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ABSTRACT

Video Large Language Models (Vid-LLMs) have rapidly advanced video under-
standing, yet their robustness against semantic adversarial manipulation, espe-
cially object hallucination, remains largely unexplored. We introduce Adversarial
Object Hallucination (AOH), a novel attack that compels Vid-LLMs to “see” non-
existent objects in videos by injecting visually imperceptible perturbations. Un-
like prior attacks limited to inputs or outputs of videos, AOH directly manipulates
intermediate connector features, aligning them with representations from a target
video to induce controllable hallucinations. To systematically assess this threat,
we curate a benchmark of 535 clean/target video pairs with high-quality VQA
annotations. Extensive experiments show that AOH poses a severe threat to state-
of-the-art Vid-LLMs, achieving highly effective attacks with alarming cross-scale
transferability: adversarial examples optimized on smaller models transfer even
more strongly to larger counterparts of the same architecture, amplifying attack
impact while reducing adversarial cost. Further analyses reveal that perturbations
encode semantic object contours, while Grad-CAM highlights their covert influ-
ence. These findings expose a severe and previously overlooked vulnerability in
Vid-LLMs, raising urgent concerns about their secure deployment and providing
a foundation for future adversarial research in video-language modeling.

1 INTRODUCTION

In recent years, with the rapid advancements in deep learning, multimodal large models, especially
Video Large Language Models (Vid-LLMs), have demonstrated unprecedented capabilities in un-
derstanding and reasoning about video content. By integrating powerful vision encoders with large
language models, these models can perform semantic analysis of complex video events, answer
open-ended questions, and generate detailed descriptions, showcasing immense potential in critical
domains such as autonomous driving, intelligent surveillance, and content creation. Prominent ex-
amples include models like Video-ChatGPT (Maaz et al., 2024), VideoLLaMA (Zhang et al., 2023;
Cheng et al., 2024; Zhang et al., 2025a), and InternVL (Chen et al., 2023).

However, the powerful capabilities of these models are accompanied by growing concerns regard-
ing their security and robustness. In the image domain, adversarial attacks have become a mature
research area, where attackers can induce models to make erroneous classifications, detections, or
interpretations by adding subtle, often imperceptible, perturbations to images (Zhao et al., 2023;
Hu et al., 2025; Wang et al., 2024; Zhang et al., 2025b). Despite this, the adversarial robustness
of Vid-LLMs, particularly against semantic adversarial attacks that induce models to “see” specific,
non-existent objects (i.e., object hallucination), remains a largely unexplored frontier in the dynamic
and high-dimensional video domain. The temporal coherence and high dimensionality of video data
pose unique challenges for generating adversarial examples, making existing image attack methods
difficult to directly extend. This under-explored vulnerability, if exploited maliciously, could lead to
severe consequences in critical applications MacLeod et al. (2017), such as misidentifying obstacles
in autonomous driving systems or generating false alarms in security surveillance.

To bridge this critical gap, we propose Adversarial Object Hallucination (AOH), a novel adversarial
attack. AOH aims to mislead Vid-LLMs into erroneously perceiving and reporting specific, non-
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existent target objects within a video by introducing visually subtle perturbations to clean videos.
Unlike prior attacks that directly manipulate the model’s final output, our method uniquely fo-
cuses on manipulating the intermediate “Connector” feature representations within Vid-LLMs. We
achieve this by aligning the intermediate features of an adversarial video with features derived from
a pre-defined target video containing the desired object, thereby implanting the target object’s se-
mantic information deep within the model’s internal representations.

To address the challenge of a lack of dedicated benchmark datasets for such attack tasks, we meticu-
lously curate a comprehensive multi-source dataset. This dataset comprises 535 pairs of clean/target
videos, rigorously annotated with Visual Question Answering (VQA) pairs, providing a robust foun-
dation for comprehensively evaluating the vulnerability of Vid-LLMs to adversarial object halluci-
nation attacks.

Concentrating on adversarial visual inputs, our work is distinct from previous adversarial attacks in
two key aspects:

• Attack Objective: Our AOH attack aims to induce the fabrication of non-existent semantic con-
tent (i.e., object hallucination) within Vid-LLMs’ understanding, leading to erroneous perceptions
of objects that are not truly present. This fundamentally differs from traditional adversarial objec-
tives like misclassification of existing objects, triggering harmful text outputs, or bypassing safety
alignments. We focus on injecting a specific, fabricated visual semantic concept.

• Attack Mechanism and Efficiency: We achieve this through a intermediate feature alignment
strategy, directly manipulating the high-level multimodal representations within the Vid-LLM’s
“Connector”. Crucially, our findings reveal an alarming cross-scale transferability: adversarial
examples generated for smaller models not only transfer successfully but often achieve superior
attack performance on larger, more complex Vid-LLMs of the same architecture. This implies
a potentially more efficient and lower-cost attack paradigm, as adversaries could target smaller,
more accessible models to compromise larger, deployed systems.

In summary, our work not only uncovers a severe and insidious vulnerability in the semantic ad-
versarial robustness of Vid-LLMs but also provides a pioneering framework for evaluating and un-
derstanding this vulnerability. Our findings emphasize the urgent need for developing Vid-LLMs
with more robust internal representations and lay a foundational framework for future research in
adversarial machine learning and multimodal AI safety. Our main contributions are as follows:

• We systematically investigate adversarial object hallucination in Vid-LLMs, revealing these mod-
els’ susceptibility to semantic adversarial attacks in the video domain.

• We propose AOH, a novel attack method, which manipulates the intermediate “Connector” fea-
ture representations of Vid-LLMs to generate visually subtle adversarial video perturbations that
efficiently induce precise object hallucinations.

• We construct and release the comprehensive benchmark dataset for video object hallucination
attacks. This dataset includes 535 high-quality clean/target video pairs with rigorous VQA anno-
tations, and due to its unique construction, it also holds potential value for related video editing
tasks such as object removal.

• We conduct in-depth analyses of AOH’s stealthiness. Using explainability tools like GradCAM,
we confirm that the models’ attention remains focused on naturally occurring regions in the video,
rather than aberrantly on the hallucinated regions, when subjected to AOH attacks.

2 RELATED WORK

2.1 VIDEO LARGE LANGUAGE MODELS

The rapid advancements in Large Language Models (LLMs) such as GPT (Brown et al., 2020) and
LLaMA (Touvron et al., 2023) have revolutionized natural language processing. This success has
naturally extended to multimodal domains, leading to the development of Vision-Language Models
(VLMs) that integrate visual information with text, exemplified by LLaVA (Liu et al., 2023) and
MiniGPT-4 (Zhu et al., 2024). Building upon VLMs, Video LLMs (Vid-LLMs) further incorporate
temporal dynamics to understand and reason about video content. These models typically consist
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of a visual encoder (e.g., based on ViT or CLIP), a connector module to project visual features into
the language model’s embedding space, and a large language model (LLM) for conversational un-
derstanding and response generation. Prominent Vid-LLMs include Video-ChatGPT (Maaz et al.,
2024), VideoLLaMA (Zhang et al., 2023; Cheng et al., 2024; Zhang et al., 2025a), InternVL (Chen
et al., 2023), and LLaVA-OneVison (Li et al., 2025). These models excel in tasks such as video
question answering (VQA) and video captioning, demonstrating sophisticated spatio-temporal rea-
soning capabilities. Current research primarily focuses on enhancing their performance, efficiency,
and generalization across diverse video tasks.

2.2 ADVERSARIAL ROBUSTNESS OF LARGE MODELS

Adversarial attacks aim to mislead machine learning models by introducing subtle, often impercep-
tible, perturbations to their inputs. This field originated with attacks against image classification
models, demonstrating vulnerabilities through techniques like FGSM (Goodfellow et al., 2015) and
PGD (Madry et al., 2018). Extensive research has since focused on both developing novel attacks
and designing robust defenses in computer vision.

The concept of adversarial robustness has also been extended to other modalities. In Language Mod-
els (LLMs), attacks typically involve textual perturbations such as typos, paraphrasing, or prompt
engineering to induce factual errors, sentiment shifts, or jailbreaking behaviors (Zou et al., 2023; Yi
et al., 2024; Jin et al., 2024). The focus here is often on semantic shifts and maintaining fluency
while causing misinterpretation.

With the rise of multimodal models, robustness research has naturally expanded. Initial efforts
investigated adversarial attacks against Vision-Language Models (VLMs), primarily in image-text
scenarios (Zhou et al., 2024). These attacks aim to deceive VLMs in tasks like image captioning or
visual question answering by perturbing images or text inputs, or both simultaneously. For instance,
some work explores targeted attacks to make VLMs return predefined responses or misinterpret
image content (Zhao et al., 2023; Hu et al., 2025; Wang et al., 2024; Zhang et al., 2025b). While
these studies highlight vulnerabilities in multimodal understanding, they predominantly focus on
static image-text inputs or broader unimodal attacks. Critically, although recent works have begun to
address specific attacks on video-based models (Li et al., 2024; Huang et al., 2025), the adversarial
robustness of Vid-LLMs, particularly concerning semantic manipulations such as inducing object
hallucination within video sequences, remains a nascent and significantly under-explored area. Our
work fills this gap by specifically targeting Vid-LLMs with semantic object hallucination attacks.

3 DATASET CONSTRUCTION

The task of adversarial object hallucination in Vid-LLMs necessitates a specialized dataset compris-
ing clean video, target video, and corresponding ground-truth information such as object masks and
VQA pairs. However, such a comprehensive benchmark is currently unavailable. To address this
critical data scarcity and enable robust evaluation, we meticulously curate a multi-source benchmark
dataset. This section details our data collection strategies, human annotation processes, and VQA
generation methodology.

Our ideal approach to construct video pairs involves professionally adding realistic entities into clean
videos to obtain (clean video, target video, target mask) triplets. While this offers high fidelity, it
is technically demanding and highly time-consuming. To maximize data acquisition efficiently, we
adopt a multi-pronged strategy: (1) leveraging existing public datasets that contain original and ma-
nipulated videos; (2) judiciously employing professional video editing for specific scenarios; and (3)
ingeniously utilizing a “reverse thinking” approach by treating videos with existing objects as “target
videos” and applying object removal techniques to generate corresponding ”clean videos.” This last
strategy significantly expands our data pool, provided the removal quality is visually convincing.

3.1 DATA SOURCES

We integrate and refine videos from four distinct sources to build our comprehensive dataset:

• HQVI Dataset (Cho et al., 2025): This dataset provides high-quality, realistic Video Inpainting
(VI) benchmark videos, synthesized by compositing objects from VideoMatte240K (Lin et al.,
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2021) onto real-world Pexels videos using fine alpha mattes. HQVI offers multiple resolutions;
considering that most video models compress resolution, we selected the 480P version, which
suffices for most experimental model requirements. This dataset supplies 10 videos.

• ROVI Dataset (Wu et al., 2024): ROVI is a pioneering dataset for object removal, containing
triplets of original videos, removal expressions, and inpainted videos. For our “reverse think-
ing” approach, we treat the original videos as “target videos” and the inpainted videos as ”clean
videos.” To ensure the highest visual realism for our “clean” videos (i.e., successfully removed ob-
jects), we introduced a rigorous human evaluation process. Three human annotators independently
scored each inpainted video on a 5-point scale (with 5 being the best) across four dimensions: 1)
Spatial Coherence / Visual Realism, 2) Temporal Consistency, 3) Artifact Severity, and 4) Overall
Removal Quality. We aggregated scores from the three annotators and filtered for high-quality
videos with a total score of 14 or 15. Due to challenges in providing adequate entity descrip-
tions or persistent unnatural artifacts in some videos, we ultimately selected 468 videos for further
annotation from the original 2,967 A2D-Sentences videos and 2,683 Refer-YouTube-VOS videos.

• Video-Sham Dataset (Mittal et al., 2023): VideoSham is a video manipulation dataset featuring
diverse, context-rich, human-centric manipulated videos created by professional video editors. We
specifically selected videos from the “Adding an entity” and “Removing an entity” tasks. From
“Adding an entity”, we obtained 45 videos where the manipulated version serves as the “target
video” and the original as the “clean video”. For the “Removing an entity” task, similar to ROVI,
we applied the same rigorous human filtering process to ensure high quality for the “clean videos”,
yielding 22 videos. In total, 67 videos were sourced from Video-Sham.

• Custom Driving Dataset: Recognizing the scarcity of driving scenarios in existing datasets—a
crucial domain due to its implications for autonomous driving safety—we curated a bespoke
dataset. This was constructed using real objects (e.g., vehicles, pedestrians, road signs) from
the BDD100K dataset (Yu et al., 2020) within realistic driving scenes, employing alpha composit-
ing via DaVinci Resolve video editing software, a process akin to HQVI. This dataset explicitly
includes target masks. We generated 10 videos for this specific context.

In total, our benchmark dataset comprises 535 clean/target video pairs, providing a robust founda-
tion for evaluating adversarial object hallucination.

3.2 VQA ANNOTATION

Accurate and unambiguous Visual Question Answering (VQA) pairs are essential for evaluating
object hallucination attacks. We designed a multi-stage annotation pipeline leveraging both large
language models (LLMs) and human expertise:

1. Initial Information Acquisition: For all target videos, we first gather essential auxiliary infor-
mation: video descriptions (pre-generated by VideoLLaMA3-7B and refined by human annota-
tors), target entity masks (obtained using Segment Anything 2 (Ravi et al., 2025)), and target
entity text descriptions (manually added). For the ROVI dataset, which inherently provides these
data, we directly utilized its existing annotations.

2. VQA Pre-generation: Leveraging advanced LLMs, specifically GPT-4o, Claude-3.5-Sonnet,
and DeepSeek-V3, we pre-generate VQA pairs. This process utilizes the target video’s descrip-
tion and the target entity’s information to formulate pertinent questions regarding the presence
and characteristics of the target object.

3. VQA Refinement and Validation: To minimize potential linguistic ambiguity or factual errors
in the pre-generated VQA, we employ an iterative refinement process. The VQA pairs are tested
against sampled frames (e.g., 4 frames) from the target video using the web-based ChatGPT.
Based on the model’s feedback and human review, the VQA pairs are repeatedly optimized until
they are clear, precise, and accurately reflect the presence or absence of the target object.

4 ATTACK METHOD

This section formally introduces Adversarial Object Hallucination (AOH), our proposed white-box
attack against Video Large Language Models. We begin by defining the threat model and then detail
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Figure 1: Pipelines of our attacking strategies.

our objective function, which leverages intermediate feature alignment to induce object hallucination
with visually subtle perturbations.

4.1 THREAT MODEL

We denote a Vid-LLM as F (xv; cin) 7→ cout, where xv is the input video, cin is the input text
(e.g., a question), and cout is the generated output text (e.g., an answer). The typical architecture of
a Vid-LLM comprises a Vision Encoder and a Connector module, which together project the raw
video input into the language model’s embedding space. For simplicity, we denote this combined
intermediate feature extraction process as Φ(xv), where Φ(xv) represents the output feature ten-
sor from the Connector module for video xv . Thus, the internal processing can be abstracted as
L(Φ(xv); cin) 7→ cout.

Our threat model specifies the adversarial conditions (Carlini et al., 2019) adapted for generating
object hallucinations in Vid-LLMs:

1. Adversary Knowledge: The adversary is assumed to have white-box access to the victim Vid-
LLM, F . This includes full knowledge of its architecture and weights, particularly those of the
Vision Encoder and the Connector module (i.e., access to Φ(·)).

2. Adversary Goals: The adversary’s primary goal is targeted object hallucination. Specifically,
given a clean video xcle and a target object, the adversary aims to generate an adversarial video
xadv such that the Vid-LLM F perceives the target object as present in xadv , even though it is
absent in xcle. This perception is evidenced by the model’s VQA responses on meticulously
designed benchmark.

3. Adversary Capabilities: The adversary can manipulate the input video xv to generate xadv

by adding perturbations. The most critical constraint is imposed by the ℓp budget, ensuring the
perturbations are visually subtle. We adopt the commonly used ℓ∞ norm, such that ∥xcle −
xadv∥∞ ≤ ϵ, where pixel values are in [0, 255]. Additionally, the adversary is forbidden to
manipulate the input text cin.

Remark. Our work investigates a challenging and realistic white-box threat model where the ad-
versary leverages detailed model knowledge to induce specific semantic hallucinations with subtle
perturbations in the high-dimensional video domain. Critically, while our attack is designed under
white-box assumptions, our subsequent experiments reveal a remarkable cross-scale transferability
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of these adversarial examples, indicating a broader and more concerning vulnerability in Vid-LLMs
beyond the direct white-box setting.

4.2 INTERMEDIATE FEATURE ALIGNMENT

Figure 1 show the pipeline of our attacking strategies. Our AOH attack is designed to implant
the semantic presence of a target object by aligning the intermediate feature representations of the
adversarial video with those derived from a target video containing the desired object. Given a clean
video xcle and a target video xtar (which contains the object we wish to hallucinate in xcle), our
objective is to find an adversarial video xadv such that:

xadv = argmax
∥xcle−xadv∥∞≤ϵ

cos sim(Φ(xadv),Φ(xtar)) (1)

Here, cos sim(·, ·) represents the cosine similarity between the intermediate feature tensors from
the Φ module for the adversarial video and the target video. By maximizing this similarity, we
encourage the Vid-LLM’s internal representation for xadv to embed the semantic information of the
object present in xtar, without directly manipulating the final text output layer. This approach subtly
guides the model’s perception at an earlier, feature-level stage, making the attack more robust and
covert.

The constrained optimization problem in Equation (1) is solved iteratively using Projected Gradient
Descent (PGD) (Madry et al., 2018). Specifically, for each iteration t:

x
(t+1)
adv = Clipxcle,ϵ

[
x
(t)
adv + α · sign

(
∇

x
(t)
adv

cos sim(Φ(x
(t)
adv),Φ(xtar))

)]
(2)

where α is the step size, and Clipxcle,ϵ
(·) projects the perturbed video back into the ϵ-neighborhood

of the clean video xcle after each step, ensuring the ℓ∞ perturbation budget is maintained. This
iterative process allows us to subtly inject the target object’s semantics into the video’s intermediate
representations, leading to the desired object hallucination by the Vid-LLM.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

All experiments were conducted on computing resources equipped with a NVIDIA 4090 GPU. Our
experimental pipeline involves generating adversarial video samples using AOH, then evaluating
the target Vid-LLMs’ responses to both clean and adversarial videos using a meticulously designed
VQA-based assessment framework.

Target Video-Language Models To provide a broad assessment of Vid-LLM vulnerabilities, we
evaluate AOH against a diverse set of prominent open-source Vid-LLMs, selected for their varying
architectures and scales. For consistency and resource efficiency, we used their default parameter
settings but uniformly adjusted the sampled frame rate to 8 frames per video. Additionally, in line
with prior work (Zhang et al., 2023; Cheng et al., 2024; Zhang et al., 2025a), the temperature setting
for response generation is set to 0 during evaluation to ensure deterministic outputs:

• Video-ChatGPT (Maaz et al., 2024): A 7B parameter model known for its strong video under-
standing capabilities.

• VideoLLaMA3 (Zhang et al., 2025a): We experimented with both the 2B and 7B parameter ver-
sions of this model. A crucial consideration for VideoLLaMA3 is its dynamic resolution handling,
which can lead to significant memory consumption for high-resolution videos 1. To balance model
accuracy and memory usage, we adaptively scaled its input resolution, restricting it to not exceed
480P (854x480) while maintaining aspect ratio. This adjustment ensures its maximum input size
still generally exceeds that of other models in our experiments.

• InternVL 2.5 (Chen et al., 2023): This model family offers a range of scales, and we tested the
1B, 2B, 4B, and 8B parameter variants.

• LLaVA-OneVison (Li et al., 2025): We evaluated the 0.5B and 7B parameter versions of LLaVA-
OneVison, which serve as key models for analyzing cross-scale transferability.

1https://github.com/DAMO-NLP-SG/VideoLLaMA3/issues/82
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Evaluation Metrics Following established practices in evaluating VQA performance for multi-
modal models (Maaz et al., 2024), we employ two primary metrics to quantify the success of object
hallucination attacks and the overall video understanding capabilities of Vid-LLMs:

• Accuracy: This metric measures the binary correctness of a model’s “yes/no” answer to a ques-
tion. For clean videos, a high Acc indicates accurate understanding of the absence of the target
object. For adversarial videos, a low Acc (i.e., incorrect “no” answer) or a high Acc (i.e., incorrect
“yes” answer that aligns with hallucination) indicates successful deception.

• ChatGPT-3.5 Assisted Scoring (0-5 Scale): Inspired by previous work (Maaz et al., 2024), we
utilize GPT-3.5 to provide a more nuanced qualitative assessment of the model’s generated re-
sponses. For each VQA pair, GPT-3.5 evaluates the model’s answer against the ground-truth
answer (for clean videos) or the target answer (for adversarial videos), assigning a score from 0
(completely incorrect/irrelevant) to 5 (excellent, semantically aligned, and detailed). High scores
on clean videos reflect strong baseline understanding. For adversarial videos, high scores indicate
that the model not only perceived the hallucinated object but also provided semantically rich and
accurate details about it, signifying a more profound attack success.

Attack Implementation Details Our AOH attack aims to induce object hallucination with visu-
ally subtle perturbations. We compare our method against several baselines:

• Clean (None): The original, unperturbed video. This serves as the baseline for ideal model
performance, where Vid-LLMs are expected to correctly identify the absence of the target object.

• Random Noise (Random): Adversarial videos are generated by adding random Gaussian noise
to the clean video. The noise is scaled such that its maximum perturbation matches our ℓ∞ budget,
i.e., with a standard deviation derived from ϵ2, mirroring settings in prior (Li et al., 2024). This
baseline assesses whether generic noise can induce hallucination.

• Random Noise with Mask Assistance (Random&Mask): Similar to the Random Noise base-
line, but noise is applied only within the spatial and temporal regions defined by the target object’s
mask. This explores whether localizing random perturbations to the target area enhances halluci-
nation.

• Our Attack (AOH): We implement AOH using Projected Gradient Descent (PGD) to optimize the
intermediate feature alignment objective. We perform 300 optimization steps. The perturbation
budget is set to ϵ = 8 under an ℓ∞ constraint, i.e., ∥xcle − xadv∥∞ ≤ 8. This is a widely adopted
setting in adversarial literature (Madry et al., 2018; Zhao et al., 2023) to ensure that adversarial
perturbations remain visually subtle, given that pixel values are normalized to [0, 255].

Dataset Usage For all experiments, we employ our carefully curated multi-source benchmark
dataset, which contains 535 clean/target video pairs. Each clean video xcle and its corresponding
target video xtar is annotated with VQA pairs (e.g., “Is there a car passing the intersection?”) and
their ground-truth answers: CA (the correct answer when the queried object is absent) and TA (the
correct answer when the queried object is present). In the evaluation, when the queried object is
absent, models are expected to generate answers consistent with CA. Conversely, when the queried
object is supposed to appear, a hallucination is considered successful if the model’s response matches
TA, indicating that it perceives the non-existent object.

5.2 ATTACK PERFORMANCE

We evaluate the overall effectiveness of our proposed AOH attack against various Vid-LLMs, com-
paring it with baseline attack methods (Random Noise, Random Noise with Mask Assistance)
and the model’s performance on clean videos (None baseline). Table 1 summarizes the Acc and
ChatGPT-3.5 Score across all tested models.

Across all evaluated Vid-LLMs, our AOH attack consistently achieves significantly higher object
hallucination rates (Acc) and more semantically rich hallucinated descriptions (Score) compared to
all baselines. The “None” baseline, representing the model’s false positive rate on clean videos,
shows relatively low Acc (ranging from 0.141 to 0.348) and Score (from 1.153 to 2.148). Random
noise baselines (“Rand.” and “Rand.&Mask”) offer only marginal improvements over “None”, indi-
cating that generic or localized random perturbations are largely ineffective for inducing targeted se-
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Table 1: Main experimental results of AOH attack on various Vid-LLMs. “Clean” and “Target”
represent the model’s baseline performance on unperturbed clean and target videos, respectively.
“None”, “Random”, “Random&Mask”, and “Ours” denote the performance under no attack, random
noise, masked random noise, and our AOH attack. Higher Acc and Score under “Ours” indicate
greater attack success. “Evaluation” assesses the model’s basic capability: “Clean” uses xcle as
input with CA as the answer, while “Target” uses xtar as input with TA as the answer.

Vid model Metric
Evaluation Attacking method Other info.

Clean Target None Rand. R.&M. Ours # Param. Res.

LLaVA-Onevision 0.5B
Acc 0.449 0.593 0.157 0.159 0.200 0.607

894M 384Score 1.863 3.198 1.279 1.319 1.514 3.258

InternVL2.5 1B
Acc 0.350 0.580 0.209 0.218 0.223 0.413

938M 448Score 1.659 3.236 1.477 1.490 1.526 2.438

VideoLLaMA3 2B
Acc 0.480 0.142 0.141 0.146 0.164 0.495

1.96B Dyn.Score 1.986 1.173 1.153 1.182 1.220 2.695

InternVL2.5 2B
Acc 0.461 0.614 0.187 0.204 0.211 0.506

2.21B 448Score 1.881 3.321 1.389 1.423 1.503 2.820

InternVL2.5 4B
Acc 0.384 0.631 0.245 0.245 0.263 0.395

3.71B 448Score 1.692 3.411 1.596 1.618 1.681 2.277

Video-ChatGPT 7B
Acc 0.123 0.582 0.348 0.346 0.362 0.402

∼8B 224Score 0.838 3.169 2.148 2.117 2.180 2.348

LLaVA-Onevision 7B
Acc 0.434 0.596 0.142 0.153 0.227 0.386

8.03B 384Score 1.850 3.249 1.314 1.319 1.611 2.359

VideoLLaMA3 7B
Acc 0.438 0.166 0.168 0.175 0.180 0.586

8.04B Dyn.Score 1.906 1.323 1.337 1.323 1.377 3.209

InternVL2.5 8B
Acc 0.381 0.640 0.227 0.214 0.240 0.465

8.08B 448Score 1.692 3.423 1.553 1.559 1.634 2.609

mantic hallucinations. In stark contrast, AOH significantly boosts Acc (e.g., LLaVA-OneVison 0.5B
from 0.157 to 0.607, VideoLLaMA3 7B from 0.168 to 0.586) and Score (e.g., LLaVA-OneVison
0.5B from 1.279 to 3.258, VideoLLaMA3 7B from 1.337 to 3.209), demonstrating its superior ca-
pability in implanting specific object semantics.

Notably, for models like LLaVA-OneVison 0.5B, AOH’s Acc (0.607) even surpasses the model’s
performance on the actual target videos (Target Acc: 0.593), suggesting that AOH can make the
model perceive non-existent objects more reliably than it detects truly present ones. Similarly, for
VideoLLaMA3 7B, AOH’s Score (3.209) is exceptionally close to the model’s Score on target videos
(3.249 from InternVL2.5 8B), showcasing the high fidelity of the hallucinated object’s description.
VideoLLaMA3 2B and 7B exhibit surprisingly low “Target” Acc and Score, indicating a struggle
to accurately identify or describe the object even when explicitly present. However, AOH still dra-
matically increases their Acc and Score, forcing them to hallucinate effectively, which underscores
AOH’s ability to manipulate underlying feature representations regardless of the model’s inherent
detection robustness.

5.3 EXPERIMENTAL ANALYSIS

Cross-Scale Transferability A critical finding of our study is the alarming cross-model transfer-
ability of AOH adversarial examples. We investigate this phenomenon by generating adversarial
videos using LLaVA-OneVison-0.5B and LLaVA-OneVison-7B, and then evaluating their perfor-
mance when applied to the other model. Results are presented in Table 2. The most striking ob-
servation is the transferability from the smaller LLaVA-OneVison-0.5B to its larger counterpart,
LLaVA-OneVison-7B. Adversarial samples crafted for the 0.5B model achieve an Acc of 0.533 and
a Score of 3.018 when attacking the 7B model. This performance is remarkably higher than the
7B model’s own-generated adversarial samples (Acc 0.386, Score 2.359). This surprising result
highlights a dangerous possibility: attackers can design adversarial samples against smaller, com-
putationally less expensive models, and these samples not only transfer to larger, more complex
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Response 𝑐!"#:  A few clouds are moving through the sky above the winding river.

Response 𝑐!"#:  A large bird, possibly an eagle, is moving through the sky above the winding river.

Response 𝑐!"#:  A large bird, possibly an eagle, is soaring through the sky above the winding river.

𝑥$%&

𝑥#'(

𝑥')*

Question 𝑐+,:	What, if any, is moving through the sky above the winding river?
CA:	Nothing is moving through the sky, just a clear blue sky over the landscape
TA: A bald eagle is soaring through the sky

Figure 2: GradCAM visualizations on a clean video (top), its target video (middle), and AOH ad-
versarial counterpart (bottom).

systems but often achieve superior attack efficacy at a fraction of the cost. Conversely, adversarial
samples generated for the 7B model show reduced, though still present, attack performance when
transferred to the 0.5B model (Acc 0.312, Score 1.998), suggesting an asymmetric transferability
where attacks from smaller to larger models are particularly potent. This discovery exposes a pro-
found and cost-effective vulnerability in Vid-LLMs, demanding urgent attention.

Table 2: Cross-model transferability re-
sults for AOH attacks between LLaVA-
OneVison 0.5B (LLaVA-OV 0.5B) and
7B models (LLaVA-OV 7B). “Before”
refers to the attack performance on the
original target model (e.g., 0.5B gener-
ated for 0.5B). “After” refers to the attack
performance when transferred to the other
model (e.g., 0.5B generated then tested on
7B).

Vid model
Before After

Acc Score Acc Score

LLaVA-OV 0.5B 0.607 3.258 0.312 1.998
LLaVA-OV 7B 0.386 2.359 0.533 3.018

GradCAM for Attack Mechanism Explanation To
shed light on how Vid-LLMs process AOH-perturbed
videos, we extend the traditional GradCAM technique
to video-text tasks, providing visual explanations of
model attention. Using LLaVA-OneVison-7B as an ex-
ample, our GradCAM visualizations reveal that even
when the model successfully hallucinates an object,
its attention is not unnaturally focused on the regions
where the target object is supposedly introduced. In-
stead, the model’s attention predominantly remains on
naturally existing objects and salient areas within the
video. This indicates that our AOH attack is highly
covert; it manipulates the model’s internal representa-
tions without forcing an overt shift in its visual attention
towards the hallucinated entity, making the attack diffi-
cult to detect through traditional interpretability meth-
ods. Visual examples of GradCAM on clean and adversarial videos are presented in Figure 2.

6 CONCLUSION

In this paper, we introduced Adversarial Object Hallucination (AOH), a novel white-box attack
revealing semantic vulnerabilities in Video Large Language Models (Vid-LLMs). Through interme-
diate feature alignment, AOH effectively induces targeted object hallucinations with visually subtle
perturbations, significantly outperforming baselines. Critically, we uncovered an alarming cross-
scale transferability where adversarial examples crafted for smaller models achieve superior effi-
cacy on larger Vid-LLMs of the same architecture, presenting a potent and cost-effective threat. Our
analysis further confirmed AOH’s covert nature, manipulating models via semantically structured
perturbations without obvious shifts in visual attention. This work highlights a severe vulnerabil-
ity in Vid-LLMs, underscoring the urgent need for robust internal representations and providing a
foundational framework for future adversarial research in multimodal AI safety.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Advances in Neu-
ral Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial
robustness. CoRR, abs/1902.06705, 2019.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
Scaling up vision foundation models and aligning for generic visual-linguistic tasks. CoRR,
abs/2312.14238, 2023.

Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
Zhang, Ziyang Luo, Deli Zhao, and Lidong Bing. Videollama 2: Advancing spatial-temporal
modeling and audio understanding in video-llms. CoRR, abs/2406.07476, 2024.

Suhwan Cho, Seoung Wug Oh, Sangyoun Lee, and Joon-Young Lee. Elevating flow-guided video
inpainting with reference generation. In AAAI-25, Sponsored by the Association for the Advance-
ment of Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA, pp. 2527–
2535. AAAI Press, 2025.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Kai Hu, Weichen Yu, Li Zhang, Alexander Robey, Andy Zou, Chengming Xu, Haoqi Hu, and
Matt Fredrikson. Transferable adversarial attacks on black-box vision-language models. CoRR,
abs/2505.01050, 2025.

Linhao Huang, Xue Jiang, Zhiqiang Wang, Wentao Mo, Xi Xiao, Bo Han, Yongjie Yin, and Feng
Zheng. Image-based multimodal models as intruders: Transferable multimodal attacks on video-
based mllms. CoRR, abs/2501.01042, 2025.

Haibo Jin, Leyang Hu, Xinuo Li, Peiyan Zhang, Chonghan Chen, Jun Zhuang, and Haohan
Wang. Jailbreakzoo: Survey, landscapes, and horizons in jailbreaking large language and vision-
language models. CoRR, abs/2407.01599, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer.
Trans. Mach. Learn. Res., 2025, 2025.

Jinmin Li, Kuofeng Gao, Yang Bai, Jingyun Zhang, Shutao Xia, and Yisen Wang. Fmm-attack: A
flow-based multi-modal adversarial attack on video-based llms. CoRR, abs/2403.13507, 2024.

Shanchuan Lin, Andrey Ryabtsev, Soumyadip Sengupta, Brian L. Curless, Steven M. Seitz, and Ira
Kemelmacher-Shlizerman. Real-time high-resolution background matting. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 8762–
8771. Computer Vision Foundation / IEEE, 2021.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Muhammad Maaz, Hanoona Abdul Rasheed, Salman Khan, and Fahad Khan. Video-chatgpt: To-
wards detailed video understanding via large vision and language models. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 12585–12602. Association for Computa-
tional Linguistics, 2024.

Haley MacLeod, Cynthia L. Bennett, Meredith Ringel Morris, and Edward Cutrell. Understanding
blind people’s experiences with computer-generated captions of social media images. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing Systems, Denver, CO, USA,
May 06-11, 2017, pp. 5988–5999. ACM, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In 6th International Conference on
Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net, 2018.

Trisha Mittal, Ritwik Sinha, Viswanathan Swaminathan, John P. Collomosse, and Dinesh Manocha.
Video manipulations beyond faces: A dataset with human-machine analysis. In IEEE/CVF Winter
Conference on Applications of Computer Vision Workshops, WACV 2023 - Workshops, Waikoloa,
HI, USA, January 3-7, 2023, pp. 643–652. IEEE, 2023.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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