
Published in Transactions on Machine Learning Research (02/2026)

Diffusion posterior sampling for simulation-based inference
in tall data settings

Julia Linhart julia.linhart@inria.fr
Université Paris-Saclay
Inria, CEA

Gabriel Victorino Cardoso gabriel.victorino-cardoso@polytechnique.edu
CMAP, École Polytechnique
Institut Polytechnique de Paris

Alexandre Gramfort alexandre.gramfort@inria.fr
Université Paris-Saclay
Inria, CEA

Sylvain Le Corff sylvain.le_corff@sorbonne-universite.fr
LPSM, Sorbonne Université
UMR CNRS 8001

Pedro L. C. Rodrigues pedro.rodrigues@inria.fr
Université Grenoble Alpes
Inria, CNRS
Grenoble INP, LJK

Reviewed on OpenReview: https: // openreview. net/ forum? id= cdhfoS6Gyo

Abstract

Identifying the parameters of a non-linear model that best explain observed data is a core
task across scientific fields. When such models rely on complex simulators, evaluating the
likelihood is typically intractable, making traditional inference methods such as MCMC
inapplicable. Simulation-based inference (SBI) addresses this by training deep generative
models to approximate the posterior distribution over parameters using simulated data. In
this work, we consider the tall data setting, where multiple independent observations provide
additional information, allowing sharper posteriors and improved parameter identifiability.
Building on the flourishing score-based diffusion literature, F-NPSE (Geffner et al., 2023)
estimates the tall data posterior by composing individual scores from a neural network
trained only for a single context observation. This enables more flexible and simulation-
efficient inference than alternative approaches for tall datasets in SBI. However, it relies on
costly Langevin dynamics during sampling. We propose a new algorithm that eliminates
the need for Langevin steps by explicitly approximating the diffusion process of the tall
data posterior. Our method retains the advantages of compositional score-based inference
while being significantly faster and more stable than F-NPSE. We demonstrate its improved
performance on toy problems and standard SBI benchmarks, and showcase its scalability
by applying it to a complex real-world model from computational neuroscience.

1

https://openreview.net/forum?id=cdhfoS6Gyo

Published in Transactions on Machine Learning Research (02/2026)

0

1

n = 2

0

n = 16

0

n = 64

analytic
estimated

Figure 1: The posterior distribution of a model with a Gaussian simulator and Gaussian prior concentrates
around the true parameter θ⋆ as the number n of observations x⋆

i ∼ p(x | θ⋆) increases. The analytic
posterior is compared to the posterior estimated with our score-based proposal (Algorithm 2: GAUSS).

1 Introduction

Inverting non-linear models that describe natural phenomena is a fundamental problem in many scientific
domains (Gonçalves et al., 2020; Dax et al., 2023). We adopt a Bayesian perspective, where the goal is to
infer the posterior distribution p(θ | x) that relates input parameters θ ∈ Rm to output observations x ∈ Rd.
Sampling from this posterior becomes particularly challenging when the model’s outputs are generated via
complex simulations (e.g. based on non-linear stochastic differential equations). In such settings, the likeli-
hood p(x | θ) is often intractable, making classical Bayesian approaches such as Markov Chain Monte Carlo
(MCMC)(Hastings, 1970) either inapplicable or computationally prohibitive. Simulation-based inference
(SBI), also known as likelihood-free inference, circumvents this limitation by relying on model simulations
instead of explicit likelihood evaluations. Here, novel deep learning techniques can be used to accurately
approximate arbitrarily complex posterior distributions (Cranmer et al., 2020). The standard procedure as-
sumes a prior distribution λ(θ)—encoding scientific knowledge about plausible parameter values—and uses
the simulator to draw samples from the joint distribution:

Θi ∼ λ(θ) , Xi ∼ p(x | Θi) , (Θi, Xi) ∼ p(θ, x) , i = 1, . . . , Ns ,

with Ns the simulation budget. From this simulated dataset, a neural network is trained to estimate
statistical quantities of interest defined for every (θ, x). Once trained, it can be evaluated in any new
observation x⋆ to approximate the posterior distribution p(θ | x⋆), a property known as amortized inference.
Existing SBI methods differ in the target of the neural estimator: Neural Posterior Estimation (NPE)
learns the posterior directly (Greenberg et al., 2019), Neural Likelihood Estimation (NLE) approximates
the likelihood (Papamakarios et al., 2019), and Neural Ratio Estimation (NRE) estimates the likelihood-
to-evidence ratio (Hermans et al., 2020). While NPE provides posterior samples directly via conditional
normalizing flows (Papamakarios et al., 2021), NLE and NRE require additional MCMC sampling.

In this work, we consider an extension of the above Bayesian inference framework to the tall data setting (Bar-
denet et al., 2015), where multiple i.i.d. observations x⋆

1:n = (x⋆
1, . . . , x⋆

n) are available.1 The corresponding
tall data posterior is expected to provide more precise information about how to invert the simulator-model,
with increasingly sharper posterior densities as the number of observations grows (see Fig 1):

p(θ | x⋆
1:n) ∝ λ(θ)1−n

n∏
j=1

p(θ | x⋆
j) . (1)

While this framework is crucial for practical applications, the extension of existing SBI algorithms to tall data
settings remains challenging and no satisfactory solution has yet been proposed. In Rodrigues et al. (2021),

1i.i.d.: independent and identically distributed. For example, simulations (x⋆
1, . . . , x⋆

n) ∼ p(x | θ⋆) that are generated with
the same set of simulator parameters are i.i.d., conditionally on θ⋆.

2

Published in Transactions on Machine Learning Research (02/2026)

the authors merge a fixed number of extra observations via a deepset (Zaheer et al., 2017) and fall back to NPE
trained on an augmented dataset Dn = {(Θi, Xi,1:n)}, with n simulations Xi,1:n = (Xi,1, . . . Xi,n) ∼ p(x | Θi)
per prior sample Θi ∼ λ(θ). While NPE leverages expressive normalizing flows to model the posterior directly,
it imposes architectural constraints and requires fixed input dimensions on the neural network, limiting
efficient and flexible conditional data modeling. This leads to two major drawbacks: (1) the potentially
heavy simulation cost, as the simulation budget scales with the number of observations (Naug

s = Ns×n) and
(2) the lack of flexibility at inference time—when more observations become available, a new model tailored
to the new context size must be retrained from scratch. In Hermans et al. (2020), the authors show how the
amortization of NRE allows to handle the tall data setting without requiring new simulations or retraining.
By factorizing over the set of multiple observations, they reformulate the “tall data ratio” as the composition
of individual ratios from a network trained only for a single context observation. An equivalent extension
can be done for NLE (Geffner et al., 2023). However, these approaches still require MCMC sampling to
obtain posterior samples, which remains a computational bottleneck and requires careful hyperparameter
tuning for convergence guarantees to hold.

Recent developments in score-based generative modeling (SBGM) (Ho et al., 2020; Song et al., 2021b) offer
a promising alternative. These methods target the gradient of the log probability—known as the score
function—used to reverse a diffusion process that transforms random noise into structured samples from
the target distribution. A more detailed overview is provided in Section 2.1. SBGM rivals state-of-the-art
generative modeling approaches such as generative adversarial networks (GANs)(Goodfellow et al., 2014) and
normalizing flows(Papamakarios et al., 2021) on challenging high-dimensional datasets, without requiring
adversarial training or special network architectures. This has led to the adoption and increasing popularity
of score-based methods in SBI, introduced as Neural Posterior Score Estimation (NPSE) by Sharrock et al.
(2022). NPSE is now among the most flexible SBI algorithms and achieves state-of-the-art performance,
especially when paired with transformer architectures (Gloeckler et al., 2024).

Crucially, NPSE directly targets the posterior (unlike NLE/NRE), but also supports compositional inference
(unlike NPE). Specifically, from the factorization in Equation (1), the “tall posterior score” can be constructed
as a sum of individual posterior scores. F-NPSE, recently proposed by Geffner et al. (2023), leverages this
idea by composing scores from a network trained on single-observation contexts. Like Hermans et al. (2020)
for NRE, it exploits the amortization of NPSE to approximate the tall data posterior without requiring
an augmented dataset, and naturally adapts to variable context sizes. However, a major drawback of this
approach is that the diffusion process from the composed score is unknown, reintroducing the need of MCMC
to sample from the posterior via an annealed Langevin procedure. We discuss this further in Section 2.3.

In this work, we propose a new sampling algorithm that retains the amortized and compositional benefits
of F-NPSE, while eliminating the need for Langevin dynamics. By explicitly approximating the diffusion
process of the tall-data posterior, our method enables faster and more stable inference. We demonstrate its
superiority over F-NPSE—in both, accuracy and numerical stability—through several numerical experiments:
two Gaussian toy models for which all quantities of interest are known analytically, and multiple examples
from the SBI benchmark. Finally, we apply our method to invert a complex model from computational
neuroscience, demonstrating its scalability to challenging real-world problems.

Section 2 reviews score-based generative models, their application to SBI, and the F-NPSE method. Section 3
introduces the mathematical foundations of our approach and presents the proposed algorithms. Section 4
reports experimental results, and Section 5 concludes with a discussion of findings and future perspectives.

2 Background

2.1 Score based generative models (SBGM)

The goal of SBGM is to estimate an unknown target data distribution pdata from i.i.d. samples with the
help of a forward diffusion process that adds noise to the training data. The main idea is to approximately
sample the target distribution by solving the associated backward diffusion process. This procedure requires
estimating the score functions of the diffused data distributions for different levels of added noise.

3

Published in Transactions on Machine Learning Research (02/2026)

Forward diffusion process (data → noise). Formally, the idea is to construct a sequence of distribu-
tions {pt}t∈[0,T] that defines increasingly noisy versions the target distribution pdata, by convolving the data
distribution with a known forward kernel qt|0:

p0 = pdata, pt(θt) =
∫

qt|0(θt|θ0)pdata(θ0)dθ0, ∀t ∈ [1, T] . (2)

In this work, we focus on the variance preserving (VP) framework (Ho et al., 2020; Yang et al., 2023) in which
the forward kernel is defined by qt|0(θt|θ0) = N (θt;

√
αtθ0, υtIm), with {αt}t∈[1:T] ∈ [0, 1]T is a decreasing

sequence of time-dependent scale factors and υt = 1− αt determines the amount of added noise.2

Score estimation. Following (Vincent, 2011), we can learn the scores ∇θt
log pt(θt) of each noisy distri-

bution pt via a neural network sϕ, by minimizing the denoising score-matching (DSM) loss

LDSM(ϕ) =
T∑

t=1
γ2

t EΘ0∼pdata,Θt∼qt|0(·|Θ0)

[
∥sϕ(Θt, t)−∇Θt

log qt|0(Θt|Θ0)∥2
]

, (3)

where γ2
t is a weighting function. This loss is completely tractable, as the forward kernel can be easily sampled

from and it’s score function is available in closed form: given a sample from the training set Θ0 ∼ pdata and
ϵt ∼ N (0, Im), we have Θt = √αtΘ0 +√υtϵt ∼ qt|0 and ∇Θt log qt|0(Θt|Θ0) = − 1

υt
(Θt −

√
αtΘ0) .

Backward diffusion process (noise → data). Once the score estimator sϕ(θt, t) ≈ ∇θt
log pt(θt) is

trained, the goal is to draw backwards starting from the noise distribution N (0, Im) approximating pT to
obtain samples approximately distributed according to pdata at time t = 0:

ΘT ∼ N (0, Im) →
sϕ(ΘT ,T)

ΘT −1 →
sϕ(ΘT −1,T −1)

. . . →
sϕ(Θ1,1)

Θ0 . (4)

This represents the "generative" part in SBGM: the score directly drives the reverse dynamics, turning noisy
inputs into progressively cleaner samples. Different ways to perform this backward sampling include the use
of annealed Langevin dynamics (Song & Ermon, 2019), stochastic differential equations (Song et al., 2021b),
or ordinary differential equations (Karras et al., 2022).

In this work, we follow the approach proposed in Song et al. (2021a), which yields the denoising diffusion
implicit models (DDIM) sampler. DDIM provides a deterministic update rule to directly map pt to pt−1
using the learned score sϕ from (3). Formally, this consists in Gaussian transition kernels of the form

qϕ,t−1|t(θt−1|θt) = N
(
θt−1; µϕ,t(θt), σ2

t Im

)
, (5)

where {σt ∈ (0, υ
1/2
t−1)}t∈[1:T −1] and the mean depends explicitly on the score network:

µϕ,t(θt) := 1
√

αt

(
θt + υtsϕ(θt, t)

)
. (6)

Finally, composing these kernels yields the DDIM backward Markov chain:

pϕ,0:T (θ0:T) = pT (θT)
T∏

t=1
qϕ,t−1|t(θt−1|θt) . (7)

Note that this only approximates the true reverse diffusion dynamics: the exact backward kernel involves
intractable expectations over θ0, which DDIM replaces with score-based estimates (as shown in Appendix C).
Empirically, DDIM has been shown to produce high-quality samples with fewer steps than alternative stochas-
tic samplers, making it particularly attractive in settings where efficiency and stability are crucial.

2Under weak conditions (pdata has finite second moment), one can show that KL(pT ||N (0, Im)) → 0 as T grows.

4

Published in Transactions on Machine Learning Research (02/2026)

2.2 Neural Posterior Score Estimation (NPSE)

Neural Posterior Score Estimation (NPSE) (Sharrock et al., 2022) adapts score-based generative modeling
to simulation-based inference. The goal is now to generate new samples from the posterior pdata := p(θ|x).
This is achieved by extending the score network sϕ(θt, x, t) to take x as an additional input, trained to
approximate the score ∇θt

log pt(θt|x). Training follows the same denoising score matching principle used in
unconditional settings, but now minimizes the loss in expectation over both θ and x:

LNPSE(ϕ) =
T∑

t=1
γ2

t E(Θ0,X)∼p(θ,x),Θt∼qt|0(·|Θ0,X)

[
∥sϕ(Θt, X, t)−∇Θt

log qt|0(Θt|Θ0, X)∥2
]

. (8)

The key insight is that this only requires to draw training pairs from the joint distribution p(θ, x) =
p(θ)p(x|θ), which is readily available in SBI via simulation. Convergence of this objective to the true
conditional score function has been shown by Batzolis et al. (2021). Once trained, NPSE enables amor-
tized inference by generating samples from the posterior p(θ|x⋆) for any new observation x⋆ by plugging the
learned score sϕ into any score-based sampler (e.g. DDIM).

2.3 Factorized Neural Posterior Score Estimation (F-NPSE)

The F-NPSE method proposed in Geffner et al. (2023) defines a sequence of distributions

∇θt
log ϱt(θt | x⋆

1:n) = (1− n)(1− t)∇θt
log λ(θt) +

n∑
j=1

sϕ(θt, xj , t) , (9)

which, at t = 0, coincides with the score of the tall data posterior from Equation (1). Note, however, that this
sequence does not correspond to the true diffusion process, as defined in (2), i.e. ϱt(θ | x⋆

0:n) ̸= pt(θ | x⋆
0:n), for

t > 0. Its appeal lies in the compositional structure of the score: it enables inference from a single amortized
score network (here sϕ), trained on individual observations, eliminating the need for augmented datasets or
retraining. F-NPSE has shown to outperform competing SBI methods for tall data settings (based on NPE,
NLE, or NRE), achieving the best trade-off between sample efficiency and error accumulation as n grows.

The main drawback is sampling: since the composed score does not correspond to any known forward
diffusion, deterministic samplers such as DDIM cannot be applied. F-NPSE therefore relies on annealed
Langevin dynamics3, which is sensitive to hyperparameters and can require many iterations for convergence.
This makes Langevin the bottleneck of F-NPSE, and motivates the need for alternatives that enable faster
and more stable sampling.

3 Diffusion Posterior Sampling for tall data

In this section, we propose a new algorithm that approximately samples the tall data posterior, using only
individual scores obtained for each observation from a previously trained amortized NPSE. The novelty
of our method lies in the tractable computation of the scores associated with the diffusion process of the
factorized tall posterior, thereby eliminating the need of costly and unstable Langevin steps used in F-NPSE.

• (Section 3.1) First, we derive a formula for the score of the diffused factorized tall data posterior.

• (Section 3.2) We then show how we can compute this score, by introducing a new approximation of
the considered backward diffusion process.

• (Section 3.3) We propose two different algorithms to efficiently implement this approximation.

The resulting approximate score can then directly be plugged into deterministic score-based samplers, such
as DDIM, to infer the tall data posterior.

3Langevin dynamics provide an MCMC procedure to approximate the backward diffusion process and sequentially generate
samples for each ϱt−1 from ϱt (Song & Ermon, 2019). It only requires access to the score function, not closed-form expressions
of the backward kernels as in deterministic samplers like DDIM.

5

Published in Transactions on Machine Learning Research (02/2026)

3.1 Exact computation of the tall data posterior score

Let x⋆
1:n = (x⋆

1, . . . , x⋆
n) be i.i.d. observations. Our goal is to sample from the tall data posterior p(θ | x⋆

1:n)
via the DDIM backward Markov chain defined in Equation (34), while only relying on a score estimate
sϕ(θt, x, t) of ∇θt

log pt(θt | x), i.e. of the diffused posterior for a single context observation x. To do so, we
need a closed-form expression of the diffused tall data posterior score ∇θt

log pt(θt | x⋆
1:n) that writes as a

function of the individual posterior scores ∇θt
log pt(θt | x⋆

j), for every j ∈ [1, n].

Using the factorized expression from (1) in the definition of the diffused tall posterior from (2), we can write

pt(θt | x⋆
1:n) =

∫
p(θ0 | x⋆

1:n)qt|0(θt|θ0)dθ0

∝
∫ λ(θ0)1−n

n∏
j=1

p(θ0 | x⋆
j)

 qt|0(θt|θ0)dθ0 .

(10)

Given the diffused prior pλ
t (θt) =

∫
λ(θ0)qt|0(θt|θ0)dθ0 and the diffused individual posteriors pt(θt | x⋆

j), we
now introduce the following backward transition kernels obtained via Bayes’ rule:

qλ
0|t(θ0|θt) =

λ(θ0)qt|0(θt|θ0)
pλ

t (θt)
and q0|t(θ0|θt, x) =

p(θ0 | x)qt|0(θt|θ0)
pt(θt | x) . (11)

Rearranging terms in Equation (10) and using (11) yields

pt(θt | x⋆
1:n) ∝

∫ (
λ(θ0)qt|0(θt|θ0)

)1−n
n∏

j=1
p(θ0 | x⋆

j)qt|0(θt|θ0)dθ0

= Lλ(θt, x⋆
1:n)pλ

t (θt)1−n
n∏

j=1
pt(θt | x⋆

j) ,

with Lλ(θt, x⋆
1:n) =

∫
qλ

0|t(θ0|θt)1−n
∏n

j=1 q0|t(θ0|θt, x⋆
j)dθ0. The corresponding score writes

∇θt
log pt(θt|x⋆

1:n) = (1− n)∇θt
log pλ

t (θt) +
n∑

j=1
∇θt

log pt(θt|x⋆
j) +∇θt

log Lλ(θt, x⋆
1:n) . (12)

The first two terms in the above equation are tractable: the prior score can be computed analytically in most
cases4 and the single posterior scores are approximated by evaluating the learned score model sϕ(θt, x, t) at
every x⋆

j . This leaves us with the last term: the score of Lλ(θt, x⋆
1:n), which involves the backward kernels of

the prior and each individual posterior. It is intractable and needs to be approximated. Note that this term
is missing in the score formula (9) from F-NPSE and is the reason why Langevin corrector steps are required.
More intuition on the influence of this correction term is given in the following section and Appendix B.

3.2 Second order approximation of the backward diffusion process

In the previous section, we derived a closed-form expression of the tall data posterior score. We now show
how to compute it efficiently. The difficulty lies in the last term of (12), the score of Lλ(θ, x⋆

1:n). It involves
integrating over all backward kernels, and cannot be computed in closed form. To handle this, we approximate
these kernels using Gaussian distributions, following the Tweedie framework (Boys et al., 2023):

q̂λ
0|t(θ0|θt) = N (θ0; µt,λ(θt), Σt,λ(θt)) and q̂0|t(θ0|θt, x⋆

j) = N (θ0; µt,j(θt), Σt,j(θt)) , (13)

where the means and covariance matrices are the ones of the backward processes respectively associated with
the diffused prior pλ

t and each diffused individual posterior pt(θt | x⋆
j). Specifically, Boys et al. (2023) show

4See Appendix D for the Gaussian and Uniform cases. If not analytically computable, the prior score can be learned via the
classifier-free guidance approach, at the same time as the posterior score, as shown in Appendix L.1.

6

Published in Transactions on Machine Learning Research (02/2026)

that µt(θt) = E [θ0 | θt] and Σt(θt) = Cov(θ0 | θt) are functions of the score of pt and its derivatives, which are
computationally tractable. Hence, this choice has two advantages: (i) it preserves the local mean/variance
structure of the true backward diffusion process, and (ii) it yields a tractable formula for the correction term.

In what follows, Lemma 3.1 shows that, under this approximation, the correction term Lλ simplifies to
a product of Gaussian distributions. After taking logarithms, this product becomes a tractable sum that
integrates seamlessly into the score expression of Equation (12). Further simplifications then yield our final
expression of the approximate tall posterior score formula, stated in Lemma 3.2, which forms the basis of an
efficient and stable implementation. Full proofs are postponed to Appendix A.
Lemma 3.1. Let Λ(θ) =

∑n
j=1 Σ−1

t,j (θ) + (1− n)Σ−1
t,λ(θ) and assume it is positive definite. The approximate

log-correction term is defined using (13) and can be written as a linear combination of Gaussian log-factors:5

log L̂λ(θt, x⋆
1:n) := log

∫
q̂λ

0|t(θ0|θt)1−n
n∏

j=1
q̂0|t(θ0|θt, x⋆

j)dθ0 (14)

=
n∑

j=1
ζj(θt) + (1− n)ζλ(θt)− ζall(θt) , (15)

where ζk = ζ(µt,k, Σt,k) = − 1
2

(
m log 2π − log |Σ−1

t,k |+ µ⊤
t,kΣ−1

t,kµt,k

)
, for k ∈ {j = 1, . . . , n; λ} and ζall =

ζ(Λ−1η, Λ−1) with η =
∑n

j=1 Σ−1
t,j µt,j + (1− n)Σ−1

t,λµt,λ.
Lemma 3.2. Under the same assumptions as in Lemma 3.1, and using the approximate log-correction term
from (18), the tall posterior score in (12) can be approximated as

∇θt log pt(θt | x⋆
1:n) ≈ Λ(θt)−1

 n∑
j=1

Σ−1
t,j (θt)∇θt log pt(θt | x⋆

j) + (1− n)Σ−1
t,λ(θt)∇θt log pλ

t (θt)

+F , (16)

where F = F (θt, x⋆
1:n) = 0 if for all 1 ≤ j ≤ n, ∇θtΣt,j(θt) = 0 and ∇θtΣλ,t(θt) = 0.

Formula (16) defines our approximation of the tall posterior score and depends solely on the individual prior
and posterior scores (which are known analytically or estimated via NPSE), and F (explicited in the proof in
Appendix A). By enforcing constant covariance matrices Σt,λ and Σt,j , the residual F -term vanishes. This
gives us a tractable and practical formula, which reduces to a precision-weighted version of the score formula
(9) from F-NPSE, enabling the use of deterministic samplers such as DDIM.

Remark. An alternative deterministic sampler is proposed in Geffner et al. (2023) (Appendix D), which
also avoids Langevin dynamics by composing Gaussian reverse transitions qt−1|t. However, it imposes a
shared isotropic variance, whereas our approximation preserves the covariance structure of every single
posterior and the prior. In particular, our approach is exact when individual posteriors and the prior are
Gaussian, while theirs is not unless all covariances are isotropic. A detailed theoretical comparison is provided
in Appendix M.1, highlighting the advantage of our proposal in faithfully approximating the true reverse
dynamics.

3.3 Algorithms

We now turn to the practical side: computing the covariance matrices Σt,j(θt) in a way that ensures they
remain constant. We present two different strategies, which lead to two algorithms implementing our approx-
imate tall posterior score from (16): JAC (Algorithm 1) and GAUSS (Algorithm 2). For some prior choices (e.g.
Gaussian) Σt,λ is by construction constant and can be computed analytically (see Appendix D), otherwise,
we use the same strategy as for Σt,j , represented by the prior_fn function in both algorithms.

5The Gaussian log-factors (denoted by the zeta functions ζj , ζλ, ζall) represent the (approximate) Gaussian contributions of
the backward diffusion for each single posterior and the prior, and their global contribution.

7

Published in Transactions on Machine Learning Research (02/2026)

Jacobian approximation (JAC, Algorithm 1). Following Boys et al. (2023), it can be shown that
Σt,j(θt) = υt√

αt
∇θtµt,j(θt), with µt,j(θt) defined via the posterior score as in (6). Σt,j can therefore be

approximated by taking the Jacobian of the learned score sϕ(θt, x⋆
j , t) (in orange). As in (Boys et al., 2023),

we do not propagate gradients through Σt,j , rendering F (θt, x⋆
1:n) = 0. But this approach has two main

drawbacks. First, we need to calculate a m×m matrix which is prohibitive for large m. Second, we have to
take the derivative w.r.t. the inputs of the score neural network, which is known to be unstable.

Gaussian approximation (GAUSS, Algorithm 2). As an alternative, we consider a constant Gaussian
approximation of the covariance matrix, which automatically gives F (θt, x⋆

1:n) = 0. Indeed, in the case where
p(θt|x) = N (µ0, Σ0), we have that Σt = (Σ−1

0 + αt

υt
Im)−1, as derived in Appendix D. Note that choosing

Σ0 = Im results in the approximation proposed by Song et al. (2023). The idea behind GAUSS is to use this
formula as an approximation of the real covariance Σt,j . To do so, we first estimate Σ0,j for each x⋆

j , by
running DDIM with a small number of iterations (≈ 100) for each j and computing the empirical covariance
matrix of the resulting samples (represented in blue).

Algorithm 1 JAC

Input: θt, x⋆
1:n, t, prior_fn

Output: s1:n
Σ−1

t,λ, sλ ← prior_fn(θt, t)
for j ← 1 to n do

sj ← sϕ(θt, x⋆
j , t)

Σ̂−1
t,j ←

αt

υt

(
Im + υt∇θtsϕ(θt, x⋆

j , t)
)−1

end for
Λ← (1− n)Σ−1

t,λ +
∑n

j=1 Σ̂−1
t,j

s̃1:n ← (1− n)Σ−1
t,λsλ +

∑n
j=1 Σ̂−1

t,j sj

s1:n ← LinSolve(Λ, s̃1:n)

Algorithm 2 GAUSS

Input: θt, x⋆
1:n, t, Σ̂1:n, prior_fn

Output: s1:n
Σ−1

t,λ, sλ ← prior_fn(θt, t)
for j ← 1 to n do

sj ← sϕ(θt, x⋆
j , t)

Σ̂−1
t,j ← Σ̂−1

j + αt

υt
Im

end for
Λ← (1− n)Σ−1

t,λ +
∑n

j=1 Σ̂−1
t,j

s̃1:n ← (1− n)Σ−1
t,λsλ +

∑n
j=1 Σ̂−1

t,j sj

s1:n ← LinSolve(Λ, s̃1:n)

The approximate score obtained via JAC or GAUSS can now directly be plugged into deterministic score-based
samplers, such as DDIM, to infer the tall posterior. This should enable faster and more stable inference
compared to Langevin sampling. We verify this statement with experimental results in the following section.

4 Experiments

We investigate the performance of JAC and GAUSS compared to F-NPSE, referred to as LANGEVIN, on different
tasks with increasing difficulty:

• (Section 4.1) two Gaussian toy models for which all quantities of interest are known analytically

• (Section 4.2) various SBI benchmark examples, where the score has to be learned via NPSE

• (Section 4.3) the Jansen and Rit Neural Mass Model, a challenging real-world example

For JAC and GAUSS, we infer the tall posterior by plugging the scores obtained via Algorithms 1 and 2 into
the DDIM sampler defined in Section 2.1. For F-NPSE, we use the unadjusted Langevin algorithm (ULA)
from (Geffner et al., 2023) with L = 5 Langevin steps per time step and τ = 0.5. In all cases, we use a uniform
time schedule {ti = i/T}T

i=1. We evaluate the quality of the inferred tall posteriors using distance-based
metrics, comparing them, when possible, to samples from the true tall posterior. Each subsection details
task-specific evaluation setups. Further implementation details can be found in Appendix E and the code
reproducing all experiments is available at https://github.com/JuliaLinhart/diffusions-for-sbi.

Remark. We additionally compare with the deterministic sampler from Geffner et al. (2023), mentioned
in the Remark from Section 3.2. Full empirical results are provided in Appendix M.2 and complement the
theoretical comparison from Appendix M.1.

8

https://github.com/JuliaLinhart/diffusions-for-sbi

Published in Transactions on Machine Learning Research (02/2026)

4.1 Gaussian toy models

We consider two toy examples for which the analytic form of the posterior and corresponding score functions
are known: a multivariate Gaussian p(x | θ) = N (x; θ, (1 − ρ)Im + ρ1m) with correlation factor ρ = 0.8,
and a Gaussian Mixture Model (GMM) p(x | θ) = 0.5 N (x; θ, 2.25Σ) + 0.5 N (x; θ, Σ/9), where Σ is a diagonal
matrix with values increasing linearly from 0.6 to 1.4, as in Geffner et al. (2023). Both examples are carried
out with a Gaussian prior λ(θ) = N (θ; 0, Im) with known score. See Appendix D for all analytical formulas.

The following experiments evaluate the speed and robustness to noise of each tall posterior sampling algo-
rithm, for increasing number of observations n ∈ [1, 100] and parameter dimensions m ∈ {2, 4, 8, 10, 16, 32}.
We quantify accuracy using the sliced Wasserstein (sW) distance between estimated and true tall posterior
samples, over 5 random seeds. Each seed corresponds to a different parameter θ⋆ ∼ λ(θ), used to simulate the
conditioning observations x⋆

1:n for the tall posterior p(θ | x⋆
1:n). The true tall posterior is known analytically

for Gaussian and sampled via Metropolis Adjusted Langevin (MALA) (Roberts & Tweedie, 1996) for GMM.

We model the noise by considering the score estimator s̃ϕ(θt, x, t) = ∇θt log pt(θt|x) + ϵ
√

υt rϕ(θt, x, αt) ,
where ∇θt

log pt(θt|x) is the known posterior score and rϕ is a randomly initialized neural net with outputs in
range [−1, 1]. This construction leads to a controlled error of ϵ ≥ 0 for the noise predictor −s̃ϕ(θt, x, t)/√υt,
which is what we actually optimize when training a score model (see Appendix E). The input θt denotes the
forward-diffused parameter, θt = √αt θ +

√
1− αt ε, with θ ∼ λ(θ) and ε ∼ N (0, I).

Runtimes. Table 1 displays the total running time and sW for each algorithm on the Gaussian example.
For the same number of time steps T , our algorithm yields smaller sW than the Langevin sampler while
accounting for L = 5 times less neural network evaluations (one per Langevin steps). Table 4 in Appendix G
shows similar results for GMM. The average speed-up of our algorithms over all considered number of time
steps T and different choices of ϵ and n are shown in Table 2. It shows approximately the same values for
m = 2, 4, 8, 10, 16, 32, meaning that the speed-up is not impacted by the data dimension. GAUSS is the most
efficient algorithm, being 2.5 times faster than the Langevin sampler. JAC is approximately 1.8 times faster.

Based on Table 1, we consider an equivalent time setting with 400 and 1000 steps for JAC / LANGEVIN and
GAUSS respectively. This setting will be used in all subsequent experiments.

Algorithm T steps ∆t (s) sW
GAUSS 50 0.45 +/- 0.00 0.17 +/- 0.08
JAC 50 0.41 +/- 0.00 3.14 +/- 4.12

LANGEVIN 50 0.83 +/- 0.00 nan +/- nan
GAUSS 150 0.90 +/- 0.00 0.17 +/- 0.06
JAC 150 1.22 +/- 0.00 1.57 +/- 2.33

LANGEVIN 150 2.50 +/- 0.01 0.65 +/- 0.42
GAUSS 400 2.04 +/- 0.00 0.20 +/- 0.11

JAC 400 3.26 +/- 0.01 0.85 +/- 1.20
LANGEVIN 400 6.65 +/- 0.02 0.65 +/- 0.43

GAUSS 1000 4.77 +/- 0.01 0.22 +/- 0.10
JAC 1000 8.18 +/- 0.03 0.25 +/- 0.09

LANGEVIN 1000 16.65 +/- 0.03 0.65 +/- 0.42

Table 1: Sliced Wasserstein (sW) and runtime ∆t for T
time steps for the Gaussian example with m = 10, n = 32
and ϵ = 10−2. Mean and std over 5 different seeds.

m Speed up GAUSS Speed up JAC
2 0.39 ± 0.01 0.56 ± 0.00
4 0.39 ± 0.01 0.55 ± 0.00
8 0.39 ± 0.01 0.56 ± 0.00
10 0.38 ± 0.01 0.52 ± 0.00
16 0.38 ± 0.01 0.54 ± 0.00
32 0.37 ± 0.01 0.52 ± 0.00

Table 2: Ratio between the runtime for
GAUSS and JAC w.r.t. LANGEVIN for the
Gaussian example in different dimensions
m. Averaged over the number of time steps
T ∈ {50, 150, 400, 1000}, different noise
levels ϵ ∈ {0, 10−3, 10−2, 10−1} and the
number of observations n ∈ [1, 100]. Mean
and std over 5 different seeds.

Robustness to noise. Figure 2 portrays the effect of the perturbation ϵ in the posterior approximation for
each algorithm, across n ∈ [1, 100] observations. In the Gaussian case, GAUSS performs best in all settings —
as expected, since the second-order approximations in our method are exact in this case. For GMM however,
the approximation from Section 3.2 is not exact, i.e. the backward kernel from (11) is not Gaussian. We use
this to analyze the effect of our approximation while controlling the score estimation error. GAUSS remains
competitive with LANGEVIN, outperforming it for small n and matching it for n > 90. In both models, JAC
is extremely accurate in the noise-free setting (ϵ = 0), but quickly becomes unstable as noise increases.

9

Published in Transactions on Machine Learning Research (02/2026)

Figure 2: Sliced Wasserstein (sW) distance as a function of n and for increasing noise levels ϵ. Results are
shown for both Gaussian toy examples with m = 10. Mean and std over 5 different seeds.

We include in Figures 8 and 9 in Appendix G a complete analysis for the Gaussian example, across all
dimensions m. They confirm the results of Figure 2, highlighting the precision of JAC in the non-perturbed
case and its instability otherwise. They also show the superior robustness of GAUSS in high dimensions.

Overall, the above experiments show that our proposal outperforms the Langevin sampler from F-NPSE in
terms of speed and robustness to noise. Furthermore, they suggest that GAUSS offers a good trade-off between
precision and robustness, hence a better algorithm choice than JAC in SBI settings, where the posterior score
is unknown and has to be learned. We investigate the validity of this statement in the following section.

4.2 Benchmark SBI examples

We consider three examples from the popular SBI benchmark (Lueckmann et al., 2021), with different θ-
and x-space dimensions (resp. m and d), and different posterior structures:

• SLCP (m = 5, d = 8): Uniform prior and Gaussian simulator, whose mean and covariance are
non-linear functions of the input parameters θ. Multi-modal posterior.

• SIR (m = 2, d = 10): Log-Normal prior and simulator based on a set of differential equations that
outputs samples from a Binomial distribution. Uni-modal posterior.

• Lotka-Volterra (m = 4, d = 20): Log-Normal prior and simulator based on a set of differential
equations that outputs samples from a Log-Normal distribution. Uni-modal posterior.

The score corresponding to each prior is analytically computable, as done in Appendix D. However, contrarily
to the toy models from Section 4.1, the analytical posterior score is not available and has to be learned via
score-matching. The goal is to evaluate the robustness of our sampling algorithms in this learning setting.
We train a simple MLP on Ntrain samples over 5 000 epochs using the Adam optimizer (see Appendix E).
According to the equivalent time setting from Section 4.1, we use T = 1000 steps for GAUSS and T = 400
steps for JAC and LANGEVIN. We also consider clipped versions, ensuring that the samples at every step stay
within the high probability region of a standard Gaussian (truncated to [−3, 3]). The goal is to stabilize JAC
and LANGEVIN, that were found less robust than GAUSS. This may however slow sampling and introduce bias.

To assess the performance of each sampling algorithm in this learning setting, we evaluate their accuracy for
increasing n ∈ [1, 8, 14, 22, 30] under varying Ntrain ∈ [103, 3.103, 104, 3.104]. Our empirical evaluation sam-
ples 25 ground-truth parameters θ⋆ ∼ λ(θ) from the prior, used to simulate the conditionning observations
x⋆

j ∼ p(x | θ⋆) for j = 1, . . . , n for the tall posterior p(θ | x⋆
1:n). For all three tasks, reference samples from

10

Published in Transactions on Machine Learning Research (02/2026)

Figure 3: Sliced Wasserstein (sW) distance as a function of Ntrain and for increasing n, between samples
obtained by GAUSS, JAC and LANGEVIN, and the true tall posterior p(θ | x⋆

1,n). Mean and std over 25 seeds.

the true tall posterior are obtained via MCMC using numpyro (Phan et al., 2019), and used to compute
distance-based evaluation metrics. Outliers with values above the 99th percentile (or NaN) are excluded.

Figure 3 portrays the sliced Wasserstein (sW) distance for each task as a function of the size Ntrain of the
training set for the score model. Larger values of Ntrain are expected to yield better score estimates and thus
more accurate posterior approximations. This is represented by a decreasing tendency of the sW. Overall,
we observe that GAUSS outperforms all other algorithms. It yields consistently lower distance values and
scales to high n values, compared to LANGEVIN/-clip that diverges for n ≥ 14 for the Lotka-Volterra and
SIR examples. Note that JAC diverges as soon as n > 1, which is why we didn’t include it in the plots. On
the other hand, JAC-clip is more or less equivalent to GAUSS, with slightly better results for SLCP.

We complement these results with two additional metrics: Maximum Mean Discrepancy (MMD) and Clas-
sifier Two-Sample Test (C2ST), both from the sbibm package. Their relevance is motivated by the differ-
ent posterior structures of the benchmark examples (see Figure 10 in Appendix H): SLCP is multimodal,
Lotka-Volterra is high-dimensional but unimodal, and SIR is low-dimensional and smooth. Each metric
captures different aspects of the posterior approximation, making them complementary tools for assessing
statistical validity. This is summarized in Table 3; full numerical results are in Appendix H. They highlight
that, across all metrics and all tasks, our methods significantly outperforms the Langevin sampler.

Metric What it measures Strengths and limitations Best method for n > 1
sW Geometric alignment of distribu-

tions based on sliced 1D projections
Sensitive to multi-modality (SLCP); less ef-
fective in high-dimensions (LV) and in the
absence of geometric structure (SIR)

GAUSS (all tasks),
JAC-clip (SLCP)

MMD Moment-based global differences
using kernel methods

Effective in detecting smooth deviations
and higher order correlations; known to fail
in multi-modal settings (SLCP)

GAUSS (SLCP, LV),
JAC-clip (SLCP, SIR)

C2ST Classification accuracy between
true and approximate samples

Fast and general validation tool, capturing
any inconsistency; can be “too discrimina-
tive” (LV, SLCP) and is harder to interpret

GAUSS (LV),
JAC-clip (SLCP, SIR)

Table 3: Metric description and results summary. Each metric provides complementary information on the
statistical validity of the approximate posterior and is more or less appropriate for the considered benchmark
task. The last column displays which method performs best in the tall data setting (n > 1).

11

Published in Transactions on Machine Learning Research (02/2026)

The results of this section show that our methods outperform the LANGEVIN baseline, particularly in scaling
to large observation contexts, even in a setting where the posterior score is learned from data. While
GAUSS is overall the most accurate, the strong performance of JAC-clip suggests it is a viable alternative
when stability can be ensured. However, a notable trend across tasks is the performance degradation as n
increases—as highlighted by in figures of Appendix H. Indeed, the compositional approach introduces a key
limitation: approximation errors accumulate as we sum over n evaluations of the learned score model to
obtain the tall posterior score. We explore a potential solution to this issue in Appendix L.2 via partially
factorized methods, offering a trade-off between simulation cost and number of network evaluations.

Finally, note that we chose to limit our comparison to the F-NPSE baseline, as Geffner et al. (2023) already
demonstrated its strong performance relative to other SBI methods. This supports our motivation to improve
upon F-NPSE directly, and our results show that the proposed approach is indeed promising. We include
results for additional benchmark tasks in Appendix I, confirming the trends observed in this section.

4.3 Inverting a non-linear model from computational neuroscience

In this Section, we illustrate the benefit of the tall data setting for challenging real-world applications and
consider the Bayesian inversion of the Jansen and Rit Neural Mass Model (JRNMM) (Jansen & Rit, 1995).
The output x(t) of this simulator is a time series obtained by taking as input a set of four parameters
θ = (C, µ, σ, g). Appendix J.1 gives a full description of the JRNMM. Importantly, there exists a coupling-
effect of parameters g and (µ, σ) on the amplitude of the output signal x(t), meaning that the same observed
signal could be generated for different pairs of g and (µ, σ). This indeterminacy makes the inference problem
ill-posed (Rodrigues et al., 2021). We now demonstrate how a tall data posterior can give more precise
information on how to invert the simulator, considering two cases:

• 3D JRNMM: a simplified setting in which we fix g = 0 to lift the indeterminacy on (µ, σ). The
tall posterior is expected to concentrate around the true parameter values.

• 4D JRNMM: the full JRNMM, with coupled parameters g and (µ, σ). The tall posterior should
reveal the resulting indeterminacy on (µ, σ).

In each case, we estimate the tall data posterior of the JRNMM using GAUSS, JAC and LANGEVIN, according
to the equivalent time setting from Section 4.1. The posterior score was estimated via NPSE using a MLP
trained on Ntrain = 50 000 samples from the joint distribution, with a uniform prior placed over the range of
physiologically meaningful values of the simulator parameters. See Appendices E and J.2 for further details.

We first evaluate the accuracy of each tall posterior sampling algorithm. This time, no samples from the
true posterior are available and previously considered metrics cannot be computed. We therefore use the
local Classifier-Two-Sample Test (ℓ-C2ST) (Linhart et al., 2023) and the default implementation from the
sbi Python package (Álvaro Tejero-Cantero et al., 2020). ℓ-C2ST compares conditional distributions by
training a classifier on a separate calibration set from the joint distribution. The validation results are given
and explained in detail in Appendix J.3. They show that GAUSS is the only method that passes the test in
both, the 3D and 4D cases, confirming the reliability of GAUSS in this challenging setting and motivating its
use in the remainder of this section.

We now investigate the ability of our tall posterior to concentrate around the true parameters θ⋆ used
to simulate the observations x⋆

1:n as n increases. This is quantified with the MMD between the posterior
marginals and the Dirac distribution δθ⋆ at the true parameters θ⋆, computed on 10 000 samples obtained with
GAUSS. Figure 4 shows the results for the simplified 3D JRNMM case. We observe as expected a progressive
concentration around θ⋆, with sharper posterior marginals and decreasing MMD. Figure 5 displays the results
for the full 4D JRNMM. Here, the tall posterior takes a "sharpened banana" shape: we observe a progressive
convergence of the inferred posterior mean towards θ⋆ (black dots and dashed lines), a sharpening around
(C, g) and a sustained dispersion along the dimensions of (µ, σ), which explains the non-decreasing MMD.
This gives evidence about the indeterminacy caused by the coupling between g and (µ, σ), which is consistent
with the results from (Rodrigues et al., 2021).

12

Published in Transactions on Machine Learning Research (02/2026)

Figure 4: Inference on the 3D JRNMM (fixed g = 0) with GAUSS. (Left): MMD between the marginals of the
approximate posterior and the Dirac of the true parameters θ⋆ (black dashed lines). (Right): Histograms of
the 1D marginals of the inferred posterior for 30 single observations (n = 1) and sets x⋆

1:n of increasing size.

Figure 5: Inference on the 4D JRNMM with GAUSS. (Left): MMD between the marginals of the approximate
posterior and the Dirac of the true parameters θ⋆ (black dots and dashed lines). (Right): Histograms of the
1D and 2D marginals of the inferred posterior for observation sets x⋆

1:n of increasing size.

5 Conclusion

We presented a new sampling approach for tall posterior inference in simulation-based settings, eliminating
the need for Langevin dynamics as used in F-NPSE (Geffner et al., 2023), while retaining its amortized and
compositional benefits. By explicitly approximating the diffusion process of the factorized tall posterior, our
method enables faster and more stable inference through established score-based samplers such as DDIM.

Across toy models and benchmark tasks, our method consistently outperforms the Langevin baseline in terms
of speed, accuracy, and scalability with increasing observation set sizes. In particular, GAUSS emerges as a
robust and consistent choice, while JAC achieves highly accurate results when score estimates are reliable.

13

Published in Transactions on Machine Learning Research (02/2026)

These findings validate our central motivation: improving compositional inference by modeling the diffusion
dynamics of the tall posterior directly. We further demonstrated that GAUSS scales effectively to real-world
problems, as illustrated by our neuroscience application. This example underscores a key benefit of the tall
data setting: aggregating observations can uncover parameter dependencies that are hidden at the single-
observation level. This insight aligns with recent hierarchical extensions of amortized inference (e.g. HNPE),
suggesting that structured modeling across observations can improve parameter identifiability.

Looking ahead, several research directions emerge. JAC has strong potential, but requires better stabilization.
Clipping samples improves robustness at the cost of slower, biased inference. Recent work by Gloeckler et al.
(2025) suggests promising alternatives. Another interesting direction is the refinement of our second-order
approximation. For example, one could try to combine our fixed-covariance strategy with data-driven covari-
ance estimation methods like those from (Rissanen et al., 2025), to better approximate local curvature with-
out sacrificing stability. Finally, while partially factorized methods help mitigate error accumulation—the
main limitation of compositional inference methods—further complementary strategies are needed to make
our method more scalable, beyond hundreds, to thousands of context observations. Arruda et al. (2025)
suggest one way to do that.

Together, our results demonstrate the power of score-based methods for amortized and compositional infer-
ence. Beyond tall posteriors, we believe this framework opens new possibilities for modular, hierarchical,
and other structured inference tasks across scientific domains.

14

Published in Transactions on Machine Learning Research (02/2026)

References
Markus Ableidinger, Evelyn Buckwar, and Harald Hinterleitner. A stochastic version of the Jansen and

Rit neural mass model: Analysis and numerics. The Journal of Mathematical Neuroscience, 7(1), August
2017. doi: 10.1186/s13408-017-0046-4.

Jonas Arruda, Vikas Pandey, Catherine Sherry, Margarida Barroso, Xavier Intes, Jan Hasenauer, and Ste-
fan T. Radev. Compositional amortized inference for large-scale hierarchical bayesian models, 2025. URL
https://arxiv.org/abs/2505.14429.

Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods for tall data.
Journal of Machine Learning Research, 18:1–43, 5 2015. ISSN 15337928.

Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Schönlieb, and Christian Etmann. Conditional image
generation with score-based diffusion models, 2021.

Rajendra Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University
Press, Princeton, NJ, December 2006.

Benjamin Boys, Mark Girolami, Jakiw Pidstrigach, Sebastian Reich, Alan Mosca, and O Deniz Akyildiz.
Tweedie moment projected diffusions for inverse problems. arXiv preprint arXiv:2310.06721, 2023.

Nicolas Brosse, Alain Durmus, Eric Moulines, and Sotirios Sabanis. The tamed unadjusted langevin algo-
rithm. 2017.

Evelyn Buckwar, Massimiliano Tamborrino, and Irene Tubikanec. Spectral density-based and measure-
preserving ABC for partially observed diffusion processes. an illustration on hamiltonian SDEs. Statistics
and Computing, 30(3):627–648, November 2019. doi: 10.1007/s11222-019-09909-6.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences (PNAS), 117:30055–30062, 2020. ISSN 0027-8424. doi: 10.1073/
pnas.1912789117.

Maximilian Dax, Stephen R. Green, Jonathan Gair, Michael Pürrer, Jonas Wildberger, Jakob H. Macke,
Alessandra Buonanno, and Bernhard Schölkopf. Neural importance sampling for rapid and reliable
gravitational-wave inference. Phys. Rev. Lett., 130:171403, Apr 2023. doi: 10.1103/PhysRevLett.130.
171403.

Tomas Geffner, George Papamakarios, and Andriy Mnih. Compositional Score Modeling for Simulation-
Based Inference. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learn-
ing, volume 202 of Proceedings of Machine Learning Research, pp. 11098–11116. PMLR, 23–29 Jul 2023.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-in-one
simulation-based inference. 2024.

Manuel Gloeckler, Shoji Toyota, Kenji Fukumizu, and Jakob H. Macke. Compositional simulation-based
inference for time series, 2025. URL https://arxiv.org/abs/2411.02728.

Pedro J Gonçalves, Jan-Matthis Lueckmann, Michael Deistler, Marcel Nonnenmacher, Kaan Öcal, Giacomo
Bassetto, Chaitanya Chintaluri, William F Podlaski, Sara A Haddad, Tim P Vogels, David S Greenberg,
and Jakob H Macke. Training deep neural density estimators to identify mechanistic models of neural
dynamics. eLife, 9:e56261, sep 2020. ISSN 2050-084X. doi: 10.7554/eLife.56261.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In Z. Ghahramani, M. Welling, C. Cortes,
N. Lawrence, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014.

15

https://arxiv.org/abs/2505.14429
https://arxiv.org/abs/2411.02728

Published in Transactions on Machine Learning Research (02/2026)

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for
likelihood-free inference. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the
36th International Conference on Machine Learning, volume 97, pp. 2404–2414. PMLR, 09–15 Jun 2019.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications. Biometrika, 57:
97–109, 4 1970. ISSN 0006-3444. doi: 10.1093/BIOMET/57.1.97.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized approximate
ratio estimators. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4239–4248. PMLR,
13–18 Jul 2020. doi: 10.48550/arxiv.1903.04057.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021. URL https://openreview.net/forum?id=
qw8AKxfYbI.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing
Systems, volume 33, pp. 6840–6851, 2020.

Ben H. Jansen and Vincent G. Rit. Electroencephalogram and visual evoked potential generation in a
mathematical model of coupled cortical columns. Biological Cybernetics 1995 73:4, 73:357–366, 9 1995.
ISSN 1432-0770. doi: 10.1007/BF00199471.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 26565–26577, 2022.

Julia Linhart, Alexandre Gramfort, and Pedro L. C. Rodrigues. L-c2st: Local diagnostics for posterior
approximations in simulation-based inference. 2023. URL https://arxiv.org/abs/2306.03580.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Benchmarking
simulation-based inference. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine
Learning Research, pp. 343–351. PMLR, 13–15 Apr 2021.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. In Kamalika Chaudhuri and Masashi Sugiyama (eds.), Proceedings
of the Twenty-Second International Conference on Artificial Intelligence and Statistics, volume 89 of
Proceedings of Machine Learning Research, pp. 837–848. PMLR, 16–18 Apr 2019.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22:1–64, 2021. ISSN 15337928. doi: 10.48550/arxiv.1912.02762.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. CoRR,
abs/1912.01703, 2019. URL http://arxiv.org/abs/1912.01703.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and accelerated proba-
bilistic programming in NumPyro. arXiv:1912.11554, 2019.

Python Software Fundation. Python Language Reference, version 3.6, 2017.

Severi Rissanen, Markus Heinonen, and Arno Solin. Free hunch: Denoiser covariance estimation for diffusion
models without extra costs, 2025. URL https://arxiv.org/abs/2410.11149.

16

https://openreview.net/forum?id=qw8AKxfYbI
https://openreview.net/forum?id=qw8AKxfYbI
https://arxiv.org/abs/2306.03580
http://arxiv.org/abs/1912.01703
https://arxiv.org/abs/2410.11149

Published in Transactions on Machine Learning Research (02/2026)

Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions and their
discrete approximations. Bernoulli, pp. 341–363, 1996.

Pedro L. C. Rodrigues and Alexandre Gramfort. Learning summary features of time series for likelihood
free inference, 2020. URL https://arxiv.org/abs/2012.02807.

Pedro Luiz Coelho Rodrigues, Thomas Moreau, Gilles Louppe, and Alexandre Gramfort. HNPE: Leveraging
Global Parameters for Neural Posterior Estimation. In Neural Information Processing Systems, 2021.

Louis Sharrock, Jack Simons, Song Liu, and Mark Beaumont. Sequential neural score estimation: Likelihood-
free inference with conditional score based diffusion models. 2022.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/abs/1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2021a.

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models for
inverse problems. In International Conference on Learning Representations, 2023.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In International Conference on
Learning Representations, 2021b.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661–1674, 2011.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui,
and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM
Computing Surveys, 56(4):1–39, 2023.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov, and Alexan-
der J Smola. Deep sets. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

Álvaro Tejero-Cantero, Jan Boelts, Michael Deistler, Jan-Matthis Lueckmann, Conor Durkan, Pedro J
Gonçalves, David S Greenberg, Jakob H Macke, Computational Neuroengineering, and T U Munich.
Sbi – a toolkit for simulation-based inference. Journal of Open Source Software, 5:2505, 7 2020. ISSN
2475-9066. doi: 10.21105/joss.02505.

17

https://arxiv.org/abs/2012.02807
https://arxiv.org/abs/1503.03585

Published in Transactions on Machine Learning Research (02/2026)

A Proofs

A.1 Proof of Lemma 3.1

Lemma 3.1. Let Λ(θ) =
∑n

j=1 Σ−1
t,j (θ) + (1− n)Σ−1

t,λ(θ) and assume it is positive definite. The approximate
log-correction term is defined using (13) and can be written as a linear combination of Gaussian log-factors:

log L̂λ(θt, x⋆
1:n) := log

∫
q̂λ

0|t(θ0|θt)1−n
n∏

j=1
q̂0|t(θ0|θt, x⋆

j)dθ0 (17)

=
n∑

j=1
ζj(θt) + (1− n)ζλ(θt)− ζall(θt) , (18)

where ζk = ζ(µt,k, Σt,k) = − 1
2

(
m log 2π − log |Σ−1

t,k |+ µ⊤
t,kΣ−1

t,kµt,k

)
, for k ∈ {j = 1, . . . , n; λ} and ζall =

ζ(Λ−1η, Λ−1) with η =
∑n

j=1 Σ−1
t,j µt,j + (1− n)Σ−1

t,λµt,λ.
Proof. Let (µk)1≤k≤K ∈ (Rm)K and (Σk)1≤k≤K be covariance matrices in Rm×m. Denote by pk the
Gaussian pdf with mean µk and covariance matrix Σk. Note that

pk : θ0 7→ exp
(

ζ̃k + (Σ−1
k µk)⊤θ0 −

1
2θ⊤

0 Σ−1
k θ0

)
,

where
ζ̃k = −1

2
(
m log 2π − log |Σ−1

k |+ µ⊤
k Σ−1

k µk

)
.

Therefore,
K∏

k=1
pk(θ0) = exp

(
K∑

k=1
ζ̃k − ζ̃all

)
exp

(
ζ̃all + η̃⊤θ0 −

1
2θ⊤

0 Λ̃θ0

)

= exp
(

K∑
k=1

ζ̃k − ζ̃all

)
N (θ0; Λ̃−1η̃, Λ̃−1) ,

with η̃ =
∑K

k=1 Σ−1
k µk, Λ̃ =

∑K
k=1 Σ−1

k , and ζ̃all = −(m log 2π − log |Λ̃| + η̃⊤Λ̃−1η)/2. We can apply this
result to Equation (17) with

η(θ) =
n∑

j=1
Σ−1

t,j (θ)µt,j(θ) + (1− n)Σ−1
t,λ(θ)µt,λ(θ) ,

Λ(θ) =
n∑

j=1
Σ−1

t,j (θ) + (1− n)Σ−1
t,λ(θ) ,

since by assumption Λ(θ) is definite positive. This provides the following reformulation of Equation (17):

log L̂λ(θt, x⋆
1:n) = log

∫
exp

 n∑
j=1

ζj(θt) + (1− n)ζλ(θt)− ζall(θt)

N (θ0; Λ−1(θt)η(θt), Λ−1(θt))dθ0 .

Finally, because the sum in the above formula does not depend on the integrator variable θ0, we can take it
out of the integral and separate the expression of L̂λ(θ, x⋆

1:n) into two terms:

log L̂λ(θt, x⋆
1:n) = log

∫
N (θ0; Λ−1(θt)η(θt), Λ−1(θt))dθ0︸ ︷︷ ︸

=0

+

 n∑
j=1

ζj(θt) + (1− n)ζλ(θt)− ζall(θt)

 (19)

The first term is zero as the integral of the Gaussian p.d.f. over the whole space is equal to 1. This leaves
us with the second term and concludes the proof.

18

Published in Transactions on Machine Learning Research (02/2026)

Positive Definiteness of Λ(θ) . The approximation from Lemma 3.1 is only valid if the matrix Λ(θ) is
symmetric positive definite (SPD), i.e. is a valid covariance matrix. In what follows, we investigate what
conditions on the prior distribution will ensure such property. Using the partial ordering defined by the
convex cone of SPD matrices (Bhatia, 2006), it follows that:

Λ(θ) ≻ 0 ⇐⇒
n∑

j=1
Σ−1

t,j (θ) + (1− n)Σ−1
t,λ(θ) ≻ 0 , (20)

⇐⇒
n∑

j=1
Σ−1

t,j (θ) ≻ (n− 1)Σ−1
t,λ(θ) , (21)

⇐⇒ Σt,λ(θ) ≻

 1
(n− 1)

n∑
j=1

Σ−1
t,j (θ)

−1

. (22)

Note that as n increases, the right-hand side of the inequality in Equation 22 converges to the harmonic
mean of the Σt,j(θ), which helps building an intuition for the correct choice of Σt,λ(θ), the covariance of the
backward diffusion kernel associated to the prior distribution λ(θ). For instance, a sufficient choice for Λ(θ)
to be SPD, would be to have a Σt,λ(θ) whose associated ellipsoid6 covers the ellipsoids generated by the
covariance matrices Σt,j(θ), associated to the posteriors p(θ | x⋆

j) for every single observation x⋆
j considered

in the tall data inference task. Intuitively, this corresponds to choosing a prior that is broader than the
posterior distribution, which is normally the case in Bayesian approaches.

A.2 Proof of Lemma 3.2

Lemma 3.2. Under the same assumptions as in Lemma 3.1, and using the approximate log-correction term
from (18), the tall posterior score in (12) can be approximated as

∇θt log pt(θt | x⋆
1:n) ≈ Λ(θt)−1

 n∑
j=1

Σ−1
t,j (θt)∇θt log pt(θt | x⋆

j) + (1− n)Σ−1
t,λ(θt)∇θt log pλ

t (θt)

+ F ,

where F = F (θt, x⋆
1:n) = 0 if ∇θt

Σt,j(θt) = 0 for all 1 ≤ j ≤ n and ∇θt
Σλ,t(θt) = 0.

Proof. Remember that the full tall posterior score writes

∇θt
log pt(θ | x⋆

1:n) = (1− n)∇θt
log pλ

t (θt) +
n∑

j=1
∇θt

log pt(θt | x⋆
j) +∇θt

log Lλ(θt, x⋆
1:n) , (23)

We can replace the log-correction term log Lλ by its estimator log L̂λ from 17 in Lemma 3.1. Now let’s
compute that term explicitly. Taking the gradient directly gives us:

∇θt log L̂λ(θt, x⋆
1:n) =

n∑
j=1
∇θtζj(θt) + (1− n)∇θtζλ(θt)−∇θtζall(θt) , (24)

where we recall that ζ(µ, Σ−1) = −
(
m log 2π − log |Σ−1|+ µ⊤Σ−1µ

)
/2.

6The ellipsoid EA associated with SPD matrix A is defined as EA = {x : x⊤A−1x < 1}.

19

Published in Transactions on Machine Learning Research (02/2026)

First, we compute the terms ∇θζj(θ). The chain rule gives us

∇θζj(θ) = ∇θζ(µt,j(θ), Σ−1
t,j (θ))

= ∇µζ(µt,j(θ), Σ−1
t,j (θ))⊤∇θµt,j(θ) + ∇Σ−1ζ(µt,j(θ), Σ−1

t,j (θ))∇θΣ−1
t,j (θ) ,

where

∇µζ(µ, Σ−1) = −Σ−1µ , ∇−1
Σ ζ(µ, Σ−1) = 1

2
(
Σ− µµ⊤) .

Therefore, we obtain

∇θζj(θ) = −µt,j(θ)⊤Σ−1
t,j (θ)⊤∇θµt,j(θ) + 1

2
(
Σt,j(θ)− µt,j(θ)µt,j(θ)⊤)∇θΣ−1

t,j (θ) .

Note that for qt|0(θt|θ0) = N (θt;
√

αtθ0, υtIm) 7 we have that ∇θt
µt,j(θt) = (√αt/υt)Σt,j(θt) (Boys et al.,

2023), which leads to

∇θt
ζj(θt) = −

√
αt

υt
µt,j(θt) + 1

2
(
Σt,j(θt)− µt,j(θt)µt,j(θt)⊤)∇θt

Σ−1
t,j (θt)

= −υ−1
t θ −∇θt

log pt(θt | x⋆
j) + 1

2
(
Σt,j(θt)− µt,j(θt)µt,j(θt)⊤)∇θt

Σ−1
t,j (θt) .

(25)

Formula (25) also applies to ∇θt
ζλ(θt) (with pλ

t , µt,λ, Σt,λ). Replacing these expressions in (24), yields

∇θ log L̂λ(θt, x⋆
1:n) = −(1− n)∇θt log pλ

t (θt)−
n∑

j=1
∇θt log pt(θt | x⋆

j)− υ−1
t θt −∇θtζall(θt)

+ 1
2

 n∑
j=1

(
Σt,j(θt)− µt,j(θt)µt,j(θt)⊤)∇θt

Σ−1
t,j (θt)


+ 1− n

2
(
Σt,λ(θt)− µt,λ(θt)µt,λ(θ)⊤)∇θt

Σ−1
t,λ(θt, x⋆

j) .

Replacing the above formula in (23), the first two terms compensate each other, which gives the following
approximation for the score:

∇θt log pt(θt | x⋆
1:n) ≈ −υ−1

t θt −∇θtζall(θt)

+ 1
2

 n∑
j=1

(
Σt,j(θt)− µt,j(θt)µt,j(θt)⊤)∇θt

Σ−1
t,j (θt)


+ 1− n

2
(
Σt,λ(θt)− µt,λ(θt)µt,λ(θt)⊤)∇θtΣ−1

t,λ(θt, x⋆
j) .

(26)

We now compute ∇θζall(θ). By noting that ζall = ζ(Λ(θ)−1η(θ), Λ(θ)), we can follow the same steps as
before and obtain

∇θζall(θ) = −∇θ(Λ(θ)−1η(θ))η(θ) + 1
2
[
Im − Λ(θ)−1η(θ)η(θ)⊤]Λ(θ)−1∇θΛ(θ)

= −Λ(θ)−1∇θη(θ)η(θ)− η(θ)⊤∇Λ(θ)−1η(θ) + 1
2
[
Im − Λ(θ)−1η(θ)η(θ)⊤]Λ(θ)−1∇θΛ(θ) .

(27)

7Variance preserving (VP) framework introduced in Section 2.1.

20

Published in Transactions on Machine Learning Research (02/2026)

Note now that

∇θη(θ) =
n∑

j=1
Σ−1

t,j (θ)∇θµt,j(θ) + µt,j(θ)⊤∇θΣ−1
t,j (θ) + (1− n)

(
Σ−1

t,λ(θ)∇θµt,λ(θ) + µt,λ(θ)⊤∇θΣ−1
t,λ(θ)

)
=
√

αt

υt
Im +

n∑
j=1

µt,j(θ)⊤∇θΣ−1
t,j (θ) + (1− n)µt,λ(θ)⊤∇θΣ−1

t,λ(θ) ,

and that

√
αtη(θ) =

n∑
j=1

Σ−1
t,j (θ)

(
θ + υt∇θ log pt(θ | x⋆

j)
)

+ (1− n)Σ−1
t,λ(θ)

(
θ + υt∇θ log pλ

t (θ)
)

= Λ(θ)θ + υt

 n∑
j=1

Σ−1
t,j (θ)∇θ log pt(θ | x⋆

j) + (1− n)Σ−1
t,λ(θ)∇θ log pλ

t (θ)

 .

(28)

We can use the above formulas to replace ∇θη(θ)η(θ) in the term Λ(θ)−1∇θη(θ)η(θ) of Equation (27). The
first term of this new expression is −υ−1θ, which (setting θ = θt) compensates with the first term in the
score formula from (26) and finally leaves us with the wanted score approximation:

∇θt
log pt(θt | x⋆

1:n) ≈ Λ(θt)−1

 n∑
j=1

Σ−1
t,j (θt)∇θt

log pt(θt | x⋆
j) + (1− n)Σ−1

t,λ(θt)∇θt
log pλ

t (θt)

+ F (θt, x⋆
1:n) ,

where

F (θ, x⋆
1:n) = η(θ)⊤∇Λ(θ)−1η(θ)− 1

2
[
Im − Λ(θ)−1η(θ)η(θ)⊤]Λ(θ)−1∇θΛ(θ)

+ 1
2

 n∑
j=1

(
Σt,j(θ)− µt,j(θ)µt,j(θ)⊤)∇θΣ−1

t,j (θ)


+ 1− n

2
(
Σt,λ(θ)− µt,λ(θ)µt,λ(θ)⊤)∇θΣ−1

t,λ(θ, x⋆
j) .

F (θ, x⋆
1:n) contains all the terms that depend on the gradients of the covariance matrices Σt,j(θ) and Σt,λ(θ)

and is 0 if they are considered constant (see definition of Λ(θ) in Lemma 3.1) .

21

Published in Transactions on Machine Learning Research (02/2026)

B Influence of the correction term

In this Appendix we provide some intuition on the influence of the correction term ∇θt
log Lλ(θt, x⋆

1:n) in
the backward diffusion process. Following the definition of the backward kernels in equation (11):

• For t → 1: the forward kernel and the diffused data distribution approach the noise distribution:
pt(θt | x) →

t→1
N (θt; 0, Im) and qt|0(θt | θ0) →

t→1
N (θt; 0, Im). The backward kernel is thus equivalent

to the target data distribution:

p0|t(θ0 | θt, x) =
p(θ0 | x)qt|0(θt | θ0)

pt(θt | x) ∼
t→1

p(θ0 | x) . (29)

Therefore the backward kernels vary very little with θ, and because they define log Lλ(θt, x⋆
1:n) (see

eq. (17)), its gradient is close to zero. In other words, ∇θt
log Lλ(θt, x⋆

1:n) has no significant impact
at the beginning of the backward diffusion (aka. sampling or generative process).

• For t→ 0: the denominator is the diffused distribution that gets close to the target data distribution
pt(θt | x) →

t→0
p(θ0 | x). Therefore the backward kernel is approximately

p0|t(θ0 | θt, x) =
p(θ0 | x)qt|0(θt | θ0)

pt(θt | x) ∼
t→0

qt|0(θt | θ0) →
t→0

δθ0(θt) . (30)

Here, the dependence on θt is convergence to a Dirac function. This means that the gradient of
log Lλ(θt, x⋆

1:n) will increase during the sampling process and finally explode when t approaches 0.
The correction term therefore plays an important role as we approach the target tall data posterior
distribution, at the end of the sampling process.

22

Published in Transactions on Machine Learning Research (02/2026)

C Denoising Diffusion Implicit Models (DDIM)

In this section we derive the DDIM backward Markov chain mentioned in Section 2.

DDIM introduces a set of inference distributions defined for t ∈ [1 : T] as

qσ
t−1|t,0(θt|θ0, θt+1) = N

(
θt−1; µt(θ0, θt), σ2

t Im

)
, (31)

with µt(θ0, θt) = √αt−1θ0 +(υt−1−σ2
t)1/2(θt−

√
αtθ0)

/
υ

1/2
t and σ = {σt ∈ (0, υ

1/2
t−1)}t∈[1:T −1]. Note that µt

is chosen so that qσ
t|0(θt|θ0) = qt|0(θt | θ0) = N (θt;

√
αtθ0, υtIm) (Song et al., 2021a, Lemma 1, Appendix B).

This property allows us to write pt−1(θt−1) =
∫∫

qσ
t−1|t,0(θt−1|θt, θ0)q0|t(θ0|θt)pt(θt)dθ0dθt.

Even though Equation (31) suggests a way of passing from pt to pt−1, it involves an intractable kernel∫
qσ

t−1|t,0(θt−1|θt, θ0)q0|t(θ0|θt)dθ0. DDIM approximates the marginal distribution with

p̂t−1(θt−1) =
∫

qσ
t−1|t,0(θt−1|θt, µt(θt))pt(θt)dθt , (32)

where µt(θt) = EΘ0∼qσ
0|t

[Θ0], and verifies √αtµt(θt)− θt = υtEΘ0∼qσ
0|t

[
∇ log qt|0(θt|Θ0)

]
. Using the learned

score from Equation 3, we can now define the following approximation of µt(θt):

µϕ,t(θt) := 1
√

αt

(
θt + υtsϕ(θt, t)

)
. (33)

We finally obtain the following backward Markov chain for DDIM:

pϕ,0:T (θ0:T) = pT (θT)
T∏

t=1
qϕ,t−1|t(θt−1|θt) , (34)

where pT (θT) = pT (θT), qϕ,t−1|t(θt−1|θt) = qσ
t−1|t,0(θt−1|θt, µϕ,t(θt)) and qϕ,0|1(θ0|θ1) =

N (θ0; µϕ,1(θ1), σ2
0Im), with σ0 > 0 a free parameter.

23

Published in Transactions on Machine Learning Research (02/2026)

D Analytical formulas for score and related quantities

D.1 Gaussian case

The considered Bayesian Inference task is to estimate the mean θ ∈ Rm of a Gaussian simulator model
p(x | θ) = N (x; θ, Σ), given a Gaussian prior λ(θ) = N (θ; µλ, Σλ). For a single observation x⋆, the true
posterior is also a Gaussian obtained using Bayes formula, as the product of two Gaussian distributions:

p(θ | x⋆) = N (θ; µpost(x⋆), Σpost) (35)

with µpost(x⋆) = Σpost(Σ−1x⋆+Σ−1
λ µλ) and Σpost = (Σ−1+Σ−1

λ)−1. Note that in this case, the full posterior
can be written as

p(θ | x⋆
1:n) = N (θ; µpost(x⋆

1:n), Σpost,n) (36)

with Σpost,n = (nΣ−1 + Σ−1
λ)−1 and µpost(x⋆

1:n) = Σpost,n(
∑n

j=1 Σ−1x⋆
j + Σ−1

λ µλ).

Assume that qt|0(θt | θ0) = N (θ;√αtθ0, υtIm); see Section 2. Using standard results (e.g. Equation 2.115 in
Bishop, 2006), we can derive the analytic formula of the diffused prior

pλ
t (θ) =

∫
λ(θ0)qt|0(θt | θ0)dθ0

= N (θt;
√

αtµλ, αtΣλ + υtIm)
(37)

and of the diffused posterior

pt(θt | x⋆) =
∫

p(θ0 | x⋆)qt|0(θt | θ0)dθ0

= N (θt;
√

αtµpost(x⋆), αtΣpost + υtIm).
(38)

The corresponding Fisher scores are

∇θt
log pλ

t (θt) = −(αtΣλ + υtIm)−1(θt −
√

αtµλ) , (39)
∇θt

log pt(θt | x⋆) = −(αtΣpost + υtIm)−1(θt −
√

αtµpost(x⋆)) . (40)

Replacing the score from (40) in the formulas from (Boys et al., 2023), we get the following expressions for
the mean and covariance matrix of the backward kernel q0|t(θ0 | θt, x⋆):

Σt(θt, x⋆) = υt

αt

(
1− υt

(
αtΣpost + υtIm

)−1
)

= Σt , (constant)

µt(θt, x⋆) = 1
√

αt

(
1− υt

(
αtΣpost + υtIm

)−1
)

θt + υt

(
αtΣpost + υtIm

)−1
µpost(x⋆)

=
√

αt

υt
Σtθt + υt

(
αtΣpost + υtIm

)−1
µpost(x⋆) .

The same goes for the prior backward diffusion kernel qλ
0|t(θ0 | θ):

Σt,λ(θt) = υt

αt

(
1− υt

(
αtΣλ + υtIm

)−1
)

= Σt,λ , (constant)

µt,λ(θt) = 1
√

αt

(
1− υt

(
αtΣλ + υtIm

)−1
)

θt + υt

(
αtΣλ + υtIm

)−1
µλ

=
√

αt

υt
Σt,λθt + υt

(
αtΣλ + υtIm

)−1
µλ .

24

Published in Transactions on Machine Learning Research (02/2026)

D.2 Mixture of Gaussians case

In the case of the Mixture of Gaussians, the prior is λ = N (0, Im), the simulator is given by p(x|θ) =
1
2N (x; θ, Σ1) + 1

2N (x; θ, 1/9Σ2) where Σ1 = 2.25Σ, Σ2 = 1/9Σ and Σ is a diagonal matrix with values
increasing linearly between 0.6 and 1.4. In this case, the posterior density writes

p(θ|x) = ω1(x)N (θ; µ1, Σ1,p) + ω2(x)N (θ; µ2, Σ2,p) (41)

where for i = 1, 2, Σi,p =
(
Σ−1

i + Im

)−1, µi = Σi,pΣ−1
i x, ω̃i(x) = N (x; θ, Σi + Im) and ωi = ω̃i/

∑2
j=1 ω̃j .

Therefore, the diffused marginals are

pt(θt|x) = ω1(x)N (θt; α
1/2
t µ1, αtΣ1,p + (1− αt)Im)

+ ω2(x)N (θt; α
1/2
t µ2, αtΣ2,p + (1− αt)Im) ,

(42)

from which the score is

∇θt
log pt(θt|x) = −ω1(x)(αtΣ1,p + (1− αt)Im)−1(θt − α

1/2
t µ1)

− ω2(x)(αtΣ2,p + (1− αt)Im)−1(θt − α
1/2
t µ2) .

(43)

D.3 Score of the diffused Log-Normal prior

The Log-Normal distribution can easily be transformed into a Gaussian distribution:

Θ ∼ LogNormal(m, s)⇒ log Θ ∼ N (m, s) .

We can therefore directly apply the Gaussian case from the previous section.

D.4 Score of the diffused Uniform prior

Consider the case where the prior is a Uniform distribution λ(θ) = U(θ; a, b), with (a, b) ∈ Rm × Rm, the
lower and upper bounds respectively. Assume that qt|0(θt | θ0) = N (θt;

√
αtθ0, υtIm); see Section 2 with

υt = 1− αt. We get the following analytic formula for the diffused prior:

pλ
t (θt) =

∫
λ(θ0)qt|0(θt | θ0)dθ0 (44)

= 1∏m
i=1(bi − ai)

∫
[a1,b1]×···×[am,bm]

N (θt;
√

αtθ0, υtIm) (45)

= 1
√

αt

∏m
i=1(bi − ai)

m∏
i=1

(Φ (√αtbi; θt,i, υt)− Φ (√αtai; θt,i, υt)) , (46)

where θt,i the ith coordinate of θt and Φ(.; µ, σ2) is the c.d.f. of a univariate Gaussian with mean µ and
variance σ2. The score of the above quantity is then simply obtained by computing the score of each one-
dimensional element in the above product. For i ∈ [1, m], the ith coordinate of ∇θt

log pλ
t (θt) can be written

as ∇θt,i
log f(θt,i) = ∇θt,i

f(θt,i)
f(θt,i) with

f(θt,i) = (Φ (√αtbi; θt,i, υt)− Φ (√αtai; θt,i, υt)) (47)

∇θt,i
f(θt,i) = − 1

√
αtυt

(N (√αtbi; θt,i, υt)−N (√αtai; θt,i, υt)) . (48)

25

Published in Transactions on Machine Learning Research (02/2026)

E Experimental Setup

Code and compute resources. All experiments are implemented with Python (Python Software Funda-
tion, 2017) combined with PyTorch (Paszke et al., 2019). The code to reproduce all numerical experiments
is provided in the following repository: https://github.com/JuliaLinhart/diffusions-for-sbi. This
includes specific information about the code environment and installation requirements, mentioned in the
"readme.md" file. In this url, we also provide pregenerated data and precomputed results that are necessary
to quickly generate all figures of the paper without extensive computation time.

Methods. We choose F-NPSE (Geffner et al., 2023) as a baseline for comparisons, which uses unadjusted
Langevin dynamics with L = 5 Langevin steps and a step size of δt = τ(1−αt)/

√
αt with τ = 0.5, to approx-

imately sample from the tall posterior. We do not compare to other SBI methods based on NPE/NLE/NRE,
as the score-based framework has shown to demonstrate clear superior performance (Sharrock et al., 2022;
Geffner et al., 2023; Gloeckler et al., 2024). Of course, this choice reduces the range of comparisons of our
experimental section, but allows us to focus solely on the best alternative method from current literature.

For GAUSS and JAC, we infer the tall posterior by plugging the approximate tall posterior scores obtained via
Algorithms 1 and 2 into the DDIM sampler defined in Section 2.1. Specifically, we sample from the backward
Markov chain from Equation (34), with σ2

t = η2(1 − αt−1)/υt(1 − αt/αt−1) where η = 0.2, 0.5, 0.8, 1 for a
number of steps T = 50, 150, 400, 1000 respectively. We use a uniform scheduling {ti = i/T}T

i=1.

The score network. Except for the two toy models considered in Section 4.1, the posterior scores have
to be learned via NPSE. The same score model architecture and training hyper parameters are used for all
tasks. Our implementation of the score model sϕ(θ, x, t) is an MLP with layer normalization and 3 hidden
layers of 256 hidden features. It takes as input the variables (θ, x, t) and outputs a vector of the same size
as θ ∈ Rm. Before being passed to the score network, a positional embedding is computed for t ∈ [0, 1]
as per: (cos(tiπ), sin(tiπ))1≤i≤f , where we chose f = 3 for the number of frequencies. Optionally, θ and x
can each be passed to an embedding network. Note that for the benchmark experiment in Section 4.2, no
embedding networks were used, as we chose to use the same score model architecture across all tasks, each
with different data dimensions. For the more complex neuroscience application in Section 4.3, θ and x were
each embedded with a MLP with 3 hidden layers of 64 hidden features and an output dimension of 32.

For more stability, following Song et al. (2021a) and Ho et al. (2020), we actually learn the noise distribution
ϵϕ, which is related to the score function via ϵϕ(θ, x, t) = −√υt sϕ(θ, x, t), with υt = 1− αt the variance of
the VP forward kernel, defined in Section 2.1. Given a training dataset with N = Ntrain samples (Θ0,i, Xi) ∼
p(θ, x), the empirical loss function for the "noise predictor" NPSE writes:

LN
NPSE(ϕ) = 1

N

N∑
i=1
∥ϵϕ(Θt,i, Xi, ti)− Zi∥2 , with Θt,i = √αti

Θ0,i + υti
Zi , (49)

where Zi ∼ N (0, Im) and ti ∼ U(0, 1). Training is done using the Adam optimizer over 5 000 epochs and
early stopping on 20% of the training data. Note that early stopping requires to be done with care, since
the loss function is stochastic. For each example and training set Ntrain, we trained several models for
different learning rates and batch sizes, and selected the one that corresponds to the best trade-off between
smallest validation loss and latest stopping epoch, as detailed in Appendix F. The training dataset is always
normalized to zero mean and standard variance (for variables θ and x). The same transformation has to be
applied to the observations x⋆

1:n and the prior score function ∇θ log pλ
t (θ) during sampling. After sampling,

the inverse transformation is applied to the obtained samples of the approximate tall posterior distribution.

26

https://github.com/JuliaLinhart/diffusions-for-sbi

Published in Transactions on Machine Learning Research (02/2026)

Validation. To evaluate the accuracy of the sampling algorithms, we compute the distance between 104

samples of the estimated and true posteriors considering three different metrics: the sliced Wasserstein (sW)
distance from the POT python package with 103 projections, the Maximum Mean Discrepancy (MMD) and
the Classifier-Two-Sample Test (C2ST), both from the sbibm package, with default parameters.

The true posterior samples are obtained via MCMC using numpyro with jax, except for the Gaussian Mixture
Toy Model from Section 4.1, for which we consider the Metropolis-Adjusted Langevin Algorithm (MALA);
see (Roberts & Tweedie, 1996).

For the JRNMM in Section 4.3, no samples from the true posterior are available and the above metrics
cannot be computed. We therefore use the local Classifier-Two-Sample Test (ℓ-C2ST) (Linhart et al., 2023)
and the implementation provided in the sbi toolbox, with default parameters.

27

Published in Transactions on Machine Learning Research (02/2026)

F Loss functions, training strategy and model selection

In this section we explain our model selection strategy, namely the choices of learning rate and batch size
used for the training of the score models in the experiments from Sections 4.2 and 4.3. As detailed in
Appendix E, the model architecture (i.e. number of MLP layers, hidden features, etc.) is fixed and training
is done using the Adam optimizer over 5 000 epochs and early stopping using 20% of the training data to
compute the validation loss. Note that early stopping requires to be done with care, since the loss function
is stochastic. For each example, we therefore trained several models for different learning rates and/or batch
sizes, and selected the one that corresponds to the best trade-off between smallest validation loss and latest
stopping epoch.

Figure 6 displays the train and validation losses for all SBI benchmarks examples and training set sizes Ntrain.
For small Ntrain, over fitting behavior can be detected, which is particularly visible for the SLCP example. In
these cases, a higher batch size of 256 is chosen, since it yields more stable loss functions, with delayed over
fitting and thus also delayed early stopping. The learning rate is then chosen to correspond to the smallest
validation loss when the gap is clear (e.g. for SLCP). In cases were no obvious overfitting is detected, the
best validation loss in each setting is similar and the learning rate can then be chosen to correspond to the
latest early stopping epoch (to mitigate variations due to the stochasticity of the loss function and ensure
longer training).

The same strategy was then used to select the best model for the experiments on the JRNMM, for which
the loss functions are displayed in Figure 7. Here, the score models were trained on a large training set of
size Ntrain = 50 000. We therefore directly chose a larger batch size of 256 for more stability, leading to equal
early stopping times in each setting. The chosen models then correspond to the smallest validation loss, here
obtained for a learning rate of 1e−4.

28

Published in Transactions on Machine Learning Research (02/2026)

(a) Batch size 64.

(b) Batch size 256.

Figure 6: Train and validation losses for the SBI benchmark examples obtained for score networks trained
over 5 000 epochs with the Adam optimzer and learning rates lr = 1e−3 (orange) and lr = 1e−4 (blue). The
two Figures respectively corresponds to a batch size of 64 and 256. The validation loss was computed on
a held-out validation set of 20% of the training dataset of size Ntrain ∈ [103, 3.103, 104, 3.104]. Dashed lines
indicate the epoch at early stopping time. A higher batch size of 256 is chosen, since it yields more stable
loss functions, with delayed over fitting and thus also delayed early stopping (particularly visible for the
SLCP example). The learning rate is then chosen to correspond to the smallest validation loss or, in cases
were no obvious overfitting is detected, to the latest early stopping epoch (to mitigate small variations due
to the stochasticity of the loss function and ensure longer training).

29

Published in Transactions on Machine Learning Research (02/2026)

Figure 7: Loss functions for the Jansen and Rit Neural Mass Model obtained for score networks trained
over 5 000 epochs with the Adam optimzer, a batch size of 256 and learning rates lr = 1e−3 (orange) and
lr = 1e−4 (blue). The validation loss was computed on a held-out validation set of 20% of the training
dataset of size Ntrain = 50 000. Dashed lines indicate the epoch at early stopping time. As early stopping
in both settings occurs at the same time, the chosen model corresponds to the smallest validation loss, here
obtained for a learning rate of 1e−4.

30

Published in Transactions on Machine Learning Research (02/2026)

G Additional results for the toy models

Table 4 displays the results obtained for the GMM example, which are comparable to the ones from Table 1,
used to define the equivalent time setting in Section 4.1.

Algorithm N steps ∆t (s) sW

GAUSS 50 0.99 +/- 0.00 0.30 +/- 0.05
JAC 50 0.89 +/- 0.00 82.73 +/- 67.41

Langevin 50 1.77 +/- 0.01 0.24 +/- 0.01
GAUSS 150 1.83 +/- 0.01 0.31 +/- 0.04

JAC 150 2.66 +/- 0.00 5.89 +/- 1.07
Langevin 150 5.28 +/- 0.01 0.35 +/- 0.02
GAUSS 400 3.91 +/- 0.01 0.31 +/- 0.04

JAC 400 7.13 +/- 0.02 3.41 +/- 1.04
Langevin 400 14.06 +/- 0.04 0.43 +/- 0.02
GAUSS 1000 8.85 +/- 0.03 0.34 +/- 0.03

JAC 1000 17.69 +/- 0.07 7.33 +/- 5.41
Langevin 1000 35.08 +/- 0.15 0.47 +/- 0.02

Table 4: Sliced Wasserstein (sW) distance and total sampling time ∆t for the GMM toy problem with m = 10,
n = 32 and ϵ = 10−2 and number T of sampling steps. Mean and std over 5 different seeds.

To complete the robustness analysis, we include in Figures 8 and 9 results obtained for the Gaussian example
across all considered dimensions m ∈ [2, 4, 8, 10, 16, 32], number of observations n, and perturbations ϵ.
Figure 8 confirms the results of Figure 2 and additionally shows that JAC is less robust in higher dimensions
than GAUSS: for m > 4, it yields sW values outside the plot boundaries (and LANGEVIN already for m > 2).
Figure 9 shows the same results but compares the results obtained for the different noise levels ϵ, for each
algorithm separately. For one, it highlights the precision of JAC in the non-perturbed case (ϵ = 0) and its
instability otherwise. On the other hand, it emphasizes the superior robustness of GAUSS to noise, especially
for medium noise level (ϵ = 0.01) and in high dimensions.

31

Published in Transactions on Machine Learning Research (02/2026)

Figure 8: Sliced Wasserstein (sW) distance as a function of the number of observations n for each algorithm
(GAUSS, JAC and LANGEVIN) and with different levels of ϵ. Results are shown for the Gaussian example in
several dimensions m ∈ [2, 4, 8, 10, 16, 32]. Mean and std over 5 different seeds.

32

Published in Transactions on Machine Learning Research (02/2026)

Figure 9: Sliced Wasserstein (sW) distance as a function of the number of observations n for different levels
of ϵ, for each algorithm (GAUSS, JAC and LANGEVIN). Results are shown for the Gaussian example in several
dimensions m ∈ [2, 4, 8, 10, 16, 32]. Mean and std over 5 different seeds.

33

Published in Transactions on Machine Learning Research (02/2026)

H Additional results for SBI benchmarks

We here include more detailed results for the three SBI benchmark tasks from Section 4.2. As a complement
to the sliced Wassersetin (sW), we report results obtained for the Maximum Mean Discrepancy (MMD) and
the Classifier-Two-Sample Test (C2ST) metrics from the sbibm package, respectively in Appendix H.2 and
H.3. The results for sW are also included in Appendix H.1.

Tables 5, 6 and 7 summarize the results obtained for all metrics, for the three benchmark tasks respectively.
In bold are displayed the smallest values for the considered metric and number of observations n. This
highlights that the approximate posterior samples obtained with our methods (GAUSS and JAC) are closest to
the true posterior samples, in particular for n > 1. In red we mark the highest value for each metric across
all methods and number of i.i.d. observations n. This highlights that LANGEVIN performs significantly worse,
especially as the number of observations n increases (n = 30), and this for all considered metrics.

The results in this section highlight an interesting point: increasing distance values (i.e. degradation of
performance) for higher n, which is particularly well shown for the MMD and C2ST metric in Figures 14
and 16 respectively. This can be explained by the accumulation of approximation errors, as we sum over n
evaluations of the score model to obtain the tall posterior score for n observations. We refer the reader to
Appendix L.2, which investigates a possible solution to this issue: partially factorized score-based posterior
sampling algorithms, such as PF-NPSE proposed by (Geffner et al., 2023).

The tables also point out the differences between the metrics, each providing complementary information
about the statistical validity of the approximate posterior. For instance, sW is known to capture well the
geometric features of the underlying distribution but struggles in higher dimensions. MMD allows to analyze
correlations in higher dimensions, but is known to fail for example in multi-modal settings. C2ST is a measure
that captures all kinds of inconsistencies, but this means that it can quickly yield very high values and can be
“too discriminative”. It also means that C2ST is less informative if the goal is to analyze specific statistical
features. The three benchmark examples each have different posterior structures, as shown in Figure 10
which enables to illustrate these differences in a more detailed analysis of the results from Tables 5, 6 and 7.

SLCP - Table 5. This is a hard example for which the posterior has 4 modes in a 5-dimensional parameter
space. The general difficulty of this task is shown with C2ST, with high scores across all methods and
number of observations n (C2ST= 0.7 for n = 1 for all methods and increases rapidly for n > 1). Here MMD
is uninformative (low scores everywhere), while sW effectively captures the approximation errors due to the
multi-modal structure of the posterior.

Lotka-Volterra (LV)- Table 6. The posterior has a single mode and lives in a 4-dimensional parameter
space. The difficulty of this task is to be accurate in every dimension and to concentrate around the true
parameters as n increases. Again, C2ST is high for all methods and all n. MMD completes the analysis by
effectively capturing the accumulation of errors as n increases. This time sW is uninformative (small scores
everywhere) as there is no specific geometric structure like multi-modality in the SLCP example.

SIR - Table 7. The posterior has only one mode and lives in a 2-dimensional parameter space. This
task is simpler as shown by the C2ST scores that start low (0.6 for n = 1). Like in LV, MMD reflects
the accumulation error as n increases and sW is uninformative given the lack of difficult geometry in the
posterior distribution.

34

Published in Transactions on Machine Learning Research (02/2026)

sW MMD C2ST
n 1 14 30 1 14 30 1 14 30

GAUSS 0.31
+/-
0.10

0.37
+/-
0.11

0.40
+/-
0.13

0.02
+/-
0.02

0.02
+/-
0.02

0.02
+/-
0.01

0.70
+/-
0.08

0.92
+/-
0.06

0.95
+/-
0.05

JAC-clip 0.31
+/-
0.09

0.47
+/-
0.08

0.51
+/-
0.10

0.02
+/-
0.02

0.02
+/-
0.01

0.02
+/-
0.01

0.70
+/-
0.07

0.89
+/-
0.07

0.94
+/-
0.06

LANGEVIN-clip 0.31
+/-
0.11

0.56
+/-
0.17

0.81
+/-
0.26

0.02
+/-
0.02

0.05
+/-
0.05

0.10
+/-
0.07

0.70
+/-
0.08

0.92
+/-
0.06

0.97
+/-
0.03

Table 5: Results for SLCP for Ntrain = 3.104. Mean and std over 25 parameters θ⋆ ∼ λ(θ).

sW MMD C2ST
n 1 14 30 1 14 30 1 14 30

GAUSS 0.005
+/-
0.004

0.004
+/-
0.005

0.005
+/-
0.005

0.05
+/-
0.07

0.20
+/-
0.23

0.31
+/-
0.21

0.77
+/-
0.10

0.93
+/-
0.04

0.96
+/-
0.03

JAC-clip 0.005
+/-
0.004

0.01
+/-
0.007

0.007
+/-
0.005

0.05
+/-
0.07

0.26
+/-
0.47

0.40
+/-
0.38

0.76
+/-
0.10

0.94
+/-
0.07

0.97
+/-
0.04

LANGEVIN 0.006
+/-
0.005

0.03
+/-
0.02

0.38
+/-
0.18

0.15
+/-
0.10

0.61
+/-
0.23

0.63
+/-
0.12

0.85
+/-
0.07

0.99
+/-
0.02

1.00
+/-
0.00

Table 6: Results for LV for Ntrain = 3.104. Mean and std over 25 parameters θ⋆ ∼ λ(θ).

sW MMD C2ST
n 1 14 30 1 14 30 1 14 30

GAUSS 0.001
+/-
0.001

0.002
+/-
0.001

0.002
+/-
0.001

0.007
+/-
0.007

0.23
+/-
0.16

0.38
+/-
0.25

0.57
+/-
0.03

0.78
+/-
0.07

0.86
+/-
0.07

JAC-clip 0.001
+/-
0.001

0.002
+/-
0.001

0.002
+/-
0.001

0.006
+/-
0.005

0.08
+/-
0.09

0.21
+/-
0.09

0.58
+/-
0.03

0.75
+/-
0.07

0.84
+/-
0.06

LANGEVIN 0.001
+/-
0.001

0.01
+/-
0.006

0.07
+/-
0.02

0.018
+/-
0.018

0.56
+/-
0.25

0.73
+/-
0.03

0.63
+/-
0.04

0.93
+/-
0.12

1.00
+/-
0.00

Table 7: Results for SIR for Ntrain = 3.104. Mean and std over 25 parameters θ⋆ ∼ λ(θ).

35

Published in Transactions on Machine Learning Research (02/2026)

SL
C
P

LV
SI
R

Figure 10: Pairplots for SLCP, Lotka Volterra (LV) and SIR. 1D and 2D marginals for the true
(green, left) vs. approximate tall posterior samples obtained with GAUSS (blue, right) for a score model
trained on Ntrain = 3.104 samples and for n = 1, 14, 30 (dark to light colors) i.i.d. observations simulated for
a given parameter (black dots and dashed lines).

36

Published in Transactions on Machine Learning Research (02/2026)

H.1 Sliced Wasserstein distance

Figure 11: Sliced Wasserstein (sW) as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between the samples
obtained by each algorithm and the true tall posterior distribution p(θ | x⋆

1,n) (for n ∈ [1, 8, 14, 22, 30]).
Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

Figure 12: Sliced Wasserstein (sW) a function of n ∈ [1, 8, 14, 22, 30] between the samples obtained by each
algorithm and the true tall posterior distribution p(θ | x⋆

1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]). Mean and
std over 25 different parameters θ⋆ ∼ λ(θ).

37

Published in Transactions on Machine Learning Research (02/2026)

H.2 Maximum Mean Discrepancy

Figure 13: MMD as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between the samples obtained by each
algorithm and the true tall posterior distribution p(θ | x⋆

1,n) (for n ∈ [1, 8, 14, 22, 30]). Mean and std over 25
different parameters θ⋆ ∼ λ(θ).

Figure 14: MMD as a function of n ∈ [1, 8, 14, 22, 30] between the samples obtained by each algorithm and
the true tall posterior distribution p(θ | x⋆

1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]). Mean and std over 25
different parameters θ⋆ ∼ λ(θ).

38

Published in Transactions on Machine Learning Research (02/2026)

H.3 Classifier-Two-Sample Test

Figure 15: C2ST as a function of Ntrain ∈ [103, 3.103, 104, 3.104] between between the samples obtained by
each algorithm and the true tall posterior distribution p(θ | x⋆

1,n) (for n ∈ [1, 8, 14, 22, 30]). Mean and std
over 25 different parameters θ⋆ ∼ λ(θ).

Figure 16: C2ST as a function of n ∈ [1, 8, 14, 22, 30] between the samples obtained by each algorithm and
the true tall posterior distribution p(θ | x⋆

1,n) (for Ntrain ∈ [103, 3.103, 104, 3.104]) and the Dirac of the true
parameters θ⋆ used to simulate the observations x⋆

1,n. Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

39

Published in Transactions on Machine Learning Research (02/2026)

I Results for additional tasks from the SBI benchmark

To complete our empirical study, we added results for additional examples from the SBI benchmark (Lueck-
mann et al., 2021): Gaussian Linear, GMM, GMM (uniform)8, B-GLM/ (raw)9 and Two Moons. These new
results allows us to compare the performance of our proposal on other challenging situations, such as when
scaling to highly structured (e.g. multimodal) posteriors and high-dimensional observation spaces. Note
that these examples go a step further as compared to the experiments carried out by Geffner et al. (2023),
including non-Gaussian priors10. Figures 17, 18 and 19 respectively report the sW, MMD and C2ST as a
function of Ntrain. They all show that our algorithm outperforms the Langevin sampler, with smaller dis-
tance values everywhere but for the GMM (uniform) example. Interestingly, the certainly very discriminative
C2ST metric, shows that all three algorithms fail to infer the tall posterior for the Two Moons and B-GLM/
(raw) examples.

Figure 17: Results for additional benchmark examples. Sliced Wasserstein (sW) distance as a function
of Ntrain ∈ [103, 3.103, 104, 3.104] between between the samples obtained by each algorithm and the true
tall posterior distribution p(θ | x⋆

1,n) (for n ∈ [1, 8, 14, 22, 30]). Mean and std over 25 different parameters
θ⋆ ∼ λ(θ).

8same as GMM but with a Uniform prior.
9Bernoulli GLM with summary statics / high dimensional raw data.

10Note that this was already the case for SLCP with Uniform prior.

40

Published in Transactions on Machine Learning Research (02/2026)

Figure 18: Results for additional benchmark examples. MMD as a function of Ntrain ∈ [103, 3.103, 104, 3.104]
between between the samples obtained by each algorithm and the true tall posterior distribution p(θ | x⋆

1,n)
(for n ∈ [1, 8, 14, 22, 30]). Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

41

Published in Transactions on Machine Learning Research (02/2026)

Figure 19: Results for additional benchmark examples. C2ST as a function of Ntrain ∈ [103, 3.103, 104, 3.104]
between between the samples obtained by each algorithm and the true tall posterior distribution p(θ | x⋆

1,n)
(for n ∈ [1, 8, 14, 22, 30]). Mean and std over 25 different parameters θ⋆ ∼ λ(θ).

42

Published in Transactions on Machine Learning Research (02/2026)

J The Jansen and Rit Neural Mass Model (JRNMM)

J.1 The JRNMM as a system of stochastic differential equations

The JRNMM (Jansen & Rit, 1995) serves as an illustrative example from computational neuroscience in
Section 4.3. Specifically, we consider the implementation by Buckwar et al. (2019) of the stochastic version
of the JRNMM presented in (Ableidinger et al., 2017). In our experiments this model is simply presented as
a black-box simulator with four input parameters θ = (C, µ, σ, g) that outputs a signal x(t) = 10g/10, which
represent the EEG measurement of a brain signal s(t). We will now give insights into the inner workings
of this simulator, which are behind the generation of s(t), following the description provided in (Rodrigues
et al., 2021). The stochastic JRNMM models the interaction between excitatory and inhibitory neuronal
populations in the cortical column, described by a system of three coupled non-linear stochastic differential
equations, that can be written as a six-dimensional first-order stochastic differential system:

Ẋ0(t) = X3(t)
Ẋ1(t) = X4(t)
Ẋ2(t) = X5(t)
Ẋ3(t) =

(
Aa
(
µ3 + Sigm (X1(t)−X2(t))− 2aX3(t)− a2X0(t)

)
+ σ3Ẇ3(t)

Ẋ4(t) =
(
Aa
(
µ4 + C2 Sigm (C1X0(t))− 2aX4(t)− a2X1(t)

)
+ σ4Ẇ4(t)

Ẋ5(t) =
(
Bb
(
µ5 + C4 Sigm (C3X0(t))− 2bX4(t)− b2X2(t)

)
+ σ5Ẇ5(t)

(50)

The observed EEG measurement then corresponds to x(t) = 10g/10(X1(t)−X2(t)), where g is a gain factor
expressed in decibels. According to Jansen & Rit (1995), most of the parameters in 50 are expected to be
almost constant across different individuals and different experimental conditions, except for (C1, C2, C3, C4),
that represent connectivity, and µ4, σ4, the statistical parameters of the input signal from neighboring cortical
columns. Based on this assumption, Buckwar et al. (2019) propose a simplified implementation of the model
defined by a reduced set of four parameters θ = (C, µ, σ, g) where µ = µ4, σ = σ4 and all connectivity
parameters are related via C1 = C, C2 = 0.8 C, C3 = 0.25, C4 = 0.25. All other parameters in 50 are fixed
at their "constant" value.

J.2 Inference for the JRNMM

This section details some high level choices to perform inference on the JRNMM that is used to illustrate our
proposal on a real-world example. They are exactly the same as used in the experiments from the original
HNPE paper (Rodrigues et al., 2021).

Prior distribution. To avoid any bias due to misspecification issues, inference is often performed with
simple and rather uninformative prior. This ensures that the parameter space is sufficiently explored to
provide reliable results. In this work, the prior distribution is chosen to be Uniform over the range of
scientifically plausible parameter values (Rodrigues et al. (2021), Buckwar et al. (2019), Ableidinger et al.
(2017), Jansen & Rit (1995)):

C ∼ U(10, 250), µ ∼ U(50, 500), σ ∼ U(0, 5000), g ∼ U(−20, +20) . (51)

Summary Statistics. In traditional SBI methods, it is standard to use summary statistics to improve
the inference quality by reducing the dimensionality while describing sufficiently well the statistical features
of the data. When using neural density estimators, it is possible to learn these summary statistics with
specified embedding networks, such as LSTMS for time series data (Rodrigues & Gramfort, 2020). However,
for comparison purposes and enhanced clarity of our contributions, we stick to the summary statistics
traditionally used for neural time series data (Buckwar et al., 2019). They consist of the logarithm of the
power spectral density (PSD) of each observed time series. The PSD is evaluated in 33 frequency bins
between zero and 64 Hz (half of the sampling rate). This leads to a setting with 4 parameters to estimate
given observations defined in a 33-dimensional space.

43

Published in Transactions on Machine Learning Research (02/2026)

J.3 Validation results with ℓ-C2ST

In this section, we report results on the validity of the inferred posterior for the simplified version (3D) and
the full (4D) Jansen and Rit Neural Mass Model (JRNMM).

In both cases, we evaluate the accuracy of each posterior sampling algorithms (GAUSS, JAC and LANGEVIN)
w.r.t. the true tall posterior, using the local Classifier-Two-sample Test (ℓ-C2ST) diagnostic proposed by
Linhart et al. (2023) and implemented in the sbi toolbox. ℓ-C2ST is a frequentist hypothesis test that
evaluates the null hypothesis of sample equality between two conditional distributions by training a classifier
on data from the respective joint distributions. The test statistic takes values in [0, 0.25] and is defined by
the mean squared error (MSE) between the predicted class probabilities and one half, i.e. the chance level
where the classifier is unable to distinguish between the two data classes. Higher MSE values indicate more
distributional differences.

Figures 20a and 20b respectively show the ℓ-C2ST results for the 3D and 4D JRNMM cases, obtained
using the MLPClassifier from scikit-learn, with default parameters from the sbi implementation and
trained using 10 000 samples (Θi, Xi,1:n) from the joint distributions corresponding to the estimated and
true tall data posteriors. We report the mean and std over 5 different seeds used for the initialization of
the classifier. On the left, we plot the ℓ-C2ST statistics, computed on 10 000 samples of the approximate
posterior obtained by each sampling algorithms for a given observation set x⋆

1:n ∼ p(x | θ⋆). On the right,
we display the associated p-values computed by comparing the obtained statistics to the null hypothesis,
estimated over 100 trials. In both cases, the GAUSS algorithm consistently yields test statistics close to 0
and p-values above the significance level set at α = 0.05, which means that there is no evidence that the
estimated posterior is not statistically consistent with the true tall posterior at x⋆

1:n. This is not the case for
JAC, whose un-clipped version yields MSE values outside the plot limits and LANGEVIN, for which the test is
more easily rejected in the 3D case (large std on pvalues that overlap with the significance level) and very
clearly rejected in the 4D case for n > 14 (p-value below the significance level).

(a) Inference on the 3D JRNMM (fixed g = 0).

(b) Inference on the full (4D) JRNMM.

Figure 20: Accuracy of the sampling algorithms w.r.t. the true tall posterior. We show ℓ-C2ST statistics
(left) and corresponding p-values (right) computed for samples obtained with GAUSS, JAC and LANGEVIN at
x⋆

1:n for n ∈ [1, 8, 14, 22, 30]. Mean and std over 5 seeds.

44

Published in Transactions on Machine Learning Research (02/2026)

K Limitations of Langevin sampling

Sensibility to the quality of the score model. Our results in Section 4.1 analyze the robustness of
the different sampling algorithms and essentially show that the Langevin algorithm is very sensible to noisy
score networks.

Step-size choice. We found that different step sizes can generate very different results for a given score
model. Figure 21 shows a comparison between LANGEVIN — the unadjusted Langevin algorithm (ULA)
from (Geffner et al., 2023) used in all our experiments from Section 4 — and tamed ULA, an additional
implementation with tamed step sizes from (Brosse et al., 2017) as a means to stabilize ULA. We can see
that LANGEVIN quickly diverges as n increases. A possible explanation could be a learning rate that is too
large for settings with big n (i.e. not enough steps are done). We can see that the stabilization tools from the
tamed version yield a more stable ULA algorithm, but does not provide a satisfying solution either (lower
sW, but still diverges). Fundamentally, there exists a setting where the Langevin algorithm will work (small
enough learning rate, run for a long enough time), but this setting is extremely dependent of the problem at
hand. This is precisely the strength of our algorithm as compared to ULA: we do not need to sample several
times for each marginal pt at each time step t. Note that unfortunately, the code for (Geffner et al., 2023)
is not available, so our results are based in a best-effort attempt to reproduce the proposed algorithm.

Figure 21: Comparison between the LANGEVIN algorithm from (Geffner et al., 2023) (used in all our
experiments) and a more stable tamed ULA version with tamed step size from (Brosse et al., 2017).
The plots show the sliced Wasserstein (sW) w.r.t. the true tall posterior p(θ | x⋆

1:n) as a function of
Ntrain ∈ {103, 3.103, 104, 3.104} and for n ∈ {1, 8, 14, 22, 30}.

45

Published in Transactions on Machine Learning Research (02/2026)

L Extensions: classifier-free guidance and partial factorization

The implementation of both of these extensions can be found in our Code repository: https://github.com/
JuliaLinhart/diffusions-for-sbi. Their performance was investigated on the three benchmarks from
Section 4.2: Lotka-Volterra, SLCP and SIR.

L.1 Classifier-free guidance

It is possible to implicitly learn the prior score via the classifier-free guidance (CFG) approach (Ho &
Salimans, 2021), which essentially consists in randomly dropping the context variables when training the
posterior score model (e.g. 20% of the time). This is useful in cases where the diffused prior score cannot
be computed analytically. Figure 22 displays the sliced Wasserstein (sW) distance as a function of Ntrain
and compares the results obtained for GAUSS with the learned vs. the analytical prior score (GAUSS (CFG)
vs. GAUSS). We also report the results obtained for the Maximum Mean Discrepancy (MMD) and Classifier-
Two-Sample Test (C2ST) accuracy in Figure 23b. The results are highly accurate for the Log-Normal priors
of Lotka-Volterra and SIR, but less satisfying for the Uniform prior in SLCP. We think that this is caused
by the discontinuities of the Uniform distribution. In summary it seems that, under some smoothness
assumptions, is indeed possible to learn the prior score via the classifier-free guidance approach.

Figure 22: Results obtained for GAUSS with the learned vs. the analytical prior score (GAUSS (CFG) vs.
GAUSS). sW w.r.t. the true tall posterior p(θ | x⋆

1:n) as a function of Ntrain ∈ {103, 3.103, 104, 3.104} and for
n ∈ {1, 8, 14, 22, 30}.

46

https://github.com/JuliaLinhart/diffusions-for-sbi
https://github.com/JuliaLinhart/diffusions-for-sbi

Published in Transactions on Machine Learning Research (02/2026)

(a) Maximum Mean Discrepancy (MMD).

(b) Classifier-Two-Sample Test (C2ST) accuracy.

Figure 23: Results obtained for GAUSS with the learned vs. the analytical prior score (GAUSS (CFG)
vs. GAUSS). MMD and C2ST w.r.t. the true tall posterior p(θ | x⋆

1:n) as a function of Ntrain ∈
{103, 3.103, 104, 3.104} and for n ∈ {1, 8, 14, 22, 30}.

47

Published in Transactions on Machine Learning Research (02/2026)

L.2 Partial factorization (PF-NPSE)

In the same way as in (Geffner et al., 2023), our proposed algorithm can naturally be extended to a partially
factorized version. Specifically, it consists in approximating the tall posterior by factorizing it over batches
of context observations (instead of a single x). To do so, the score model is modified to take as input context
sets with variable sizes (between 1 and nmax). The given sampling algorithm (e.g. GAUSS, LANGEVIN) is then
modified to split the context observations x⋆

1, . . . , x⋆
n into subsets of smaller size k < nmax < n, before passing

them to the trained score model. This approach should allow for a good trade-off between the accumulation
of approximation errors due to multiple evaluations of the score model (n/nmax times) and the increased
simulation budget (×nmax). This approach should allow for a good trade-off between the accumulation
of approximation errors due to multiple evaluations of the score model (n/nmax times) and the increased
simulation budget (×nmax).

We investigated the performance of PF-NPSE on the SBI benchmarks (Lotka-Volterra, SIR and SLCP). For
each of the three examples we trained a PF-NPSE model targeting the score models for the law of θ given
x1:nmax for nmax ∈ {1, 3, 6, 30}. Figure 24 displays the sliced Wasserstein (sW), Maximum Mean Discrepancy
(MMD) and the Classifier-Two-Sample Test (C2ST) accuracy for n = 30 observations as a function of the
Ntrain for samples obtained with the partially factorized LANGEVIN and GAUSS samplers and for all nmax. The
extreme case nmax = 1 corresponds to the original "fully" factorized version of the samplers. nmax = n = 30
correspond to the other extreme case with no factorization, but maximum simulation budget. We can see
that the optimal sW values lie in the middle of the spectrum (i.e. for nmax = 3, 6), which corresponds to
what was concluded in (Geffner et al., 2023). Note that the performance of LANGEVIN is drastically improved
for nmax > 1, while GAUSS all results are close. In any case, the results suggest that a practitioner will gain
in choosing (a small enough) nmax > 1.

Figure 24: Results obtained with the partially factorized LANGEVIN and GAUSS samplers to infer the tall
posterior conditioned on a total number of observations n = 30, for nmax = 1, 3, 6, 30. We report the
sliced Wasserstein (sW), Maximum Mean Discrepancy (MMD) and the Classifier-Two-Sample Test (C2ST)
accuracy w.r.t. the true tall posterior p(θ | x⋆

1:n) as a function of Ntrain ∈ {103, 3.103, 104, 3.104}. The
extreme case nmax = 1 corresponds to the original "fully" factorized version of the samplers. nmax = n = 30
correspond to the other extreme case with no factorization, but maximum simulation budget. We can see
that the optimal distance values lie in the middle of this spectrum (i.e. for nmax = 3, 6).

48

Published in Transactions on Machine Learning Research (02/2026)

M Comparison with the deterministic sampler from Geffner et al. (2023)

M.1 Theoretical comparison

The alternative sampler proposed in Geffner et al. (2023) (Appendix D) builds a Markov chain for the
tall posterior by composing the reverse kernels associated with each individual posterior. They follow the
approach from Sohl-Dickstein et al. (2015) to approximately sample from a product of distributions, each
associated to an independent diffusion process. Concretely, if

q
(j)
t−1|t(θt−1 | θt) ≈ N

(
µ

(j)
t (θt), (1− αt)I

)
(52)

denotes the learned reverse kernel for xj , the proposed algorithm performs a reverse step of the form

θt−1 ∼ N
(
µt(θt, x1:n), σ2

t I
)

, (53)

where µt is the average over all individual means plus a heuristic prior correction, and all observations share
the same scalar variance σ2

t = 1−αt

n−αt(n−1) . This transition is therefore not derived as the reverse process
of a single diffusion whose marginals match the tall posterior, but rather defines a surrogate Markov chain
intended to approximate it.

Our approach instead samples backward from the single diffusion process whose marginals satisfy

pt(θt | x1:n) ∝
∫

λ(θ0)1−n
n∏

j=1
p(θ0 | xj) qt|0(θt | θ0) dθ0 , (54)

and then approximates its reverse process through a Tweedie approximation of each backward kernel

q
(j)
0|t (θ0 | θt) ≈ N

(
µ

(j)
t (θt), Σt,j(θt)

)
with Σt,j(θt) = 1− αt√

αt
∇µ

(j)
t (θt) , (55)

where µ
(j)
t (θt) = 1√

αt
(θt + (1− αt)∇θt

log pt(θt | xj)). This yields our approximate score

∇θt
log pt(θ | x1:n) ≈ Λ(θt)−1

 n∑
j=1

Σ−1
t,j (θt)∇θt

log pt(θt | xj) + (1− n) Σ−1
t,λ(θt)∇θt

log pλ
t (θt)

 , (56)

with Λ(θ) =
∑n

j=1 Σ−1
t,j (θ) + (1− n) Σ−1

t,λ(θ) and assumed constant covariances, as explained in Section 3.2.

We therefore have the score of the marginal density of an actual known forward diffusion process and can thus
run a DDIM sampler along the corresponding reverse-time dynamics. Importantly, the backward covariance
matrices in q0|t include important information about these dynamics (via the score) and can be different for
each individual posterior. In contrast, the sampler in Geffner et al. (2023) uses a fixed transition covariance
σ2

t I, enforcing isotropic contraction that does not reflect posterior geometry. We do acknowledge that more
approximations come into play when we assume the covariances to be constant (and compute them following
the GAUSS or JAC algorithms). But they seem more subtle than just defining isotropic covariances as in the
sampler from Geffner et al. (2023) (Appendix D) and adding a prior correction term.

For example, take the case where each posterior and the prior are Gaussian (Appendix D). Our approximation
recovers the exact tall-posterior precision (and score). The sampler proposed in Geffner et al. (2023) does
not, unless all covariances are isotropic.

In short, both methods make Gaussian approximations when computing the backward transitions, but not
at the same level. Ours is structurally closer to the true reverse diffusion, enabling DDIM sampling, correct
posterior contraction, and exactness in the Gaussian limit. Note that both methods can be equivalent if each
individual posterior and the prior are Gaussian with isotropic covariance matrix (or the parameter space is
one-dimensional).

49

Published in Transactions on Machine Learning Research (02/2026)

M.2 Empirical Comparison

We compare GAUSS, JAC, and LANGEVIN with the deterministic sampler from Geffner et al. (2023) (Appendix
D), referred to as DET_GEF, on the toy models from Section 4.1 and the benchmark tasks from Section 4.2.11

The implementation for this new sampler and instructions to reproduce the following experiments can be
found in our Code repository: https://github.com/JuliaLinhart/diffusions-for-sbi.

Runtime. Table 8 extends the speed-up comparison from Table 2 for the Gaussian toy example. It shows
that DET_GEF is consistently the fastest sampler in our experiments, followed by GAUSS and JAC. For the
remaining experiments, we again consider the equivalent time setting with 400 and 1000 steps for JAC /
LANGEVIN and DET_GEF / GAUSS respectively.

m Speed up GAUSS Speed up JAC Speed up DET_GEF
2 0.39 ± 0.04 0.45 ± 0.00 0.22 ± 0.00
4 0.37 ± 0.01 0.45 ± 0.00 0.22 ± 0.00
8 0.37 ± 0.01 0.46 ± 0.00 0.22 ± 0.00
10 0.37 ± 0.01 0.45 ± 0.00 0.22 ± 0.00
16 0.37 ± 0.01 0.49 ± 0.01 0.22 ± 0.00
32 0.37 ± 0.01 0.52 ± 0.01 0.21 ± 0.00

Table 8: Ratio of the runtime for GAUSS, JAC, and DET_GEF w.r.t. LANGEVIN for the Gaussian example in
different dimensions m. Averaged over the number of steps T ∈ {50, 150, 400, 1000}, different noise levels
ϵ ∈ {0, 10−3, 10−2, 10−1} and the number of observations n ∈ [1, 100]. Mean and std over 5 different seeds.

Accuracy and stability. Figure 25 shows the empirical results obtained for the Gaussian toy examples
from Section 4.1. In the Gaussian example, GAUSS achieves the best performance across noise levels, as
the Gaussian approximation is exact in this case. JAC is also exact, but less stable when noise increases.
DET_GEF remains close but shows a consistent gap, since it relies on a surrogate chain with fixed isotropic
variance and is therefore not exact in this example where the covariance is not isotropic. As n increases,
DET_GEF and LANGEVIN improve and become closer in performance, consistent with posterior concentration:
the tall posterior becomes increasingly unimodal with small variance (Bernstein–von Mises), making DET_GEF
a better approximation and LANGEVIN easier to converge.

For GMM, LANGEVIN, JAC, and DET_GEF outperform GAUSS in low-noise regimes. In particular as n grows, all
methods become highly accurate, except GAUSS whose approximation gap remains visible. However, GAUSS
remains the most stable method in the most noisy regime (ϵ = 0.1), where LANGEVIN and DET_GEF degrade
more strongly, and JAC diverges strongly, with sW values outside the plot limits.

We now move on to the sbi-benchmark tasks from Section 4.2, where the score is learned and imperfect, and
compositional evaluation across observations causes error accumulation as n increases. Results are shown
in Figure 26. In this regime, LANGEVIN and DET_GEF diverge as Ntrain grows: the learned score becomes
more confident while retaining small systematic bias, which is amplified by posterior contraction. DET_GEF is
particularly sensitive since its approximation relies directly on the composed backward mean, which depends
on the learned score. In contrast, GAUSS more closely approximates the reverse diffusion dynamics of the tall
posterior and remains significantly more stable, consistent with its robustness in the noisy GMM toy regime.
JAC with clipping is promising but still biased.

Overall, these additional experiments confirm our main conclusions: LANGEVIN is the computationally most
expensive and least stable method. DET_GEF provides a useful fast deterministic (i.e. that does not rely on
Langevin dynamics) baseline, but GAUSS, and stable variants of JAC, offer the most reliable sampling behavior
in realistic learned-score tall-data benchmarks.

11Note that the results for GAUSS, JAC, and LANGEVIN may slightly differ from those reported in the main text, as the experiments
were rerun from scratch and minor variations can arise from different random seeds and GPU configurations.

50

https://github.com/JuliaLinhart/diffusions-for-sbi

Published in Transactions on Machine Learning Research (02/2026)

DET_GEF (1000)
GAUSS (1000)
JAC (400)
LANGEVIN (400)

Figure 25: Sliced Wasserstein (sW) distance as a function of n and for increasing noise levels ϵ. Results are
shown for both Gaussian toy examples with m = 10. Mean and std over 5 different seeds.

0.0

0.5

1.0

1.5

2.0

S
LC
P

sW

n = 1 n = 8 n = 14 n = 22 n = 30

0.00

0.01

0.02

0.03

0.04

Lo
tk
a-
Vo
lt
er
ra

sW

10 3 10 4

Ntrain

0.000

0.002

0.004

0.006

0.008

S
IR sW

10 3 10 4

Ntrain
10 3 10 4

Ntrain
10 3 10 4

Ntrain
10 3 10 4

Ntrain

GAUSS/-clip
JAC-clip
LANGEVIN/-clip

DET_GEF/-clip

Figure 26: Sliced Wasserstein (sW) distance as a function of Ntrain and for increasing n, for the benchmark
tasks SLCP, Lotka-Volterra, and SIR. Mean and std over 25 seeds.

Takeaway:

• GAUSS is the most stable sampler, with the best results in highly noisy regimes or for learned scores
(sbibm), even if its approximation appears to be less accurate than JAC or DET_GEF in the non-
Gaussian (GMM) setting (for exact non-noisy scores).

• JAC is the most accurate method in the noise-free setting across both toy tasks, but remains unstable
in practice. Clipping improves stability but introduces bias. A more principled stabilisation (beyond
clipping) could yield further improvements and could be a promising research direction.

• DET_GEF is fastest and competitive with our proposals, even outperforming GAUSS on GMM in the
low-noise regime as n grows. However, it is still less stable than GAUSS as noise increases or in the
learned score regime (sbibm), with similar behavior to LANGEVIN.

51

Published in Transactions on Machine Learning Research (02/2026)

M.3 Clarifying Langevin behavior across settings

Noise-free toy regime. Figure 25 shows an interesting trend: LANGEVIN improves as n increases. This
could be explained by the fact that, as n grows, the tall posterior becomes sharply concentrated and locally
Gaussian (Bernstein–von Mises), making the sampling dynamics easier to handle with an appropriate step
size, whereas for small n the broader posterior would require more careful mixing (larger step sizes or more
inner steps).

Noisy toy and learned-score regime. Figure 26 in contrast, shows that performance degrades with
increasing n (especially at large Ntrain). This is probably because small score approximation errors accumu-
late across composed observations and are amplified by posterior contraction, leading to biased concentrated
estimates and divergence. The fact that DET_GEF exhibits similar instability indicates that this behavior is
not merely a Langevin tuning issue, but rather an intrinsic sensitivity of samplers whose updates rely di-
rectly on the composed learned scores, making them highly vulnerable to accumulated bias in concentrated
regimes. In contrast, GAUSS and JAC approximate the tall reverse diffusion dynamics more explicitly through
diffusion-consistent backward-kernel constructions and associated covariance structure, which provides ad-
ditional stabilization and yields more robust behavior under imperfect learned scores.

52

	Introduction
	Background
	Score based generative models (SBGM)
	Neural Posterior Score Estimation (NPSE)
	Factorized Neural Posterior Score Estimation (F-NPSE)

	Diffusion Posterior Sampling for tall data
	Exact computation of the tall data posterior score
	Second order approximation of the backward diffusion process
	Algorithms

	Experiments
	Gaussian toy models
	Benchmark SBI examples
	Inverting a non-linear model from computational neuroscience

	Conclusion
	Proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2

	Influence of the correction term
	Denoising Diffusion Implicit Models (DDIM)
	Analytical formulas for score and related quantities
	Gaussian case
	Mixture of Gaussians case
	Score of the diffused Log-Normal prior
	Score of the diffused Uniform prior

	Experimental Setup
	Loss functions, training strategy and model selection
	Additional results for the toy models
	Additional results for SBI benchmarks
	Sliced Wasserstein distance
	Maximum Mean Discrepancy
	Classifier-Two-Sample Test

	Results for additional tasks from the SBI benchmark
	The Jansen and Rit Neural Mass Model (JRNMM)
	The JRNMM as a system of stochastic differential equations
	Inference for the JRNMM
	Validation results with -C2ST

	Limitations of Langevin sampling
	Extensions: classifier-free guidance and partial factorization
	Classifier-free guidance
	Partial factorization (PF-NPSE)

	Comparison with the deterministic sampler from Geffner2023
	Theoretical comparison
	Empirical Comparison
	Clarifying Langevin behavior across settings

