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Abstract

One fundamental problem in machine learning
is out-of-distribution generalization. A method
named the surgery estimator incorporates the
causal structure in the form of a directed acyclic
graph (DAG) to find predictors that are invariant
across target domains using distributional invari-
ances via Pearl’s do-calculus. However, finding a
surgery estimator can take exponential time as the
current methods need to search through all pos-
sible predictors. In this work, we first provide a
graphical characterization of the identifiability of
conditional causal queries. Next, we leverage this
characterization together with a greedy search step
to develop a polynomial-time algorithm for finding
invariant predictors using the causal graph. Given
the correct causal graph, our method is guaranteed
to find at least one invariant predictor, if it exists.
We show that our proposed algorithm can signifi-
cantly reduce the run-time both in simulated and
semi-synthetic data experiments and have predic-
tive performance that is comparable to the existing
work that runs in exponential time.

1 INTRODUCTION

One fundamental challenge in machine learning (ML) is
to deploy an algorithm that generalizes well to unseen
data. When the training data distribution and the target dis-
tribution differ, i.e., a distribution shift occurs, ML algo-
rithms can make mistakes that have serious consequences
in mission-critical applications in areas such as healthcare
[21, 30]. Thus, an important goal in ML is to carefully select
the features that can be used to train predictive algorithms
that perform well in new environments.

There have been numerous studies to investigate distribution
shifts using different tools. [6, 26] evaluates their predictor

performance under mixture covariate shifts by modeling it as
a distributionally robust optimization (DRO) problem( [3]).
In this approach, they consider a lower bound of the propor-
tion of the minority sub-population from a mixture model
and minimize their worst-case subpopulation loss. Another
line of work deals with the distribution shift ([14, 19]) by
developing learning models that are stable against shifts due
to changes in the data-generating mechanisms. Researchers
have considered the causal connection between features (X)
and the target variable (Y ) to introduce methods to deal with
different types of distribution shifts. Some examples include
covariate shift where P (X) changes ([9, 15]), target shift
where P (Y ) changes ([31, 7]) and conditional shift where
P (Y |X) changes ([8]).

There are mainly two types of stable training algorithms in
the literature that consider different forms of distribution
shifts: reactive and proactive ([4]). Reactive approaches con-
sider datasets from the deployment environment to train and
adjust their training algorithm accordingly by re-weighting
the training data so that it performs better in the deploy-
ment environment [27, 9]. However, in many sensitive ap-
plications, we do not have access to every possible domain
dataset. Under these circumstances, proactive approaches
are preferable, as they are trained without any deployment
data and prepared to perform well for any possible distri-
bution shift [28, 18]. Proactive algorithms train with stable
information/features that are invariant across environments.

Some recent proactive algorithms such as [16, 10] find op-
timal conditioning sets containing causal, anti-causal, or
confounded dependence (i.e., unobserved common cause)
with the target by hypothesis testing their stability across
multiple data domains. This makes the prediction invariant
to the specific distribution shift. Such algorithms model the
causal relations among the features as a causal graph and
model distribution shift via an auxiliary node that captures
the shift as an intervention. This setup allows utilizing con-
ditional independence relations to obtain stable predictors.
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Figure 1: A causal graph representing causal relations
among features. We use A, I,X,H from a hypothetical
do(H) interventional distribution to predict Pneumonia
severity such that it stays invariant to distribution shift.

Suppose we have access to the data-generating causal graph
in Figure 1. The admission criteria for ICU(I) is caused by
Asthma (A) having a confounding effect on Pneumonia (N)
severity and Hospital equipment (H). The variable Xray (X)
is caused by Pneumonia and the Hospital equipment. We as-
sume the feature H is responsible for the distribution shifts
and represent the shift with a discrete variable S pointing
to it. For example, S = 0 could represent the training dis-
tribution, and S = 1 could represent the distribution during
deployment. According to most existing algorithms in the
literature ([9, 31]), we can use features A, X , and H to train
a model that can predict N as valid stable predictors since
they cut off any dependence from S. Along with these fea-
tures, I might be a better predictor of N . Although N and H
are independent for the mentioned predictors, they become
dependent once we control for I in the dataset, and even-
tually, N becomes dependent on S. Therefore, if we wish
to include I in the stable predictors, previous approaches
cannot suggest any solution to achieve that without creating
dependence between S and the target variable, i.e., any such
predictor becomes domain-dependent.

Recently, [29] proposed an algorithm that removes the de-
pendence on any mechanism that is sensitive to the distri-
bution shift using hypothetical interventions to find stable
predictors known as graph surgery estimators. Such inter-
ventions are not actually performed but simulated from the
observational data via the identification algorithm [23]. In
Figure 1, the query P (N |do(H), A, I,X) can be uniquely
calculated from training data and do(H) d-separates N from
S. Thus we can train our model with predictors I,X,H,A
from a hypothetical do(H) interventional distribution to
predict N . However, in order to find such predictors, [29]
iterates over the subsets of all variables and constructs an ex-
ponential number of conditional causal queries. Each such
query requires one execution of the ID algorithm. This re-
sults in an exponential-time algorithm in the worst-case.

[24] proposed a solution to a similar problem in a differ-
ent context, identifying the conditional independence state-
ments in interventional distributions using only observa-
tional data. Such conditional independences are called dor-
mant independences. They provide a complete algorithm for
finding dormant independence between two sets of variables.

Although very relevant to the surgery estimator problem,
their approach cannot be directly applied to solve the causal
invariant prediction problem. We establish a formal con-
nection and propose a generalized solution to the invariant
prediction problem. We provide several invariant predictors
for any causal graph by starting from dormant independence.

In this paper, we propose a polynomial-time algorithm that
outputs invariant predictors given the causal graph by lever-
aging a characterization of causal identifiability of condi-
tional queries and systematically combining the ideas from
dormant independence with a greedy feature selection step.
Our algorithm is guaranteed to find at least one invariant
predictor if it exists. We perform extensive experiments and
the results illustrate that our algorithm gains significant com-
putational efficiency compared to the existing work and has
competitive predictive performance. Our contributions are
summarized as follows:

1. We provide a graphical characterization of the identi-
fiability of conditional causal queries and leverage it
with greedy search to develop a sound algorithm called
ID4IP for finding invariant estimators in polynomial
time given the causal graph structure.

2. We show that ID4IP is sound. We also show that ID4IP
outputs at least one graph surgery estimator anytime
such an estimator exists.

3. We perform experiments on both synthetic and semi-
synthetic data to illustrate that our algorithm has pre-
dictive performance that is comparable to a complete
algorithm in the literature by [29], and outperforms it
when the runtime is limited.

2 BACKGROUND

In this section, we describe the necessary definitions and
background knowledge required to introduce our approach.

Definition 2.1 (Structural Causal Model (SCM) and Causal
Graph). An SCM is a tuple M = (V,E,N ,U ,F , P (.))
that contains a set of observable variables V, a set of unob-
served exogenous variables N , a set of latent confounders U
i.e., unobserved common causes of two observable variables,
a set of functions F and a product probability distribution
P(.) over N and U . Each observed variable is generated as
Vi = fi(Pai, Ei, USi

), where fi ∈ F , Pai ⊂ V, Ei ∈ N
and USi

:= {Uj : j ∈ Si} for some Si ⊂ U . Variables set
V has a joint distribution PV implied by F and P(.).

An SCM induces a directed acyclic graph called a causal
graph, G = (V,E). Here V is the set of observable nodes
and E is the set of directed edges. For any pair Vi, Vj , a
directed edge Vi → Vj ∈ E indicates that Vi is a parent
of Vj , i.e., Vi ∈ Pa(Vj) and Vj is a child of Vi, i.e., Vj ∈
Ch(Vi) if and only if Vj is in the domain of fVi . There
exists a bi-directed edge Vi ↔ Vj ∈ E in G if Vi and



Vj share a latent confounder. An(V ) and De(V ) represent
the ancestors and descendants of V respectively. Nbr(V )
represents the nodes that are either parent, children of V ,
or share a bi-directed edge with V . For a variable set V,
Pa(V) = {Pa(Vi)}Vi∈V \ V. Ch(V) also follows the
same. However, An(V), De(V) and Nbr(V) has set V
included. We let GS to denote an induced subgraph of G
over any subset S of node V, GS be the graph obtained
by removing the incoming edges to S from GS , and GS

be GS with all outgoing edges of S removed. We define
an intervention as do(x) where do(x) replaces fX with the
equation X = x and in other functions where X occurs. We
represent the observed distribution after such an intervention
as Px(V) and the causal graph as GX . Let ⟨X,Y, Z⟩ be any
consecutive triple along a path p. Y is a collider on p if both
edges are into Y . Otherwise, Y is a non-collider on p.

Definition 2.2 (d-separation). In a DAG, a path p between
vertices X and Y is d-connecting (active) relative to a set
of vertices Z(X,Y ̸∈ Z) if (i) every non-collider on p is
not in Z and (ii) every collider on p is an ancestor of some
Z ∈ Z. If there is no d-connecting path between X and Y
relative to Z, we say X and Y are d-separated relative to Z,
denoted as (X ⊥⊥ Y |Z)G.

Definition 2.3 (Causal Effect Identifiability [25]). Let
X,Y,Z be disjoint sets. The causal effect of an action do(x)
on a set of variables Y in a given context z is said to be iden-
tifiable from P in G if Px(y|z) is (uniquely) computable
from P in any causal model that induces the causal graph.

Distribution shifts: Distribution shifts refer to the changes
between training conditions and deployment conditions that
prevent the generalization of machine learning and statisti-
cal models. For a set of features X and a target variable Y ,
distribution shift can be categorized into sub-groups ([31])
based on assumptions about the training domain and test do-
main. For example: i) P (Y ) changes while P (Y |X) stays
fixed (target shift), ii)P (Y |X) changes while P (Y ) stays
fixed (conditional shift), iii)only P (X) changes (covariate
shift). To prevent failure driven by distribution shifts, we
observe the relationships among dataset variables and how
the dataset is generated. One way is to model the underlying
data-generating process as a causal graph and identify the
sources where the shift occurs in the graph.

For example, in Figure 1, assume that we are given the
knowledge that the distributions of H change between the
training and testing data. We address this in the causal graph
by adding an auxiliary variable called selection variable
S ([13]) pointing to H . Suppose we want to predict N
from A, X , and I . The Bayes-optimal predictor models
the conditional distribution P (N |A, I,X). It is easy to see
that there exists a d-connecting path from S to N relative
to the set {A, I,X} as X is a child of H such that N is
conditionally dependent on S given A, I,X . As a result, this
conditional distribution changes in the target environment
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Figure 2: Selection diagram: Causal Graph with S

making the model prone to distribution shift. Therefore,
a systematic approach to ensure invariant prediction is to
intervene on H and use conditioning sets that render target
N independent from S producing an identifiable conditional
query. This method is known as graph surgery ([29]).

Definition 2.4 (Graph surgery estimator). Let S be the
shift variables, and Y be the target variable. For any sub-
sets Q,W ⊆ V, if (Y ⊥⊥ S|W)GQ

and P (Y |do(Q),W)

is identifiable in G and P (Y |do(Q),W) ̸= P (Y ), then
P (Y |do(Q),W) is called a graph surgery estimator.

We will illustrate the concept of graph surgery estima-
tor and other graphical definitions using the graph in
Figure 2. In this example, P (Y |do(X), H, T ) is a graph
surgery estimator because P (Y |do(X), H, T ) is identifiable
and (Y ⊥⊥ S|T,H)GX

. Note that P (Y |do(X), H, T ) ̸=
P (Y |X,H, T ) ̸= P (Y ), i.e., the intervention do(X) has
non-zero effect on the distribution of Y . The purpose of a
graph surgery estimator is to find a predictor that is invariant
across environments by shielding off the causal effects of
S to Y . It uses interventional queries that can be computed
from observational distribution as invariant predictors that
are not available by only checking d-separation. In Figure
2, suppose we use H for predicting Y . Thus the target vari-
able is distributed as P (Y |H). After conditioning on H ,
we search for a feature set K to further use, keeping Y d-
separated from S. However, there does not exist any such
K for invariant predictors unless we utilize a graph surgery
estimator. Similarly, in Figure 1, P (N |do(H), A, I,X) is a
graph surgery estimator since the query is identifiable and
(N ⊥⊥ S|A, I,X)GH

. One crucial condition of the graph
surgery estimator is that the interventional distributions have
to be identifiable from observational training data. Next, we
provide several definitions that are used in identifiability,
which will also be useful for our algorithm.

Definition 2.5 (C-component). A graph G where any pair
of observable nodes is connected by a bidirected path is
called a c-component (confounded component).

Definition 2.6 (C-tree). Let G be a C-component such that
each vertex of G has at most one child, and only one vertex
Y (called the root) has no children. Then G is called a
Y -rooted C-tree.



Definition 2.7 (C-forest). Let G be a C-component such
that each vertex of G has at most one child except a non-
empty vertex set Y that has no children. Then G is called a
Y-rooted C-forest.

Note that every C-tree is also a C-forest, but the converse
is not true. In Figure 2, GT,Y,Q,R,Z is a {Y,Z}-rooted C-
forest, but it is not a C-tree. Additionally, GQ,R,Z is both a
Z-rooted C-tree and a C-forest as it has at least one node
with no children and other nodes with exactly one child.
However, GZ,R,W fits neither definition as W does not
belong to the same C-component of {R,Z}. We are now
ready to use these concepts for understanding a particular
graphical structure that is related to causal identifiability
and is also used often in the causal discovery literature.

Definition 2.8 (Inducing paths for sets). Let X,Y be sets
of variables in G. A path p between X and Y is called an
inducing path if every non-endpoint vertex is a collider on
the path and an ancestor of either X or Y.

Definition 2.9 (Hedge). Let X,Y,W be sets of variables in
G. Let F, F ′ be R-rooted C-forests in G such that F ∩X ̸=
∅, F ′ ∩ X = ∅ and F ′ ⊂ F , for some R ⊂ An(Y)GX

.
Then F and F ′ form a hedge for P (Y|do(X)).

For instance, in Figure 2, if R = {Z} then F = {Q,R,Z}
and F ′ = {R,Z} form a hedge for P (Z|do(Q)).

3 FINDING GRAPH SURGERY
ESTIMATORS IN POLYNOMIAL TIME

In this section, we describe the details of our approach
of finding graph surgery estimators. First, we introduce
the theoretical results of causal identifiability that lead to
the development of the algorithm. Then, we discuss the
workings of our proposed algorithm. We leave most of the
proofs to appendix Section A.

We extend the hedge condition to a generalized hedge con-
dition for conditional queries.

Definition 3.1 (Generalized Hedge Condition). Let
X,Y,W be sets of variables in G. Let Z ⊆ W be the maxi-
mal set such that P (Y|do(X),W) = P (Y|do(X,Z),W\
Z). Let F, F ′ be R-rooted C-forests in G such that F ∩
(X ∪ Z) ̸= ∅, F ′ ∩ (X ∪ Z) = ∅, and F ′ ⊂ F , and
R ⊂ An(Y ∪ (W \ Z))GX∪Z

. Then F and F ′ is said
to form a hedge for P (Y|do(X),W).

We can use Figure 2 to illustrate Definition 3.1. Let
X = {Q,T},W = {R,W},Y = {Y, Z}. By
rule 2 of do-calculus [12], P (Y, Z|do(Q,T ), R,W ) =
P (Y,Z|do(Q,T,W ), R). We can let F = {Q,R,Z, T, Y }
and F ′ = F \{Q,T,W} so that F, F ′ are {Y,Z}-rooted C-
forests to form a hedge for P (Y,Z|do(Q,T ), R,W ). The

following theorem describes the relationship between a
hedge and causal identifiability.

Theorem 3.2. There exists a hedge for P (Y|do(X),W)
according to the generalized hedge condition if and only if
P (Y|do(X),W) is unidentifiable in G.

Definition 3.3 (Ancestral Confounded Set). Let Y be a
variable in G. A set K is ancestral confounded (ACS) for
Y if K = An(Y )GK

= C(Y )GK
. We call an ACS TY

maximum ACS (MACS) if TY is the largest set such that
K = An(Y )GK

= C(Y )GK
.

In Figure 2, for variable Z, K = An(Z)GK
= C(Z)GK

=
{R,Z} is an ACS for Z while K′ = {Q,R,Z} is the
largest set satisfying the same ACS condition. Thus, TZ =
K′ = {Q,R,Z} is the MACS for Z. One special property
about MACS is that it is unique for any variable in G by
Theorem 4 in [24]. Throughout this work, we will denote
the MACS of a set K in G as TK. The significance of the
MACS is that it helps determine whether a causal query is
identifiable in a given causal graph. Next, we need to define
another graphical structure known as AC-component for
finding MACS.

Definition 3.4 (AC-component). A set Y of nodes in G is
an ancestral confounded component (AC-component) if Y
is a singleton e.g. Y = {Y } or Y is a union of two distinct
AC-components Y1,Y2 which have ancestral confounded
sets S1, S2, respectively, and S1, S2 are connected by a
bidirected arc.

For example, in Figure 2, {Y,Z} is an AC-component be-
cause {Z} is an ACS for Z and {Y } is an ACS for Y and
Y and Z are connected by a bidirected arc. We can lever-
age the algorithm by [24] called Find-MACS-on-set (see
Algorithm 2 in Section B.2) to find the MACS of a set in
G. The following lemma describes the relationship between
a MACS and an important graphical structure related to
causal identifiability.

Lemma 3.5. Let Y = {Y }. The output of Find-MACS-on-
set(G,Y) is the MACS of Y . The MACS of Y is a Y -rooted
C-tree.

3.1 RELATIONSHIPS WITH GRAPH SURGERY
ESTIMATORS

We now explain how the previous section relates to finding
a graph surgery estimator. Theorem 3.6 and Theorem 3.7
imply that knowing the MACS for a target variable can help
identify some causal queries that will not be graph surgery
estimators. If selection variable S has a child W in a Y -
rooted C-tree and W forms a hedge for P (Y |do(W )), then
there is no graph surgery estimator in G.

Theorem 3.6. For some W ∈ Ch(S), if there exists a
hedge for P (Y |do(W )), then for any H,J ⊆ V, we have
(Y ̸⊥⊥ S|J)GH

or P (Y |do(H),J) is unidentifiable in G.



Theorem 3.7. If the selection variable S is a parent of
MACS TY , then there is no graph surgery estimator in G.

Furthermore, we can systematically leverage the MACS for
the target variable to find graph surgery estimators. Theorem
3.8 says that we can find some graph surgery estimators by
finding the union of the MACS of the target and the MACSs
of some children of the target. The intuition is that we can
find some graph surgery estimators by intervening on the
parents of the MACs whenever the selection variable S
is not a parent of those MACSs. Although Theorem 3.8
implies that we can find graph surgery estimators by using
the MACS of the subsets of the children, we only use the
largest subset i.e. picking K = H (denoted in Theorem
3.8) to incorporate as many predictors as possible in our
algorithm.

Theorem 3.8. Let TY be the MACS of Y in G, H := {H :
H ∈ Ch(Y ), Pa(TH) ̸∋ S} and TJ :=

⋃
H∈K TH for

any K ⊆ H, where TH is the MACS with respect to the
variable H . Let D = Pa(TY ∪ TJ). If S is not a parent
of TY , then P (Y |do(D),K,W) is identifiable in G and
(Y ⊥⊥ S|W,K)GD

for any W ⊆ (TY ∪ TJ) \ (Y ∪K).

Corollary 3.9. Let TY be the MACS of Y in G and
D = Pa(TY ) \ TY . If S is not a parent of TY , then
P (Y |do(D),W) is identifiable in G and (Y ⊥⊥ S|W)GD

for any W ⊆ TY \ Y

In addition, we search for the bidirected neighbors of Y that
are not in any MACS of the children of the target or in the
MACS of the target. There are two reasons for doing so.
First, we find the MACs of these bidirected neighbors to
increase the number of graph surgery estimators output by
our proposed algorithm. Second, finding the MACS of the
bidirected neighbors of Y that are in any MACS of children
of the target or the target itself can be inefficient due to
duplicate searches for the same query.

Theorem 3.10. Let TY be the MACS of Y in G, TH be the
MACS of any child H of Y in G. Define

TC :=
⋃

H∈Ch(Y )

TH (1)

Z := {Z : Z ∈ (C(Y ) ∩Nbr(Y )) \ (TY ∪ TC) (2)
s.t.Pa(TY ∪Z) ̸∋ S}

TB :=
⋃

Z∈M

TY ∪Z (3)

for any M ⊆ Z where TY ∪Z is the MACS for the set
(Y ∪ Z). Let D = Pa(TB). If S is not a parent of TY ,
then P (Y |do(D),M,W) is identifiable in G and (Y ⊥⊥
S|W,M)GD

for any W ⊆ (TB) \ (Y ∪M).

3.2 ALGORITHM DETAILS

Our approach begins with Algorithm 3:ID4IP. It takes the
selection variable S, the target variable Y , and the causal

1: Input: A set of targets Y, an intervention set X, a
conditioning set W

2: Output: P , a causal query that corresponds to the
lowest training loss L among the searched queries.

3: A0 = Y {A cumulative array s.t., Ai ⊂ Ai+1}
4: for i ∈ 0 . . . (|W| − 1) do
5: K = argmin

J∈W\Ai

computeLoss(Ai ∪ {J},X)−

computeLoss(Ai,X)
6: Ai+1 = Ai ∪ {K}
7: Return P (A|W||do(X)) {Value of the last index.}

Algorithm 1: Greedy-Eval(Y,X,W)

1: Input: Selection variable S, Target Y , C-tree TY ,
Predictors and Loss terms Pset, Lset, Variable set Z,
Additional Roots R.

2: Output: A set of predictors Pset, a set of losses Lset, a
set of MACS Tvisited

3: TJ = TY ; H = {Y }; Tvisited = ∅
4: if Z ̸= ∅ then
5: for H ∈ Z do
6: TH = Find-MACS-on-set (G,R ∪ {H})
7: Tvisited = Tvisited ∪ TH

8: if S ̸∈ Pa(TH) then
9: TJ = TJ ∪ TH

10: H = H ∪H
11: P,L = Greedy-Eval(H, Pa(TJ), TJ \ H)
12: if P /∈ Pset then
13: Pset.append(P );Lset.append(L)
14: Return: Pset, Lset, Tvisited

Algorithm 2: addBestIP(S, Y, TY , Pset, Lset,Z,R)

graph G as input, and outputs at least one invariant predictor
if any exists. In the beginning, we initialize two sets Pset

and Lset for storing the invariant predictors and their corre-
sponding losses. At line 4, we call Algorithm 2 in Section
B.2: Find-MACS-on-set as a sub-routine which finds the
MACS TY (Definition 3.3) of the target variable Y . If S is
a parent of TY , the algorithm returns FAIL at line 5-6. This
indicates that there exists no graph surgery estimator in G.

At lines 7, 8 and 10, we call the sub-routine Algorithm 2: ad-
dBestIP. This sub-routine takes selection variable S, target
Y , the C-tree TY , Pset, Lset, a variable set Z and roots R as
inputs. The first five parameters stay the same for all these
subroutine calls while Z and R change. Conditioning on the
variable set Z allows us to find more invariant predictors. R
is either empty or contains the target Y .

Inside the addBestIP sub-routine, we initialize a set TJ with
the Y rooted C-tree, H with the target variable and Tvisited

as an empty set which will track all visited C-tree nodes
so that the algorithm does not have to consider those nodes
again. If Z is non-empty, for each variable H ∈ Z, we call
the sub-routine Find-MACS-on-set for R∪H (line 6). This



1: Input: Selection variable S, target Y , causal graph
G = (V,E)

2: Output: An invariant predictor P ⋆ or FAIL to indicate
that there is no graph surgery estimator in G.

3: Pset = ∅;Lset = ∅
4: TY = Find-MACS-on-set(G, Y )
5: if S ∈ Pa(TY ) then
6: Return FAIL
7: Pset, Lset, T∅ = addBestIP(S, Y, TY , Pset, Lset, ∅, ∅)
8: Pset, Lset, TCh =

addBestIP(S, Y, TY , Pset, Lset, Ch(Y ), ∅)
9: T = TY ∪ TCh

10: Pset, Lset, TC =
addBestIP(S, Y, TY , Pset, Lset, (C(Y ) ∩Nbr(Y )) \
T, {Y })

11: if Pset ̸= ∅ then
12: Return the predictor P in Pset corresponding to the

lowest loss L found in Lset that have been searched
13: Return FAIL

Algorithm 3: ID4IP(S, Y,G)

sub-routine returns a MACS TH that contains a C-forest
rooted at R and H . We store TH in Tvisited. However, we
only consider those c-forests for which S /∈ Pa(TH) holds
(lines 8- 10). We combine the MACS TH with the MACS
of previous variables, in TJ , and save H in H (lines 9- 10).
After the loop ends, we call the sub-routine Algorithm 1:
Greedy-Eval at line 11 and send the three sets H, Pa(TJ)
and TJ \ H as inputs. This sub-routine returns the causal
query corresponding to the lowest validation loss among
other queries found by our algorithm. If this is a new query
that we have not found yet, we add it and its corresponding
loss to Pset, Lset and return them along with Tvisited from
the sub-routine.

Now, back to our initial Algorithm 3, all three calls at lines
7, 8 and 10 have common first five parameters. The function
call at line 7 finds the invariant predictors that use ancestors
of Y as inputs. For this case, lines 4- 10 of addBestIP sub-
routine will get skipped. To better understand our algorithm
till this step, we can look at Figure 3 where we have MACS
TY = {E, Y }. Thus the step at line 7 will enlist the lowest
loss causal query in the form of P (Y |do(D), H), H ⊆ {E}.
However, if there exists a bidirected edge between D and E
then TY would be {A,D,E, Y }, and S would be a parent
of this set. Thus we would have to return fail (line 5). The
reason is that we can not condition on any variables in TY

since there would exist inducing paths from S to Y. And we
can not intervene on any variables in TY as well since it
would be non-identifiable. This illustrates a situation when
there exists no invariant predictor. For the function call at
line 8, we send Z = Ch(Y ) as a parameter. At Algorithm 2,
lines 5-10, we iterate over Z and find C-tree rooted at each
of the children since R = ∅. We store these C-trees in
Tvisited. However, we can not utilize children for invariant
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Figure 3: A causal graph inducing invariant predictors of
the form P (Y |do(D), H), H ⊆ {E} when we consider the
C-tree TY . Similarly, we condition on Ch(Y ) = {Z} and
utilize TZ for predictors as P (Y |do(D,W ), Z,H), H ⊆
{E}. Finally we condition on bi-directed neighbors of Y
and utilize TV,Y for predictor P (Y |do(C,Z), V,H), H ⊆
{W}

predictors if S is a parent of their C-tree. This way we can
search for the invariant predictors that employ ancestors of
the chosen Ch(Y ) for prediction since Y becomes depen-
dent on those ancestors after conditioning on the chosen
Ch(Y ). In our example in Figure 3, Ch(Y ) = {C,Z} and
TC = {A,C}, TZ = {E, Y, Z}. We can not utilize child
C for invariant predictors since S ∈ Pa(TC). However,
Pa(TZ) = {D,W} and we have H = {Y,Z}. Greedy-
Eval will choose one query from all queries in the form of
P (Y |do(D,W ), Z,H, ), H ⊆ {E}.

At line 9 of ID4IP, we store the Y -rooted C-tree TY and the
C-trees rooted at the chosen children TCh, returned from
the call at the previous step in T. Finally, at line 10, we
only consider specific bi-directed neighbors N of Y that are
not in T, such that N = C(Y ) ∩ Nbr(Y ) \ T. The goal
is to avoid computation of the overlapping queries among
the MACS found during these 3 steps. We send this set as a
parameter of the addBestIP sub-routine so that we can find
invariant predictors that utilize ancestors of the bi-directed
neighbors in this set. Similar to children, we iterate over
these neighbors to find more invariant predictors that can
predict Y after conditioning on that bi-directed neighbor.
For this purpose, we find c-forests rooted at both Y and
some neighbor in N such that S is not a parent of the found
C-forest. Thus, we send root R = {Y } as a parameter
of the sub-routine, unlike the previous case when we sent
R = ∅. For Figure 3, V is the bi-directed neighbor of Y .
Here TV = {Y, V,W} and Pa(TV ) = {C,Z}. Therefore,
the last addBestIP call will return the query with the lowest
validation loss from a set of causal queries of the form
P (Y |do(C,Z), V,H), H ⊆ {W}

After these 3 function calls, we return the predictor from
Pset with the minimum validation loss. If our algorithm can
not find any predictors even after these 3 steps, i.e., Pset is
empty, we return fail indicating that there exists no invariant
predictor for this graph. This follows from Theorem 3.11.

During the execution of our algorithm, we call Algorithm 1:
Greedy-Eval several times to find the query with the lowest
validation loss among all found surgery estimators. The



Greedy-Eval sub-routine takes H, Pa(TJ) and TJ \ H as
arguments, i.e., set of targets Y , set of interventions X
and set of conditions W , respectively. Here we initialize
an array of lists A with Y as the first element. Then the
algorithm loops for |W | − 1 times and each time updates
the list at i + 1-th position of the array A with A[i] and
some new variable K (lines 4-6). The variable K is chosen
from the conditioning set, which combined with A[i], helps
reduce the training loss (line 5). After the i+ 1-th iteration,
A[i+ 1] indicates the joint variable list in the causal query
that we might return as the result. Finally at line 7, we return
the query P (A|W||do(X)) where A|W| indicates the joint
variable list of the array after the loop ends. This query is
received in Algorithm 3, and finally output as an invariant
predictor with minimum validation loss among the queries
that can be produced from the inputs of Greedy-Eval.

Next, we show the soundness of ID4IP. Furthermore, we
also show that if there exists a graph surgery estimator, then
ID4IP outputs a graph surgery estimator:

Theorem 3.11. If there exists a graph surgery estimator in
G, ID4IP outputs at least one graph surgery estimator.

Theorem 3.12. (Soundness of Algorithm 3: ID4IP) When
Algorithm 3: ID4IP returns an estimator, it is a graph
surgery estimator with respect to the given target and the
selection variable in G.

4 COMPLEXITY ANALYSIS

In this section, we compare the time complexity of ID4IP
with that of the Graph Surgery Estimator (GSE) algorithm
(see Algorithm 5 in Section B.4) [29]. GSE uses various sub-
routines for converting conditional queries to unconditional
queries by checking d-separations. Fortunately, [22] has
provided an efficient algorithm for checking d-separation
condition, which we will incorporate into the analysis of
GSE algorithm’s time complexity.

Theorem 4.1. (GSE Complexity) 1 Let |Ch(S)| = C,
M = Ch(S), Q = V \ (M ∪ Y ). Given a causal graph
G = (V,E) and disjoint variables X,Y ⊂ V , the time
complexity of Graph Surgery Estimator (GSE) (Algorithm 5
in Section B.4) is: O(22(|V|−C)−1×B), where B represents
the time complexity of ID algorithm.

One of the major benefits of using MACS lies in its ef-
ficiency. Combining with greedy search, ID4IP enjoys a
polynomial time complexity relative to the complexity of ID
algorithm, whereas GSE has exponential time complexity
relative to the complexity of ID algorithm.

1The algorithm presented in [29] does not explicitly search
over supersets but the proofs of both soundness and completeness
of the algorithm indicate that it should search over supersets, which
is why we are taking this version as a baseline.

Theorem 4.2. [24] Find-MACS-on-set(G,Y) outputs the
MACS of Y in polynomial time in the size of graph.

Theorem 4.3. (ID4IP Complexity) Given a causal graph
G = (V, E) and disjoint variables X,Y ⊆ V, the com-
plexity of ID4IP (Algorithm 3) is O(|(C(Y ) ∩Nbr(Y )) \
(TY ∪TC)|+ |Ch(Y )|+1)K +(|TY | − 1+ |TJ |+ |T ′

J | −
|H′ | − |H|)B), where K represents the time complexity of
Find-MACS-on-set and B represents the time complexity of
ID algorithm, TY be the MACS of Y in G, TH be the MACS
of a child H of Y in G, and TC :=

⋃
H∈Ch(Y ) TH .

5 EXPERIMENT

In this section, we will show a comparison between
Graph Surgery Estimator (Algorithm 5 in Section B.4) and
ID4IP algorithms (Algorithm 3) in terms of accuracy, run
time through both synthetic and semi-synthetic data sets.
Throughout the experiment, we use a server that has 128
cores CPUs with 126 GB of memory. We conduct the exper-
iment in Python programming language. The source code is
available at: https://github.com/kenneth-lee-ch/id4ip

5.1 SYNTHETIC EXPERIMENT

In the synthetic experiment, we evaluate the performances
of ID4IP and GSE to find graph surgery estimators within
a given time limit for the program execution and their sensi-
tivities to training sample size.

5.1.1 Finding graph surgery estimators in a given time
limit

We randomly generate DAGs of size n by using PyAgrum
library in Python [5], where n ∈ {16, 25, 32} with n/2
number of latent confounders. The number of directed edges
is set to be 3n. Each variable follows a Bernoulli distribution
with a randomly generated probability between 0 and 1. We
assign the selection variable to be an ancestor of the target
variable. The selection variable is generated by changing
the marginal distribution of the assigned variable before
generating the test set while fixing the same target variable.
For the purposes of showing the efficiency of finding graph
surgery estimator, we generate 10000 training samples and
both GSE and ID4IP directly use the population distribution
of the training data to learn which graph surgery estimator
is best based on the lowest zero-one loss between their
predicted labels and actual labels from the training data.

Based on Figure 4, we can see that ID4IP finds graph
surgery estimators more efficiently as the number of ob-
served variables increases from 16 to 32. Additionally, the
graph surgery estimators found by ID4IP often result in
lower test loss since GSE cannot find the best graph surgery
estimator within the time limit. From Figure 4(c), we see

https://github.com/kenneth-lee-ch/id4ip


(a) 16 observed variables (b) 25 observed variables (c) 32 observed variables

Figure 4: Comparison between ID4IP (Cyan dashed lines) and GSE (Purple solid lines) in terms of finding graph surgery
estimators within a given time limit of 600 seconds. The horizontal axis represents the time allowed to execute to find the
predictors. The vertical axis represents zero-one test loss. Each point represents a graph surgery estimator found by the
models. Green: the test loss evaluated by Bayes optimal P (Y |Pa(Y )), where Pa(Y ) includes the latent confounders as
observed. Red: the worst predictive performance by a dummy classifier.

(a) 16 observed variables (b) 25 observed variables (c) 32 observed variables

Figure 5: Comparison between ID4IP (Cyan dashed lines) and GSE (Purple solid lines) in terms of sensitivities to training
sample size. The horizontal axis represents the number of training samples used to find the graph surgery estimators. The
vertical axis represents zero-one loss averaged by using three graph surgery estimators found by three randomly generated
training samples. The time limit is set to be 60 seconds. Graphs in which no graph surgery estimators exist are excluded.

that GSE fails to find a graph surgery estimator in the first
100 seconds. This is possible since GSE needs to check
whether a causal query is unidentifiable by calling the ID
algorithm repeatedly during the search, whereas each causal
query found by ID4IP is identifiable and it only calls on
ID algorithm for deriving the estimands of the found graph
surgery estimators.

5.1.2 Sensitivity to training sample size

In addition, we evaluate the predictive performance of both
GSE and ID4IP by varying the number of training samples.
Similar to the previous experiment, we randomly generate
DAGs of size n, where n ∈ {16, 25, 32} with n/2 number
of latent confounders. The number of directed edges is set
to be 3n. Each variable follows a Bernoulli distribution with
a randomly generated probability between 0 and 1. We eval-
uate the sensitivity by a range of training sample sizes e.g.
50, 100, 250, 500, 1000, 2500, 5000, 10000. For each train-
ing sample size, we randomly generate three different train-

ing samples and report the zero-one test loss averaged and
the standard errors based on potentially three different graph
surgery estimators respectively found by the models while
fixing the same test sample of size 10000 for all training
sample sizes. We fix the time limit to be 60 seconds for both
algorithms to find graph surgery estimators. We also use
30% of the training data for validation. We set the test loss
to 0.5 if the model fails to find a graph surgery estimator
in the given time limit. Furthermore, we adopt a heuristic
for learning the training distribution from the observed data.
We turn every bidirected edge in the given causal graph to a
directed edge while maintaining acyclicity. If the children
of the latent confounder already have a directed edge among
them, we simply remove that bidirected edge. We use the
BNLearner function in PyAgrum, which uses a greedy hill
climbing algorithm by default, to learn the conditional prob-
ability tables from the observed data with a smoothing prior.
We use this approximated training distribution to evaluate
any graph surgery estimator found by both models.

From Figure 5, we see as the training sample size increases,



Algorithm Sachs (11 nodes) Alarm (37 nodes)

GSE 0.80 0.57
ID4IP 0.80 0.83

LR 0.53 0.52

Table 1: Algorithms performance comparison based on
micro-averaged F1 score within time limit of 120 seconds
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Figure 6: Modified Sachs causal graph

both algorithms achieve lower test loss in general. We also
see that the difference in test loss between GSE and ID4IP
increases as the number of nodes increases. This is expected
as we set the time limit to be 60 seconds which restricts
GSE to find the best graph surgery estimator.

5.2 SEMI-SYNTHETIC DATA

There are several practical scenarios where the computa-
tional demand of the graph surgery estimator is a bottleneck.
For example, some researchers investigate the distribution
shifts problem due to medical record transfer [1, 20]. Al-
though the causal graph mentioned in [20] is not large, it
is evident that causal graphs learned from medical data can
be well over 100 nodes [11]. In this experiment, we further
demonstrate the use case of having causal graphs given as a
priori information and the utility of our proposed algorithm
in invariant prediction by using causal graphs and semi-
synthetic data provided motivated by real-world settings.

5.2.1 Sachs dataset

Sachs dataset measures the expression level of numerous
proteins and phospholipids in human cells [17]. It consists of
the concurrent measurements of 11 phosphorylated proteins
and phospholipids derived from thousands of individual
primary immune system cells. Each variable has 3 states.
We set the target to be the variable Akt. The original causal
graph of this dataset is shown in the supplementary material.
For the purpose of this experiment, we modified it to be the
graph as Figure 6. We treat the variable Raf as the selection
variable by converting all of its class 2 to be class 1 and using
only samples that have Raf being class 0 to train the models.
The test sample is then generated by taking all the samples

that have Raf being class 1. The training sample size is 3632
and the test sample size is 3368. We further use 30% of the
training data to validate the models before testing. We also
train a logistic regression model (LR) with the predictors
PIP3, PIP2, Plcg only. We report micro-averaged F1 score
for GSE, ID4IP, and LR in table 1. We see that both GSE,
ID4IP outperform LR as expected as LR suffers from the
distribution shift. We can also see that GSE achieves the
same test loss as ID4IP since the causal graph is reasonably
small.

5.2.2 Alarm dataset

We also consider a larger causal graph provided by [2],
which consists of 37 observed variables. We modified the
graph such that it includes 7 latent confounders and 28 ob-
served variables by treating some of its original observed
variables as latent. Each variable has a number of states
varying from 2 to 4. We provide the original causal graph
and its modified version in the supplementary material. We
picked the binary variable DIFFICULTY to be the selection
variable and BP to be the target. All models are trained on
1462 training samples while the shifted test sample size is
13538. LR only uses the features HISTORY, LVEDVOL-
UME, STROKEVOLUME, CVP, and PCWP. From table
1, we see that ID4IP achieves the lowest test loss among
all models. It is because GSE fails to find the best graph
surgery estimator within the time limit and LR also suffers
from distribution shifts.

6 CONCLUSION

We presented an algorithm that efficiently finds predictors
invariant to distribution shifts and guarantees to find at least
one if there exists any for a data-generating process that
is correctly modeled as a causal graph. In particular, we
utilize a graphical characterization of the identifiability of
conditional causal queries with greedy search to increase
the efficiency of finding invariant predictors. Our algorithm
is sound that runs in polynomial time in contrast to the ex-
isting work that requires exponential time. As shown by the
numerical experiments, our proposed algorithm has signif-
icantly reduced run time to reach predictive performance
similar to the existing work within given time limits. In the
future, it is worthwhile to develop the completeness of the
algorithm. Another direction is to understand the approxi-
mation guarantees for greedy-search methods for invariant
causal prediction. We also want to explore the idea of finding
invariant predictors with weak confounding variables.
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