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Abstract

A fundamental problem in organic chemistry is identifying and predicting the series
of reactions that synthesize a desired target product molecule. Due to the combi-
natorial nature of the chemical search space, single-step reactant prediction—i.e.
single-step retrosynthesis—remains challenging even for existing state-of-the-art
template-free generative approaches to produce an accurate yet diverse set of fea-
sible reactions. In this paper, we model single-step retrosynthesis planning and
introduce RETRO SYNFLOW (RSF) a discrete flow-matching framework that builds
a Markov bridge between the prescribed target product molecule and the reactant
molecule. In contrast to past approaches, RSF employs a reaction center identi-
fication step to produce intermediate structures known as synthons as a more in-
formative source distribution for the discrete flow. To further enhance diversity and
feasibility of generated samples, we employ Feynman-Kac steering with Sequential
Monte Carlo based resampling to steer promising generations at inference using a
new reward oracle that relies on a forward-synthesis model. Empirically, we demon-
strate RSF achieves 60.0% top-1 accuracy, which outperforms the previous SOTA
by 20%. We also substantiate the benefits of steering at inference and demonstrate
that FK-steering improves top-5 round-trip accuracy by 19% over prior template-
free SOTA methods, all while preserving competitive top-k accuracy results.

1 Introduction

Retrosynthesis planning is a fundamental problem in chemistry that involves decomposing a complex
target molecule (the product) into simpler, commercially available structures (the reactants) to
establish synthesis routes [8, 45]. This process is crucial for verifying the synthesizability of
proposed molecules with desirable properties, particularly in drug discovery [43]. For instance,
retrosynthesis is critical for lead optimization in medicinal chemistry, which requires designing
efficient synthetic routes to modify chemical structures to enhance a compound’s potency, selectivity,
and pharmacokinetic properties [25]. Traditionally, chemists manually identify and validate reactants
and pathways, a labor-intensive process exacerbated by the vast search space of transformations
from reactant to product molecules. This enduring challenge has driven decades of research in
computer-assisted retrosynthesis [8], with recent advances in machine learning (ML) enabling more
effective exploration of the combinatorial reactant space [3, 6, 48, 9]. Such methods are promising
in significantly accelerate the drug discovery pipeline.

The current dominant paradigm for ML-based retrosynthesis planning consists of two main com-
ponents: a single-step retrosynthesis model and a multi-step planning algorithm. These ML-based
approaches can be broadly categorized as template-based and template-free methods. Template-based
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Figure 1: An overview of our RETRO PRODFLOW (RPF) and RETRO SYNFLOW (RSF) framework.
RPF directly maps a product molecule to reactants via discrete flow. RSF first predicts synthons from
the product using a reaction center predictor, then maps these synthons to reactants via discrete flow.

methods rely on a predefined database of reaction templates with hand-crafted specificity [36], which
ensures syntactic and chemical validity but often limits diversity and generalization to novel reaction
types. In contrast, template-free methods and semi-template methods are more flexible and capable
of predicting reactions not seen in existing databases [50], offering improved generalization. More
recently, template-free and semi-template approaches have emerged as a natural fit for generative
modeling techniques, enabling retrosynthesis prediction to be formulated as a conditional generation
problem: generating reactants conditioned on a given product molecule. Semi-template methods in-
crease interpretability by breaking the generation process into two steps by first identifying intermedi-
ate molecular structures called synthons and completing synthons to form reactants. While promising,
many existing generative methods rely on sequential molecular representations like SMILES [39],
and as a result, fail to capture the rich chemical contexts encoded in molecular attributed graphs.

Current work. In this paper, we frame single-step retrosynthesis as learning a transport map
from a source distribution to an intractable target data distribution using finite paired samples. We
represent molecules as attributed graphs and propose two template-free/semi-template generative
models— RETRO PRODFLOW (RPF) and RETRO SYNFLOW (RSF)-based on recent advances in
discrete flow matching [14, 2]. As discrete flows are flexible in choosing the source distribution,
we explore two options as shown in Figure 1. First, in RPF, we use the product distribution di-
rectly as the source and learn a flow that transforms products to reactants. Second, we leverage
pretrained reaction center prediction models to construct an informative source distribution over syn-
thons—intermediate molecular fragments obtained by decomposing the product at its reaction center.
This reduces the original problem to a simpler condi-
tional generation task, i.e., mapping from synthons to
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that guides sampling of flow models towards more Figure 2: Inference time steering with a
feasible and diverse outputs. FK steering employs se- forward-synthesis reward model.

quential Monte-Carlo (SMC), a particle-based method

that resamples promising intermediate candidates throughout the generation process based on a reward
function. We define this reward using a forward-synthesis model to enforce round-trip consistency—a
standard measure of diversity and feasibility. We highlight the benefits of reward-based inference time
steering, demonstrating a 13% improvement in top-5 round-trip accuracy over prior SOTA methods.

Inference time t=1

In summary, our main contributions are listed below,



1. We propose the first flow matching framework for retrosynthesis, introducing two variants:
RETRO PRODFLOW (RPF), which maps products directly to reactants, and RETRO
SYNFLoOW (RSF), which leverages synthons (intermediate molecular fragments) to simplify
the generation task.

2. We improve the diversity and feasibility of generated reactants using FK-steering, an
inference-time technique guided by a forward-synthesis reward. This yields a 19% gain
in top-5 round-trip accuracy over prior template-free methods.

3. We show that using synthons as an inductive prior significantly enhances performance. RSF
achieves 60% top-1 accuracy on the USPTO-50k benchmark, outperforming state-of-the-art
template-free and semi-template methods.

2 Background and preliminaries

Notations. Given a vocabulary set X’ with d elements, we establish a bijection between X" and the
index set [d] = {1,...,d}. Accordingly, any discrete data « drawn from X’ can be represented as an
integer index in [d]. A categorical distribution over X', denoted Cat(z; p), is given by p(z = i) = p’,
where Zle p' = 1and p* > 0,Vi. A sequence x = (x!,...,x™) of n tokens is defined over the
product space X". We assume a dataset of such sequences is sampled from a target data distribution
Ddata- Discrete flow matching models, like their continuous counterparts, aim to transport a source
distribution pgource := po defined at time ¢ = 0 to the data distribution pg.t, := p1 at time t = 1.

2.1 Discrete Flow Matching

Discrete flow matching operates directly on discrete data, mirroring the construction of flow matching
models over continuous spaces. Analogously, our goal is to construct a generative probability
path, p; that interpolates between the source and target distributions. The key insight of flow
matching is to construct p; by marginalizing simpler probability paths conditioned on samples from
the source and data distributions. A conditional probability path, p;(:|x0,x1) is a time-evolving
distribution satisfying po(x‘|xg,x1) = d(x}) and p;(x‘|x,x1) = d(x%) where xg ~ pg and
x; ~ p;. Conditional probability paths are independent across each dimension of the sequence,
with the simplest choice being a convex combination of po(x¢|xg, x1) and p; (x?|xg, X1 ),

n

pr(x[x0,x1) = Cat(x{; (1 — £)d(x)) +5(x})), where pi(xi|x0,x1) = [ [ pe(xi|x0,%1). (1)
i=1

Similar to the continuous setting, discrete flow matching constructs a generating probability velocity
ut(+,x¢) € R™, which models the rate of probability mass change of the sample x; in each of its n
positions. Specifically, we view (x;)o<:<1 as a collection of random variables that form a continuous-
time Markov Chain (CTMC), jumping between states in X'*. Each position of x; can be simulated
by the following probability transition kernel p; (¢ (X}, j, [x¢) = Cat(x}, ,; 6(x}) + huj(x},,,X¢)).
Thus, sampling from the CTMC and simulating a trajectory from p; given its velocity u; is
straightforward. We start from a sample xy ~ po from the source distribution and update each
dimension with the transition kernel xi+h ~ pt+h|t(xi+h|xt). This results in samples from
the desired data distribution p;. Analogous to continuous flow matching, u! is constructed by
marginalizing the conditional probability velocities that generate the conditional probability paths.
For the simple conditional probability paths given by Eq. 1, the marginal probability velocity is
ul(x?,x4) = (p1j¢(x*x¢) — 8(x})) /(1 — t). The intractable posterior distribution, p;;, known as
the probability denoiser, predicts a clean sample x; from an intermediate noisy sample x;. We can
approximate the denoiser with a neural network pg(x}|x;) and train it by minimizing a cross-entropy

loss that forms a weighted evidence lower bound (ELBO) on log p1 ¢(x1) [12].

2.2 Feynman-Kac Steering

Given a trained flow model whose marginal distribution at time ¢ = 1 is denoted by py(x1). We
are interested in sampling from a target distribution that tilts p(x1 ) using a terminal (parametrized)
reward function  : X™ — [0, 1], that consumes fully denoised sequences x7,

1
plarget(xl) = EPG(XI) eXp()‘T(Xl))v (2)



where A controls the steering intensity, and Z is a normalization constant. Sampling trajectories in
flow models involves discretizing the interval [0, 1] into a grid of timesteps {0, h,--- ,1 — h, 1} and
sampling from the learned transition kernel p; ;. To steer the sampling process toward high-reward
outcomes, we employ Feynman-Kac (FK) steering [40], which modifies the transition kernels using
potential functions that favor trajectories 7(xo.1) ending with high-reward x; samples. The FK
process begins from a reweighted initial distribution pgx o(X0) X Psource(X0)Uo(X0o) and iteratively
build pgk +5 by tilting the transition kernel with a potential U (%o, - - - , X¢—p, Xy¢):

1
PRt +h (Xtn) = ZPresnie (Xen Xe)Ur (X0:1) Po (Xo:1) I1 Us(X0:s) -

s€{0,--+ ,t—h,t}

XPFK,t

Since direct sampling from pr ; is intractible, we employ Sequential Monte Carlo (SMC) methods.
SMC begins with K particles {x7*}£ _ sampled from the source distribution. At each transition
step, it updates their importance weights and resamples the particles accordingly. The importance

weight for particle m at time ¢ + h is given by wj} , = peyppe (X7, %) Us (X575

3 Discrete Flow Matching for Retrosynthesis

We model single-step retrosynthesis using discrete flow matching by representing product and
reactant molecules as a pair of molecular graphs (GP,G"). Our focus is on the single product
setting, i.e., a single product molecule corresponds to a set of reactant molecules. The reactants are
represented as a single disconnected graph to account for multiple molecules. A molecular graph
G = (v, E) with N atoms consists of: a node feature vector v € [K,,]"V, where v’ encodes the atom
type of atom i (out of K, possible types), and an edge feature matrix E € [K V>, where E*J
indicates the bond type (among K possible types) between atoms ¢ and j.

In this formulation, both v and E can be viewed as collections of discrete random variables. We aim
to learn a generative probability path p; that interpolates between a source and the data distributions
over graphs of product and reactant pairs. Correspondingly, the design of the conditional probability
path of a graph, p;(G¢|Go, G1) factorizes over the nodes and edges as follows:

pe(vilvo, vi) = (1 = 0)3(vg) + t6(vi), pi(Ef?|Eo, Er) = (1 - )5(Ey’) + t6(Ey7).

To complete the specification of a discrete flow matching model, we must also define both the source
and data distributions. For retrosynthesis, the data distribution, pgat, is simply the distribution of
reactant molecules. We explore two choices for the source distribution. The most natural option
is to set the source distribution, psource to the empirical distribution of product molecules. This leads
to our first model, RETRO PRODFLOW (RPF), which directly transports product molecules to their
corresponding reactants. The second option, which we discuss in detail in the following section,
sets the source distribution to the space of intermediate synthons which acts as a more informative
structural prior. Since some atoms present in the product may not appear in the reactants, we follow
RetroBridge [18] and append dummy atoms to the product to ensure alignment of node dimensions.
More details are discussed in Appendix A.

The probabilistic formulation of flow matching provides a natural way to select the most likely
reactants for a product molecule out of all possible generations. For a set of N samples, {x} }¥
generated by the flow matching model for xg ~ psource, the score of sample x; is the empirical
frequency. This score is an estimation of the probability of X; given xg, i.e.,

N
. . 1 i
Po(X1]%0) = Epp, (-|x0) L[z = X1] ~ N E 1[x] = x4].
i=1

3.1 RETRO SYNFLOW

In our approach, we inject more valuable structural information into the flow matching process by
setting the distribution of synthons as a more informative source. This is motivated by the two-stage
formulation of single-step retrosynthesis: reaction center identification and synthon completion.
The two-stage approach improves interpretability by closely mirroring the way expert chemists
reason about retrosynthesis. Synthons are hypothetical intermediate molecules representing potential



reactants [39]. Although a synthon may not correspond to a chemically valid molecule, it can be
transformed into one by adding suitable leaving groups that account for reactivity.

Synthon generation begins by identifying a reaction center in the product molecule. A reaction center
is defined as a pair of atoms (4, ) in the product satisfying two criteria: 1) atoms ¢ and j are connected
by a bond in the product molecule, and 2) there is no bond between atoms ¢ and j in the reactant(s). We
can derive the synthon molecule(s) by deleting the bond that connects the atoms in the reaction center.

Our primary focus lies in the second step of retrosynthesis: applying flow matching for synthon
completion. In this case, the source distribution psoyurce 18 the distribution of synthons. Given a
product molecule GP, we use a reaction center prediction model to output M potential reaction-center
candidates. This results in M predictions for the set of synthon(s). Each set of synthon(s) is treated
as a single disconnected graph, G°. To train the discrete flow model, we once again decompose
the conditional probability path p;(G;|Go, G1) over the nodes and edges where Gy := G* and
G, := G". Therefore, we can model the generating probability velocity and update the tokens of
the nodes and edges separately according to their respective transition kernels:

7 ) 1 7 7
unodes,t(v ,Vt) = ﬁ [pg(v ‘VhEt) - 6(Vt)] )

uiydjges,t(Ei}j? Vt)

= 5 v B - )]

The denoiser model pg(G1|G:) outputs probabilities of a “clean” (reactant) graph over nodes and
edges conditioned on a noisy state graph (G, an interpolation between synthons and reactant graphs.
The stochastic processes over nodes and edges are coupled due to the denoiser model taking the
noisy graph as input. We can express the outputs of the denoiser model separately over the nodes and
edges pg(v|vy, Ey) and po(E|vy, E;). This leads to a natural objective for discrete flow matching
where we minimize the weighted combination of the cross-entropy loss over nodes and edges:

E(e) = _Ep(t),po(cg),pl(Gl),pt(Gt‘Go,Gl) Zlogpe(vilvt7Et) + )\Zlogpe(Ei’jh/hEt) )
i i.j
where the distribution over time p(¢) is sampled uniformly, i.e. ¢ ~ U(0, 1).

As in the previous case, we append “dummy” nodes (atoms) to

the synthon molecule graph since the reactant molecule graph N;"]SY Rﬁri%tiitr‘ité;)
can have atoms that are not present in the synthon graph. For ¥ rion . <
every synthon graph G%, we generate N; sets of reactants. The e R =P
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reactants per product, we constrain Zf\il N; = N. We demon-

N ! . Synthon(s) Y Qj ~ Product
strate in our experiment section that these hyperparameters do context 3 o 4 04 context
not require much tuning, and M = 2 provides SOTA perfor- A
mance.

Figure 3: Overview of flow match-
We adopt the reaction center prediction model from Shi et al. ing denoiser pg.

[39] to identify synthons. We do note however, that any model

that outputs synthons could be equivalently used. Prior works

such as [54, 39, 41] typically treat reaction center identification as a bond-level classification task.
They use graph neural networks to classify each bond in the product as reactive or not by predicting
bond-level reactivity scores or edit scores. During inference, we select the top-)M bonds above a
certain score threshold as candidate reaction centers, yielding M synthon predictions.

3.2 Reward-based steering

Given the discrete flow matching framework for retrosynthesis above, we can specify a potential func-
tion Uy and reward r(x1 ) to perform inference time steering. For intermediate steps ¢ < 1, we define:

t

Ui(x0:¢) = exp (ZS=0 r¢(xs)) ,and  U; = exp(Ary(x1)) (Hte{o,... o Ut) - )

This design ensures that prg 1 X puareer While steering intermediate particles toward high-reward
trajectories. Furthermore, it selects particles that have the highest accumulated reward.



To perform SMC resampling, we need access to a reward oracle, r4 that models the distribution
of rewards py(r(x1)|x:) generated from the intermediate state x;. Fortunately, we can still obtain
high-quality estimates from this reward distribution without training a separate reward model by
querying the flow matching denoiser model py(x;|x;) instead. Specifically, the intermediate reward
is defined as r¢(x;) := r(X1) where X1 = [, (x, |x,)[X1]X¢] is the expected x; given x;. This choice
of intermediate reward can be evaluated efficiently without significant additional computational cost.

Our reward function 74(G1) is inspired by round-trip accuracy, which measures the ability of a
retrosynthesis model to recover diverse and feasible reactants. There may be many different sets
of reactants that can synthesize the same product. Top-k round-trip accuracy aims to capture this
characteristic of retrosynthesis by quantifying the proportion of feasible reactants(s) among the top-k
predictions from the retrosynthesis model. We can assess whether a reaction is feasible by using
a forward-synthesis model, which predicts the product molecule produced by a set of reactants. A

reaction is deemed feasible if the forward model satisfies I’ (GT) = G?, where G" is the predicted re-
actants. The reward function serves as a proxy for round-trip accuracy, encouraging the generation of
chemically valid and synthetically feasible reactants. Suppose (G, G") is a pair of product and reac-
tant molecule graphs. The reward for the intermediate state G for the flow matching process on graphs
is defined as 74(G;) = 1[F(G1) = G?] where G is the expected G (reactants) given G;. With
this formulation of the reward, we introduce RETRO PRODFLOW-RS, a reward-steered version for
RETRO PRODFLOW. Finally, we use Molecular Transformer [35] for the forward-synthesis model.

4 Experiments and Results

We evaluate our proposed methods against state-of-the-art template-free and template-based models
on standard single-step retrosynthesis benchmarks. Through RETRO SYNFLOW, we aim to highlight
the effectiveness of synthons as an inductive prior for generating reactants using flow matching.
Additionally, we evaluate RETRO PRODFLOW-RS to show that inference-time reward-based steering
enhances the diversity and feasibility of predicted reactants. We conduct various ablation studies
assessing the performance of FK-steering and SMC-based resampling on standard metrics. Unless
otherwise stated, we generate N = 100 sets of reactants for each input product. Our methods
discretize the time interval [0, 1] into T = 50 steps. For SMC resampling, RPF-RS uses K = 4
particles. For RSF, we use M = 2 synthon predictions with N; = 70 and Ny = 30 for the
top-2 synthon predictions respectively. Code is available at: https://github.com/DSL-Lab/
RetroSynFlow.

4.1 Experimental Setup

Dataset. We trained and evaluated our methods on the USPTO-50K dataset [34], a standard
benchmark for retrosynthesis modelling containing 50k atom-mapped reactions extracted from US
patents. We follow the same train/evaluation/test split used by RetroBridge [18] and GLN [9]. As
done in Retrobridge, we randomly permute the graph nodes as a pre-processing step before input
to the flow matching model.

Baselines. We evaluate our methods against both template and template-free baselines. On the
template-free side, we compare against graph-based approaches such as RetroBridge [18] and G2G
[39]. We compare against SMILE string translation approaches such as Tied-Transformer [20],
Augmented-Transformer [48], and SCROP [57]. Our baselines also include methods that combine
graph and SMILE representations: GTA [38], MEGAN [33], Dual-TF [46], and Graph2SMILES
[49]. On the template-based side, we compare against state-of-the-art approaches such as GLN [9],
GraphRetro [41], LocalRetro [4], and RetroGFN [13]. We also compare against Chimera [27], a
framework that ensembles multiple different SMILE and graph based models across template and
template-free approaches.

Evaluation. We report top-k exact match accuracy, which measures the proportion of reactions
where the ground-truth set of reactants is in the top k set of reactants predicted by the model.
Following standard practices in prior works, we report £ = 1,3,5,10. Additionally, we report
top-k round-trip accuracy and round-trip coverage to measure reaction feasibility. Given product
and reactant molecular graphs (G?, G"), let R = {G7}%_, be the top-k predicted sets of reactants

for GP. Let P = {F(G7)}%_, be the predicted products from the forward-synthesis model. Then
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top-k exact-match accuracy, round-trip accuracy and coverage for the product x are computed as
follows:1[G™ € R], L S°F  1[G» = F(GY)], and 1[G? € P).

4.2 Main Results

Table 1: Top-k accuracy (exact match) on the USPTO-50k test dataset.
Top-k Accuracy

Model k=1 k=3 k=5 k=10
GLN 52.5 74.7 81.2 87.9
TB GraphRetro 53.7 68.3 72.2 75.5
LocalRetro 52.6 76.0 84.4 90.6
RetroGFN 49.2 73.3 81.1 88.0
SCROP 43.7 60.0 65.2 68.7
G2G 48.9 67.6 72.5 75.5
Aug. Transformer 48.3 — 73.4 77.4
DualTF,, 53.6 70.7 74.6 77.0
MEGAN 48.0 70.9 78.1 854
TF Tied Transformer 47.1 67.1 73.1 76.3
GTAy, 51.1 67.0 74.8 81.6
Graph2SMILES 52.9 68.5 70.0 75.2
Retroformer,,g 52.9 68.2 72.5 76.4
Chimera ! 59.6 82.8 89.2 94.2
RetroBridge 50.8 74.1 80.6 85.6

RETRO PRODFLOW 50.0 £0.15 743+030 81.2+0.08 85.8+0.04
RETRO SYNFLOW 60.0 =022 7794+0.13 82.7+0.15 853+0.19

Our main results are presented in Table 1, comparing RETRO SYNFLOW to several previous SOTA
models for retrosynthesis on top-k accuracy, and Table 2 compares RETRO PRODFLOW-RS on top-k
round-trip accuracy. In particular, RETRO PRODFLOW-RS achieves a top-1 accuracy of 60%, approx-
imately 20 % higher than other template-free methods that do not perform ensembling. It outperforms
RetroBridge and RETRO PRODFLOW, which use a source distribution of product molecules to build
the Markov Bridge/CTMC 2. This demonstrates that synthons encode valuable structural information
and serve as a more informative source of distribution for generating reactants. Additionally, RETRO
SYNFLOW also produces notable gains in top-3 and top-5 exact match accuracy. Our approach is
competitive with Chimera [27], a framework that ensembles many different retrosynthesis models
across both graph and SMILE string-based methods. As a result, our method is complementary to
their framework and may be less resource intensive.

Table 2: Top-k Round-trip coverage and accuracy on USPTO-50k test dataset.

Model Round-Trip Coverage Round-Trip Accuracy
k=1 k=3 k=5 k=10 k=1 k=3 k=5 k=10
TB GLN 825 920 940 - 825 710 662 -
LocalRetro 82.1 923 947 - 82.1 71.0 66.7 -
RetroGFN - - - - 76.7 69.1 655  60.8
MEGAN 78.1 88.6 913 - 78.1 673 61.7 -
Graph2SMILES - - - - 76.7 560 464 -
TF  Retroformerayg - - - - 786 71.8 67.1 -
RetroBridge 8.1 957 971 977 851 73.6 678 563

RETRO SYNFLOW-RS 889 973 984 98.9 889 739 69.1 61.8
RETRO PRODFLOW-RS 914 97.6 98.7 99.3 914 84.1 80.1 75.1

!Chimera [27] an ensemble method combining multiple retrosynthesis models (TF + TB)
’RetroBridge was evaluated using 7' = 500 sampling steps as done in Igashov et al. [18]



However, exact match accuracy is limited because it does not capture the fact that multiple reactants
(some of which may not exist in the dataset) can synthesize the same product molecule. Therefore,
we evaluate RETRO PRODFLOW-RS on round-trip accuracy and compare it to the baselines present
in [18] in addition to [13]. As shown in Table 2, RETRO PRODFLOW-RS is capable of generating
diverse and feasible reactants, outperforming state-of-the-art methods on round-trip coverage and
accuracy. Additionally, RETRO SYNFLOW-RS also achieves competitive results on round-trip
coverage and accuracy.
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Figure 4: Top-b reactants selected by each method. A star indicates an exact match, a checkmark
indicates a round-trip match but not an exact match, and a cross means neither.

4.3 Ablation Studies

In Table 3, we show the performance of
RETRO PRODFLOW-RS for the synthons  Taple 3: Top-k accuracy for synthon completion task on
to reactants generation task. Here, top-k  [USPTO-50k test dataset.

accuracy refers to the proportion of
synthons where the true set of reactants Model 1 3 5 10
exists in the top-k predicted sets of

reactants. Furthermore, we evaluate the RSF (wioproduct) 59.7 755 791 820
effects of providing the product molecule RSF (w product) 67.7 829 857 875
as additional context to the flow matching
model py.
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Figure 5: Performance of RETRO PRODFLOW-RS on the USPTO-50k validation set as we vary the
number of particles for SMC resampling. We sample N = 50 reactants per product.

In Figure 5, we study the performance of RETRO PRODFLOW-RS by varying the number of particles
in the SMC resampling procedure for FK-steering. We find that K = 4 particles already provides
significant gains in round-trip accuracy and coverage with negligible reduction in exact match



accuracy. As we increase the number of particles further, we see noticeable increases in round-trip
accuracy and coverage with a slight decrease in exact match accuracy.

Table 4: Comparing RETRO PRODFLOW-RS against baselines on the USPTO-50k test set.

Round-Trip Coverage Round-Trip Accuracy
Model k=1 k=3 k=5 k=10 k=1 k=3 k=5 k=10
RPF 84.4 95.3 96.9 97.7 84.4 72.8 66.8 57.6
RPF-RS 914 97.6 98.7 99.3 914 84.1 80.1 75.1
Greedy Sampling 89.4 97.0 98.4 99.2 89.4 79.0 73.0 66.2

RPF (400 reactants) ~ 84.2 95.3 97.1 98.1 84.2 73.1 68.5 60.7

Next, we further demonstrate the benefits of reward-based steering with SMC resampling by compar-
ing RETRO PRODFLOW-RS against two baselines. The greedy sampling approach does not perform
any steering or resampling and instead selects the particle with the highest reward at the end of
the generation process. Table 4 shows that RETRO PRODFLOW-RS outperforms greedy sampling,
highlighting the superiority of SMC resampling. Furthermore, we also scale the computational
budget of RETRO PRODFLOW by generating N = 400 reactants per product molecule. This has the
same computational cost as RETRO PRODFLOW-RS, which uses K = 4 particles and samples 100
reactants per product molecule. Again, Table 4 shows that increasing the number of reactants sampled
per product does not improve round-trip accuracy and coverage by a significant amount, highlighting
the need for reward-based SMC steering. Additional ablation studies are available in Appendix B.

5 Related Works

Template-based. The approaches for single-step retrosynthesis can be divided into two main cate-
gories: template-based and template-free. Reaction templates are molecular subgraph patterns that en-
code pre-defined reaction rules to transform a target product into simpler reactants. They can be hand-
crafted by experts [15, 47] or extracted algorithmically from large databases [5]. The main challenge
for template-based methods, such as Segler and Waller [36], Coley et al. [5], Dai et al. [9], is ranking
and selecting the correct templates for a target molecule. More recently, Gairiski et al. [13] utilizes the
recent GFlowNet framework to build RetroGFN, a model capable of composing existing reaction tem-
plates to explore the solution space of reactants beyond the dataset to increase feasibility and diversity.

Template-free. Templates provide a strong inductive bias, and template-based methods offer greater
interpretability at the expense of generalization. On the other hand, template-free approaches
directly transform products to reactants without pre-defined rules, providing more flexibility. Many
works in this area frame the task as a sequence-to-sequence modelling problem on SMILES string
representation of molecules [24, 57, 46, 48]. Another approach is to use a graph representation
of molecules and transform product molecule graphs to reactant graphs [33, 39]. The recent work
by Igashov et al. [18] builds a Markov Bridge model between the space of products and reactants.
Also, Laabid et al. [22] employs absorbing state diffusion and builds a graph diffusion model to
generate reactants. Other works leverage a combination of graph-based and SMILE representations
of molecules [38, 49, 52]. In the context of multi-step retrosynthesis, prior works have used a
forward-synthesis model to select for promising reactants [7, 37, 57].

Discrete Diffusion and FM. Discrete diffusion and flow matching are a powerful class of generative
models that have demonstrated impressive results across various tasks, e.g. language modelling
[28], symmetric group learning [56], and biological applications such as protein synthesis[1, 17],
3D molecule generation [10, 42], and DNA sequence design [44]. Traditionally, continuous-state
diffusion models have also been employed for discrete data generation tasks such as graph
synthesis [55, 53, 19, 29], despite relying on hard-coded post-processing steps.

6 Conclusion

In this work, we approached single-step retrosynthesis as learning the transport map between two
intractable distributions and explored two different options for the source. We first introduced RETRO



PRODFLOW, a discrete flow matching model that transforms products into reactants. Next, we
proposed RETRO SYNFLOW, the first flow matching model that transforms products to reactants
through intermediary structures known as synthons. We demonstrated that synthons serve as a more
informative source of distribution for generating reactants with RETRO SYNFLOW achieving 60% top-
1 accuracy, beating previous SOTA methods for retrosynthesis modelling. Furthermore, we enhanced
the diversity and feasibility of predictions by leveraging Feynman-Kac steering, an inference-time,
reward-based steering method. We define the reward function using a forward-synthesis model
motivated by round-trip accuracy. A reward-steered version of RETRO PRODFLOW achieves 80.1%
top-5 round-trip accuracy, beating template-free SOTA methods by up to 19%.

Although template-based planning is constrained, it may remain preferable to many chemists due
to its alignment with established reactants, reagents, and reaction types. Future work could explore
incorporating template information to guide the generation process toward specific compound sets,
enhancing the interpretability of our method.
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A Experimental details

In this section, we elaborate on our experimental setup. We view a set of molecules as a single
potentially disconnected graph. We follow the procedure outlined in Igashov et al. [18] and introduce
a “dummy” node as an atom type. The graph of reactant molecules has at least as many nodes as
the product molecule graph. During training and inference for RETRO PRODFLOW, we append ten
dummy nodes to each product molecule. This covers 99.4% of the reactions in the USPTO-50k test
dataset. Following Igashov et al. [18], the remaining reactions are removed from the test data. During
inference, these dummy nodes are potentially transformed into true atom nodes. Similarly, we also
append ten dummy nodes to the synthon molecule graphs when using RETRO SYNFLOW. There
are 16 atom types (not including dummy atoms) and 4 bond types (not including no bond). Our
methods are implemented in PyTorch [30], and we also use an open-source software RDKit [23], for
operations involving chemical reactions and molecular graphs.

A.1 Neural Network Model

We use a graph transformer network [11, 51] also used by Igashov et al. [18] to model the denoiser
py of the flow matching process. The denoiser model takes a noisy graph (v, E) and graph-level
features y as input and outputs probabilities of graphs over the data distribution. In the case of RETRO
PRODFLOW, the product molecule graph is also provided as input to the denoiser model. This is done
by appending the product molecule graph’s node feature vector and adjacency matrix to the node
feature vector and adjacency matrix of the noisy graph. For RETRO SYNFLOW, both the product
molecule graph and synthon molecule graph are provided as input.

The graph transformer network is similar to the standard transformer architecture and con-
sists of a graph attention module depicted in Figure 6. The graph attention module takes in
input node features v, edge features FE, and graph-level features y. The FiLM is defined as
FiLM(M;, M) = MW, + (M W3) © My + M, where Wy, W5, are learnable weights. Also,
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PNA is defined as PNA(v) = cat(max(v), min(v), mean(v), std(v))W where W is a learnable
weight.
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Figure 6: An overview of the graph attention module used in the graph transformer network. The
output features are passed through a normalization layer and a fully connected layer at the end.

A.2 Training

Our training runs are done on either an NVIDIA RTX 3090 (24 GB of memory) or V100 (32 GB of
memory). We train all of our models up to 600 epochs which can take up to 32 hours. We compute
top-k accuracy metrics on a portion of the validation set every fixed number of epochs and select the
checkpoint that has the highest top-1 accuracy. The models are trained using a batch size of 32. We
use AdamW [26] with a learning rate of 0.0002.

A.3 Additional Features

We utilize the additional features proposed by [51] and used in Igashov et al. [18] as input to our
models. We briefly state these features here for completeness.

Cycles. Message Passing Neural Networks cannot detect graph cycles, so we add them as features
using formulas up to cycles of size 6. We compute node-level features (how many cycles does this
node belong to) up to size 5 and graph-level features (how many cycles does this graph have) up
to size 6. Fortunately, we can use formulas to compute the graph-level features y; and node-level
features X;, which can be efficiently computed on the GPU. In the following formulas, d denotes the
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vector containing node degrees and ||-|| & denotes the Frobenius norm:
X3 = diag(A?)/2
X4 = (diag(A*) —d(d —1) — A(d1])1,) /2
X5 = (diag(A®) — 2diag(A®) ® d — A((diag(A®)1])1,,) + diag(A?)) /2
Y3 = XsTln/ 3
yi=X11,/4
s = X5 1,/5
ve = Tr(A®) —3Tr(A® © A%) + 9||A(A% © A?)||p
— 6 (diag(A®), diag(A")) + 6 Tr(A") — 4 Tr(A®)
+4Tr(A%A? © A?) + 3| A3 — 12Tr(A%? © A?) + 4 Tr(A?).
Spectral Features. We compute graph-level features: the number of connected components (which
is the multiplicity of the 0 eigenvalue), and the first 5 non-zero eigenvalues of the graph Laplacian.
We also compute node-level features: an estimate of the biggest connected component and the first

two eigenvectors associated with the first two non-zero eigenvalues. Since molecular graphs in
USPTO-50k have fewer than 100 nodes, the computation of these spectral features is not a concern.

B Additional Ablation Studies

B.1 Synthon Prediction

In this section, we provide some additional ablation studies examining the performance of our
methods. In Table 5, we evaluate the performance of RETRO PRODFLOW-RS when sampling
N = 100 reactants with M = 2 synthon predictions. We vary /N, the number of reactant predictions
generated for the highest ranking synthon prediction from the reaction center identification model.
We verify that we need to generate more reactants for the highest-scoring synthon prediction to obtain
competitive top-k accuracy.

Top-k Accuracy
N k=1 k=3 k=5 k=10
90 58.2 77.4 81.9 84.4
80 58.3 78.0 823 84.7
70 58.1 71.5 82.0 84.6
60 56.6 77.0 81.6 84.5

50 48.5 76.1 81.2 84.2

Table 5: Top-k accuracy (exact match) on the USPTO-50k validation dataset of RETRO SYNFLOW
with M = 2 synthon predictions, sampling N = 100 reactants and varying the split. Given N1, we
have Ny = 100 — N;.

B.2 Sampling Steps

Next, we conduct a study to understand how the number of sampling steps affects the performance
of flow matching compared to RetroBridge. We find that 7" = 50 sampling steps is sufficient for
RETRO PRODFLOW to obtain SOTA results. Although RetroBridge achieves a higher accuracy at
T =5 or T = 10 sampling steps compared to flow matching, both methods fail to reach competitive
performance. At 7" = 50 steps, RETRO PRODFLOW achieves some improvement over RetroBridge.

We also investigate the inference time required by RETRO SYNFLOW to sample N = 100 reactants
with 7" = 50 sampling steps. We run this test on an RTX 3090 with 24 GB of memory. The
average time required to sample 100 reactants for each product molecule in USPTO-50k test dataset
is 5.46 £ 2.95 seconds.
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Figure 7: The performance of RETRO PRODFLOW and RetroBridge as we vary the number of
sampling steps.

B.3 Inference Time Comparison

In this section, we provide an ablation comparing the inference time scaling of RSF with the number
of particles against other template-based and template-free models. Our model has 3.38 million
parameters. We benchmark on an RTX 3090 with 24 GB of memory.

Method Mean time
GLN 0.295
LocalRetro 0.022
RetroBridge 56.3
RSF (K=1) 5.4
RSF (K=2) 15.6
RSF (K=4) 30.6
RSF (K=6) 457
RSF (K=8) 53.9

Table 6: Average inference time (seconds) to sample 100 reactants for a given product in the USPTO-
50k test set.

We note that 30 seconds for sampling a set of 100 reactants for a given product is a completely
feasible time for applications of models like ours. In particular, this speed does not prevent the use
of our method as a component of a multistep retrosynthesis planning pipeline. Additionally, the
sampling time for RetroBridge with T=500 steps and 100 reactants is 50 seconds.

C Round-trip Visualization

This section provides a short case study analyzing the outputs of RETRO PRODFLOW and RETRO
PRODFLOW-RS with K = 2 particles. We aim to understand how top-k accuracy can decrease
when applying inference-time steering to guide generations towards outputs that optimize round-trip
accuracy. We look at the top-1 accuracy results on the USPTO-50k test dataset for simplicity. Our
main finding from this ablation is that it is still possible for RETRO PRODFLOW to generate reactants
that are incorrect, i.e., do not match the true reactants and are not feasible, i.e., the forward synthesis
model prediction does not match the ground-truth product. Table 7 shows how steering based on
a round-trip reward affects the incorrect/correct prediction made by RETRO PRODFLOW. In total,
257 correct examples in the test dataset get converted to incorrect examples when applying reward
steering. On the other hand, 251 incorrect examples are converted to correct examples when applying
steering. As we increase the number of particles, i.e., increase the strength of steering, this gap
widens. This results in an overall decrease in exact-match accuracy as we force reactants towards
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more diverse and feasible predictions. Figures 8 and 9 show the visualizations between the outputs
of RETRO PRODFLOW and RETRO PRODFLOW-RS. The predicted product column refers to the
prediction of the forward-synthesis model given the predicted reactants as input.

Table 7: Top-1 predicted reactants from RPF and RPF-RS quantified into four categories. The
round-trip match column indicates whether the prediction made by RPF-RS is a round-trip match.
RPF RPF-RS Round-Trip Match Count Percentage

Correct Incorrect T 225 4.5
Correct Incorrect F 32 0.64
Incorrect Correct T 226 4.5
Incorrect Correct F 25 0.50
Correct Correct T 1848 36.9
Correct Correct F 388 7.7
Incorrect  Incorrect T 1810 36.1
Incorrect  Incorrect F 453 9.0
Predictions
Product True Reactants RETRO PRODFLOW  RETRO PRODFLOW-RS
o9 LY
A L T o
}‘NH 4 \
NH, o OH
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Figure 8: A visualization of reactions where RETRO PRODFLOW-RS generates an incorrect reactant
prediction that is still feasible, while the RETRO PRODFLOW generates the correct reactant prediction.
There are 225 examples in the test set that correspond to this case.

Predicted Predictions
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Figure 9: A visualization of reactions where RETRO PRODFLOW-RS generates an incorrect reactant
prediction that is infeasible. RETRO PRODFLOW generates the correct reactant prediction. There are
32 examples in the test set that correspond to this case.

To obtain a better understanding of the errors of the forward-synthesis model, we evaluate the top-k
accuracy of Molecular Transformer on the USPTO-50K dataset. Furthermore, we find that for the
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non-steering outputs, 25% of the chemically valid reactants were misscored by the forward-synthesis
model. For the FK-steered outputs, only 14% of the chemically valid reactants were misscored by the
forward-synthesis model.

Top-1 Top-3 Top-5 Top-10

75.0 82.0 83.0 83.0
Table 8: Top-k accuracy of Molecular Transformer on the USPTO-50k evaluation set.

D Additional Sampling Scheme

Recently, there has been increasing interest in developing advanced adaptive sampling schemes for
discrete diffusion and flow matching models [16, 32, 21, 31]. These developments aim to reduce
errors in the generation process while improving inference speed. As explained in Section 2.1, we
update the intermediate sample x; using the following transition kernel, x’ n ™ Cat(x! 1ni0 (xi) +
huj(x}, ),,%)), which is analogous to the Euler update step in continuous flow matching. Inspired
by this analogy, we explore a higher-order sampling scheme [32] based on the Runge-Kutta (RK)
method for solving ODEs. The update step for the method is as follows:

Xi ) ~ Cat(X] 5 0(x) + huf(Xi . X¢)) 3)
i i i 1o 1 i oi
X%Jrh ~ Cat (Xhh; d(x}) + §hut(xi+h, xt) + §h“t+h(xé+hv Xt+h)) . (4)

This update step requires two model evaluations from py instead of one. Table 9 compares the
performance of RETRO PRODFLOW using this sampling scheme with 25 steps against RETRO
PRODFLOW using the Euler-inspired sampling scheme with 50 steps.

Table 9: Top-k accuracy of RPF on the USPTO-50k test set sampling N = 50 reactants per product.
Model 1 3 5 10
RPF 496 733 79.6 83.6
RPF (RK 25 steps) 493 712 764 80.0
RPF (RK 50 steps) 493 725 786 823

E Predictions Visualization

We provide some additional visualizations of the generated reactants from our methods. In the
following figures, an “E” represents an exact-match between the prediction reactant and an “R”
indicates a round-trip match but not an exact-match. We show the top-3 reactants.
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Figure 10: Visualizations of predictions made by RETRO PRODFLOW. Examples are taken from the
USPTO-50k test set randomly.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in our main result but not for additional ablation studies
because that will be too computationally expensive.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the amount of compute resources used in the supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The work adheres to the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The paper discusses the impacts of our work in the introduction.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

27


https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper which is about retrosynthesis does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All previous works that we use are properly credited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Yes, the code includes documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Paper does not involve crowdsourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Paper does not involve crowdsourcing nor human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs are not involved in the core methodology.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background and preliminaries
	Discrete Flow Matching
	Feynman-Kac Steering

	Discrete Flow Matching for Retrosynthesis
	Retro SynFlow
	Reward-based steering

	Experiments and Results
	Experimental Setup
	Main Results
	Ablation Studies

	Related Works
	Conclusion
	Acknowledgements
	Appendix
	Experimental details
	Neural Network Model
	Training
	Additional Features

	Additional Ablation Studies
	Synthon Prediction
	Sampling Steps
	Inference Time Comparison

	Round-trip Visualization
	Additional Sampling Scheme
	Predictions Visualization

