥∥∥
2
+
CLip

L
τ

(∥∥∥f̃l−1−fl−1

∥∥∥
2
+∥fl−1∥2

)
=

{
CLip

L
(∥Wl∥2+τ)+1

}∥∥∥f̃l−1−fl−1

∥∥∥
2
+
CLip

L
τ∥fl−1∥2.
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Therefore, by the inequality recursively and Lemmas 2 and 3, with probability at least 1− 2(L−
1)exp(−m/2)−δ, we have:∥∥∥f̃L−1−fL−1

∥∥∥
2

≤ [
CLip

L
(3+τ)+1]

∥∥∥f̃L−2−fL−2

∥∥∥
2
+
CLip

L
τCfmax, (By Lemmas 2 and 3)

≤ [
CLip

L
(3+τ)+1]L−2

∥∥∥f̃1−f1

∥∥∥
2
+

L−3∑
i=0

[
CLip

L
(3+τ)+1]i

CLip

L
τCfmax (By recursion)

≤
(
6CLip

L
+1

)L−2

τCLip+

L−3∑
i=0

[
6CLip

L
+1]i

CLip

L
τCfmax

=

(
6CLip

L
+1

)L−2

τCLip+
1−(6CLip/L+1)L−2

1−6CLip/L−1

CLip

L
τCfmax

≤e6CLip(CLip+Cfmax)τ .

Lemma 6. For W̃ ,W ∈B(W [1],τ) with τ≤3, when the width satisfies m=Ω(N/δ) and ρ≤1, with
probability at least 1−2Lexp(−m/2)−δ, one has:∣∣∣f(x,W̃ )−f(x,W )−

〈
(1−β)∇W f(x,W )+β∇W f(Aρ(x,W ),W ),W̃−W

〉∣∣∣
≤18e6CLip(1+β)(CLip+Cfmax)τ .∣∣∣f(Aρ(x,W ),W̃ )−f(Aρ(x,W ),W )−

〈
(1−β)∇W f(x,W )+β∇W f(Aρ(x,W ),W ),W̃−W

〉∣∣∣
≤18e6CLip(2−β)(CLip+Cfmax)τ .

Proof. To simplify the notation, in the following proof, the variable with ·̃ is related to W̃ , and without
·̃ is related to W . The variable with ·̂ is related to input Aρ(x,W ), and without is related to input x .
For instance, we denote by:

fl :=fl(x,W ), Dl=Diag(σl
′(Wlfl−1)),

f̃l :=fl(x,W̃ ), D̃l=Diag(σl
′(W̃lf̃l−1)),

f̂l :=fl(x̂,W ), D̂l=Diag(σl
′(Wlf̂l−1)).

Then, let us prove the first inequality. We have:∣∣∣f̃−f−
〈
(1−β)∇W f+β∇W f̂ ,W̃−W

〉∣∣∣
=

∣∣∣∣∣〈w̃L,f̃L−1

〉
−⟨wL,fL−1⟩−

L∑
l=1

〈
(1−β)∇Wl

f+β∇Wl
f̂ ,W̃l−Wl

〉∣∣∣∣∣
=

∣∣∣∣∣〈w̃L,f̃L−1−fL−1

〉
+⟨fL−1,w̃L−wL⟩−

L−1∑
l=1

〈
(1−β)∇Wl

f+β∇Wl
f̂ ,W̃l−Wl

〉
−
〈
(1−β)fL−1+βf̂L−1,w̃L−wL

〉∣∣∣
≤∥w̃L∥2

∥∥∥f̃L−1−fL−1

∥∥∥
2
+β
∥∥∥fL−1−f̂L−1

∥∥∥
2
∥w̃L−wL∥2

+

∣∣∣∣∣
L−1∑
l=1

〈
(1−β)∇Wl

f,W̃l−Wl

〉∣∣∣∣∣+
∣∣∣∣∣
L−1∑
l=1

〈
β∇Wl

f̂ ,W̃l−Wl

〉∣∣∣∣∣.

(7)

The first term can be bounded by Lemmas 2 and 5 as follows:

∥w̃L∥2
∥∥∥f̃L−1−fL−1

∥∥∥
2

≤
(∥∥∥w[1]

L

∥∥∥
2
+
∥∥∥w̃L−w

[1]
L

∥∥∥
2

)(∥∥∥f̃L−1−f
[1]
L−1

∥∥∥
2
+
∥∥∥fL−1−f

[1]
L−1

∥∥∥
2

)
≤(3+τ)2e6CLip(CLip+Cfmax)τ .
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The second term can be bounded by Lemmas 3 to 5 with ρ≤1 as follows:

β
∥∥∥f̂L−1−fL−1

∥∥∥
2
∥w̃L−wL∥2

≤β
(∥∥∥f [1]

L−1−fL−1

∥∥∥
2
+
∥∥∥f̂L−1−f̂

[1]
L−1

∥∥∥
2
+
∥∥∥f [1]

L−1−f̂
[1]
L−1

∥∥∥
2

)(∥∥∥wL−w
[1]
L

∥∥∥
2
+
∥∥∥w̃L−w

[1]
L

∥∥∥
2

)
≤βe6CLip(CLip+Cfmax)(2τ+3ρ)2τ .

(8)

The third term can be bounded by Lemmas 2 and 3 as follows:

(1−β)

∣∣∣∣∣
L−1∑
l=1

〈
∇Wl

f,W̃l−Wl

〉∣∣∣∣∣
=(1−β)

∣∣∣∣∣
L−1∑
l=1

[
w⊤

L

L−1∏
r=l+1

(DrWr+αr−1Im×m)Dl(W̃l−Wl)fl−1

]∣∣∣∣∣
≤(1−β)

L−1∑
l=1

[
∥wL∥2

L−1∏
r=l+1

(∥Dr∥2∥Wr∥2+1)∥Dl∥2
∥∥∥W̃l−Wl

∥∥∥
2
∥fl−1∥2

]

≤(1−β)

L−1∑
l=1

CLip(3+τ)Cfmax(
CLip

L
(3+τ)+1)L−l−1τ

≤(1−β)Cfmaxe
6CLipτ .

(9)

Similarly, the fourth term can be upper bounded by βCfmaxe
6CLipτ . Plugging back Eq. (7) yields:∣∣∣f(x,W̃ )−f(x,W )−

〈
(1−β)∇W f+β∇W f̂ ,W̃−W

〉∣∣∣
≤(3+τ)2e6CLip(CLip+Cfmax)τ+βe6CLip(CLip+Cfmax)(2τ+3ρ)2τ +Cfmaxe

6CLipτ

≤18e6CLip(1+β)(CLip+Cfmax)τ .

which completes the proof of the first inequality in the lemma. Next, we prove the second inequality in
the lemma following the same method.∣∣∣ ˜̂f−f̂−

〈
(1−β)∇W f̂+β∇W f̂ ,W̃−W

〉∣∣∣
=

∣∣∣∣∣〈w̃L,
˜̂
fL−1

〉
−
〈
wL,f̂L−1

〉
−

L∑
l=1

〈
(1−β)∇Wlf+β∇Wl f̂ ,W̃l−Wl

〉∣∣∣∣∣
=

∣∣∣∣∣〈w̃L,
˜̂
fL−1−f̂L−1

〉
+
〈
f̂L−1,w̃L−wL

〉
−

L−1∑
l=1

〈
(1−β)∇Wlf+β∇Wl f̂ ,W̃l−Wl

〉
−
〈
(1−β)fL−1+βf̂L−1,w̃L−wL

〉∣∣∣
≤∥w̃L∥2

∥∥∥ ˜̂fL−1−f̂L−1

∥∥∥
2
+(1−β)

∥∥∥fL−1−f̂L−1

∥∥∥
2
∥w̃L−wL∥2

+

∣∣∣∣∣
L−1∑
l=1

〈
(1−β)∇Wlf,W̃l−Wl

〉∣∣∣∣∣+
∣∣∣∣∣
L−1∑
l=1

〈
β∇Wl f̂ ,W̃l−Wl

〉∣∣∣∣∣
≤(3+τ)2e6CLip(CLip+Cfmax)τ+(1−β)e6CLip(CLip+Cfmax)(2τ+3ρ)2τ +Cfmaxe

6CLipτ

≤18e6CLip(2−β)(CLip+Cfmax)τ ,

(10)

Lemma 7. There exists an absolute constant C1 such that, for any ϵ>0 and any W ,W̃ ∈B(W [1],τ)
with τ ≤ C1ϵ(β+1)−1(CLip+Cfmax)

−1e−6CLip , with probability at least 1−2Lexp(−m/2)− δ,
when the width satisfies m=Ω(N/δ) and ρ≤1, one has:

L(x,W̃ )≥L(x,W )+
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−ϵ,

L(Aρ(x,W ),W̃ )≥L(Aρ(x,W ),W )+
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−ϵ.
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Proof. Firstly, we will prove the first inequality. Recall that the cross-entropy loss is written as
ℓ(z)=log(1+exp(−z)) and we denote by L(x,W ) :=ℓ[y ·f(x,W )]. Then one has:

L(x,W̃ )−L(x,W )

=ℓ[yf̃ ]−ℓ[yf ]

≥ℓ′[yf ]·y ·(f̃−f) (By convexity of ℓ(z)).

≥ℓ′[yf ]·y ·
〈
(1−β)∇f,W̃−W

〉
+ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉
−κ1

=
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−κ1 (By chain rule),

where we define:

κ1 :=
∣∣∣ℓ′[yf ]·y ·(f̃−f)−ℓ′[yf ]·y ·

〈
(1−β)∇f,W̃−W

〉
−ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉∣∣∣.
Thus, it suffices to show that κ1 can be upper bounded by ϵ :

κ1≤
∣∣∣ℓ′[yf ]·y{f̃−f−

〈
(1−β)∇W f+β∇W f̂ ,W ),W̃−W

〉}∣∣∣+∣∣∣{ℓ′[yf ]·y−ℓ′[yf̂ ]·y
}
β
〈
∇W f̂ ,W̃−W

〉∣∣∣
≤18e6CLip(1+β)(CLip+Cfmax)τ+2β

∣∣∣〈∇W f̂ ,W̃−W
〉∣∣∣

≤18e6CLip(1+β)(CLip+Cfmax)τ+2β

∣∣∣∣∣
L−1∑
l=1

〈
∇Wl

f(x,W ),W̃l−Wl

〉∣∣∣∣∣+2β|⟨fL−1,w̃L−wL⟩|

≤18e6CLip(1+β)(CLip+Cfmax)τ+2βCfmaxe
6CLipτ+4βCfmaxτ

≤24(1+β)e6CLip(CLip+Cfmax)τ

≤ϵ,
(11)

where the first and the third inequality is by triangle inequality, the second inequality is by Lemma 6
and the fact that |ℓ′[yf(x,W )] ·y| ≤ 1, , the fourth inequality follows the same proof as in Eqs. (8)
and (9), and the last inequality is by the condition that if τ≤C2ϵ(1+β)−1(CLip+Cfmax)

−1e−6CLip

for some absolute constant C2.

Now we will prove the second inequality of the lemma.

L(Aρ(x,W ),W̃ )−L(Aρ(x,W ),W )

=ℓ[y
˜̂
f ]−ℓ[yf̂ ]

≥ℓ′[yf̂ ]·y ·( ˜̂f−f̂) (By convexity of ℓ(z)).

≥ℓ′[yf ]·y ·
〈
(1−β)∇f,W̃−W

〉
+ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉
−κ2

=
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−κ2 (By chain rule),

where we define:

κ2 :=
∣∣∣ℓ′[yf̂ ]·y ·( ˜̂f−f̂)−ℓ′[yf ]·y ·

〈
(1−β)∇f,W̃−W

〉
−ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉∣∣∣.
Thus, it suffices to show that κ2 can be upper bounded by ϵ. Following by the same method in Eq. (11)
with Lemma 6, we have:

κ2≤18e6CLip(2−β)(CLip+Cfmax)τ+2βCfmaxe
6CLipτ+4βCfmaxτ

≤12(3−β)e6CLip(CLip+Cfmax)τ≤ϵ,

where the last inequality is by the condition that if τ ≤C3ϵ(3−β)−1(CLip+Cfmax)
−1e−6CLip for

some absolute constant C3. Lastly, setting C1=max{C2,C3} and noting that (3−β)−1<(1+β)−1

completes the proof.
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Lemma 8. For any ϵ,δ,R>0 such that δ′ :=2Lexp(−m/2)+δ∈(0,1), there exists:

m⋆=O(poly(R,L,CLip,β))·ϵ−2e12CLip log(1/δ′)

such that if m≥m⋆, then for any W ⋆ ∈B(W [1],Rm−1/2), under the following choice of step-size
γ = νϵ/[CLipC

2
fmaxmLe12CLip ] and N = L2R2CLipC

2
fmaxe

12CLip/(2ε2ν) for some small enough
absolute constant ν, the cumulative loss can be upper bounded with probability at least 1−δ′ by:

1

N

N∑
i=1

L(xi,W
[i])≤ 1

N

N∑
i=1

L(xi,W
⋆)+3ϵ,

1

N

N∑
i=1

L(Aρ(xi,W
[i]),W [i])≤ 1

N

N∑
i=1

L(Aρ(xi,W
[i]),W ⋆)+3ϵ.

Proof. We set τ = C1ϵ(1 + β)−1(CLip +Cfmax)
−1e−6CLip where C1 is a small enough absolute

constant so that the requirements on τ in Lemmas 6 and 7 can be satisfied. Let Rm−1/2≤τ , then we
obtain the condition for W ⋆∈B(W [1],τ), i.e., m≥R2C−2

1 ϵ−2(1+β)2(CLip+Cfmax)
2e12CLip . We

now show that W [1],...,W [N ] are inside B(W [1],τ) as well. The proof follows by induction. Clearly,
we have W [1]∈B(W [1],τ). Suppose that W [1],...,W [i]∈B(W [1],τ), then with probability at least
1−δ′, we have:

∥∥W [i+1]
l −W

[1]
l

∥∥
F
≤

i∑
j=1

∥∥W [j+1]
l −W

[j]
l

∥∥
F

=

i∑
j=1

γ
∥∥∥(1−β)∇Wl

L(xj ,W
[j])+β∇Wl

L(Aρ(xj ,W
[j]),W [j])

∥∥∥
F

≤γ(1−β)N
∥∥∥∇Wl

L(xj ,W
[j])
∥∥∥
F
+γβN

∥∥∥∇Wl
L(Aρ(xj ,W

[j]),W [j])
∥∥∥
F

≤γNCLip∥wL∥2∥fl−1∥2
L−1∏

r=l+1

(
CLip

L
∥Wr∥2+1)

∥∥∥W̃l−Wl

∥∥∥
F

≤γNCLip(3+τ)Cfmax(
CLip

L
(3+τ)+1)L−l−1

≤6γNCLipCfmaxe
6CLip .

Plugging in our parameter choice for γ and N leads to:∥∥W [i+1]
l −W

[1]
l

∥∥
F
≤3CLipCfmaxe

6CLipLR2ϵ−1m−1≤τ ,

where the last inequality holds as long asm≥3CLipCfmaxe
12CLipLR2C−1

1 ϵ−2. Therefore by induction
we see that W [1],...,W [N ]∈B(W [1],τ). Now, we are ready to prove the first inequality in the lemma.
We provide an upper bound for the cumulative loss as follows:

L(xi,W
[i])−L(xi,W

⋆)

≤
〈
(1−β)∇WL(xi,W

[i])+β∇WL(Aρ(xi,W
[i]),W [i]),W [i]−W ⋆

〉
+ϵ (By Lemma 7)

=

〈
W [i]−W [i+1],W [i]−W ⋆

〉
γ

+ϵ

=
∥W [i]−W [i+1]∥2F+∥W [i]−W ⋆

l ∥2F−∥W [i+1]−W ⋆∥2F
2γ

+ϵ

=
∥W [i]−W ⋆∥2F−∥W [i+1]−W ⋆∥2F+γ2

∥∥(1−β)∇WL(xi,W
[i])+β∇WL(Aρ(xi,W

[i]),W [i])
∥∥2
F

2γ
+ϵ

≤ ∥W [i]−W ⋆∥2F−∥W [i+1]−W ⋆∥2F
2γ

+
62γ2C2

LipC
2
fmaxe

12CLip

2γ
+ϵ.
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Telescoping over i=1,...,N , we obtain:

1

N

N∑
i=1

L(xi,W
[i])

≤ 1

N

N∑
i=1

L(xi,W
⋆)+

∥W (1)−W ⋆∥2F
2Nγ

+18γC2
LipC

2
fmaxe

12CLip+ϵ

≤ 1

N

N∑
i=1

L(xi,W
⋆)+

LR2

2γmN
+18γC2

LipC
2
fmaxe

12CLip+ϵ

≤ 1

N

N∑
i=1

L(xi,W
⋆)+3ϵ,

where in the first inequality we simply remove the term −∥W [N+1]−W ⋆∥2F/(2γ) to obtain an upper
bound, the second inequality follows by the assumption that W ⋆ ∈ B(W [1],Rm−1/2), the third
inequality is by the parameter choice of γ and N . Lastly, we denote δ′ :=2Lexp(−m/2)+δ∈(0,1),
which requiresm≥ Ω̃(1) satisfied by takingm=Ω(N/δ). One can follow the same procedure to prove
the second inequality in the lemma that is based on Lemma 7.

C.2 PROOF OF THEOREM 1

Proof. Since W̄ is uniformly sampled from {W [1], ··· ,W [N ]}, by Hoeffding’s inequality, with
probability at least 1−δ′′:

EW̄ (Lclean
0−1 (W̄ ))≤ 1

N

N∑
i=1

1
[
yi ·f(xi,W

[i])<0
]
+

√
2log(1/δ′′)

N
. (12)

Since the cross-entropy loss ℓ(z)=log(1+exp(−z)) satisfies 1{z≤0}≤4ℓ(z), we have:

1
[
yi ·f(xi,W

[i])<0
]
≤4L(xi,W

[i]), (13)

with L(xi,W
[i]) :=ℓ(yi ·f(xi,W

[i])). Next, setting ϵ=LR
√
CLipCfmaxe

6CLip/
√
2νN in Lemma 8

leads to step-size γ =
√
νR/(

√
2CLipCfmaxe

6CLipm
√
N), then by combining it with Eqs. (12)

and (13), with probability at least 1−δ′−δ′′, we have:

EW̄

(
Lclean
0−1 (W̄ ))

)
≤ 4

N

N∑
i=1

(L(xi,W
⋆))+

12√
2ν

· LR√
N

+

√
2log(1/δ′′)

N
, (14)

for all W ⋆∈B(W [1],Rm−1/2).

Define the linearized network around initialization W [1] as
FW [1],W ⋆(x) :=f(x,W [1])+⟨(1−β)∇fW (x,W [1])+β∇fW (A∗

ρ(x,W
[1]),W [1]),W ⋆−W [1]⟩.

(15)

We now compare the loss induced by the original network with its linearized network:

L(xi,W
⋆)−ℓ(yi ·FW [1],W ⋆(xi))=ℓ(yi ·f(xi,W

⋆))−ℓ(yi ·FW [1],W ⋆(xi))

≤yi(f(xi,W
⋆)−FW [1],W ⋆(xi))≤18e6CLip(1+β)(CLip+Cfmax)Rm−1/2≤LRN−1/2,

where the first inequality is by the 1-Lipschitz continuity of ℓ, the second inequality is by Lemma 6
with Rm−1/2 ≤ 3, i.e., m≥R2/9, the third inequality holds when m≥ 182e12CLip(1+β)2(CLip+
Cfmax)

2NL−2. Plugging the inequality above back to Eq. (14), we obtain:

EW̄

(
L0−1
D (W̄ )

)
≤ 4

N

N∑
i=1

ℓ(yi ·FW [1],W ⋆(xi))+(
12√
2ν

+1)· LR√
N

+

√
2log(1/δ′′)

N
. (16)

Next, we will upper bound the RHS of the inequality above. For cross-entropy loss we have: ℓ(z)≤
N−1/2 for z≥B :=log{1/[exp(N−1/2)−1]}=O(logN). We define:

B′=max
i∈[N ]

|f(xi,W
[1])|, y′=(B+B′)·y.
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Then for any i∈ [N ], we have:

yi ·[y′i+f(xi,W
[1])]=yi ·[(B+B′)yi+f(xi,W

[1])]≥B+B′−B′=B.

As a result, we have:

ℓ{yi ·(y′i+f(xi,W
[1]))}≤N−1/2, i∈ [N ].

Denote by Jall :=(1−β)J+βĴ , where

J=m−1/2 ·[vec(∇fW (x1,W
[1])),...,vec(∇fW (xN ,W [1]))],

Ĵ=m−1/2 ·[vec(∇fW (A∗
ρ(x1,W

[1]),W [1])),...,vec∇fW (A∗
ρ(xN ,W [1]),W [1]))].

Let PΛQ⊤ be the singular value decomposition of Jall, where P ∈ R(md+(L−2)m2+m)×N ,Q ∈
RN×N ,Λ∈RN×N . Let us define wvec :=PΛ−1Q⊤y′, then we have:

J⊤
allwvec=QΛP⊤PΛ−1Q⊤y′=y′,

which implies ((1−β)J⊤+βĴ⊤)wvec=y′. Moreover, we have:

∥wvec∥22=
∥∥∥PΛ−1Q⊤y′

∥∥∥2
2
=y′⊤QΛ−2Q⊤y′=y′⊤(J⊤

allJall)
−1y′.

=y′⊤[(J⊤
allJall)

−1−(Kall)
−1]y′+y′⊤(Kall)

−1y′

≤N(B+B′)2∥(J⊤
allJall)

−1−(Kall)
−1∥2+(B+B′)2y′⊤(Kall)

−1y′.

(17)

By Lemma 3.8 in Cao & Gu (2019) and standard matrix perturbation bound, there exists
m⋆(δ,L,N,λmin(Jall),β) , such that, if m ≥ m⋆, then with probability at least 1− δ, J⊤

allJall is
positive-definite and

∥(J⊤
allJall)

−1−K−1
all ∥2≤

y⊤K−1
all y

N
.

Therefore, Eq. (17) can be further upper bounded by: ∥wvec∥22 ≤ Õ(y⊤K−1
all y). Plugging it back

Eq. (16), with probability at least 1−δ−δ′−δ′′, we obtain:

EW̄

(
L0−1

D (W̄ )
)
≤ 4

N

N∑
i=1

ℓ(B)+(
12√
2ν

+1)·
L∥wvec∥2√

N
+

√
log(1/δ′′)

N

≤Õ

√L2y⊤K−1
all y

N

+O

(√
log(1/δ′′)

N

)
,

which finishes the proof for generalization guarantees on clean accuracy.

In the next, we present the proof for generalization guarantees on robust accuracy. The proof technique
is the same as that of clean accuracy.

Since W̄ is uniformly sampled from {W [1],···,W [N ]}, by Hoeffding’s inequality, with probability at
least 1−δ′′:

EW̄ (Lrobust
0−1 (W̄ ))≤ 1

N

N∑
i=1

1
[
yi ·f(Aρ(xi,W

[i]),W [i])<0
]
+

√
2log(1/δ′′)

N
. (18)

Since the cross-entropy loss ℓ(z)=log(1+exp(−z)) satisfies 1{z≤0}≤4ℓ(z), we have:

1
[
yi ·f(Aρ(xi,W

[i]),W [i])<0
]
≤4L(Aρ(xi,W

[i]),W [i]). (19)

Next, setting ϵ = LR
√
CLipCfmaxe

6CLip/
√
2νN in Lemma 8 leads to step-size γ =√

νR/(
√
2CLipCfmaxe

6CLipm
√
N), then by combining it with Eqs. (18) and (19), with probabil-

ity at least 1−δ′−δ′′, we have:

EW̄

(
Lrobust
0−1 (W̄ )

)
≤ 4

N

N∑
i=1

(L(Aρ(xi,W
[i]),W ⋆))+

12√
2ν

· LR√
N

+

√
2log(1/δ′′)

N

≤ 4

N

N∑
i=1

(L(A∗
ρ(xi,W

⋆),W ⋆))+
12√
2ν

· LR√
N

+

√
2log(1/δ′′)

N
,

(20)
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for all W ⋆ ∈B(W [1],Rm−1/2), where the second inequality is by the definition of the worst-case
adversary A∗

ρ(·).
Next, we compare the loss induced by the original network with its linearized network defined in
Eq. (15):

L(A∗
ρ(xi,W

⋆),W ⋆)−ℓ(yi ·FW [1],W ⋆(A∗
ρ(xi,W

[1])))

=ℓ(yi ·f(A∗
ρ(xi,W

⋆),W ⋆))−ℓ(yi ·FW [1],W ⋆(A∗
ρ(xi,W

[1])))

≤f(A∗
ρ(xi,W

⋆),W ⋆)−FW [1],W ⋆(A∗
ρ(xi,W

[1])))

≤18e6CLip(1+β)(CLip+Cfmax)(Rm−1/2+6ρ+2Rm−1/2ρ)

≤LRN−1/2,

where the first inequality is by the 1-Lipschitz continuity of ℓ, the second inequality is by Lemmas 4
and 6 with Rm−1/2+6ρ+2Rρm−1/2≤3, i.e., m≥R(1+2ρ)/[3(1−2ρ)], the last inequality holds
when m≥ 18e6CLip(1+β)(CLip+Cfmax)R(1+ρ)2(LR/N −18e6CLip(1+β)(CLip+Cfmax))

−2.
Plugging the inequality above back to Eq. (20), we obtain:

EW̄

(
Lrobust
0−1 (W̄ )

)
≤ 4

N

N∑
i=1

ℓ(yi ·FW [1],W ⋆(A∗
ρ(xi,W

[1])))+(
12√
2ν

+1)· LR√
N

+

√
2log(1/δ′′)

N
.

(21)

Lastly, noticing that based on Eq. (15):

FW [1],W ⋆(A∗
ρ(xi,W

[1]))

=f(A∗
ρ(xi,W

[1]),W [1])+⟨(1−β)∇fW (A∗
ρ(xi,W

[1]),W [1])+β∇fW (A∗
ρ(A∗

ρ(xi,W
[1]),W [1]),W [1]),W ⋆−W [1]⟩.

Then we can define the Jacobian J̃all :=(1−β)Ĵρ+βĴ2ρ, where

Ĵρ=m−1/2 ·[vec(∇fW (A∗
ρ(x1,W

[1]),W [1])),...,vec∇fW (A∗
ρ(xN ,W [1]),W [1]))]

Ĵ2ρ=m−1/2 ·[vec(∇fW (A∗
ρ(A∗

ρ(xi,W
[1]),W [1]),W [1])),...,vec∇fW (A∗

ρ(A∗
ρ(xi,W

[1]),W [1]),W [1]))].

Lastly, by replacing Jall by J̃all as in the step on clean generalization bound, we can finish the proof.

D THE LOWER BOUND OF THE MINIMUM EIGENVALUE OF ROBUST NTK

We have shown that the minimum eigenvalue of robust NTK significantly affects both clean and robust
generalizations. Hence we provide a lower bound estimation for its minimum eigenvalue.

Assumption 3. We assume the perturbation ρ<O(C/d). For any data ⟨xi,xj⟩+2ρ+ρ2<1, in other
words,

⟨xi,xj⟩≤1−C

d
−o(1/d),∀xi,xj ,

where C is some constant independent of the number of data points N and the dimensional of the input
feature d.

Remark: For example, we can set C :=2Cmax. Here the o(1/d) means a high-order small term of 1/d
and can be omitted. This assumption holds for a large d in practice, e.g., d=796 for MNIST dataset
and d=3072 for CIFAR10/100 dataset.

Theorem 2. Under Assumption 1 and 3, we have the following lower bound estimation for the minimum
eigenvalue of K̂ρ

λmin(K̃all)≥2µr(σ1)
2

(
1−(N−1)max

i ̸=j
(|⟨xi,xj⟩|+2ρ+ρ2)r

)
.

where µ(σ) is r-Hermite coefficient of the activation at the first layer.
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Proof.

λmin(K̂ρ)≥λmin

(
2Ew∼N (0,Id)[σ1(X̂w)σ1(X̂w)⊤]

)
=2λmin

( ∞∑
s=0

µs(σ1)
2⃝s

i=1(X̂X̂⊤)

)
(Nguyen & Mondelli, 2020, Lemma D.3)

≥2µr(σ1)
2λmin(⃝r

i=1X̂X̂⊤)

(
taking r≥−logN−1

maxi̸=j(|⟨xi,xj⟩|+2ρ+ρ2)

)
≥2µr(σ1)

2

(
min
i∈[N ]

∥x̂i∥2r2 −(N−1)max
i ̸=j

|⟨x̂i,x̂j⟩|r
)

(Gershgorin circle theorem)

≥2µr(σ1)
2

(
1−(N−1)max

i ̸=j
(|⟨xi,xj⟩|+|⟨xi,∆j⟩|+|⟨xj ,∆i⟩|+|⟨∆i,∆j⟩|)r

)
≥2µr(σ1)

2

(
1−(N−1)max

i ̸=j
(|⟨xi,xj⟩|+2ρ+ρ2)r

)
.

E PROOF OF THE GENERALIZATION OF RESIDUAL CNN

In this section, we provide proof for residual CNN. Firstly, we reformulate the network in Appendix E.1.
Secondly, we introduce several lemmas in Appendix E.2 in order to show the upper bound for the
cumulative loss (Lemma 14). The remaining step is the same as FCNN.

E.1 REFORMULATION OF THE NETWORK

Firstly, we will rewrite the definition of CNN in Eq. (2) in a way to facilitate the proof. Specifically, we
define an operator ϕ1(·) that divides its input into p patches. The dimension of each patch is kd. For
example, when the size of filter k=3, we have:

ϕ1(X)=


(
X(1,0:2)

)⊤
, ... ,

(
X(1,p−1:p+1)

)⊤
..., ..., ...(

X(d,0:2)
)⊤

, ...,
(
X(d,p−1:p+1)

)⊤
∈R3d×p.

Similarly, we define ϕl(Fl)∈Rκm×p for the subsequent layers. Then we can re-write the formula of
CNN as follows:

F1=σ1(W1ϕ1(X)),

Fl=
1

L
σl(Wlϕl(Fl−1))+αl−1Fl−1, 2≤ l≤L−1,

FL=⟨WL,FL−1⟩,
f(X,W )=FL,

where learnable weights are W1∈Rm×kd, Wl∈Rm×κm, l=2,...,L−1, and WL∈Rm×p.

E.2 SOME AUXILIARY LEMMAS

Lemma 9 (Upper bound of spectral norms of initial weight). With probability at least 1 −
2exp(−m/2)−2(L−2)exp(−κm/2)−2pexp(−m/2), the norm of the weight of residual CNN has
the following upper bound:

∥W [1]
l ∥2≤3,for l∈ [L−1], ∥W [1]

L ∥F≤3
√
p.

Proof. The bound of ∥W [1]
l ∥2,for l∈ [L−1] can be obtained by directly applying Lemma 2. Regarding

∥W [1]
L ∥F, note that W [1]

L ∈Rm×p, then we bound its norm by Lemma 2 as follows∥∥∥W [1]
L

∥∥∥
F
=

√√√√ p∑
i=1

∥∥∥(W [1]
L )(:,i)

∥∥∥2
2
≤3

√
p,
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with probability at least 1−2pexp(−m/2) .

Lemma 10 (The order of the network output at initialization). Fix any l∈ [1,L−1] and X , when the
width satisfies m=Ω(p2N/δ), with probability at least 1−2lexp(−m/2)−δ over the randomness of
{W [1]

i }li=1, we have:

Cfmin≤
∥∥∥Fl(X,W [1])

∥∥∥
F
≤Cfmax,

where Cfmax and Cfmax are some Θ(1) constant.

Proof. The result can be obtained by simply applying Lemma 2 for the initial weights and Lemma D.1
in Du et al. (2019a).

Lemma 11. For W̃ ∈B(W [1],τ) with τ≤3, when the width satisfies m=Ω(p2N/δ) and ρ≤1, with
probability at least 1−2(L−1)exp(−κm/2)−δ, one has:∥∥∥FL−1(X,W̃ )−FL−1(X,W [1])

∥∥∥
F
≤e6CLip

√
κ(
√
κCLip+Cfmax)τ .

Proof. To simplify the notation, in the following proof, the variable with ·̃ is related to W̃ , and without
·̃ is related to W [1]. For the output of the first layer, we have:∥∥∥F̃1−F1

∥∥∥
F
=
∥∥∥σ1(W̃1ϕ1(X))−σ1(W1ϕ1(X))

∥∥∥
F
≤CLip

∥∥∥W̃1−W1

∥∥∥
F
∥ϕ1(X)∥F

≤CLip

∥∥∥W̃1−W1

∥∥∥
F

√
κ∥X∥F≤τ

√
κCLip.

For the l-th layer (l∈{2,3,...,L−1}), we have:∥∥∥F̃l−Fl

∥∥∥
F

=

∥∥∥∥ 1Lσl(W̃lϕl(F̃l−1))+αl−1F̃l−1−
1

L
σl(Wlϕl(Fl−1))−αl−1Fl−1

∥∥∥∥
F

≤
∥∥∥∥ 1Lσl(W̃lϕl(F̃l−1))−

1

L
σl(Wlϕl(Fl−1))

∥∥∥∥
F

+αl−1

∥∥∥F̃l−1−Fl−1

∥∥∥
F

(By Triangle inequality)

≤ CLip

L

∥∥∥W̃lϕl(F̃l−1)−Wlϕl(Fl−1)
∥∥∥
F
+
∥∥∥F̃l−1−Fl−1

∥∥∥
F

(By the Lipschitz continuity of σl)

≤ CLip

L

{
∥Wl∥2

∥∥∥ϕl(F̃l−1)−ϕl(Fl−1)
∥∥∥
F
+
∥∥∥W̃l−Wl

∥∥∥
2

∥∥∥ϕl(F̃l−1)
∥∥∥
F

}
+
∥∥∥F̃l−1−Fl−1

∥∥∥
F

≤ CLip

L

√
κ
{
∥Wl∥2

∥∥∥F̃l−1−Fl−1

∥∥∥
F
+
∥∥∥W̃l−Wl

∥∥∥
2

∥∥∥F̃l−1

∥∥∥
F

}
+
∥∥∥F̃l−1−Fl−1

∥∥∥
F

≤
(
CLip

L

√
κ(∥Wl∥2+τ)+1

)∥∥∥F̃l−1−Fl−1

∥∥∥
F
+
CLip

L

√
κτ∥Fl−1∥F.

Therefore, by applying the inequality recursively and Lemmas 2 and 10, with probability at least
1−2(L−1)exp(−m/2)−δ, we have:∥∥∥F̃L−1−FL−1

∥∥∥
F

≤ [
CLip

L

√
κ(3+τ)+1]

∥∥∥F̃L−2−FL−2

∥∥∥
F
+
CLip

L

√
κτCfmax (By Lemmas 2 and 10)

≤ [
CLip

L

√
κ(3+τ)+1]L−2

∥∥∥F̃1−F1

∥∥∥
F
+

L−3∑
i=0

[
CLip

L

√
κ(3+τ)+1]i

CLip

L

√
κτCfmax (By recursion)

≤(6
CLip

L

√
κ+1)L−2τ

√
κCLip+

L−3∑
i=0

(6
CLip

L

√
κ+1)i

CLip

L

√
κτCfmax

≤e6CLip
√
κ(
√
κCLip+Cfmax)τ .
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Lemma 12. For W ,W̃ ∈B(W [1],τ) with τ ≤3, when the width satisfies m=Ω(p2N/δ) and ρ≤1,
with probability at least 1−2exp(−m/2)−2(L−2)exp(−κm/2)−2pexp(−m/2)−δ, we have:∣∣∣f(X,W̃ )−f(X,W )−f(x,W )−

〈
(1−β)∇W f(x,W )+β∇W f(Aρ(x,W ),W ),,W̃−W

〉∣∣∣
≤18

√
pe6CLip

√
κ(1+β)(

√
κCLip+Cfmax)τ ,∣∣∣f(Aρ(x,W ),W̃ )−f(Aρ(x,W ),W )−

〈
(1−β)∇W f(x,W )+β∇W f(Aρ(x,W ),W ),W̃−W

〉∣∣∣
≤18

√
pe6CLip

√
κ(2−β)(

√
κCLip+Cfmax)τ .

Proof. To simplify the notation, in the following proof, the variable with ·̃ is related to W̃ , and without
·̃ is related to W . Then, let us prove the first inequality.∣∣∣f̃−f−

〈
(1−β)∇W f+β∇W f̂ ,W̃−W

〉∣∣∣
=

∣∣∣∣∣〈w̃L,f̃L−1

〉
−⟨wL,fL−1⟩−

L∑
l=1

〈
(1−β)∇Wl

f+β∇Wl
f̂ ,W̃l−Wl

〉∣∣∣∣∣
=

∣∣∣∣∣〈w̃L,f̃L−1−fL−1

〉
+⟨fL−1,w̃L−wL⟩−

L−1∑
l=1

〈
(1−β)∇Wl

f+β∇Wl
f̂ ,W̃l−Wl

〉
−
〈
(1−β)fL−1+βf̂L−1,w̃L−wL

〉∣∣∣
≤∥w̃L∥2

∥∥∥f̃L−1−fL−1

∥∥∥
2
+β
∥∥∥fL−1−f̂L−1

∥∥∥
2
∥w̃L−wL∥2

+

∣∣∣∣∣
L−1∑
l=1

〈
(1−β)∇Wl

f,W̃l−Wl

〉∣∣∣∣∣+
∣∣∣∣∣
L−1∑
l=1

〈
β∇Wl

f̂ ,W̃l−Wl

〉∣∣∣∣∣.

(22)

The first term can be bounded by Lemmas 2 and 11 as follows:

∥w̃L∥2
∥∥∥f̃L−1−fL−1

∥∥∥
2

≤
(∥∥∥w[1]

L

∥∥∥
2
+
∥∥∥w̃L−w

[1]
L

∥∥∥
2

)(∥∥∥f̃L−1−f
[1]
L−1

∥∥∥
2
+
∥∥∥fL−1−f

[1]
L−1

∥∥∥
2

)
≤(3

√
p+τ)2e6CLip

√
κ(
√
κCLip+Cfmax)τ .

The second term can be bounded by Lemmas 3, 4 and 11 with ρ≤1 as follows:

β
∥∥∥f̂L−1−fL−1

∥∥∥
2
∥w̃L−wL∥2

≤β
(∥∥∥f [1]

L−1−fL−1

∥∥∥
2
+
∥∥∥f̂L−1−f̂

[1]
L−1

∥∥∥
2
+
∥∥∥f [1]

L−1−f̂
[1]
L−1

∥∥∥
2

)(∥∥∥wL−w
[1]
L

∥∥∥
2
+
∥∥∥w̃L−w

[1]
L

∥∥∥
2

)
≤βe6CLip

√
κ(
√
κCLip+Cfmax)(2τ+3ρ)2τ .

(23)

The third term can be bounded by Lemmas 2 and 10 as follows:

(1−β)

∣∣∣∣∣
L−1∑
l=1

〈
∇Wl

f,W̃l−Wl

〉∣∣∣∣∣
≤(1−β)

L−1∑
l=1

CLip∥WL∥F∥ϕl(Fl−1)∥F
L−1∏

r=l+1

(
CLip

L

√
κ∥Wr∥2+1)

∥∥∥W̃l−Wl

∥∥∥
F

≤(1−β)

L−1∑
l=1

CLip(3
√
p+τ)κCfmax(

CLip

L

√
κ(3+τ)+1)L−l−1τ

≤(1−β)
√
pCfmaxe

6
√
κCLipτ.

(24)
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Similarly, the fourth term can be upper bounded by β
√
pCfmaxe

6
√
κCLipτ . Plugging back Eq. (22)

yields:∣∣∣f(x,W̃ )−f(x,W )−
〈
(1−β)∇W f+β∇W f̂ ,W̃−W

〉∣∣∣
≤(3

√
p+τ)2e6

√
κCLip(

√
κCLip+Cfmax)τ+βe6

√
κCLip(

√
κCLip+Cfmax)(2τ+3ρ)2τ +

√
pCfmaxe

6
√
κCLipτ

≤18
√
pe6

√
κCLip(1+β)(

√
κCLip+Cfmax)τ ,

which completes the proof of the first inequality in the lemma. The second inequality can be proved by
the same method as in Lemma 6.

Lemma 13. There exists an absolute constant C1 such that, for any ϵ>0 and any W ,W̃ ∈B(W [1],τ)

with τ ≤ C1ϵ(
√
κCLip +Cfmax)

−1p−1/2e−6CLip
√
κ, with probability at least 1− 2exp(−m/2)−

2(L−2)exp(−κm/2)−2pexp(−m/2)−δ, one has:

L(x,W̃ )≥L(x,W )+
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−ϵ,

L(Aρ(x,W ),W̃ )≥L(Aρ(x,W ),W )+
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−ϵ.

Proof. Firstly, we will prove the first inequality. Recall that the cross-entropy loss is written as
ℓ(z)=log(1+exp(−z)) and we denote by L(x,W ) :=ℓ[y ·f(x,W )]. Then one has:

L(x,W̃ )−L(x,W )

=ℓ[yf̃ ]−ℓ[yf ]

≥ℓ′[yf ]·y ·(f̃−f) (By convexity of ℓ(z)).

≥ℓ′[yf ]·y ·
〈
(1−β)∇f,W̃−W

〉
+ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉
−κ1

=
〈
(1−β)∇WL(x,W )+β∇WL(Aρ(x,W ),W ),W̃−W

〉
−κ1 (By chain rule),

where we define:

κ1 :=
∣∣∣ℓ′[yf ]·y ·(f̃−f)−ℓ′[yf ]·y ·

〈
(1−β)∇f,W̃−W

〉
−ℓ′[yf̂ ]·y ·

〈
β∇f̂ ,W̃−W

〉∣∣∣.
Thus, it suffices to show that κ1 can be upper bounded by ϵ :

κ1≤
∣∣∣ℓ′[yf ]·y{f̃−f−

〈
(1−β)∇W f+β∇W f̂ ,W ),W̃−W

〉}∣∣∣+∣∣∣{ℓ′[yf ]·y−ℓ′[yf̂ ]·y
}
β
〈
∇W f̂ ,W̃−W

〉∣∣∣
≤18

√
pe6

√
κCLip(1+β)(

√
κCLip+Cfmax)τ+2β

∣∣∣〈∇W f̂ ,W̃−W
〉∣∣∣

≤18
√
pe6

√
κCLip(1+β)(

√
κCLip+Cfmax)τ+2β

∣∣∣∣∣
L−1∑
l=1

〈
∇Wl

f(x,W ),W̃l−Wl

〉∣∣∣∣∣+2β|⟨fL−1,w̃L−wL⟩|

≤18
√
pe6

√
κCLip(1+β)(

√
κCLip+Cfmax)τ+2β

√
pCfmaxe

6
√
κCLipτ+4βCfmaxτ

≤24
√
p(1+β)e6κCLip(κCLip+Cfmax)τ

≤ϵ,
(25)

where the first and the third inequality is by triangle inequality, the second inequality is by Lemma 12
and the fact that |ℓ′[yf(x,W )] ·y|≤1, , the fourth inequality follows the same proof as in Eqs. (23)
and (24), and the last inequality is by the condition that if τ ≤ C2ϵ(1 + β)−1p−1/2(

√
κCLip +

Cfmax)
−1e−6CLip

√
κ for some absolute constant C2. Following the same method in Lemma 7, we

can prove the second inequality if τ ≤C3ϵ(3−β)−1p−1/2(
√
κCLip+Cfmax)

−1e−6
√
κCLip for some

absolute constant C3. Lastly, setting C1 = max{C2,C3} and noting that (3− β)−1 < (1 + β)−1

completes the proof.
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Lemma 14. For any ϵ,δ,R>0, there exists: m⋆=O(poly(R,L,k,CLip,p,β))·ϵ−2e12CLip
√
κlog(1/δ)

such that if m≥m⋆, then for any W ∗ ∈B(W [1],Rm−1/2), under the following choice of step-size
γ = νϵ/[CLippkC

2
fmaxmLe12CLip

√
κ] and iterations N = L2R2CLippkC

2
fmaxe

12CLip
√
κ/(2ε2ν) for

some small enough absolute constant ν, the cumulative loss can be upper bounded with probability at
least 1−δ by:

1

N

N∑
i=1

L(xi,W
[i])≤ 1

N

N∑
i=1

L(xi,W
⋆)+3ϵ,

1

N

N∑
i=1

L(Aρ(xi,W
[i]),W [i])≤ 1

N

N∑
i=1

L(Aρ(xi,W
[i]),W ⋆)+3ϵ.

Proof. We set τ =C1(1+β)−1ϵ(
√
κCLip+Cfmax)

−1p−1/2e−6CLip
√
κ where C1 is a small enough

absolute constant so that the requirements on τ in Lemmas 12 and 13 can be satisfied.

We set τ =C1ϵ(1+β)−1(CLip+Cfmax)
−1e−6CLip where C1 is a small enough absolute constant so

that the requirements on τ in Lemmas 6 and 7 can be satisfied. Let Rm−1/2≤τ , then we obtain the
condition for W ⋆ ∈ B(W [1],τ), i.e., m≥R2C−2

1 ϵ−2(1+β)2p(
√
κCLip+Cfmax)

2e12CLip
√
κ. We

now show that W [1],...,W [N ] are inside B(W [1],τ) as well. The proof follows by induction. Clearly,
we have W [1]∈B(W [1],τ). Suppose that W [1],...,W [i]∈B(W [1],τ), then with probability at least
1−δ′, we have:∥∥W [i+1]

l −W
[1]
l

∥∥
F
≤

i∑
j=1

∥∥W [j+1]
l −W

[j]
l

∥∥
F

=

i∑
j=1

γ
∥∥∥(1−β)∇Wl

L(xj ,W
[j])+β∇Wl

L(Aρ(xj ,W
[j]),W [j])

∥∥∥
F

≤γ(1−β)N
∥∥∥∇Wl

L(xj ,W
[j])
∥∥∥
F
+γβN

∥∥∥∇Wl
L(Aρ(xj ,W

[j]),W [j])
∥∥∥
F

≤γNCLip∥WL∥F∥ϕl(Fl−1)∥F
L−1∏

r=l+1

(
CLip

L

√
k∥Wr∥2+1)

∥∥∥W̃l−Wl

∥∥∥
F

≤γNCLip(3
√
p+τ)

√
kCfmax

(
CLip

L

√
k(3+τ)+1

)L−l−1

≤6γNCLip
√
pκCfmaxe

6
√
κCLip .

Plugging in our parameter choice for γ and N leads to:∥∥W [i+1]
l −W

[1]
l

∥∥
F
≤3CLip

√
pκCfmaxe

6
√
κCLipLR2ϵ−1m−1≤τ ,

where the last inequality holds as long as m≥3CLip
√
pκCfmaxe

12
√
κCLipLR2C−1

1 ϵ−2. Therefore by
induction we see that W [1],...,W [N ]∈B(W [1],τ). Now, we are ready to prove the first inequality in
the lemma. We provide an upper bound for the cumulative loss as follows:

L(xi,W
[i])−L(xi,W

⋆)

≤
〈
(1−β)∇WL(xi,W

[i])+β∇WL(Aρ(xi,W
[i]),W [i]),W [i]−W ⋆

〉
+ϵ (By Lemma 7)

=

〈
W [i]−W [i+1],W [i]−W ⋆

〉
γ

+ϵ

=
∥W [i]−W [i+1]∥2F+∥W [i]−W ⋆

l ∥2F−∥W [i+1]−W ⋆∥2F
2γ

+ϵ

=
∥W [i]−W ⋆∥2F−∥W [i+1]−W ⋆∥2F+γ2

∥∥(1−β)∇WL(xi,W
[i])+β∇WL(Aρ(xi,W

[i]),W [i])
∥∥2
F

2γ
+ϵ

≤ ∥W [i]−W ⋆∥2F−∥W [i+1]−W ⋆∥2F
2γ

+
62γ2C2

LippκC
2
fmaxe

12
√
κCLip

2γ
+ϵ.
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Telescoping over i=1,...,N , we obtain:

1

N

N∑
i=1

L(xi,W
[i])

≤ 1

N

N∑
i=1

L(xi,W
⋆)+

∥W (1)−W ⋆∥2F
2Nγ

+18γC2
LippκC

2
fmaxe

12
√
κCLip+ϵ

≤ 1

N

N∑
i=1

L(xi,W
⋆)+

LR2

2γmN
+18γC2

LippκC
2
fmaxe

12
√
κCLip+ϵ

≤ 1

N

N∑
i=1

L(xi,W
⋆)+3ϵ,

where in the first inequality we simply remove the term −∥W [N+1]−W ⋆∥2F/(2γ) to obtain an upper
bound, the second inequality follows by the assumption that W ⋆ ∈ B(W [1],Rm−1/2), the third
inequality is by the parameter choice of γ and N . One can follow the same procedure to prove the
second inequality in the lemma that is based on Lemma 13.

F ADDITIONAL EXPERIMENTS

F.1 CORRELATION BETWEEN FGSM-NTK AND PGD-NTK SCORES AND ACCURACY

We present a comprehensive analysis of the correlation between NTK scores and accuracy in Figure 6.
The following 10 NTKs are selected: clean NTK, robust NTK with ρ∈{3/255,8/255} subjected to
FGSM/PGD attack, the corresponding robust twice NTK subjected to FGSM/PGD attack. The result
demonstrates that robust NTK has a higher correlation compared with standard NTK under adversarial
training. Moreover, our analysis indicates a general trend wherein NTKs with FGSM attacks display
a higher correlation with accuracy than those subjected to PGD attacks. These results suggest that
employing NTKs with FGSM attacks is preferable for guiding robust architecture searches.
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Figure 6: Spearman coefficient between NTK-score, and various metrics. The label with subscript ρ in
the x-axis indicates the score w.r.t the robust NTK while the one with subscript ρ indicates the score
w.r.t the twice robust NTK.
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F.2 EVALUATION RESULTS ON NAS APPROACHES

In Table 7, we provide additional evaluation results on NAS approaches, e.g., AdvRush (Mok et al.,
2021), KNAS (Xu et al., 2021), EigenNAS (Zhu et al., 2022a), NASI (Shu et al., 2022), NASWOT (Mel-
lor et al., 2021). For KNAS, we use the data with PGD attack to construct the kernel. We follow the
same set-up in Xu et al. (2021) to efficiently compute the NTK. Specifically, we randomly select 50
samples and estimate the minimum eigenvalue of NTK by its Frobenius norm. Similarly, in EigenNAS,
we choose the trace of the NTK as proposed in Zhu et al. (2022a). Regarding NASI, NASWOT, and
AdvRush, we use the official open-source implementation to produce the result. For DARTS, we use
the first-order implementation, i.e., DARTS-V1, from the library of Dong & Yang (2020).

F.3 GRADIENT OBFUSCATION IN SPARSE AND DENSE ARCHITECTURES

Originally pointed out by Athalye et al. (2018), gradient obfuscation is a cause for the overestimated
robustness of several adversarial defense mechanisms, e.g., parametric noise injection defense (He
et al., 2019) and ensemble defenses (Gao et al., 2022). Such gradient obfuscation might exist in
the defense of several dense or sparse architectures (Kundu et al., 2021). In this work, we employ
vanilla adversarial training as a defense approach, which does not suffer from gradient obfuscation, as
originally demonstrated in (Athalye et al., 2018). Given the huge considered search space with 6466
architectures, we investigate whether the sparsity of the architecture design might have an impact on
gradient obfuscation. Specifically, based on the search space in Figure 1, we group all architectures in
terms of the number of operators “Zeroize”, which can represent the sparsity of the network. Next,
we select the one with the highest robust accuracy in each group and check whether this optimal
architecture satisfies the characteristics of non-gradient obfuscation in Table 4.

Table 4: Characteristics of non-gradient obfuscation Athalye et al. (2018).

a) One-step attack performs worse than iterative attacks.
b) Black-box attacks perform worse than white-box attacks.
c) Unbounded attacks fail to obtain 100% attack success rate.
d) Increasing the perturbation radius ρ does not increase the attack success rate.
e) Adversarial examples can not be found by random sampling if gradient-based attacks do not.

Table 5 presents the evaluation result of these architectures under FGSM, Square Attack, and PGD
attack with varying radius. We can see that all of these architectures clearly satisfy a), c), d). Regarding
e), all of the networks still satisfy it because gradient-based attacks can find adversarial examples.
For b), only the sparse network with 4 “Zeroize” does not satisfy. Therefore, we can see that these
architectures can be considered without suffering gradient obfuscation, which is consistent with the
original conclusion for adversarial training in (Athalye et al., 2018).

Table 5: Testing of gradient obfuscation for architectures with different sparsity.

Number of
“Zeroize” Clean FGSM

(3/255)
Square
(3/255)

PGD
(3/255)

PGD
(8/255)

PGD
(16/255)

PGD
(32/255)

PGD
(64/255)

PGD
(128/255)

PGD
(255/255)

0 0.7946 0.6975 0.6929 0.6924 0.4826 0.1774 0.0083 0.0000 0.0000 0.0000
1 0.7928 0.6933 0.6884 0.6874 0.4798 0.1744 0.0077 0.0000 0.0000 0.0000
2 0.7842 0.6832 0.6786 0.6779 0.4711 0.1739 0.0080 0.0000 0.0000 0.0000
3 0.7456 0.6515 0.6482 0.6472 0.4442 0.1599 0.0079 0.0000 0.0000 0.0000
4 0.5320 0.4560 0.4427 0.4528 0.3191 0.1393 0.0193 0.0010 0.0000 0.0000

F.4 ROBUSTNESS TOWARDS DISTRIBUTION SHIFT

To make the benchmark more comprehensive in a realistic setting, we evaluate each architecture in
the search space under distribution shift. We choose CIFAR-10-C (Hendrycks & Dietterich, 2019),
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Figure 7: Boxplots for accuracy under various corruptions and severity levels (1 and 5) of all 6466
architectures in the considered search space. Red line indicates the accuracy of a random guess.

Table 6: Spearman coefficient between various accuracies on CIFAR-10-C and adversarial robust
accuracy on CIFAR-10. We can see that the adversarial robust accuracy has a relatively high correlation
with all corruptions except for contrast corruptions.

PGD 3/255 FGSM 3/255 PGD 8/255 FGSM 8/255

Shot noise 0.984 0.984 0.965 0.968
Motion blur 0.990 0.990 0.980 0.982

Snow 0.995 0.995 0.989 0.990
Pixelate 0.996 0.996 0.984 0.988

Gaussian noise 0.981 0.981 0.961 0.965
Defocus blur 0.993 0.993 0.983 0.986
Brightness 0.993 0.993 0.984 0.986

Fog 0.916 0.916 0.918 0.918
Zoom blur 0.992 0.992 0.978 0.982

Frost 0.991 0.991 0.985 0.987
Glass blur 0.993 0.993 0.981 0.984

Impulse noise 0.947 0.947 0.936 0.938
Contrast -0.555 -0.555 -0.574 -0.571

Jpeg compression 0.996 0.997 0.984 0.987
Elastic transform 0.995 0.995 0.984 0.987

which includes 15 visual corruptions with 5 different severity levels, resulting in 75 new metrics. In
Figure 7, we show the boxplots of the accuracy. All architectures are robust towards corruption with
lower severity levels. When increasing the severity levels to five, the models are no longer robust
to fog and contrast architectures. Similar to robust accuracy under FGSM and PGD attacks, we can
see a non-negligible gap between the performance of different architectures, which motivates robust
architecture design. Moreover, in Table 6, we plot the Spearman coefficient between various accuracies
under corruptions with severity level 5 on CIFAR-10-C and adversarial robust accuracy on CIFAR-10.
Interestingly, we can see that the adversarial robust accuracy has a relatively high correlation with all
corruptions except for contrast corruptions. As a result, performing NAS on the adversarially trained
architectures in the benchmark can obtain a robust guarantee of distribution shift.
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Table 7: Result of different NAS algorithms on our NAS-RobBench-201.

Method Clean FGSM
(3/255)

PGD
(3/255)

FGSM
(8/255)

PGD
(8/255)

Optimal 0.794 0.698 0.692 0.537 0.482

Clean
Regularized Evolution 0.791 0.693 0.688 0.530 0.476

Random Search 0.779 0.682 0.676 0.520 0.470
Local Search 0.796 0.697 0.692 0.533 0.478

FGSM (8/255)
Regularized Evolution 0.790 0.693 0.688 0.532 0.478

Random Search 0.774 0.679 0.674 0.521 0.471
Local Search 0.794 0.695 0.689 0.535 0.481

PGD (8/255)
Regularized Evolution 0.789 0.692 0.686 0.531 0.478

Random Search 0.771 0.676 0.671 0.520 0.471
Local Search 0.794 0.695 0.689 0.535 0.481

Train-free

KNAS 0.767 0.675 0.67 0.521 0.472
EigenNAS 0.766 0.674 0.668 0.52 0.471

NASI 0.666 0.571 0.567 0.410 0.379
NASWOT 0.766 0.674 0.668 0.52 0.471

Differentiable search AdvRush 0.587 0.492 0.489 0.352 0.330
DARTS 0.332 0.286 0.285 0.215 0.213
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Figure 8: The operators of each edge in the top-10 (average robust accuracy of PGD-3/255, PGD-8/255
FGSM-3/255 FGSM-8/255) architecture in Jung et al. (2023). We can see a notable difference from
the one present in Figure 4 in terms of architectures id and selected nodes. Additionally, the best
architecture in NAS-RobBench-201 has a higher accuracy (≈60%) than that of the best architecture
(≈30%) in Jung et al. (2023).

G LIMITATIONS

Our benchmark and theoretical results have a primary limitation, as they currently pertain exclusively
to Fully Connected Neural Networks (FCNN) and Convolutional Neural Networks (CNN), with no
exploration of their applicability to state-of-the-art vision Transformers. Furthermore, our study is
constrained by a search space encompassing only 6466 architectures, leaving room for future research
to consider a more expansive design space.

Our analysis framework could be adapted for a vision Transformer but the analysis for Transformer
is still difficult because of different training procedures and more complicated architectures. The
optimization guarantees of Transformer under a realistic setting (e.g., scaling, architecture framework)
in theory is still an open question. Secondly, similar to the NTK-based analysis in the community, we
study the neural network in the linear regime, which can not fully explain the success of practical neural
networks (Allen-Zhu et al., 2019; Yang & Hu, 2021). However, NAS can still benefit from the NTK
result. For example, the empirical NTK-based NAS algorithm allows for feature learning by taking
extra metrics (Mok et al., 2022). Additionally, though our theoretical result uses the NTK tool under
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the lazy training regime (Chizat et al., 2019), NAS can still benefit from the NTK result. For example,
the empirical NTK-based NAS algorithm allows for feature learning by taking extra metrics, see Mok
et al. (2022) for details.

H SOCIETAL IMPACT

Firstly, this work releases a NAS benchmark that includes the evaluation result of 6466 architectures
under adversarial training, which facilitates researchers to efficiently and fairly evaluate various NAS
algorithms. Secondly, this work provides the generalization guarantee for searching robust architecture
for the NAS community, which paves the way for practitioners to develop train-free NAS algorithms.
Hence, we do not expect any negative societal bias from this perspective. However, we encourage the
community to explore further the general societal bias from machine learning models into real-world
applications.
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