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Abstract

We introduce a new approach to the mixture of experts model that consists in1

imposing local differential privacy on the gating mechanism. This is theoretically2

justified by statistical learning theory. Notably, we provide generalization bounds3

specifically tailored for mixtures of experts, leveraging the one-out-of-n gating4

mechanism rather than the more common n-out-of-n mechanism. Moreover,5

through experiments, we show that our approach improves the generalization6

ability of mixtures of experts.7

1 Introduction8

Mixtures of experts, initially introduced by Jacobs et al. [1991], have found widespread use in9

modeling sequential data, including applications in classification, regression, pattern recognition and10

feature selection tasks (Städler et al. [2010] and Khalili and Lin [2013]). One of the fundamental11

motivations behind mixtures of experts is their ability to break down complex problems into more12

manageable sub-problems, potentially simplifying the overall task. The structure of these models is13

well suited to capturing unobservable heterogeneity in the data generation process, dealing with this14

problem by splitting the data into homogeneous subsets (with the gating network) and associating15

each subset with an expert. This intuitive architecture has led to significant interest in mixture of16

experts models, resulting in a wealth of research (Yuksel et al. [2012]), ranging from simple mixtures17

of experts ( Jacobs et al. [1991], Jordan and Jacobs [1993]) to sparsely gated models (Shazeer et al.18

[2017]). Moreover, this architecture has inspired the development of various other models, such as19

switch transformers (Fedus et al. [2022]). However, despite the considerable attention mixtures of20

experts have received, advancements in their theoretical analysis have been relatively limited. Azran21

and Meir [2004] proved data-dependent risk bounds for mixtures of experts (with the n-out-of-n22

gating mechanism) using Rademacher complexity, but they exhibit a dependence on the complexity23

of the class of gating networks and the sum of the complexities of the expert classes, which reflects24

the complex structure of mixtures of experts but unfortunately leads to potentially large bounds. We25

are not aware of other work proving generalization bounds specifically tailored to mixtures of experts.26

To make theoretical progress, we utilize a well-known privacy-preserving technique called Local27

Differential Privacy (LDP). It was initially introduced by Dwork [2006] and has since been widely28

used to preserve privacy for individual data points as in Kasiviswanathan et al. [2010]. This is29

achieved by introducing stochasticity in algorithm outputs to control their dependence on specific30

inputs. This stochasticity is generally quantified by a positive real number ϵ. In this case, we write31

ϵ-LDP instead of just LDP. The parameter ϵ quantifies the level of privacy protection in the local32

differential privacy mechanism. A smaller value indicates stronger privacy protection, which requires33

the addition of more noise.34

In this work, we exploit this noise for regularization in our models by imposing the ϵ-LDP condition35

on their gating networks. This method allows us to leverage the numerous benefits of the most36

complex architectures, such as neural networks, without compromising theoretical guarantees on risk.37

By relying on LDP, we offer tight theoretical guarantees on the risk of mixtures of experts models,38
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provided with the one-out-of-n gating mechanism. Unlike the very few existing guarantees, these39

bounds depend only logarithmically on the number of experts we have, and the complexity of the40

gating network only appears in our bounds through the parameter ϵ of the LDP condition.41

2 Preliminaries42

Let X be the instance space, Y the label space, and Y ′ the output space (which can be different43

from Y). As is usual in supervised learning, we assume that data (x, y) ∈ X × Y are generated44

independently from an unknown probability distribution D. We consider a training set of m examples45

S = ((x1, y1), . . . , (xm, ym)) ∼ Dm and a bounded loss function ℓ : Y ′ × Y → [0, 1].46

2.1 Mixtures of experts47

We consider classes Hi of experts hi : X → Y ′ for i = 1, . . . , n. Let G be a set of gating functions48

g : X → [0, 1]n such that, given any x ∈ X , we have that
∑n

i=1 gi(x) = 1, where gi(x) is the49

i-th component of g(x). This means that each gating function defines a probability distribution on50

[n] = {1, . . . , n} for each x ∈ X , where gi(x) is the probability of i.51

In this work, a mixture of experts consists of n experts, h = (h1, . . . , hn) ∈ H1 × · · · × Hn, a52

gating function g ∈ G and a gating mechanism that combines the outputs of the experts and the53

output of the gating function to produce the final output. Our models use the stochastic one-out-of-n54

gating mechanism, as described in Jacobs et al. [1991]. It is defined as follows: to make a prediction55

with (g,h) ∈ G ×
∏n

i=1 Hi given an instance x, draw i ∼ g(x) and output hi(x). This stochastic56

predictor has risk and empirical risk defined by, respectively,57

R(g,h) = E
(x,y)∼D

E
i∼g(x)

ℓ(hi(x), y), and RS(g,h) =
1

m

m∑
j=1

E
i∼g(xj)

ℓ(hi(xj), yj).

The preference for the one-out-of-n gating mechanism over the n-out-of-n mechanism in mixtures58

of experts is justified by its ability to induce sparsity and noise, enhancing computational efficiency59

and robustness to overfitting. This sparsity also offers scalability benefits, particularly in large-scale60

applications, where activating all experts for each input can lead to increased computational and61

memory requirements as explained in Shazeer et al. [2017] and Jacobs et al. [1991]. Moreover, the62

one-out-of-n mechanism is more amenable to certain kinds of theoretical analysis, including ours.63

2.2 Local Differential Privacy64

Definition 2.1. Let I be a finite set, consider a mechanism that produces an output i ∈ I, given an65

input x ∈ X , with probability P(i |x), and let ϵ be a nonnegative real number. Then, the mechanism66

satisfies the ϵ-Local Differential Privacy (ϵ-LDP) property if and only if67

P(i |x) ≤ eϵ P(i |x′) for all x, x′ ∈ X and all i ∈ I.

Unless stated otherwise, we assume that each g ∈ G satisfies ϵ-LDP, for some fixed nonnegative real
number ϵ. Since we can interpret g as a random mechanism that, given x ∈ X , selects i ∈ [n] with
probability gi(x), the condition of ϵ-LDP amounts to the following:

gi(x) ≤ eϵgi(x
′) for all x, x′ ∈ X and all i ∈ [n].

Since ϵ-LDP is an important condition for all of our theoretical results, we provide a practical way68

of obtaining gating functions satisfying ϵ-LDP from an arbitrary set F of bounded functions, in the69

form of the following theorem.70

Theorem 2.2. Let b > 0 and β ≥ 0 be real numbers, and suppose that F is a set of functions71

f : X → [−b, b]n. Let G be the set of functions g : X → [0, 1]n defined by72

gi(x) =
exp(βfi(x) + ci)∑n

k=1 exp(βfk(x) + ck)
, where f = (f1, . . . , fn) ∈ F and (c1, . . . , cn) ∈ Rn.

Then, each g ∈ G satisfies 4βb-LDP.73

Proof. The proof is obtained by performing simple calculations, bounding the ratio gi(x)/gi(x
′), for74

all x, x′ ∈ X and all i ∈ [n]. The detailed proof is given in Appendix A.75
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3 PAC-Bayesian bounds for mixtures of experts76

To apply the PAC-Bayes theory, we need to add a level of stochasticity to our predictors: instead of
training experts hi, we train probability measures Qi on each expert set Hi. For convenience, we
write Q = Q1 ⊗ · · · ⊗ Qn. Now, putting everything together, a mixture of experts (g, Q) makes
predictions as follows: given x ∈ X , draw i ∼ g(x), then draw h ∼ Qi, and finally output h(x).
Such a predictor has risk and empirical risk defined by, respectively,

R(g, Q) = E
h∼Q

R(g,h) and RS(g, Q) = E
h∼Q

RS(g,h).

Notice that, though probability distributions have replaced the individual experts, there is no need to77

define a probability distribution on the gating functions to get a PAC-Bayesian bound. Training a78

single gating function will do, and, remarkably, Lemma 3.1 below shows that it can be obtained from79

a very complicated function, such as a neural network, provided we impose ϵ-LDP (for example, with80

Theorem 2.2).81

Finally, let us recall the notion of Kullback-Leibler (KL) divergence. Given probability distributions82

Qi and Pi on Hi, it is defined by83

KL(Qi ∥Pi) =

 E
h∼Qi

ln
dQi

dPi
(h) if Qi ≪ Pi

∞ otherwise,

where dQi/dPi is a Radon-Nikodym derivative.84

Lemma 3.1. We consider mixtures of experts as defined in section 2.1 and provided with the one-85

out-of-n routing mechanism. Let ∆ : R2 → R be a convex function that is decreasing in its first86

argument and increasing in its second argument, and let ϵ be a nonnegative real number. Then, for87

any g ∈ G that satisfies the ϵ-LDP property, for any Q = Q1 ⊗ · · · ⊗Qn on H1 × · · · ×Hn, and for88

any x′ ∈ X :89

∆
(
eϵRS(g, Q), e−ϵR(g, Q)

)
≤ E

i∼g(x′)
∆
(
RS(Qi), R(Qi)

)
where R(Qi) = Ex∼D Eh∼Qi

ℓ(h(x), y) and RS(Qi) =
1
m

∑m
j=1 Eh∼Qi

ℓ(h(xj), yj).90

Proof. Since the gating function satisfies ϵ-LDP, we have that e−ϵgi(x
′) ≤ gi(x) ≤ eϵgi(x

′) for91

all x, x′ ∈ X and all i ∈ [n]. It follows that eϵRS(g, Q) ≥ Ei∼g(x′) RS(Qi) and e−ϵR(g, Q) ≤92

Ei∼g(x′) R(Qi). Given that ∆ is decreasing in its first argument and increasing in its second argument,93

we find that94

∆
(
eϵRS(g, Q), e−ϵR(g, Q)

)
≤ ∆

(
E

i∼g(x′)
RS(Qi), E

i∼g(x′)
R(Qi)

)
Since ∆ is a convex function, we can apply Jensen’s inequality to the expression on the right-hand95

side, yielding the desired result.96

Different choices of function ∆ will allow us to obtain different PAC-Bayes bounds:97

• Let ∆(u, v) = v − u. This is compatible with typical PAC-Bayes bounds on the difference98

between the true and empirical risks.99

• Given λ > 1/2, let ∆ be defined by ∆(u, v) = v − 2λ
2λ−1u. This choice is compatible with100

a Catoni-type bound, as we will see below.101

• Let ∆ be defined by ∆(u, v) = kl(u∥v) = u ln u
v + (1 − u) ln 1−u

1−v . This choice is102

compatible with a Langford-Seeger-type bound. However, note that the function ∆ defined103

here does not quite obey the hypotheses of lemma 3.1. Indeed, it is only defined for (u, v) ∈104

[0, 1]2, and only has the right monotonicity properties on the set {(u, v) ∈ [0, 1]2 | u ≤ v}.105

We can remedy those defects through small adjustments to the proof.106

We prove a generalization bound of Catoni-type as an illustration of the machinery just described.107
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Theorem 3.2 (Theorem 2 in McAllester [2013]). Let δ ∈ (0, 1) and λ > 1/2. Fix i ∈ [n], and let Pi108

be a probability measure on Hi (chosen without seeing the training data). Then, with probability at109

least 1− δ over the draws of S, for all probability measures Qi on Hi, we have that110

R(Qi) ≤
2λ

2λ− 1

(
RS(Qi) +

λ

m

(
KL(Qi ∥Pi) + ln

1

δ

))
.

Theorem 3.3. Let δ ∈ (0, 1), ϵ ≥ 0, and λ > 1/2. For each i ∈ [n], let Pi be a probability measure111

on Hi (chosen without seeing the training data). Then, with probability at least 1− δ over the draws112

of S, for all probability measures Q = Q1 ⊗ · · · ⊗Qn on H, all g ∈ G that satisfy ϵ-LDP, and all113

x′ ∈ X , we have that114

R(g, Q) ≤ 2λeϵ

2λ− 1

(
eϵRS(g, Q) +

λ

m

(
E

i∼g(x′)
KL(Qi ∥Pi) + ln

n

δ

))
.

Proof. By n applications of Theorem 3.2, we have that, for each i ∈ [n], with probability at least115

1− δ/n, for all Qi,116

R(Qi) ≤
2λ

2λ− 1

(
RS(Qi) +

λ

m

(
KL(Qi ∥Pi) + ln

n

δ

))
.

We can make all these inequalities (for each i ∈ [n]) hold simultaneously with a union bound. Now,117

applying Lemma 3.1 with ∆(u, v) = v − 2λ
2λ−1u, we find that, with probability at least 1− δ, for all118

Q, all g ∈ G and all x′ ∈ X , we have that119

e−ϵR(g, Q)− 2λeϵ

2λ− 1
RS(g, Q) ≤ E

i∼g(x′)

(
R(Qi)−

2λ

2λ− 1
RS(Qi)

)
≤ 2λ2

(2λ− 1)m

(
E

i∼g(x′)
KL(Qi ∥Pi) + ln

n

δ

)
.

We also give a bound of Langford-Seeger type, since they are generally recognized as among the120

tightest PAC-Bayes bounds available, and to prove the flexibility of our approach.121

Theorem 3.4. Let δ ∈ (0, 1), ϵ ≥ 0, and m ≥ 8. For each i ∈ [n], let Pi be a probability measure122

on Hi (chosen without seeing the training data). Then, with probability at least 1− δ over the draws123

of S, for all probability measures Q = Q1 ⊗ · · · ⊗Qn on H, all g ∈ G that satisfy ϵ-LDP, and all124

x′ ∈ X , we have that, either R(g, Q) < e2ϵRS(g, Q), or125

kl(eϵRS(g, Q)∥e−ϵR(g, Q)) ≤ 1

m

(
E

i∼g(x′)
KL(Qi ∥Pi) + ln

2n
√
m

δ

)
.

Proof. The proof, which is similar to that of Theorem 3.3, is available in Appendix A.126

3.1 Comparison with other bounds127

Very few generalizations bound tailored specifically to mixtures of experts appear in the literature,128

and those we could find do not apply to mixtures of experts with the one-out-of-n gating mechanism.129

We can, however, compare our bounds to those obtained by naively applying generic PAC-Bayes130

generalization bounds to mixtures of experts. In this case, we need to consider classifiers of the form131

(QG , Q), where QG is a probability measure on G, and Q = Q1 ⊗ · · · ⊗Qn is a probability measure132

on H1 × · · · × Hn as before. Then, note that133

KL(QG ⊗Q1 ⊗ · · · ⊗Qn ∥PG ⊗ P1 ⊗ · · · ⊗ Pn) = KL(QG ∥PG) +

n∑
i=1

KL(Qi ∥Pi).

This means that a generic PAC-Bayes bound applied to mixtures of experts will depend on the sum of134

the KL divergences corresponding to the gating functions and each of the experts. Obviously, this135

sum could be very large. By imposing ϵ-LDP to the gating functions as in our approach, we can136

eliminate the stochasticity associated to the gating functions, and rid our bounds of the (potentially137

very large) KL(QG ∥PG) term. Instead, it is ϵ-LDP which controls our gating functions to ensure138

generalization. Furthermore, our bounds replace the sum of the KL divergences of the experts by139

a g(x′)-weighted average, which means we can have many more experts with almost no penalty140

from the theoretical point of view. Indeed, our bounds only depend on the number n of experts141

logarithmically, through the use of the union bound.142
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4 Rademacher bounds for mixtures of experts143

Let us start with a slight modification of Lemma 3.1.144

Lemma 4.1. We consider mixtures of experts as defined in section 2.1 and provided with the one-145

out-of-n routing mechanism. Let ∆ : R2 → R be a convex function that is decreasing in its first146

argument and increasing in its second argument, and let ϵ be a nonnegative real number. Then, for147

any g ∈ G that satisfies the ϵ-LDP property, for any h ∈ H , and for any x′ ∈ X :148

∆
(
eϵRS(g,h), e

−ϵR(g,h)
)
≤ E

i∼g(x′)
∆
(
RS(hi), R(hi)

)
where R(hi) = Ex∼D ℓ(hi(x), y) and RS(hi) =

1
m

∑m
j=1 ℓ(hi(xj), yj).149

Proof. The proof is similar to that of Lemma 3.1 and is provided in Appendix A.150

Let us now recall the following definition.151

Definition 4.2 (Rademacher complexity). Given a space H of predictors, a loss function ℓ, and a152

data generating distribution D, the Rademacher complexity R(ℓ ◦ H) is defined by153

R(ℓ ◦ H) = E
S∼Dm

E
σσσ
sup
h∈H

1

m

m∑
j=1

σjℓ(h(xj), yj),

where σσσ = (σ1, . . . , σm) is distributed uniformly on {−1, 1}m.154

Our main theorem will make use of the following well-known risk bound.155

Theorem 4.3 (Basic Rademacher risk bound). Given a [0, 1]-valued loss function ℓ, with probability156

at least 1− δ, for all h ∈ H, we have that157

R(h) ≤ RS(h) + 2R(ℓ ◦ H) +

√
2 ln(2/δ)

m
.

Theorem 4.4. Let δ ∈ (0, 1) and ϵ ≥ 0. Given a [0, 1]-valued loss function ℓ, then, with probability158

at least 1− δ over the draws of S, for all h ∈ H1 × · · · × Hn, for all g ∈ G that satisfy ϵ-LDP, and159

all x′ ∈ X , we have that160

R(g,h) ≤ eϵ
(
eϵRS(g,h) + 2 E

i∼g(x′)
R(ℓ ◦ Hi) +

√
2 ln(2n/δ)

m

)
.

Proof. By n applications of Theorem 4.3, we have that, for each i ∈ [n], with probability at least161

1− δ/n, for all hi ∈ Hi,162

R(hi) ≤ RS(hi) + 2R(ℓ ◦ Hi) +

√
2 ln(2n/δ)

m
.

We can make all these inequalities (for each i ∈ [n]) hold simultaneously with a union bound. Now,163

applying Lemma 4.1 with ∆(u, v) = v − u, we find that, with probability at least 1 − δ, for all164

h ∈ H1 × · · · × Hn, all g ∈ G and all x′ ∈ X , we have that165

e−ϵR(g,h)− eϵRS(g,h) ≤ E
i∼g(x′)

(
R(hi)−RS(hi)

)
≤ E

i∼g(x′)

(
2R(ℓ ◦ Hi) +

√
2 ln(2n/δ)

m

)
.

Note, that the risk bound of Theorem 4.4 depends only on the average Rademacher complexity of166

the classes of experts instead of the sum of their Rademacher complexities. Note also that, as in the167

previous section, the complexity of G does not affect the risk bound. Finally, the risk bound does not168

hold uniformly for all values of ϵ. However, by the union bound, the theorem holds for any fixed set169

{ϵ1, . . . , ϵk} if we replace δ by δ/k. Consequently, this suggests a learning algorithm that minimizes170

RS(g,h) for ϵ ∈ {ϵ1, . . . , ϵk}.171

Also note that Lemma 4.1 allows us to obtain risk bounds for mixtures of experts as long as we172

have bounds on ∆
(
RS(hi), R(hi)

)
which hold with high probability, whether they are based on173

Rademacher complexity, margins, VC dimension, or algorithmic stability.174
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4.1 The need to use adaptive experts175

Following these theoretical results, we may be tempted to use a gating network satisfying ϵ-LDP to176

accomplish a learning task all by itself using non-adaptive experts, that is, experts hi each taking177

a constant value, no matter the input: hi(x) = i for all x ∈ X . In that case, each Rademacher178

complexity R(ℓ◦Hi) is zero and we can show that Theorem 4.4 can become vacuous under reasonable179

circumstances.180

Consider, for example, the binary classification case with the 0-1 loss. In that case, we have two181

experts h+1 and h−1 such that h+1(x) = +1 and h−1(x) = −1 for all x ∈ X , and a gating network182

g = (g+1, g−1). Then, the following holds:183

RS(g,h) =
1

m

m∑
j=1

E
i∼g(xj)

ℓ0-1(hi(xj), yj)

=
1

m

m∑
j=1

E
i∼g(xj)

1(hi(xj) ̸= yj)

≥ 1

m

m∑
j=1

∑
i∈I

e−ϵ max
x′∈X

gi(x
′)1(hi(xj) ̸= yj), with I = {+1,−1}

= e−ϵ 1

m

m∑
j=1

max
x′∈X

g−yj
(x′).

Under the assumption that the classes are balanced, meaning that the (marginal) probability of a184

positive label is equal to the (marginal) probability of a negative label, we have the following:185

lim
m→∞

1

m

m∑
j=1

max
x′∈X

g−yj (x
′) =

1

2

(
max
x′∈X

g−1(x
′) + max

x′∈X
g+1(x

′)
)

≥ 1

2
max
x′∈X

(
g−1(x

′) + g+1(x
′)
)
=

1

2
.

It follows that, in the limit m → ∞, the risk bound of Theorem 4.4 for any g has a value of at least186

eϵ/2 ≥ 1/2. Consequently, the risk bound becomes large or even vacuous in this regime, highlighting187

the importance of having adaptive experts of finite complexity that can drive the empirical risk to188

zero when they are selected by the gating network.189

5 Experiments and results190

In what follows, we consider mixtures of n linear experts in binary classification tasks. Let X = Rd191

for some positive integer d. Let S be a training set of m examples. Each expert, denoted by hi, where192

i ranges from 1 to n, is characterized by a weight vector wi. Given an input x ∈ X , the output of the193

expert hi is given by hi(x) = wi · x. We use the probit loss function ℓ = Φ, which can be seen as a194

smooth surrogate to the 0-1 loss function, when it is used with an argument of the form ywi·x
∥x∥ . In this195

case, R(g, Q) and RS(g, Q) are given by:196

R(g, Q) = E
(x,y)∼D

E
i∼g(x)

Φ
(ywi · x

∥x∥

)
and197

RS(g, Q) =
1

m

m∑
j=1

n∑
i=1

gi(xj)Φ
(yjwi · xj

∥xj∥

)
, (1)

where Φ(x) = 1√
2π

∫ +∞
x

e−t2/2 dt provides the probability that a standard normal random variable198

is greater than a given value x.199

To illustrate the regularizing effect of the LDP condition, we carried out several experiments, on200

different datasets, by minimizing the empirical risk as defined in Equation 1. For all experiments, our201

models consist of mixtures of n = 100 linear experts and a gating network. The gating network is a202
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neural network having 2 hidden layers. It is parameterized by weights W1 ∈ R64×d, where d is the203

dimension of input vectors, W2 ∈ R64×64, and W3 ∈ Rn×64, and biases b1 ∈ R64, b2 ∈ R64 and204

b3 ∈ Rn. Given an input x ∈ Rd, the output of the gating network g(x) = (g1(x), . . . , gn(x)) is205

computed as follows: first, we compute f0(x) = tanh(W2 ReLU(W1x+ b1) + b2). Then, when206

we want the ϵ-LDP condition to be satisfied, we ensure that the outputs are between −ϵ/4 and ϵ/4:207

f(x) =

{
ϵW3f0(x)

4∥f0(x)∥∥W3∥F
if the gating network must satisfy ϵ-LDP

W3f0(x) otherwise.

Note that tanh is the hyperbolic tangent activation function, ReLU the Rectified Linear Unit function,208

∥W3∥F the Frobenius norm of the matrix W3, and ∥f0(x)∥ the euclidean norm of the vector f0(x).209

Indeed, if we let Wi
3 denote the i-th row of W3, then the i-th component of W3f0(x) is210

Wi
3 · f0(x) ≤ ∥Wi

3∥∥f0(x)∥ ≤ ∥W3∥F ∥f0(x)∥,

by the Cauchy-Schwarz inequality and the definition of the Frobenius norm. The reason we use211

the Frobenius norm instead of directly using ∥Wi
3∥ is to preserve the proportions between the212

components of W3f0(x) when setting up ϵ-LDP.213

The final output of the gating network is given by214

gi(x) =
exp(fi(x) + (b3)i)∑n

k=1 exp(fk(x) + (b3)k)
for all i ∈ [n].

In our experiments, we ran the Stochastic Gradient Descent algorithm 10 times with a learning rate215

fixed to 0.1. In each experiment, we trained the model for 1000 epochs, except for the MNIST216

dataset, where the training duration was shortened to 300 epochs due to dataset size. We allocated217

approximately 75% of the data to the training set and the remaining 25% to the test set. At the218

outset of each experiment, the weights of our neural networks were reinitialized to ensure a fresh219

starting point. After each training run, we computed both the training and test loss values to evaluate220

the model’s performance. We first ran the training without imposing any constraints on the gating221

network, except for the architecture. Then, we ran several experiments with a gating mechanism222

satisfying ϵ-LDP, with ϵ ∈ {0.5, 2, 4, 5, 10}. A summary of the results is shown in Table 1. One can223

observe that regularization with ϵ-LDP improves results in practice, and this regularization is even224

more evident when the models employing a gating network not satisfying LDP overfit heavily, as in225

the Breast Cancer and Heart experiments. The regularization effect is slightly less pronounced on226

MNIST, where the overfitting is not as severe as with the previous datasets. We can also observe the227

importance of choosing the right hyperparameter ϵ. Indeed, if the value is too small, the output of the228

gating network becomes insufficiently dependent on the input x. In this case, the experts have to do229

all the work, and the gating network does not allow them to specialize in well-defined subsets of the230

instance space. This makes our model closer to a weighted sum of linear classifiers and significantly231

reduces its performance. Conversely, if ϵ is overly large, our model tends towards a situation where232

the LDP condition does not hold, making it prone to overfitting.233

Note that our experiments are executed on GPUs in order to parallelize computations and take234

advantage of the sparsity of our model, but they can also be performed without GPUs. The duration235

of experiments can range from a few minutes for small datasets such as Breast Cancer to around 3236

hours for large datasets like MNIST.237

6 Conclusion238

In this work, we introduce a new way to regularize mixtures of experts. We provide both theoretical239

and algorithmic contributions in this regard. Our approach offers a significant advantage in that240

it allows us to harness the remarkable performances of neural networks by using them as gating241

networks, without being constrained by their architecture or their complexity from the theoretical242

point of view. By imposing LDP, we obtain nonvacuous bounds on the mixture of experts’ risk. Our243

bounds can become significantly tighter than those presented in section 3.1 and those presented in244

2If N denotes the number of runs, Rk denotes the training or test empirical risk during the k-th run, and R̄

denotes the average, then standard deviation is given by
√

1
N

∑N
k=1(Rk − R̄)2.
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Table 1: Experiment results for mixtures of 100 linear models applied to binary classification tasks:
Ads, Breast Cancer [Zwitter and Soklic, 1988], Heart [Janosi et al., 1988] and MNIST [Deng, 2012].
The objective is to minimize the empirical risk as defined in Equation 1. We report the mean training
loss (RS) and mean test loss (RT ), averaged over ten runs, along with their associated standard
deviations.2

MoE with a gating network satisfying ϵ-LDP
Dataset Risk No LDP ϵ = 0.5 ϵ = 2 ϵ = 4 ϵ = 5 ϵ = 10

Ads RS 0.02425 0.13854 0.01829 0.05288 0.06459 0.02811
± 0.00499 0.00261 0.00216 0.05543 0.05821 0.03648
RT 0.03822 0.13051 0.03206 0.06693 0.07757 0.04384
± 0.00696 0.01138 0.00564 0.05276 0.05822 0.03501

Breast RS 0.00780 0.04520 0.01252 0.01062 0.01089 0.01207
Cancer ± 0.00347 0.00426 0.00182 0.00286 0.00193 0.00181

RT 0.03617 0.04930 0.03238 0.03297 0.02942 0.02604
± 0.01505 0.01244 0.01349 0.01379 0.00948 0.01277

Heart RS 0.00001 0.03524 0.00015 0.00010 0.00009 0.00013
± 0.00000 0.00487 0.00002 0.00001 0.00001 0.00006
RT 0.00029 0.03962 0.00026 0.00026 0.00032 0.00032
± 0.00065 0.01013 0.00014 0.00033 0.00030 0.00032

MNIST RS 0.00525 0.00558 0.00529 0.00504 0.00536 0.00523
0 vs 8 ± 0.00029 0.00059 0.00044 0.00031 0.00031 0.00032

RT 0.00844 0.00869 0.00815 0.00864 0.00769 0.00802
± 0.00103 0.00109 0.00131 0.00165 0.00144 0.00067

MNIST RS 0.00287 0.00330 0.00289 0.00285 0.00298 0.00286
1 vs 7 ± 0.00024 0.00033 0.00028 0.00025 0.00023 0.00013

RT 0.00501 0.00485 0.00501 0.00518 0.00450 0.00526
± 0.00042 0.00101 0.00093 0.00098 0.00101 0.00066

MNIST RS 0.01419 0.01509 0.01388 0.01396 0.01440 0.01154
5 vs 6 ± 0.00046 0.00057 0.00038 0.00051 0.00056 0.00336

RT 0.02195 0.02131 0.02206 0.02236 0.02072 0.01852
± 0.00111 0.00160 0.00185 0.00269 0.00229 0.00518

Azran and Meir [2004], especially in cases where the empirical risk is close to zero and ϵ < lnn.245

However, as the empirical risk is multiplied by eϵ, the bounds can become loose when ϵ is large and246

the empirical risk is significant.247

Even though the ϵ-LDP condition is easy to set up, a challenge arises in striking a balance between248

the parameter ϵ and the KL divergence or the Rademacher complexity of our experts. Our method249

introduces an extra hyperparameter ϵ to optimize but does not provide theoretical guidance on250

configuring it. This forces us to navigate a trade-off between the value of ϵ, which measures the251

extent to which the output of the gating network can depend on a given x ∈ X , and the complexity252

of our experts, which reflects how well our model captures the data distribution. Finding the right253

balance requires empirical testing and careful consideration and can open up new avenues of study in254

the future.255
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A Proofs and auxiliary results292

Proof of theorem 2.2. Given x ∈ X , let Z(x) =
∑n

i=1 exp(βfi(x) + ci), for convenience.293

For all x, x′ ∈ X and all i ∈ [n], we have that294

gi(x)

gi(x′)
= exp

(
β(fi(x)− fi(x

′))
) 1

Z(x)

n∑
k=1

exp(βfk(x
′) + ck)

= exp
(
β(fi(x)− fi(x

′))
) 1

Z(x)

n∑
k=1

exp(βfk(x) + ck) exp
(
β(fk(x

′)− fk(x))
)

≤ max
i∈[n]; x1,x2∈X

exp
(
2β(fi(x1)− fi(x2))

) 1

Z(x)

n∑
k=1

exp(βfk(x) + ck)

≤ exp(4βb).

Theorem A.1 (Jensen’s inequality, proposition 1.1 in Perlman [1974]). Let Ω be a probability space,295

let A be a convex subset of Rk, let X : Ω → A be an integrable vector-valued random variable, and296

let ϕ : A → R be a convex function. Then, EX ∈ A, and ϕ(EX) ≤ Eϕ(X) (in particular, the297

right-hand side of this inequality exists, though it may be infinite).298

Theorem A.2 (Theorem 5 in Maurer [2004]). Let δ ∈ (0, 1) and m ≥ 8. Fix i ∈ [n], and let Pi be a299

probability measure on Hi (chosen without seeing the training data). Then, with probability at least300

1− δ over the draws of S, for all probability measures Qi on Hi, we have that301

kl(RS(Qi)∥R(Qi)) ≤
1

m

(
KL(Qi ∥Pi) + ln

2
√
m

δ

)
.

Proof of theorem 3.4. As remarked earlier, the function (u, v) −→ kl(u∥v) : [0, 1]2 → R does not302

exactly satisfy the hypotheses of lemma 3.1, but it is convex. Moreover, on {(u, v) ∈ [0, 1]2 |u ≤ v},303

it is decreasing in its first argument and increasing in its second argument. Also note that, assuming304

that R(g, Q) ≥ e2ϵRS(g, Q), then we also have the following inequalities:305

0 ≤ E
i∼g(x′)

RS(Qi) ≤ eϵRS(g, Q) ≤ e−ϵR(g, Q) ≤ E
i∼g(x′)

R(Qi) ≤ 1.

It follows that306

kl(eϵRS(g, Q)∥e−ϵR(g, Q)) ≤ kl
(

E
i∼g(x′)

RS(Qi)
∥∥∥ e−ϵR(g, Q)

)
≤ kl

(
E

i∼g(x′)
RS(Qi)

∥∥∥ E
i∼g(x′)

R(Qi)
)
,

and therefore307

kl(eϵRS(g, Q)∥e−ϵR(g, Q)) ≤ E
i∼g(x′)

kl
(
RS(Qi)∥R(Qi)

)
by Jensen’s inequality. Now, by theorem A.2, for a fixed i, with probability at least 1− δ/n, we have308

that309

kl(RS(Qi)∥R(Qi)) ≤
1

m

(
KL(Qi ∥Pi) + ln

2n
√
m

δ

)
.

We can make the above inequality hold for all i ∈ [n] simultaneously with the union bound. Then,310

with probability at least 1− δ, for all (g, Q), given that R(g, Q) ≥ e2ϵRS(g, Q), we have that311

kl(eϵRS(g, Q)∥e−ϵR(g, Q)) ≤ 1

m

(
E

i∼g(x′)
KL(Qi ∥Pi) + ln

2n
√
m

δ

)
.

Proof of Lemma 4.1. Since the gating function satisfies ϵ-LDP, we have that e−ϵgi(x
′) ≤ gi(x) ≤312

eϵgi(x
′) for all x, x′ ∈ X and all i ∈ [n]. It follows that eϵRS(g,h) ≥ Ei∼g(x′) RS(hi) and313

e−ϵR(g,h) ≤ Ei∼g(x′) R(hi). Given that ∆ is decreasing in its first argument and increasing in its314

second argument, we find that315

∆
(
eϵRS(g,h), e

−ϵR(g,h)
)
≤ ∆

(
E

i∼g(x′)
RS(hi), E

i∼g(x′)
R(hi)

)
Since ∆ is a convex function, we can apply Jensen’s inequality to the expression on the right-hand316

side, yielding the desired result.317
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• The answer NA means that there is no societal impact of the work performed.524
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• The authors should state which version of the asset is used and, if possible, include a574

URL.575

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.576
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• For scraped data from a particular source (e.g., website), the copyright and terms of577

service of that source should be provided.578

• If assets are released, the license, copyright information, and terms of use in the579

package should be provided. For popular datasets, paperswithcode.com/datasets580

has curated licenses for some datasets. Their licensing guide can help determine the581

license of a dataset.582

• For existing datasets that are re-packaged, both the original license and the license of583

the derived asset (if it has changed) should be provided.584

• If this information is not available online, the authors are encouraged to reach out to585

the asset’s creators.586

13. New Assets587

Question: Are new assets introduced in the paper well documented and is the documentation588

provided alongside the assets?589

Answer: [Yes]590

Justification: The code is provided as supplemental material and the details are given in the591

README file.592

Guidelines:593

• The answer NA means that the paper does not release new assets.594

• Researchers should communicate the details of the dataset/code/model as part of their595

submissions via structured templates. This includes details about training, license,596

limitations, etc.597

• The paper should discuss whether and how consent was obtained from people whose598

asset is used.599

• At submission time, remember to anonymize your assets (if applicable). You can either600

create an anonymized URL or include an anonymized zip file.601

14. Crowdsourcing and Research with Human Subjects602

Question: For crowdsourcing experiments and research with human subjects, does the paper603

include the full text of instructions given to participants and screenshots, if applicable, as604

well as details about compensation (if any)?605

Answer: [NA]606

Justification: The paper does not involve research with human subjects nor crowdsourcing.607

Guidelines:608

• The answer NA means that the paper does not involve crowdsourcing nor research with609

human subjects.610

• Including this information in the supplemental material is fine, but if the main contribu-611

tion of the paper involves human subjects, then as much detail as possible should be612

included in the main paper.613

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,614

or other labor should be paid at least the minimum wage in the country of the data615

collector.616

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human617

Subjects618

Question: Does the paper describe potential risks incurred by study participants, whether619

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)620

approvals (or an equivalent approval/review based on the requirements of your country or621

institution) were obtained?622

Answer: [NA]623

Justification: The paper does not involve research with human subjects.624

Guidelines:625

• The answer NA means that the paper does not involve crowdsourcing nor research with626

human subjects.627
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• Depending on the country in which research is conducted, IRB approval (or equivalent)628

may be required for any human subjects research. If you obtained IRB approval, you629

should clearly state this in the paper.630

• We recognize that the procedures for this may vary significantly between institutions631

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the632

guidelines for their institution.633

• For initial submissions, do not include any information that would break anonymity (if634

applicable), such as the institution conducting the review.635

17


	Introduction
	Preliminaries
	Mixtures of experts
	Local Differential Privacy

	PAC-Bayesian bounds for mixtures of experts
	Comparison with other bounds

	Rademacher bounds for mixtures of experts
	The need to use adaptive experts

	Experiments and results
	Conclusion
	Proofs and auxiliary results

