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Abstract

Modern deep reinforcement learning (DRL) methods have made significant advances in
handling continuous action spaces. However, real-world control systems–especially those
requiring precise and reliable performance–often demand interpretability in the sense of
a-priori assessments of agent behavior to identify safe or failure-prone interactions with
environments. To address this limitation, we propose SALSA-RL (Stability Analysis in the
Latent Space of Actions), a novel RL framework that models control actions as dynamic,
time-dependent variables evolving within a latent space. By employing a pre-trained encoder-
decoder and a state-dependent linear system, our approach enables interpretability through
local stability analysis, where instantaneous growth in action-norms can be predicted before
their execution. We demonstrate that SALSA-RL can be deployed in a non-invasive manner
for assessing the local stability of actions from pretrained RL agents without compromising
on performance across diverse benchmark environments. By enabling a more interpretable
analysis of action generation, SALSA-RL provides a powerful tool for advancing the design,
analysis, and theoretical understanding of RL systems.

1 Introduction

Reinforcement learning (RL) is a powerful framework for training agents to make sequential decisions directly
from environment interactions Sutton (2018), and it has shown remarkable success in complex continuous
control tasks Lillicrap (2015). Unlike discrete decision-making tasks (e.g., Chess or Go), real-world dynamical
systems evolve continuously, often requiring fine-grained and highly accurate control inputs to ensure safe and
robust operation. In these settings, even small errors in control can propagate quickly, leading to instability,
unpredictable behavior, and potential system failures. Despite these risks, most existing DRL approaches
Yu et al. (2023); Heuillet et al. (2021); Kalashnikov et al. (2018) do not provide explicit mechanisms for
analyzing or ensuring stability—an omission that poses significant challenges in safety-critical domains.

In dynamical system control, actions play a central role as they directly influence state evolution by serving
as the primary inputs driving changes in the state trajectory. While state trajectories reflect the physical
behavior of the system, they often fail to reveal the reasoning behind the control decisions. Particularly,
different policies can produce similar state trajectories while relying on fundamentally different decision
patterns, making state-based observations insufficient for fully understanding control logic. In contrast, action
dynamics, which describe how control inputs evolve over time in response to system feedback, offer a more
concrete way to assess the structure of a control policy. By analyzing trends and variations in action sequences,
critical patterns can emerge, such as smooth and consistent adjustments indicating stable regulation, abrupt
shifts reflecting reactive strategies, or periodic oscillations suggesting transience even in stable regimes. In the
Lunar Lander problem Brockman (2016), for instance, multiple strategies can achieve a successful landing,
but the specific thrust and rotation sequences can differ greatly, indicating distinct approaches to stabilization
and error correction.

Additionally, observing how actions evolve provides insight into a policy’s ability to maintain stability by
avoiding erratic decision patterns, adapting to disturbances with smooth control adjustments, and balancing
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Figure 1: Overview of the SALSA-RL framework. Our proposed augmentation to pre-trained RL algorithms
relies on a latent action representation governed by a time-varying linear dynamical system through a
state-conditioned matrix At. This enables local stability analyses in the action-state phase for reliable and
interpretable RL deployments. The framework integrates seamlessly with existing RL algorithms, maintaining
competitive performance. The contours represent the dynamically changing spectral radius of the latent
linear system, with the policy seeking bounded regions (in white) with high local stability. Consequently,
initializing controllers in regions outside these regions leads to high-risk behavior and potential failure.

exploration and exploitation for effective regulation without excessive correction. This analysis also enhances
RL interpretability through an answer to the following questions:

1. Given pretrained reinforcement learning agents, can we identify regions of smooth or regular agent
behavior in action-state phase space?

2. Conversely, can we also identify regions with a high degree of discontinuous (and consequently
high-risk/failure-prone) behavior?

Identifying such patterns not only aids in policy validation but also helps detect subtle issues like overcom-
pensation, delayed reactions, or unstable oscillations that may not be evident when observing state or action
trajectories in their original high-dimensional spaces.

In light of the importance of action dynamics for understanding control strategies, we propose SALSA-RL,
a novel RL framework for dynamical system control that leverages action dynamics to analyze and design
stable control strategies while enhancing interpretability. Unlike standard RL approaches, where actions are
treated as discrete decisions, our framework models actions in a latent space, evolving based on the state
information. We achieve this by employing a pre-trained autoencoder for action encoding and decoding. The
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action representation is encoded into a latent space, where the latent action dynamics zt evolve following a
differential equation of the form: ż = At, where At is a state-dependent dynamic matrix, learned through
a deep neural network conditioned on the current state. This allows for local stability analysis of action
dynamics in the latent space. In particular, we define local stability in the context of a state-dependent and
time-varying linear system. Stability analysis of such a system provides information about the short-term
growth of action-dynamic norms. Moreover, our structured representation not only allows for local-stability
analysis of control policies but also provides a means to visualize and interpret the constraints imposed on
the state space, enhancing both policy transparency and generalization. Figure 1 illustrates the details of
SALSA-RL.

This proposed framework is compatible with existing popular DRL methods (such as SAC, DDPG, TD3
Haarnoja et al. (2018); Fujimoto et al. (2018); Lillicrap (2015)) and can be easily integrated using exactly
the same standard training strategies while maintaining competitive control performance. Beyond achieving
effective control, SALSA-RL provides valuable tools for evaluating trained policies. Since actions directly
influence state evolution, the influence of the action on the local stability of action dynamics serves as an
indirect yet effective indicator of the stability of the state trajectories. Furthermore, as a key variable in
the latent dynamics, the time-dependent square matrix At allows for the incorporation of local-in-time
eigenvalue-based stability analysis. Consequently, one can perform a rigorous evaluation of the system’s
behavior. This analysis can provide insights into how action-space and constraints impact long-term stability
and how state transitions behave near critical regions, further enhancing the interpretability of the learned
control policy.

Our contributions are summarized as follows:

1. We propose SALSA-RL, a framework that models control actions as discrete-time dynamics in latent
space via a time-varying linear system, enabling deeper insight into control strategies and dynamics.

2. SALSA-RL seamlessly integrates with standard DRL methods for training, maintaining performance
while enhancing interpretability.

3. We perform local stability analysis to identify regions of action-state phase space for regular and
high-risk behavior. We also demonstrate that pretrained agents seek out regions of regularity.

2 Related Work

2.1 Classical Control

Classical approaches for dynamical system controls include Proportional-Integral-Derivative (PID), Linear
Quadratic Regulators (LQRs), and adaptive control techniquesÅström & Hägglund (2006); Swarnkar et al.
(2014). These methods offer clear advantages in interpretability and stability analysis by providing explicit
symbolic expressions for the relationship between states and control actions, enabling stability analysis and
control law verification. However, they often struggle with high-dimensional, nonlinear, or partially observable
systems where dynamics cannot be explicitly modeled Skogestad & Postlethwaite (2005).

2.2 Interpretability in DRL

Interpretability for machine learning algorithms has gained significant attention in recent years, particularly
in healthcare, robotics, and autonomous systems Glanois et al. (2024); Yu et al. (2023); Wells & Bednarz
(2021); Heuillet et al. (2021). Recent research devoted to interpretable RL has explored diverse approaches
such as multi-agent systems Zabounidis et al. (2023), interpretable latent representations Chen et al. (2021),
and techniques like attention mechanisms Mott et al. (2019) or genetic programming Hein et al. (2018),
balancing transparency, performance, and generalizability. Below, we outline a few key directions.

Hierarchical RL. This approach focuses on planning and reasoning by structuring tasks into high-level
(manager) and low-level (worker) policies Lyu et al. (2019); Nachum et al. (2018); Pateria et al. (2021). This
modular approach excels in task decomposition, reusable subtasks, and explainable goal-setting. However, it
is less suitable for specific use cases like dynamical system control, where precise and responsive low-level
policies are essential Florensa et al. (2017).
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Prototype-based RL. Prototype-based methods leverage human-defined prototypes to represent states
and actions as interpretable latent features, enabling policies that balance interpretability and performance
Kenny et al. (2023); Xiong et al. (2023); Yarats et al. (2021); Biehl et al. (2016). However, their reliance on
manual design and lack of temporal precision limit their adaptability to dynamic environments and their
ability to handle continuous, high-dimensional dynamics effectively Duan et al. (2016).

2.3 Dynamical System Control and Deep Reinforcement Learning

Methods such as Koopman-based control Lyu et al. (2023); Yeung et al. (2019) and Embed-to-Control Watter
et al. (2015) model nonlinear dynamics through latent linearization, where the system is approximated as
linear in a lifted latent space. Though not inherently RL, these methods have inspired RL frameworks with
structured latent dynamics that often rely on globally fixed linear operators—rather than state-dependent
ones—thereby limiting adaptability to state-dependent variations in very high-dimensional nonlinear dynamical
systems Weissenbacher et al. (2022); Rozwood et al. (2024). In particular, Rozwood et al. (2024) introduces
value function learning with dictionary-based methods that can provide increased insight into agent behavior.
However, a direct connection to the inherent local regularity of the trained agent’s behavior is not clear.

On the other hand, DRL is well-studied in physical applications, such as optimizing flow control and
turbulent fluid dynamics, where domain knowledge is often available, and state-control actions exhibit
stronger correlations compared to other domainsYousif et al. (2023); Weiner & Geise (2024); Garnier et al.
(2021); Rabault et al. (2019). Recent approaches (summarized below) have further improved interpretability
by leveraging state-action correlations and domain knowledge.

Symbolic and Neural-Guided Approaches Neural-guided methods like NUDGE Delfosse et al. (2024),
PIRL Verma et al. (2018), and NLRL Jiang & Luo (2019) use symbolic reasoning to discover interpretable
policies Jin et al. (2022). Symbolic controllers Khaled et al. (2022); Reissig & Rungger (2018), such as DSP
Landajuela et al. (2021) and SINDy-RL Zolman et al. (2024), employ explicit state-control mappings to derive
generalizable control laws. These methods improve interpretability and generalizability, making them suitable
for safe, explainable decision-making. However, neural-guided approaches rely on logical representations
Delfosse et al. (2024), limiting temporal precision and scalability in complex systems. Similarly, symbolic
controllers face scalability issues in multi-dimensional or stochastic tasks where predefined forms fail to
capture intricate interactions Landajuela et al. (2021). While explicit formulations may aid analysis of agent
behavior, explicit stability assessments for complex high-dimensional learning tasks are challenging.

Physics-guided RL Physics-guided RL Liu & Wang (2021); Banerjee et al. (2023); Alam et al. (2021); Jurj
et al. (2021); Cho et al. (2019); Wang et al. (2022) integrates domain knowledge and physical principles to
enhance learning and performance. Approaches include informed reward functions, model-based RL with
physics-based or neural network surrogate models Hernández et al. (2023); Nousiainen et al. (2021), and state
design Banerjee et al. (2023). While incorporating domain knowledge can improve interpretability, these
methods Alam et al. (2021); Jurj et al. (2021); Cho et al. (2019); Wang et al. (2022) often lack generalizability
to other problems and require significant fine-tuning.

3 Method

3.1 Problem Formulation

Consider a control system with continuous dynamics,

ṡ(t) = F
(
s(t), a(t)

)
, (1)

where s(t) ∈ S ⊆ Rn is the state and a(t) ∈ A ⊆ Rm is the control input. Discretizing the inputs at intervals
∆t yields a discrete-time Markov Decision Process (MDP) M = (S,A, P, R, γ), where S represents the state
space and A the action space governing the system’s behavior.

Assuming the Markov property, the next state st+1 depends on the current state st and action at, governed
by the transition probability P (st+1 | st, at). The agent maximizes the cumulative discounted reward
R =

∑T −1
t=0 γtr(st, at), where γ ∈ [0, 1] balances immediate and future rewards over the time horizon T .
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Unlike standard DRL, which utilizes only state-dependent policies πθ(at | st), SALSA-RL relies on actions
in a latent space generated by a dynamical system, resulting in the policy πθ(at | st, at−1). The policy is
optimized to maximize the expected cumulative return:

J(πθ) = Eτ∼πθ(at|st,at−1)

[T −1∑
t=0

γt R
(
st, at

)]
, (2)

where τ = (s0, a0, . . . , sT , aT ) represents trajectories sampled from the policy. Although the latent action z
evolves in continuous time, the discrete-time MDP formulation is sufficient for the proposed algorithm, as
actions are applied at discrete intervals ∆t.

3.2 SALSA-RL Control Framework

The proposed framework simplifies control of time-dependent dynamical systems by encoding actions into a
compact latent space, where state-dependent transformations govern their evolution. It consists of:

Action Encoding and Latent Representation. The policy’s action at is encoded into a latent space
using a pre-trained autoencoder:

zt = Encoder(at), (3)
where zt ∈ Rdh is the latent representation of the action, dh is the latent dimension size, and a0 = 0. Here,
we intentionally project actions into a higher-dimensional latent space (typically hd > dim(a)) to provide
greater expressive capacity for learning structured dynamics. This higher-dimensional representation eases
training and supports more interpretable stability analysis, especially in complex or underactuated tasks.

Latent Dynamics Module. The latent action representation evolves according to a learned state-dependent
linear dynamical system żt = Atzt. Simply, for discrete actions:

zt+1 = zt + Atzt, (4)
At = Nθ(st), (5)

where At ∈ Rdh×dh is a state-dependent matrix learned by the neural network Nθ conditioned on the current
state. Importantly, to ensure numerical stability, we apply a tanh activation function followed by a scaling
factor of 2 to the output of the latent dynamics network, thereby constraining all elements of At within the
range [−2, 2]. While we also experimented with diagonal forms of At to simplify the analysis, we found that
full (dense) matrices enabled richer inter-dependencies and better performance in control.

Action Decoding and Control Execution. After the linear system evolution, the latent representation is
decoded back into the original action space as the actual control policy:

at+1 = Decoder(zt+1). (6)

In practice, we decode zt+1 into an action at+1 for system control. Then, the same at+1 is encoded back
into a new latent vector z′

t+1. This mimics real-world control scenarios where only the executed action is
observable, and the internal latent representation must be reconstructed based on the current state and action.
This stepwise decode-encode process also reflects how a deployed agent operates under partial observability
or noisy dynamics, maintaining consistency through latent transitions.

Policy Update and Control Loop. The system evolves iteratively, where actions generated from the
latent space update both the system state and latent variables. The framework is summarized in Algorithm 1.

3.3 Training Procedure

Training involves two stages: (1) encoder-decoder pretraining, and (2) latent dynamics optimization. Encoder-
Decoder Network. This network is trained to create a compact and effective latent representation of
actions, optimized by minimizing the reconstruction loss:

Lrecon = Eat∼D

[
∥at − ât∥2]

, (7)
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Algorithm 1 Latent Dynamic Control Framework
Input: Initial state s0, initial action a0 = 0, time horizon T , pre-trained Encoder and Decoder
z0 ← Encoder(a0) // Encode action
for t = 0 to T do

At ← Nθ(st)
zt+1 ← zt + Atzt // Update latent space
at+1 ← Decoder(zt+1) // Decode latent to next action
st+1, Done← env.step(at+1)
at ← at+1
if Done then

break
end if

end for

where ât is the reconstructed action from the decoder. To train the module, training data D, actions, are
sampled based on the action space from pretrained deployments. This data is then used to train the action
encoding and decoding modules. We detailed this procedure in Appendix C.

Latent Dynamic Policy. Following this, the proposed policy is initialized in a similar manner as most DRL
methods for continuous action control, such as PPO Schulman et al. (2017), SAC, DDPG, and TD3. The
policy network (actor), typically generating actions in DRL as at = Nθ(st), is instead employed to predict a
state-dependent dynamic matrix At = Nθ(st, at−1). The gradients of the objective to maximize the expected
cumulative reward, in deterministic policies, for example, can be expressed generally as:

∇θJ(πθ) = Eτ∼πθ(at|st,at−1)

[
T −1∑
t=0

γt∇θR
(
st, at

)]
(8)

Meanwhile, the critic network architecture, if available, remains unchanged, evaluating the state-action value
function. This design allows SALSA-RL to leverage existing DRL algorithms while providing flexibility to
represent and optimize latent dynamics. A detailed gradient computation is provided in Appendix A.

3.4 Stability Analysis and Interpretability

This section explores a range of numerical techniques for analyzing latent action dynamics, comprising the
bulk of this work’s contribution. This stability analysis provides insights into the system’s robustness and
enhances interpretability, improving understanding of the underlying agent’s behavior.

Local Stability Analysis. While the environments are continuous-time, the action dynamics modeled in
SALSA-RL follow discrete-time updates. Therefore, local stability is assessed using the spectral radius of the
state-dependent linear term that evolves agent actions in the latent space. At each time step, we compute:

ρ(At) = max
i
|λi(At)| , (9)

where λi(At) are the eigenvalues of the state-dependent matrix At. Here, local stability is guaranteed when
all eigenvalues of At lie strictly within the unit circle—that is, when ρ(At) < 1. In addition to the spectral
radius ρ, we analyze the imaginary components of eigenvalues Im(λi) to characterize oscillatory dynamics
in the latent space. This helps reveal cycles or damped oscillations in control behavior, which may not be
visible through magnitude alone. Specifically, local dynamics are characterized as follows:

• ρ(At) ≤ 1 with Im(λi) = 0: non-oscillatory locally stable dynamics,
• ρ(At) ≤ 1 with Im(λi) ̸= 0: locally stable dynamics with damped oscillations,
• ρ(At) > 1: locally unstable dynamics, regardless of the imaginary component.

While formal global stability of linear time-varying systems depends on the joint spectral radius (JSR)
of the operator sequence {I + At} Jungers (2009), computing the JSR is generally infeasible when At is
state-dependent and varies continuously across time. SALSA-RL instead performs stability diagnostics locally
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at fixed state snapshots using the spectral radius of At, offering a tractable and interpretable view of action
evolution in specific regions of state space. Indeed, one may use this formulation to assess the spectral
properties of the latent dynamics for various state-action combinations before deploying any pretrained agent.

Additionally, neighborhood states around the observed states srange are evaluated by computing the corre-
sponding At and analyzing their eigenvalues and spectral radius. This reveals locally stable or unstable
regions, capturing how state variations influence stability. Importantly, our goal is not to analyze the full
closed-loop environment-agent system but to empirically characterize the behavior of the learned policy
through its latent action dynamics. This local stability characterization serves as a proxy for inferring how
consistent, structured, or potentially unstable the policy’s actions are over time, especially in high-stakes or
safety-critical applications where local interpretability is crucial. This also provides insights into regions where
the policy achieves stable control or displays unstable behavior. The algorithm is outlined in Appendix B.

3.5 Transient Growth Analysis

In the previous section, we used local stability analysis of latent (i.e., approximate) action dynamics as a
proxy for assessing the local stability of a trained agent. However, even when the local stability condition
ρ(At) < 1 is met—non-normality (i.e., AtA∗

t ̸= A∗
t At) can still induce transient growth. This transient

amplification, driven by the properties of At, can destabilize intermediate states, amplify noise, or disrupt
training. Due to the local nature of our stability analysis, the transient growth study becomes important
for ascertaining whether a region in state-action phase space may ‘escape’ into a region of unstable action
evolution.

For the latent dynamics described in Equation 4, the spectral radius ρ(At) is first computed to confirm the
system stability. Second, for cases where the system is locally stable (ρ < 1) but At is non-normal, transient
growth is analyzed using the Kreiss constant η(At), which measures the potential short-term amplification of
the system. The Kreiss constant is defined as:

η(At) = sup
|z|>1

|z| − 1
∥(At − zI)−1∥

, (10)

where z is sampled from the complex plane outside the unit circle (i.e., |z| > 1). A high η(At) suggests a
higher likelihood of transient growth. In such a case, one may observe an agent ultimately performing in
an unstable manner even though the starting point of a trajectory has a spectral radius that is less than 1.
Algorithm details are provided in Appendix B. Overall, the combination of local spectral radius computation
and Kreiss constant analysis provides a qualitative understanding of the locally transient behavior of the
system, in the absence of global stability analysis. This ensures an indirect assessment of the robustness of
the learned control through our proposed framework.

3.6 Floquet Analysis for Periodic Stability

Floquet analysis Klausmeier (2008) is a method specifically designed to evaluate the stability of periodic
systems and their behavior over time. It quantifies the evolution of small perturbations in the latent space,
capturing their growth, decay, or oscillatory behavior through Floquet exponents. This complements the
spectral radius and Kreiss constant analyses by focusing on periodic stability, where transient growth alone
may not capture recurring instabilities or oscillations. This analysis is applicable when the linear term in
the latent dynamical system exhibits periodic trends, as seen in tasks requiring repeated oscillatory actions.
An example is a pendulum failing to swing upright and instead oscillating at the bottom, where periodic
stability is essential for sustained motion.

For periodic systems, where the system dynamics repeat at regular intervals such that At+dt = At, the state
transition matrix Φt describes the evolution of perturbations, starting with Φ0 = I (the identity matrix). Its
evolution is governed by the dynamic matrix At:

Φ̇t = AtΦt, (11)
Φt+1 = Φt + ∆t · Φ̇t. (12)

7



Under review as submission to TMLR

Here, ∆t is a time discretization step, set to 1 for simplicity. At the final time horizon T , the state transition
matrix ΦT encodes system dynamics over one period. The eigenvalues of ΦT , known as the Floquet multipliers
λi, are computed, and the corresponding Floquet exponents µi are derived as:

λi = eigvals(ΦT ), (13)

µi = ln(λi)
T ·∆t

. (14)

These exponents provide the following stability insights: Re(µi) < 0 indicates exponential decay (stable
dynamics), Re(µi) > 0 indicates exponential growth (unstable dynamics), and Im(µi) ̸= 0 implies oscillatory
behavior with a frequency proportional to Im(µi).

In SALSA-RL framework, At is directly derived from the state st, enabling the period to be identified by
analyzing state information. Floquet exponents are computed at the end of each episode to diagnose latent
dynamics, revealing instability, oscillations, or unstable growth. This analysis identifies regions of instability,
oscillatory behavior, or unstable growth. An intuitive application for this is for periodic systems, such as for
controlling the pendulum or cartpole benchmarks in RL. A step-by-step procedure is provided in Appendix B.

4 Experiments

A range of classical RL environments are selected from OpenAI Gym Brockman (2016), focusing on continuous
control tasks such as Cartpole-v1 (with continuous action space), Pendulum-v1, LunarLanderContinuous-v2,
and BipedalWalker-v3. Additionally, a modified LunarLander is analyzed with a hovering objective to enhance
stability and interpretability (details in Appendix D).

4.1 Eigenvalue-based Local Stability Analysis

Pendulum. This task involves controlling a pendulum using a single torque input at the pivot. The objective
is not just to swing the pendulum upright, but to position it in the upright position and maintain balance
without further oscillation or swinging. This requires precise and continuous control to counteract gravity. A
latent size of dh = 3 is used for model training and eigenvalue-based local stability analysis. Figure 2 shows
the system’s behavior over time (as a trajectory) and the eigenvalue-based evaluation (underlying contour).

In the first column of the analysis, the trajectory (red line) evolves from locally unstable regions to stable
ones. Initially, as the pendulum swings up from the bottom position (cos θ, sin θ < 0), it exhibits instability,
reflected by high spectral radius values (ρ > 1) in the action space. Over time, the pendulum stabilizes in the
upright position (cos θ → 1, sin θ → 0), with the spectral radius dropping below 1 (ρ < 1), indicating entry
into a stable regime and steady-state behavior. In the second column, the imaginary eigenvalues remain at 0,
confirming local stability. While states initially approach regions with positive imaginary values, suggesting
potential oscillations, they eventually shift away, guiding the system to a steady state.

In stabilized regimes, we observe that the latent state continues to evolve, i.e., zt+1 ̸= zt, despite the system
being locally stable. This is due in part to the decode–re-encode cycle applied at each step: the predicted latent
zt+1 is first decoded into an action at+1 = Decoder(zt+1), which is then re-encoded as z′

t+1 = Encoder(at+1)
for the next timestep. The updated latent state then evolves via Equation 4 as zt+2 = (I + At)z′

t+1 ≈ zt+1,
causing stabilized decoded actions at+2 ≈ at+1.

This phenomenon arises from the non-unique nature of the encoder–decoder mapping, along with the fact
that decoding and re-encoding are performed at every step (see Section 3.2 for details on the decoder module).
As a result, while the latent representation may vary, the decoded actions remain effectively invariant across
time steps. This practical invariance in the action space underscores the reliability of our latent local stability
diagnostics: even as latent states drift, the resulting control behavior remains consistent, highlighting the
model’s ability to stabilize behavior through structured latent dynamics.

Additionally, Appendix E further examines regions of local instability, recovery, and control failures, reinforcing
the framework’s stability analysis. Overall, this analysis shows the framework policy not only stabilizes
the pendulum but does so in a manner that aligns with the primary objective of keeping it upright. By
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Figure 2: Local stability analysis of Pendulum control. The white line marks where the spectral radius
equals 1, and the red line shows the observed state trajectory. Contours illustrate local variations in the
norm behavior of latent dynamics, as captured by ρ(At). The trajectory initially enters regions of local norm
growth (i.e., ρ > 1), but gradually shifts into regions of local contraction (ρ < 1), effectively maintaining the
system within a range that avoids high-growth zones (bounded by the white line).

maintaining eigenvalues within the locally stable region and avoiding oscillatory dynamics, the system ensures
stability while providing interpretable insights into how the policy achieves the desired control objectives.

CartPole. The CartPole environment involves a single discrete action that moves the cart left or right to
balance the pole. With a latent dimension of dh = 3, the trained model effectively learns to stabilize the pole
in the upright position, as shown in Figure 3.

However, the spectral radius tends to fluctuate near the white line ρ = 1, even over extended periods. This
behavior can be attributed to the fact that the cart must constantly move left or right to counteract the pole’s
dynamics. These continual adjustments introduce small, persistent deviations in the latent dynamics, keeping
the system near the edge of stability despite overall successful control. Meanwhile, the imaginary eigenvalue
contours reveal a similar pattern of oscillatory behavior. The values consistently fluctuate between zero and
nonzero, indicating persistent but bounded oscillations in the latent dynamics throughout the episode.

LunarLander (Hovering Objective). For Lunarlander experiment, we utilize a modified environment
with a hovering objective instead of an objective to land safely as typically utilized. Since the state includes
a 2D space, eigenvalue-based local stability is evaluated across the entire 2D domain, with each frame in
Figure 4 representing a single timestep.

Among Cases 1, 3, and 4, the spectral radius consistently transitions from high-value regions to lower-value
regions, reflecting a transition from locally unstable dynamics to more stable behavior over time. This gradual
shift is visually indicated by the trajectory moving from red/yellow zones to cooler regions in the contour
plots, especially in the later timesteps. The imaginary contour highlights regions of oscillatory behavior, and
the lander’s actual trajectory exhibits a transition from high to low oscillation over time. In case 2, however,
the lander crashes at the final frame. The spectral radius contour in this case reveals large regions of local
instability, aligning with the lander’s inability to maintain its hovering status. Notably, the contour shows
that the current state-action combination enters a highly unstable region, effectively signaling the risk of a
crash before it occurs. This strongly underscores the value of our local stability analysis, as it provides early
warnings of imminent failures.
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Figure 3: Local stability analysis of CartPole control. Each row shows a representative state. Due to the
nature of the task, the system frequently operates in regions with ρ(At) > 1, as the cart must oscillate to keep
the pole upright. These excursions near or beyond the contraction boundary reflect the need for continuous
corrective actions rather than convergence to a fixed point. Thus, regions with ρ(At) > 1 are not necessarily
undesirable, but rather reflect the non-equilibrium behavior required by the task.

Case 1 Case 2

Case 3 Case 4

Figure 4: Local stability analysis of LunarLander hovering control. The white line indicates where spectral
radius ρ equals 1, separating regions of local stability and instability. The lander is initially deployed in
various regions beyond the default upper-middle position (case 1). Each frame shows eigenvalue distributions
in 2D space, highlighting stability regions, with the trajectory about 1,000 timesteps. Notably, case 2 contours
provide early warnings of instability before the lander crashes. Animations are provided in the Supplementary.

Besides the above 3 experiments, Appendix F explores the BipedalWalker benchmark with additional results
and discussions, reinforcing the framework and analysis. While our primary experiments leverage classic
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benchmarks for clarity, SALSA-RL is designed with scalability in mind. Its latent-space structure supports
local stability analysis and offers increasing benefits in higher-dimensional or more complex control tasks.

4.2 Transient Growth Analysis

Extending the local stability analysis, the Kreiss constant η is evaluated to assess transient growth in the
pendulum under a standard setup (Case 1) and a modified environment (Case 2), where gravity increases
from 10 to 15 and mass from 1.0 to 1.1. The third row of Figure 5 illustrates η over time for both cases.
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Figure 5: Transient Growth and Floquet analysis of Pendulum control. The pendulum achieves stabilization
in case 1 (first column) while displaying periodic behavior with oscillations in case 2 (second column). The
Kreiss constant (third row) shows differing transient growth behaviors over time. The resultant Floquet
exponents are µi = 0 and µi =

{
0.96, 0.02± 0.04i

}
for cases 1 and 2, respectively.

In Case 1, the pendulum successfully stabilizes in the upright position. This is reflected in the actions and
states, which converge to near-zero values without oscillations (first and second rows). The Kreiss constant
remains small throughout, indicating minimal transient growth and robust stability.

In Case 2, the increased gravity and mass disrupt the stabilization process, causing the pendulum to exhibit
periodic motion instead of reaching the upright position. This behavior is evident in the actions and states,
which display sustained oscillations over time. The Kreiss constant shows periodic spikes, reflecting transient
growth that aligns with the observed oscillatory response. These spikes indicate significant susceptibility to
transient amplification, even though the system remains bounded over time.

This highlights the role of the Kreiss constant in capturing transient growth, particularly under non-normal
dynamics. While spectral radius confirms asymptotic stability, the Kreiss constant reveals critical differences
in transient behavior, providing insights into the system’s robustness and susceptibility to perturbations.

4.3 Floquet Analysis for Periodic Stability

Building on the two pendulum control cases in Figure 5, Floquet analysis is performed to evaluate periodic
stability, providing complementary insights into the stability and oscillatory behavior of the latent dynamics
where metrics like eigenvalue analysis or the Kreiss constant may fall short.
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In Case 1 (left column of Figure 5), the Floquet analysis reveals all exponents µi = 0 across the three-
dimensional latent space, indicating marginal stability. This means that small perturbations neither grow nor
decay over the period, and the system maintains its oscillatory trajectory without exponential divergence
or damping. Zero imaginary components further confirms that the observed oscillations are structural or
externally driven, rather than intrinsic to the latent dynamics.

In Case 2 (right column of Figure 5, modified environment), the µi =
{

0.96, 0.02± 0.04i
}

reveal instability,
with positive real parts driving perturbation growth and imaginary components introducing oscillatory modes.
These dynamics correspond to the pendulum’s observed periodic motion, characterized by high-frequency
control oscillations, significant angular velocity peaks, and sustained oscillatory state trajectories.

This analysis demonstrates the utility of Floquet exponents in diagnosing periodic instability and oscillatory
behavior, offering deeper insight into latent action dynamics. Moreover, it potentially identifies latent space
regions where policy refinement may enhance control and mitigate instability.

4.4 Ablation Study and Benchmark

While the goal of this work is not to produce a superior RL algorithm for specific metrics, an ablation analysis
is carried out by varying the hidden dimension sizes hd. The results, detailed in Table 1, demonstrate that
our approach achieves interpretability while maintaining performance comparable to state-of-the-art DRL
methods and symbolic approaches (DSP) Landajuela et al. (2021). Only with a severely restricted dimension
(hd = 3) does the method struggle with high-complexity BipedalWalker, revealing the limitations of a very
low-dimensional latent space for effectively encoding the agent’s action dynamics. Additional ablation studies
on stability analysis are detailed in Appendix H.

Table 1: Performance comparison of SALSA-RL and various baselines. Values represent average episodic
rewards over 1,000 episodes using a consistent set of environment seeds across all algorithms. Baseline results
are taken from prior research Landajuela et al. (2021); Raffin (2020). The standard LunarLanderContinuous-v2
is used to ensure consistency in comparisons.

Environment SALSA-RL A2C SAC DDPG TD3 PPO DSP
hd = 3 hd = 4 hd = 6 hd = 8 hd = 16

Pendulum -149.2 -149.8 -155.8 -157.1 -149.9 -162.2 -159.3 -169.0 -147.1 -154.8 -160.5
CartPole 1000.00 1000.00 1000.00 1000.00 1000.00 1000.00 971.78 1000.00 997.98 993.94 999.59
LunarLander 257.79 268.25 246.05 260.82 242.62 227.08 272.65 246.24 225.35 225.12 251.66
BipedalWalker - 235.11 280.38 280.91 262.57 241.01 307.26 94.21 310.19 286.20 264.39

5 Conclusion

This paper introduces SALSA-RL, an RL framework for local stability analysis in latent action space,
leveraging action dynamics and deep learning. The utility of SALSA-RL is demonstrated across various
environments, showcasing how control policies achieve stability, avoiding unstable regions, and maintaining
stable states. Analysis of unstable regions reveals how key state-action combinations influence system stability,
offering insights for improved control actions and reward function designs. Additional numerical analyses
of periodic stability and transient growth provide a deeper understanding of underlying control outcomes,
further interpreting the relationship between system states and stability.

Moreover, SALSA-RL’s latent linear dynamics yield coherent action regions in phase space, reflecting consistent
actions in state space (see Appendix G). It may also complement safe and stability-focused RL approaches Gu
et al. (2024); Brunke et al. (2022); Han et al. (2020); Zhao et al. (2023); Jin & Lavaei (2020), by offering
post-hoc analysis tools to interpret policy behavior without modifying the training process. Finally, the goal
of SALSA-RL is not to outperform on saturated benchmarks but to introduce an interpretable framework
for empirical stability analysis of RL policies—capabilities typically lacking in existing RL algorithms. It is
therefore a powerful yet simple tool for understanding the behavior of pretrained agents from various RL
algorithms, offering insights into policy behavior, state transitions, and system stability.
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A Derivation of the Policy Gradient for SALSA-RL

A.1 Policy Formulation

A latent dynamic control policy is defined based on Eqs. equation 3, equation 4, equation 5, and equation 6.
Substituting the first three equations into the fourth yields a deterministic mapping for generating the next
action at+1 from the current state-action pair (st, at):

at = πθ(st, at−1)
= Dec(zt)
= Dec(zt−1 + Atzt−1)
= Dec

(
Enc(at−1) + Nθ(st)Enc(at−1)

)
.

(15)

Here, πθ(·) is the policy, parameterized by θ, which takes the current state st and previous action at as input.
zt represents the latent action dynamics at time t. N denotes the latent dynamics network module that takes
state st as input and outputs the time-dependent matrix At.

A.2 Policy Gradient

Using the deterministic policy gradient (DPG), we derive the gradient for the deterministic policy πθ, where
the objective is to maximize the expected return (cumulative reward), denoted by J(πθ). The gradient of
this objective with respect to the neural network parameters θ can be written as:

∇θJ(πθ) = Eτ∼πθ(at|st,at−1)

[
∇θπθ(st, at−1) ∇aQπ(st, a)

∣∣
a=πθ(st,at−1)

]
, (16)

where πθ represents the policy parameterized by θ, and Q is the action-value function, which provides the
expected cumulative reward starting from state st and taking action at.

To apply Eq. equation 16 to our latent dynamic control framework, we need ∇θπθ(st, at−1).

Let us define an intermediate latent transformation as:

hθ(st, at−1) = zt = Enc(at−1) + Nθ

(
st

)
Enc

(
at−1

)
. (17)

Then
πθ(st, at−1) = Dec(zt) = Dec

(
hθ(st, at−1)

)
. (18)
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Chain Rule. From Eq. equation 16, by the chain rule,

∇θπθ(st, at−1) = ∂ Dec(z)
∂z

∣∣∣∣∣
z=hθ(st,at−1)

× ∇θ hθ(st, at−1). (19)

Term 1: ∂ Dec(z)/∂z. For Decoder that is fixed/pre-trained, this Jacobian is a constant. Term 2:
∇θ hθ(st, at). From Eq. equation 17,

∇θ hθ(st, at−1) = ∇θ

[
Enc(at−1) + Nθ

(
st

)
Enc

(
at−1

)
.
]
.

Assuming the Encoder is fixed, the only dependence on θ is through Nθ(st). Hence,

∇θ hθ(st, at−1) = Enc(at−1) ∇θNθ(st). (20)

Putting it all together into Eq. equation 19, we obtain:

∇θπθ(st, at−1) = ∂ Dec(z)
∂z

∣∣∣∣∣
z=hθ(st,at−1)

× Enc(at−1) ∇θNθ(st). (21)

Substituting back into Eq. equation 16, the gradient of the objective becomes:

∇θJ(πθ) = Eτ∼πθ(at|st,at−1)

[(∂ Dec(z)
∂z

∣∣∣
z=hθ(st,at−1)

× Enc(at−1) ∇θNθ(st)
)
∇aQπ(st, a)

∣∣
a=πθ(st,at−1)

]
.

(22)

This expression provides the standard DPG update rule for the latent dynamic control framework, where the
policy πθ(st, at−1) is derived via the combination of encoder, latent dynamics network Nθ, and decoder.

For the stochastic policy, a similar derivation can be performed using the Stochastic Policy Gradient
(SPG) theorem, where the gradient involves ∇θ log πθ(at | st, at−1) weighted by the action-value function
Qπ(st, at−1).

B Algorithms for Local Stability Analysis, Transient Growth, and Floquet Analysis

This section details additional algorithms referenced in the method section of the main article.

Algorithm 2 Local Stability Evaluation
Input: Observed n states s

(i)
t , where i = 1, 2, ..., n

for i = 1 to n do
for t = 0 to T do

ŝ← [s(1)
t , s

(2)
t , ..., s

(n)
t ] // Construct state vector

for s in s
(i)
range do

ŝ[i]← s // Replace with neighboring values
At ← Nθ(ŝ)
λi ← eigvals(At) // Eigenvalue calculation
ρ(At)← maxi |λi| // Spectral radius
Immax ← max (Im(λi)) // Maximum imaginary magnitude

end for
end for

end for
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Algorithm 3 Transient Growth Evaluation
Input: Observed states st over time, error threshold ϵ
for t = 0 to T do

At ← Nθ(st)
λ1 ← max

(
eigvals(At)

)
if λ1 < 1 then

normality_diff← ∥At ·A⊤
t −A⊤

t ·At∥
if normality_diff > ϵ then

η(At)← sup|z|>1
|z|−1

∥(At−zI)−1∥ // Kreiss constant
end if

end if
end for

Algorithm 4 Floquet Analysis for Latent Dynamics
Input: Observed states st over time, state transition matrix Φ← I, identified peak-peak timesteps t1 and
t2
for t = 0 to t2 do

At ← Nθ(st)
if t ≥ t1 then

Φ← Φ + AtΦ // Update state transition matrix
end if

end for
λi ← eigvals(ΦT ) // Spectral analysis
µi ← ln(λi)

T // Compute Floquet exponents

C Encoder-Decoder Training and Discussion

The encoder and decoder each contain three layers with identical middle layer sizes. The encoder maps the
action dimension to the hidden dimension hd, while the decoder performs the reverse operation. Notably, we
use a slightly larger number of neurons in the decoder, a common practice to enhance decoding performance
and ensure a more effective reconstruction mechanism Kingma (2013).

For training, we generate action datasets from trained DLR policies, improving data efficiency compared to
uniform sampling, particularly in high-dimensional settings. Training was conducted for 500 epochs with a
scheduled learning rate decrease, and the final model achieved a mean squared error (MSE) of approximately
10−6 to 10−7 across different hd.

In the BipedalWalker problem, which has four action dimensions, encoding and decoding with a reduced
hidden dimension of hd = 3 significantly increased the difficulty. Even with a properly scaled network (more
neurons and layers), the training MSE loss was three orders of magnitude higher than in other cases. Since
precise continuous control is crucial for tasks like BipedalWalker, we believe this partially contributed to
the failure of SALSA-RL to achieve a successful control policy at hd = 3 and relatively lower performance
at hd = 4 (see Table 1). However, this should not be viewed as a limitation of SALSA-RL, as achieving a
compact network size is not our primary objective. In contrast, our stability analysis and interpretability
remain consistent across different hidden dimensions, as shown in Appendix H.

D Modified LunarLander Environment for Hovering

In the standard LunarLanderContinuous-v2 environment, the reward function encourages efficient and
accurate landings. The reward is shaped to penalize excessive fuel consumption, provide bonuses for leg
contact with the ground, and reward proximity to the flat landing area. Additionally, a large bonus (+100)
is given for a successful landing, while a penalty (-100) is applied for crashes or going out of bounds. This
design promotes controlled and fuel-efficient landings by balancing penalties and rewards.

18



Under review as submission to TMLR

In the modified environment, the focus shifts from landing to hovering consistently. The bonuses for leg
contacts and successful landing are removed, and a large negative penalty of -300 is applied for crashes,
going out of bounds, or touching the ground. A shaping term adjusts the vertical coordinate by 0.2 to
encourage hovering slightly above the surface: shaping = −100

√
x2 + (y − 0.2)2. A survival bonus of +0.2 per

timestep is introduced to reward prolonged hovering, while penalties for fuel consumption remain unchanged
to minimize unnecessary actions. These modifications prevent premature convergence to local reward maxima
dominated by landing or crashing. Additionally, the larger crash penalty strongly discourages failures,
promoting stability and long-term control instead.

E Extended Stability Analysis and Interpretability on Pendulum Problem

In the main article, the analysis of pendulum control highlighted regions of local stability along with the
control actions over time. In Figure 6, we examine extreme scenarios involving the absence of control actions
as potential control failures, aiming to showcase extended stability analysis during these failure processes.

Stop control

Start control

Figure 6: A custom control scenario where the system remains action-free during the first 30 and last 50
timesteps. The first column shows the evolution of action, state, and corresponding spectral radius and
imaginary part of the eigenvalues, while the second and third columns present an extended stability analysis
through contour visualizations.

We randomly initialized the environment and restricted actions from timestep 30 to 150. This setup enables
the analysis of three typical time regions:

1. Region of Instability (T: 0–30): Initial local instability before any actions are applied.

2. Region of Recovery (T: 30–150): Control actions are applied to recover the system from local
instability to stability.

3. Region of Control Failure (T: 150–200): The control is removed, and the system transitions
back from local stability to instability.

From the spectral radius and eigenvalue plot (first column, third row), regions of local instability (ρ1 > 1)
are evident in time Regions 1 and 3, as well as at the initial stage of Region 2. In Region 2, the policy
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successfully recovers the system from local instability to stability, aligning with the above-defined phases and
the pendulum control objective. For the imaginary part of the eigenvalue evolution, pronounced oscillatory
behavior is observed in Regions 1 and 3, which aligns with the corresponding periods of local instability
identified by the spectral radius analysis.

In the second and third columns of the figure, contour plots further validate this observation. Regions of
local instability or oscillation near the trajectory are visibly highlighted in yellow and red. These appear on
both the left and right sides of the contour plots, corresponding to time regions 1 and 3, and reinforce our
earlier local stability analysis and definition. Overall, this analysis significantly enhances our understanding
of control failures, showcasing the interpretability and robustness of the proposed framework.

F Local Stability Analysis for the BipedalWalker Control

The Bipedal Walker problem involves numerous states and four actions controlling the legs and joints, aiming
to achieve stable, energy-efficient forward locomotion across uneven terrain without falling. Similar to other
environments analyzed in the main article, we present the local stability analysis for two different cases, as
shown in Figure 7. Due to the large number of states, we illustrate only four representative states associated
with the walker’s hull.
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Figure 7: Local stability analysis of the Bipedal Walker control for two cases (left two columns and right
two columns). Representative states associated with the walker’s hull are shown. Both cases exhibit similar
control patterns and local stability. The observed states (red lines) indicate that the hull maintains a positive
angle, while angular velocity and vertical velocity (second row) oscillate around 0. The horizontal velocity
(third row) remains positive, enabling forward movement. The large variations in angle and vertical velocity
align closely with the local instability observed in the spectral radius contour, which is primarily driven by
strong oscillations, as indicated by the imaginary eigenvalue contour.

In both cases, the hull primarily exhibits local instability throughout most of the episode, with the spectral
radius remaining significantly greater than 1. These high values are driven largely by the magnitude of the
imaginary components of the eigenvalues, even though the real parts remain mostly below 1. From the walker’s
perspective, this instability, caused by persistent oscillations, corresponds to the agent’s continuous rightward
movement. The oscillatory behavior of the hull (i.e., vertical up-and-down motion) emerges naturally as the
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legs alternate between stance and swing phases. This is also evident in the angle and angular velocity states
(shown in the first and second rows), where significant variations in the hull’s orientation are observed.

Additionally, during movement, the vertical velocity of the hull (shown in the last row of Figure 7) is minimized
and remains close to zero. This behavior is also reflected in the imaginary eigenvalue contour, where the red
trajectory resides in a region of low imaginary components (depicted in blue). However, oscillations during
movement cannot be entirely eliminated, resulting in non-zero imaginary eigenvalues and, consequently, a
system characterized by ρ > 1 and continuous use of actions for controlling the system. This example reflects
how the spectral radius must be interpreted in the context of the state-action behavior of a system being
controlled.

G Phase-Space Visualizations of SALSA-RL

For the pendulum problem, where the state space is summarized by two components–the angle θ and angular
velocity θ̇, rather than θ, cos θ, and sin θ–we analyze the phase-space behavior of the learned policies. By
interacting the policy with the environment, we visualize the structure of actions assigned to different states.

Figure 8 compares the baseline SAC Raffin (2020) with the proposed SALSA-RL, both sharing similar
architectures and training strategies. On the right, the SAC policy results in scattered action assignments
across phase space, reflecting its probabilistic nature. In contrast, on the left, SALSA-RL exhibits larger,
more coherent action regions, indicating more consistent action choices for given states. This suggests that
SALSA-RL encodes a structured latent representation, leading to more predictable decision-making in phase
space. These slight discrepancies arise from the encoder-decoder structure in SALSA-RL, which transforms
raw actions into a learned latent space before applying them, thus altering the effective action dynamics.
Notably, this transformation may also enhance the stability of the pretrained agent, though a full analysis of
this effect is left for future work. Like Weissenbacher et al. (2022), our approach may also be used to perform
principled data augmentation for improved behavior of RL agents in terms of regularity.

Figure 8: Action space of the proposed SALSA-RL (left) compared to the SAC baseline (right). The sharp
transitions in SALSA-RL’s contours suggest a more structured action space, influenced by its latent dynamic
evolution, while SAC’s smooth transitions reflect its probabilistic nature due to its training strategy.

To assess generalizability and robustness, we tested both policies in unseen pendulum environments by
modifying internal physical parameters, such as gravity and rod mass. Compared to SAC, SALSA-RL
maintained control with up to a 40% mass increase or a 20% gravity increase, while SAC failed to keep the
pendulum upright in all variations. This suggests that SALSA-RL’s structured latent dynamics contribute to
improved stability and performance across diverse conditions.

H Ablation Study on Stability Analysis Across Different Hidden Dimensions

In Figure 9, we extensively show the effect of different hidden dimensions contributing to the stability analysis.
Overall, the stability patterns remain consistent across different hd configurations: the trajectory initially
passes through high-instability regions (yellow) before stabilizing over time.
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In the first row with low hd, the contour patterns are highly similar within the spectral radius and within the
imaginary component plots. This consistency aligns with the main article and is particularly evident in the
initial stage, where the control policy seeks local stability while crossing regions of instability. In the second
row with high hd, the spectral radius contour reveals more symmetric and well-defined regions of stability, in
contrast to the upper row, where local stability is only observed on the lower-value side and the upper region
remains unbounded or weakly constrained. This suggests that higher latent dimensions enable more accurate
local stability characterization, particularly evident in the angular velocity plot.

It is worth noting that in the higher hd cases, even after the pendulum stabilizes (beyond 50 timesteps),
the imaginary component reveals regions of high values, indicating oscillatory behavior. However, these
regions remain distant from the actual state of the pendulum, and the increased values are likely due to the
higher-dimensional neural network introducing greater nonlinearity.
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Figure 9: Local stability contour plots for different hidden dimensions: (top-left) hd = 3, (top-right) hd = 4,
(bottom-left) hd = 8, and (bottom-right) hd = 16. Despite some discrepancies in numerical values, such as
the real part in hd = 8 showing uniform stability, similar patterns and overall behaviors hold across different
configurations. This consistency reinforces the robustness of our local stability analysis, demonstrating that
key trends persist regardless of the hidden dimension size.
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