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Abstract

The effectiveness of large language models001
(LLMs) is often hindered by duplicated data002
in their extensive pre-training datasets. Current003
approaches primarily focus on detecting and004
removing duplicates, which risks the loss of005
valuable information and neglects the varying006
degrees of duplication. To address this, we pro-007
pose a soft deduplication method that maintains008
dataset integrity while selectively reducing the009
sampling weight of data with high common-010
ness. Central to our approach is the concept of011
"data commonness", a metric we introduce to012
quantify the degree of duplication by measuring013
the occurrence probabilities of samples using014
an n-gram model. Empirical analysis shows015
that this method significantly improves train-016
ing efficiency, achieving comparable perplexity017
scores with at least a 26% reduction in required018
training steps. Additionally, it enhances aver-019
age few-shot downstream accuracy by 1.77%020
when trained for an equivalent duration. Im-021
portantly, this approach consistently improves022
performance, even on rigorously deduplicated023
datasets, indicating its potential to complement024
existing methods and become a standard pre-025
training process for LLMs.026

1 Introduction027

In recent years, the expansion of pre-training028

datasets has played a pivotal role in advancing029

LLMs (Raffel et al., 2023; Gao et al., 2020; Penedo030

et al., 2023). However, a large fraction of these031

datasets is derived from uncurated snapshots of the032

internet, resulting in a significant amount of du-033

plication. Such redundancy, particularly beyond034

certain levels, can severely impair the performance035

of LLMs (Hernandez et al., 2022). While repeti-036

tion under specific conditions may be beneficial,037

the marginal gains from additional computation di-038

minish to zero over time (Muennighoff et al., 2023).039

Thus, it is imperative to ensure that data repetition040
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Figure 1: Hard deduplication versus soft deduplication.
Hard deduplication identifies and removes duplicate
samples. Soft deduplication identifies samples with
high commonness, decreasing their sampling weight
during training.

is a deliberate choice rather than an unintentional 041

consequence. In light of this, data deduplication 042

has emerged as a critical procedure in the manage- 043

ment of pre-training datasets. 044

Most current data deduplication strategies can be 045

classified as hard deduplication methods, focusing 046

on identifying and removing redundant data. For 047

example, MinHashLSH (Leskovec et al., 2020), 048

a widely utilized method (Soboleva et al., 2023; 049

Penedo et al., 2023), approximates Jaccard similar- 050

ity among samples by generating MinHash (Broder, 051

1997) signatures and using locality sensitive hash- 052

ing to map these signatures into multiple buckets. 053

Samples are considered duplicates if their MinHash 054
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Figure 2: We aim to obtain a more balanced training set from a large raw dataset through data reweighting. Initially,
we train an n-gram model using the raw dataset to calculate the commonness of each sample within the corpus.
Following this, we partition the dataset and assign weights according to data commonness. Samples with higher
commonness are assigned lower sampling weights, while those with lower commonness receive higher sampling
weights. The weighted data is then used for the pre-training of a language model.

values exactly match in at least one bucket, indicat-055

ing they exceed a predefined similarity threshold.056

In the subsequent removal stage, a common prac-057

tice involves clustering samples across all buckets058

(for instance, if samples A and B match in one059

bucket, and B and C in another, then A, B, and060

C are considered a cluster) (Penedo et al., 2023).061

Within each cluster, only one sample is preserved.062

These methods face several principal limitations.063

First, the concept of duplicates within a set of sam-064

ples is symmetric. Randomly retaining one sample065

while discarding the others may introduce bias by066

ignoring the differences among them. Second, set-067

ting a specific threshold for duplication presents068

a challenge since the degree of duplication is con-069

tinuous. A high threshold might overlook near-070

duplicates that bear significant similarities, whereas071

a low threshold could result in the exclusion of072

valuable data. Moreover, data categorized as non-073

duplicates according to these thresholds are uni-074

formly treated, despite the variations in the degree075

of duplication among them.076

To address these limitations, we introduce a soft077

deduplication method (Figure 1). This method di-078

verges from traditional practices by preserving the079

entirety of the dataset and avoids the need for set-080

ting thresholds to determine duplicates. We intro-081

duce the concept of "data commonness", a metric 082

that quantifies the degree of duplication by measur- 083

ing the occurrence probabilities of samples using an 084

n-gram model. Samples with high commonness are 085

assigned a lower sampling weight, while those with 086

low commonness receive a higher weight. This 087

method reduces the risk of inadvertently discarding 088

valuable data and leverages the spectrum of data 089

duplication, offering a refined and comprehensive 090

perspective on data deduplication. 091

Our empirical analysis reveals that the proposed 092

method enables language models to achieve base- 093

line performance with at least 26% fewer train- 094

ing steps, ultimately leading to improved perfor- 095

mance on downstream tasks. It exhibits superior 096

temporal efficiency and outperforms existing meth- 097

ods in terms of effectiveness. Significantly, even 098

when applied to rigorously deduplicated datasets, 099

our method still delivers substantial improvements. 100

These results suggest that our approach can com- 101

plement existing methods and can be adopted as a 102

standard procedure in the pre-training of LLMs. 103

2 Related Work 104

2.1 Data deduplication 105

Research has revealed that many existing pre- 106

training datasets contain a substantial number of 107
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duplicate samples (Lopes et al., 2017; Bandy and108

Vincent, 2021; Penedo et al., 2023). To explore109

the impact of duplicate data on model performance,110

numerous studies have been conducted on both111

general and domain-specific datasets (Allamanis,112

2019; Lee et al., 2022; Biderman et al., 2023; Xue113

et al., 2023). The results indicate that repetition at114

certain frequencies can significantly harm model115

performance (Hernandez et al., 2022). Although116

appropriate repetition under specific circumstances117

can be beneficial (Muennighoff et al., 2023), this118

should result from careful selection rather than be-119

ing an unintended consequence of data duplication.120

Therefore, data deduplication is crucial for pre-121

training large language models. Exact dedupli-122

cation is typically achieved through suffix arrays123

(Manber and Myers, 1993). MinHash (Broder,124

1997) and SimHash (Charikar, 2002) are widely125

used fuzzy deduplication methods. In recent re-126

search, some studies have shifted towards semantic-127

based deduplication. Abbas et al. (2023) and128

Sorscher et al. (2023) utilize pre-trained embed-129

dings for clustering to remove semantically redun-130

dant data. Tirumala et al. (2023) combines both131

methods.132

2.2 Data reweighting133

Adjusting the significance of training samples134

through data reweighting has proven to be an ef-135

fective strategy for enhancing model performance,136

either through modifying loss function weights or137

changing the sampling probabilities. Focal Loss,138

as introduced by Lin et al. (2018), employs a soft139

weighting scheme to allocate higher weights to140

more challenging samples. Ren et al. (2019) assign141

weights to training samples based on the direction142

of their gradients. In DSIR (Xie et al., 2023b),143

sampling based on importance weights is utilized,144

allowing the training data to align with the distri-145

bution of high-quality corpora such as Wikipedia.146

DoReMi (Xie et al., 2023a) explores an automated147

scheme for determining the sampling weights of148

different data sources.149

3 Method150

3.1 Hard deduplication151

Hard deduplication methods identify and remove152

duplicate samples. This process can be seen as153

partitioning the dataset D into numerous distinct154

subsets Di, such that D =
⋃k

i=1Di. Each of these155

subsets contains samples deemed to be duplicates156

based on a specific similarity threshold. Within 157

each subset Di, only one sample, denoted as xi, is 158

retained, while the rest are discarded. If a subset 159

consists of only one sample, it indicates that this 160

sample has no duplicates within the dataset. 161

In the context of pre-training LLMs, the funda- 162

mental training goal is to maximize the log likeli- 163

hood of the training data. Incorporating hard dedu- 164

plication into this process can be formulated as: 165

L =
∑
x∈D

I(x) logP (x|Θ),

I(x) =

{
1, x ∈ {x1, x2, · · · , xk}
0, otherwise

(1) 166

where L denotes the log likelihood function, Θ 167

represents the model parameters. Despite its utility, 168

hard deduplication may inadvertently omit valuable 169

data and fail to adequately consider the degree of 170

redundancy. 171

3.2 Soft deduplication 172

To address the limitations of hard deduplication, we 173

propose a soft deduplication method. This method 174

employs sampling weights W (x), allowing for a 175

nuanced handling of data redundancy by adjusting 176

the influence of each sample on the model based 177

on its commonness: 178

L =
∑
x∈D

W (x)·logP (x|Θ), W (x) ∈ (0, 1). (2) 179

We assume that the sampling weight of sample x 180

can be represented as follows: 181

W (x) ∝ 1

p(x)
. (3) 182

Here, p(x) denotes the occurrence probability of 183

sample x, serving as a direct measure of its com- 184

monness. This probability-based measure effec- 185

tively captures the degree of duplication of each 186

sample. This approach ensures that samples with 187

higher commonness are assigned lower weights, 188

thus mitigating the impact of duplicates without 189

discarding potentially valuable information. 190

3.3 Implementation of commonness 191

calculation 192

In practical implementation, we utilize an n-gram 193

model to efficiently calculate the commonness of 194

each data sample (Figure 2). This process consists 195

of 3 steps. 196
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1. Tokenization. The n-gram model assumes197

that the appearance of a word is determined198

by the previous n − 1 words. The first step199

is to tokenize the original corpus. We use the200

same tokenizer as the pre-training models for201

consistency.202

2. Train n-gram model. In the training process203

of an n-gram model (n = 4), maximum likeli-204

hood estimation is used to calculate the proba-205

bility of each n-gram. The KenLM toolkit1 is206

utilized to accomplish this step.207

3. Calculate commonness. We utilize the ob-208

tained n-gram model to compute the common-209

ness (measured by the occurrence probability)210

for each data sample. For a given x containing211

N tokens,212

p(x) =

(
N∏
i=1

P (wi|wi−1, . . . , wi−n+1)

) 1
N

.

(4)213

By employing the geometric mean, the influ-214

ence of sample length can be eliminated.215

3.4 Approximate sampling for large-scale216

data217

Due to the vast volume of data, directly assigning218

individual sampling weights to each data point is219

impractical. To overcome this, we introduce an220

approximate method for data sampling that seg-221

ments M samples into K categories. This process222

initiates by sorting the M samples in ascending223

order of data commonness, followed by dividing224

the dataset into K distinct segments according to225

K quantiles. For the k-th segment, the sampling226

weight Wk is determined by the k-th quantile, pk,227

as follows:228

Wk = C ·
(

1

pk

)T

(5)229

where T is a hyperparameter that adjusts the sam-230

pling weight and C is a normalization constant,231

which ensures that the sum of the weights across232

all segments equals one.233

4 Experimental Setup234

4.1 Datasets235

We conduct experiments on different versions of236

the Common Crawl dataset, which is a compre-237

hensive and publicly accessible collection of data238

obtained through web crawling.239

1https://kheafield.com/code/kenlm

RedPajama CommonCrawl is a subset of the 240

RedPajama dataset (Computer, 2023). It involves 241

the original Common Crawl data undergoing pro- 242

cessing through the CCNet pipeline (Wenzek 243

et al., 2019). This dataset has been subjected to 244

paragraph-level deduplication; however, it has not 245

undergone rigorous deduplication procedures. 246

SlimPajama CommonCrawl is a subset of the 247

SlimPajama dataset (Soboleva et al., 2023). The 248

SlimPajama dataset represents a further refined iter- 249

ation of the RedPajama corpus, boasting enhanced 250

data cleansing procedures and the implementation 251

of MinHashLSH (Leskovec et al., 2020) for more 252

effective deduplication. 253

Falcon RefinedWeb is introduced as a pre-training 254

dataset for the Falcon series (Penedo et al., 2023; 255

Almazrouei et al., 2023). It undergoes rigorous 256

deduplication processes using exact matching and 257

MinHashLSH. 258

4.2 Model training 259

In the experiments, we employ the same model 260

architecture as the LLaMA (Touvron et al., 2023) 261

series. Our models are configured with 1.3B pa- 262

rameters, incorporating 16 attention heads and 24 263

layers. The hidden size is set to 2048, and the 264

dimension of feed-forward network is 5504. Pre- 265

vious research has demonstrated the feasibility of 266

pre-training validation on models of this scale (Tiru- 267

mala et al., 2023; Xie et al., 2023a). All models are 268

trained from scratch to 40B tokens. The batch size 269

is 512, and the training sequence length is 1024. 270

The learning rate is decayed from 2e-4 to 2e-5. 271

4.3 Baselines 272

Our primary baseline is defined by directly training 273

on a dataset that has been randomly sampled to en- 274

compass 40B tokens. In our study, we implement 275

the SoftDedup method across all three datasets, 276

facilitating a comparative analysis between our pro- 277

posed technique and the established baseline for 278

each dataset. Furthermore, for experiments con- 279

ducted on the RedPajama CommonCrawl dataset, 280

the SlimPajama CommonCrawl, which employs 281

MinHashLSH for deduplication directly on it, is 282

considered a hard deduplication baseline. 283

4.4 Evaluation metrics 284

We evaluate the models by measuring their perplex- 285

ity on the test sets and their few-shot performance 286

on downstream tasks. 287
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Test set perplexity. Our test sets come from the288

Pile (Gao et al., 2020) and SlimPajama (Soboleva289

et al., 2023). The Pile test set consists of 22 subsets,290

including BookCorpus, DM Mathematics, and oth-291

ers. SlimPajama also includes 7 subsets, such as292

Common Crawl, C4, and GitHub. We measure the293

perplexity of the models on each sample and report294

the average for each subset. We investigate data295

leakage and remove the contaminated samples.296

Downstream task accuracy. In order to further297

evaluate the performance of the models, we mea-298

sure their accuracy on 12 downstream tasks. The299

tasks cover the models’ abilities in reading compre-300

hension (SQuADv2 (Rajpurkar et al., 2018), Trivia301

QA (Joshi et al., 2017)), commonsense reason-302

ing (ARC easy and challenge (Clark et al., 2018),303

WinoGrande (Sakaguchi et al., 2019), HellaSwag304

(Zellers et al., 2019), PIQA (Bisk et al., 2020),305

Social IQa (Sap et al., 2019)), world knowledge306

(WebQuestions (Berant et al., 2013), NQ Open307

(Lee et al., 2019)), and contextual understanding308

(LAMBADA standard and openai (Paperno et al.,309

2016)). The evaluation of downstream tasks is pri-310

marily accomplished through the utilization of the311

lm-evaluation-harness (Gao et al., 2023).312

4.5 Hyperparameter impact analysis313

In exploring the impact of hyperparameters on our314

method, we focus on two key hyperparameters:315

the number of data partitions (K) and the weight316

parameter (T ).317

Our experiments involves varying levels of data318

partition granularity by dividing the dataset into 10,319

20, 50, and 100 segments. Regarding weight as-320

signment, we modify the hyperparameter T within321

Equation 5 to alter weight disparities. We investi-322

gate three configurations that result in maximum-323

minimum weight differences of approximately 2-324

fold, 5-fold, and 10-fold, respectively. A larger325

disparity exerts a greater suppression on data with326

higher commonness.327

5 Results328

In this section, we provide a detailed report of the329

results under various experimental settings.330

5.1 Enhanced performance and efficiency in331

language model pre-training332

To verify the effectiveness of our soft deduplication333

method, we conduct experiments on the RedPajama334

CommonCrawl dataset, which has not subjected335

to meticulous deduplication. Our findings indicate 336

a significant improvement with our method com- 337

pared to the direct training baseline, as illustrated 338

in Figure 3. 339

Our approach consistently outperforms the base- 340

line in terms of average perplexity across all evalu- 341

ated datasets. Specifically, on the Pile test set, our 342

method enables models to achieve baseline perplex- 343

ity within 50,000 iterations, saving nearly 30,000 344

training steps. Furthermore, models continue to 345

improve, ultimately reaching a lower perplexity, as 346

shown in Figure 3a. Similar advancements are ob- 347

served in the SlimPajama test set, confirming our 348

method’s effectiveness (Figure 3b). Additionally, 349

we report the average perplexity for each subset 350

upon completion of training (Appendices A.1 and 351

A.2). Our method enables the models to yield per- 352

formance improvements across the majority of the 353

test subsets. 354

In our evaluation of downstream tasks, our 355

method outperforms the baseline in accuracy. It 356

accelerates learning on the RedPajama dataset, 357

achieving baseline performance nearly 30,000 steps 358

sooner and improving average accuracy by 1.77% 359

at the end of training, as shown in Figure 3c. De- 360

tailed scores for each individual task at the fi- 361

nal training checkpoint are delineated in Table 1. 362

Our approach yields improvements in all evaluated 363

tasks. 364

In summary, our experiments on the RedPajama 365

CommonCrawl dataset substantiate the soft dedu- 366

plication method’s capability to lower perplexity 367

and enhance accuracy more efficiently compared to 368

the baseline model. Such accelerated convergence 369

is crucial for pre-training large language models, 370

given the significant costs associated with training 371

duration and resource utilization. 372

5.2 Surpassing hard deduplication in 373

effectiveness 374

In the experiments carried out using the RedPajama 375

CommonCrawl dataset, we also contrast the SoftD- 376

edup method against traditional hard deduplication 377

techniques (refer to Table 1). Considering that the 378

SlimPajama dataset originates from the RedPajama 379

dataset, refined through MinHashLSH deduplica- 380

tion, we employ models trained on the SlimPajama 381

CommonCrawl dataset as the hard deduplication 382

baseline. 383

The evaluation results of models on various 384

downstream tasks reveal our method’s superior per- 385

formance over both the hard deduplication tech- 386
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Figure 3: Performance evaluation results of models trained on the RedPajama CommonCrawl dataset. Figures 3a
and 3b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 3c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.

Task Baseline HardDedup Difference SoftDedup Difference
NQ Open (1-shot) 4.13 4.6 +0.47 5.37 +1.24
SQuADv2 (1-shot) 11.51 12.95 +1.44 14.66 +3.15
Trivia QA (1-shot) 15.89 17.71 +1.82 16.39 +0.5
WebQuestions (1-shot) 3.3 5.71 +2.41 3.4 +0.1
LAMBADA openai (1-shot) 46.07 43.64 -2.43 48.52 +2.45
LAMBADA standard (1-shot) 36.91 37.65 +0.74 40.89 +3.98
PIQA (1-shot) 65.34 66 +0.66 66.7 +1.36
Social IQa (1-shot) 88 87.9 -0.1 89.6 +1.6
WinoGrande (1-shot) 52.88 53.99 +1.11 54.38 +1.5
HellaSwag (1-shot) 34.93 35.54 +0.61 36.51 +1.58
ARC easy (2-shot) 57.24 57.79 +0.55 59.89 +2.65
ARC challenge (2-shot) 25.17 25.09 -0.08 26.28 +1.11
Average 36.78 37.38 +0.6 38.55 +1.77

Table 1: Performance comparison of models on downstream tasks using soft and hard deduplication methods.

nique and the direct training baseline. In detail,387

while the hard deduplication method surpasses the388

direct training baseline in nine out of twelve tasks,389

showing an average increase in accuracy of 0.6%,390

our SoftDedup method demonstrates more consis-391

tent and significant improvements. It outperforms392

the direct training baseline across all evaluated393

tasks, achieving an average accuracy enhancement394

of 1.77%. These findings underscore the advan-395

tages over conventional deduplication methods in396

enhancing downstream task performance.397

5.3 A powerful complement to existing398

techniques399

To further assess the effectiveness of our method400

when applied in sequence with extant hard dedu-401

plication processes, we conduct experiments on402

the SlimPajama CommonCrawl and Falcon Re-403

finedWeb datasets, which have undergone stringent404

deduplication processes (as shown in Figures 4 and405

5). 406

In the evaluations conducted on the Pile and 407

SlimPajama test sets, our method exhibits consis- 408

tent superiority over the baseline models. Notably, 409

our models achieve equivalent baselines in perplex- 410

ity with a reduction of 26% to 39% in the number of 411

required training steps. Additionally, the ultimate 412

performance of the models demonstrates a tangible 413

enhancement, as evidenced by the results displayed 414

in Figures 4a, 4b, 5a, and 5b. In terms of accuracy 415

on downstream tasks, Figures 4c and 5c highlight 416

the training efficiency achieved by our models. It 417

is particularly noteworthy that our method reaches 418

baseline performance with around 20,000 fewer 419

training steps. We report the detailed scores in 420

Appendices A.1, A.2, and A.3. 421

In summary, when applied to already dedupli- 422

cated datasets, our method still significantly en- 423

hances training efficiency and effectiveness, under- 424

scoring its ability to compensate for the shortcom- 425
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(b) SlimPajama test set
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Figure 4: Performance evaluation results of models trained on the SlimPajama CommonCrawl dataset. Figures 4a
and 4b display the average perplexity on the Pile and SlimPajama test sets, respectively. Figure 4c illustrates the
average accuracy on various downstream tasks. Our methodology involves a data partitioning number of 20 and a
10-fold weight disparity between the maximum and minimum weights. Baseline refers to direct training.
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Figure 5: Performance evaluation results of models trained on the Falcon RefinedWeb dataset.

ings of current deduplication methods. Particularly,426

it reweights data to reflect varying duplication lev-427

els, avoiding blanket solutions. This integration428

could become a standard in large language model429

pre-training.430

5.4 Finer data partitioning for improved431

downstream task performance432

In Figure 6, we illustrate the impact of different433

numbers of data partitions on model performance.434

We argue that investigating methods to further en-435

hance the training effectiveness of higher-quality436

data is a more critical concern. Therefore, our ex-437

periments are conducted on the Falcon RefinedWeb438

dataset.439

In evaluations conducted on both the Pile and440

SlimPajama test sets, models exhibit negligible441

variations in average perplexity across a range of442

data partition counts, specifically 10, 20, 50, and443

100. This observation indicates that perplexity, as444

a metric, demonstrates relatively low sensitivity to445

changes in the granularity of data partitioning.446

In contrast, we observe that as the granularity447

of data partitioning increases, the accuracy of the448

language model in downstream tasks also improves. 449

As demonstrated in Figure 6c, there is a clear corre- 450

lation between the number of data partitions and the 451

model’s accuracy. This indicates that finer-grained 452

data partitioning can make the training data more 453

balanced, thereby enhancing performance in down- 454

stream tasks. 455

5.5 Effects of sampling weight disparities on 456

model performance 457

Figure 7 presents the outcomes of experimental in- 458

vestigations into the effects of varying disparities 459

between maximum and minimum weights assigned 460

to different data partitions. The methodology em- 461

ployed ensures a consistent ascending order in the 462

allocation of weights, with greater disparities indi- 463

cating a more pronounced suppression of data with 464

high commonness. 465

Experiments conducted utilizing disparities in 466

the maximum to minimum weight ratios of 2-fold, 467

5-fold, and 10-fold reveal a consistent trend: in- 468

creased disparities between the maximum and min- 469

imum weights lead to a reduction in average model 470

perplexity. Although slight variations are observed 471

7



10000 20000 30000 40000 50000 60000 70000
STEPS

16

18

20

22

24

26

AV
ER

AG
E 

PP
L

Baseline

Baseline
10
20
50
100

(a) The Pile test set

10000 20000 30000 40000 50000 60000 70000
STEPS

20

25

30

35

40

45

AV
ER

AG
E 

PP
L

Baseline

Baseline
10
20
50
100

(b) SlimPajama test set

10000 20000 30000 40000 50000 60000 70000
STEPS

32

34

36

38

40

AV
ER

AG
E 

AC
C

Baseline

Baseline
10
20
50
100

(c) downstream tasks

Figure 6: The effect of data partition number on model performance. The models are trained on the Falcon
RefinedWeb dataset, applying a 10-fold weight disparity between maximum and minimum weights. Data partitions
are set at 10, 20, 50, and 100.
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Figure 7: Evaluation results of models under different weighting disparities, including maximum-minimum weight
differences of approximately 2-fold, 5-fold, and 10-fold. The models are trained on the Falcon RefinedWeb dataset,
and our method involves a data partitioning number of 20.

in the performance outcomes for downstream tasks,472

the experiments demonstrate that the largest weight473

disparity consistently facilitates the most optimal474

model performance.475

5.6 Cost of data reweighting476

The computational processes of n-gram training477

and commonness calculation are executed solely478

on CPU resources. For a 40B token corpus, the479

n-gram training procedure (with n = 4) requires480

4 CPU cores for 5 hours, followed by computing481

data commonness using 4 CPU cores in 2 hours.482

Compared to the substantial costs of GPU con-483

servation (at least 930 V100 GPU hours in our484

experiments), these expenses can be considered485

negligible. This underscores the efficiency of Soft-486

Dedup and the feasibility of its implementation in487

resource-constrained environments.488

6 Conclusion489

In this study, we introduce a soft deduplication490

method that effectively addresses the primary lim-491

itations associated with traditional hard dedupli-492

cation methods. Unlike its predecessors, this ap- 493

proach retains all samples of data while reallocat- 494

ing sampling weights according to data common- 495

ness. Experimental analyses demonstrate that this 496

technique can significantly expedite the training 497

process for large language models, evidenced by 498

a reduction of over 26% in the number of training 499

steps required. The proposed method surpasses 500

existing deduplication techniques in effectiveness 501

and can serve as a valuable complement to these 502

methods. Due to its low operational cost and su- 503

perior efficiency, we advocate for the integration 504

of this soft deduplication approach with traditional 505

hard deduplication methods as a standard practice 506

in the pre-training phase of large language models. 507

7 Limitations 508

Due to current limitations in computational re- 509

sources, the extension of SoftDedup to larger-scale 510

models will be deferred to future research endeav- 511

ors. Moreover, future studies will seek to conduct 512

a more comprehensive evaluation of the method’s 513

effectiveness across various mixed data sources. 514
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A Appendix 693

A.1 Average perplexity for each subset in the 694

Pile test set 695

In Table 2, we provide a detailed report on the 696

average perplexity for each subset within the Pile 697

test set. For models trained on the RedPajama 698

CommonCrawl dataset, our method results in im- 699

provements across 18 out of 22 subsets. For models 700

trained on the SlimPajama CommonCrawl dataset, 701

our method leads to improvements in 17 subsets. 702

For models trained on the Falcon RefinedWeb, im- 703

provements are observed in 19 subsets. Due to 704

the exceedingly small number of documents in the 705

Ubuntu IRC subset, we exclude it from the cal- 706

culation of the average perplexity on the Pile test 707

set. 708

A.2 Average perplexity for each subset in the 709

SlimPajama test set 710

In Table 3, we provide a detailed report on the av- 711

erage perplexity for each subset within the SlimPa- 712

jama test set. Our method has led to improvements 713

across nearly all subsets. 714

A.3 Accuracy for each downstream task 715

In Table 4, we provide a detailed report on the 716

accuracy for each downstream task. For models 717

trained on the RedPajama CommonCrawl dataset, 718

our method has led to improvements across all 719

tasks. For models trained on the SlimPajama Com- 720

monCrawl and Falcon RefinedWeb datasets, our 721

approach has also resulted in accuracy improve- 722

ments on the majority of tasks. 723
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RedPajama CC SlimPajama CC Falcon RW
Subset Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
Pile-CC 17.79 17.20 20.61 19.74 13.66 13.49
YoutubeSubtitles 23.59 22.54 23.40 25.83 18.56 17.45
PhilPapers 15.74 14.59 15.27 14.51 15.03 14.05
HackerNews 31.32 29.81 29.68 28.84 21.13 20.17
Enron Emails 48.23 46.50 47.16 41.81 32.53 31.26
EuroParl 60.96 55.16 60.26 55.72 51.06 40.48
Ubuntu IRC 20.53 19.48 27.16 26.20 75.61 71.47
BookCorpus2 16.22 16.14 15.27 14.46 11.67 11.44
NIH ExPorter 10.92 10.78 10.65 10.72 10.46 10.64
OpenSubtitles 14.45 13.78 14.05 13.67 13.83 13.60
Gutenberg(PG-19) 19.67 19.77 18.71 17.75 18.31 16.58
DM Mathematics 6.51 6.44 6.47 6.60 6.01 5.86
Wikipedia 13.94 13.71 12.85 12.65 10.70 10.45
OpenWebText2 21.97 21.10 27.16 25.44 17.00 16.19
Github 56.03 52.95 55.98 53.65 32.36 26.30
FreeLaw 9.86 10.13 10.37 10.26 13.36 12.93
USPTO Backgrounds 9.59 9.29 9.60 9.42 9.19 8.97
Books3 15.69 16.02 14.82 14.37 11.06 10.65
PubMed Abstracts 8.75 8.79 8.49 8.67 8.85 8.99
StackExchange 31.76 29.44 29.83 27.44 17.84 15.62
ArXiv 17.82 16.99 17.85 18.14 16.17 14.94
PubMed Central 13.44 12.36 12.60 12.19 12.06 12.77

Table 2: Average perplexity for each subset in the Pile test set.

RedPajama CC SlimPajama CC Falcon RW
Subset Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
Commoncrawl 9.43 9.28 9.19 9.16 10.23 10.20
C4 16.84 16.25 16.46 16.06 13.95 13.81
GitHub 90.00 82.28 81.11 77.59 28.02 20.98
Books 16.03 16.25 14.62 13.91 11.89 11.34
ArXiv 15.86 15.29 15.21 14.57 14.75 13.43
Wikipedia 88.40 82.05 77.44 67.77 68.83 58.69
StackExchange 30.10 28.15 28.00 26.01 18.14 16.01

Table 3: Average perplexity for each subset in the SlimPajama test set.
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RedPajama CC SlimPajama CC Falcon RW
Task Baseline SoftDedup Baseline SoftDedup Baseline SoftDedup
NQ Open (1-shot) 4.13 5.37 4.6 4.79 4.18 3.85
SQuADv2 (1-shot) 11.51 14.66 12.95 17.25 26.39 29.95
Trivia QA (1-shot) 15.89 16.39 17.71 17.64 12.24 13.3
WebQuestions (1-shot) 3.3 3.4 5.71 3.59 1.08 3.05
LAMBADA openai (1-shot) 46.07 48.52 43.64 44.65 44.3 46.57
LAMBADA standard (1-shot) 36.91 40.89 37.65 38.83 39.72 40.79
PIQA (1-shot) 65.34 66.7 66 66.76 72.31 72.47
Social IQa (1-shot) 88 89.6 87.9 88.4 89.2 89.3
WinoGrande (1-shot) 52.88 54.38 53.99 55.25 54.7 54.7
HellaSwag (1-shot) 34.93 36.51 35.54 36.8 40.43 40.35
ARC easy (2-shot) 57.24 59.89 57.79 60.44 58.12 59.43
ARC challenge (2-shot) 25.17 26.28 25.09 26.54 25.17 26.02

Table 4: Accuracy for each downstream task.

12


	Introduction
	Related Work
	Data deduplication
	Data reweighting

	Method
	Hard deduplication
	Soft deduplication
	Implementation of commonness calculation
	Approximate sampling for large-scale data

	Experimental Setup
	Datasets
	Model training
	Baselines
	Evaluation metrics
	Hyperparameter impact analysis

	Results
	Enhanced performance and efficiency in language model pre-training
	Surpassing hard deduplication in effectiveness
	A powerful complement to existing techniques
	Finer data partitioning for improved downstream task performance
	Effects of sampling weight disparities on model performance
	Cost of data reweighting

	Conclusion
	Limitations
	Appendix
	Average perplexity for each subset in the Pile test set
	Average perplexity for each subset in the SlimPajama test set
	Accuracy for each downstream task


